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ABSTRACT: 

The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing 

has been studied using carefully fonnulated numerical simulations. An integrated large-eddy 

simulation (ILES) that uses a finite-volume technique was employed to solve the three­

dimensional incompressible Euler equations with numerical dissipation. The initial conditions 

were chosen to test the dependence of the RT growth parameters (ab, as) on variations in (a) the 

spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support 

the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. 

Variation in spectral shapes and bandwidths are found to have a complex effect of the late time 

development of the RT mixing layer, and raise the question of whether we can design RT 

transition and turbulence based on our choice of initial conditions. In addition, our results 

provide a useful database for the initialization and development of closures describing RT 

transition and turbulence. 

KEYWORDS: 

Instabilities, Rayleigh-Taylor, ILES, Initial Conditions. 
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NOMENCLATURE: 


Al.uhabetical Listing 

ak,bk,ck,dk spectral amplitudes 

J volume fraction 

g gravity 

hb mix width: bubbles 

hs mix width: spikes 

h total mix-width 
h hb + hs 

k wave-number 

P pressure 

Greek Symbols 

Ps 


t 


u,v, W 


x,y,z 


Ax, ily, & 


Llt 


At 


W 


spectral index 

time 

velocity components 

spatial co-ordinates 

cell-widths 

time-step 

Atwood number 

integral mix width 

ex growth-parameters 

X ratio ofKE 

il size of 

computational cell 

Ee = Lltu/x 

Subscri.ut 

v viscosity 

r linear growth rate 

e molecular mix parameter 

A ratio of r.m.s. amplitudes 

0 initial value 

1,2 heavy, light 

b,s bubble, spike 

x,y,z co-ordinates 

Su.uerscri.ut 

e,n,s,w face values (e: east, w: 

west, etc.) 

E,N,S,W cell center values (e: 

east, w: west, etc.) 

max maximum value 

total total value 

intermediate value r.m.s. value* I 
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1. INTRODUCTION 

Rayleigh-Taylor (RT) instability [1-3] occurs when a light fluid (Pl) accelerates a heavy 

fluid (Pz) in the presence of infinitesimal interfacial perturbations ho of wavelength A =21&/k at 

the interface. The instability is of interest due to its impact in such fields of study as climate 

dynamics [4,5], combustion and chemical reactor processes [6,7], pollutant dispersion [8], 

Inertial Confinement Fusion (ICF) [9,10], and cosmic and stellar dynamics [11,12]. At early 

times, for small enough initial perturbations (h «1/k), the flow can be described by linear 

analysis [13] and the amplitude grows exponentially according to: 

h(t) = ho cosh(rt), (1) 

where, r = ~Atgk is the classical growth rate, and the Atwood number 

~ ::: (PI - P2)/(PI - P2) is the non-dimensional density contrast between the two fluids. When 

the flow transitions to nonlinearity (h - 1/k), the growth slows down and the amplitude 

increases linearly with time. In this regime, the flow evolves into bubbles of lighter fluid rising 

through the heavy fluid with a terminal velocity oc.f.X for a single mode [14,15], and 

corresponding spikes of heavy fluid falling through the light fluid. In the presence of a spectrum 

of modes, the RT flow is dominated by successively longer wavelengths of the dominant 

bubbles Ab • For a constant acceleration, the mixing width growth attains self-similarity (i.e. as 

the bubbles grow they preserve their aspect ratio) such that the mixing width grows quadratically 

[16, 17] with time according to the relation: 

(2) 


hb and hs are the heights (abovelbelow the initial density interface) of "rising" bubbles and 

"falling" spikes respectively; and as denote growth rate parameters (for the bubbles and ab 

spikes). The implication of Eq. (2) is that the flow has lost memory of the initial conditions and 

the only relevant length scale is the self-similar scale Agt. However, universal values of the 

growth parameters has eluded both numerical and experimental. investigation, and has been 

attributed to the variations in the structure of the initial conditions employed in experiments and 

simulations [18, 19]. Physically, self-similarity in RT can generally be achieved through two 

limiting scenarios: bubble merger and/or bubble competition [19,20]. Bubble merger occurs 
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when two or more bubbles merge to form a larger structure that then undergoes a second 

generation of mergers and so on. In bubble competition, amplification and saturation of 

successively longer wavelengths, already present in the initial spectrum, dominates the flow. 

Haan [14] considered the constructive interference experienced by adjacent modes in a wave­

packet, triggering transition when the sum of modal amplitudes in the wave-packet is - u!k (u 

being a non-linear threshold). Thus, individual modes may become nonlinear even when their 

amplitUdes are below the threshold due to their interaction with adjacent modes of similar phase. 

We can interpret eq. (2) to be the quadratic envelope of the growth curves of all such individual 

modes [20]. By changing the initial amplitudes of these modes, we may cause them to saturate 

earlier (or later), and thus the slope of this envelope (m) can be changed. Since the disturbances 

grow exponentially up to saturation, the time to nonlinearity (and thus m) depends 

logarithmically on the initial amplitudes. 

Youngs [21] performed large eddy simulations (LES) of RT at a resolution of 720x480x480, 

.initialized with a spectrum that had energy only in the high mode-numbers (90 - 180). The flow . 
evolved with a growth rate of ab - 0.027, which doubled to ab-0.057 with the addition of a 

single long wavelength in the initial spectrum at a mode-number of 2. Cabot & Cook [22], in 

their large (30923
) direct numerical simulations (DNS) at a maximum Reynolds number (defined 

as Re := hh/v) of - 3x104 
, studied the effect of the initial spectral peak (k=kmax;) on the growth 

rate. They report self-similarity only for the case with the highest value of the peak wave-number 

kmax;. Their plots of m asymptotes to a value of 0.025 which is much lower than the 

corresponding values obtained from experiments. The DNS of Young et al. [23] used an annular . 

spectrum that evolved through mode-coupling and gave m - 0.03. Simulations in which 

. numerical diffusion is suppressed through a Front-Tracking technique [24] found a higher value 

for m - 0.07. Thus, while most numerical simulations are initialized with annular spectra, 

experiments have inherent long-wavelength content in their initial conditions [25-27]. 

Ramapnl.bhu & Andrews [18] initialized RT simulations with initial conditions that contained 

long wavelengths measured directly from their Water Channel [26], and found good agreement 

between the experimental and numerical values of m. Similar long wavelength perturbations 

have also been observed in the experiments of Banetjee et aI. [25] and Dimonte and Schneider 

[27], suggesting that experiments do not evolve purely through the bubble merger mechanism. 

Ramaprabhu et aI. [19] suggests that these two processes (bubble merger and bubble 
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competition) exist simultaneously in experiments and are in competition, or perhaps they are 

complimentary. The current work examines the concepts described above through three­

dimensional numerical simulations with carefully imposed initial conditions. We explore 

possible influences on the growth rates with simulations that have annular spectra at different 

amplitUdes. Effects associated with variation of this annular spectrum, such as: the spectral 

shapes (referred to as the Spectral Index (Ps) herein, and quantified as the exponent of the wave-

k Psnumber i.e. ho = ); and, effects of spectral width and discretely banded spectra imposed on the 

initial condition are also investigated. The remainder of the paper is organized as follows. In §2 

we describe the governing equations and the numerical algorithm~ Details of the computational 

setup are provided in §3. Results from a multi-mode study are described in §4 followed by 

discussion and conclusions in §5. 

2. GOVERNING EQUATIONS & NUMERICAL DETAILS 

(a) Governing Equations 

The ifrCllmpressible Euler equations are used in conjunction with the ILES (see below for 

more details) modeling technique: 

Volume conservation: (3) 

Df =0Scalar transport: (4)
Dt 

D(pu)
Momentum: -Vp+pg (5)

Dt 

with the fluid velocity y:. (u,v,w), density, p, pressure, p, and gravity, K::=::(O,O,gJ, and 

scalar f. There are six independent variables and five equations; the seventh equation is a linear 

equation of state for density such as p = ~f). In the present work we take f to be the non­

dimensional density, or mixture fraction, defined as f = (p - P2 )/(Pl - P2)' 

(b) Numerical Solution Procedure 

Overview 

For the present studies we have used ILES (Integrated Large Eddy Simulation) modeling 

which involves solving Euler governing equations and using numerical diffusion to model 
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turbulent diffusion. Success with this modeling technique for buoyancy driven flows has been 

reported by Youngs [21]. The governing equations presented above are a coupled set of partial 

differential equations for which there exist several solution procedures. The present work solves 

the governing equations using the RTI3D code described by Andrews [28]. In particular, a 

fractional time step technique is used in which for each time step an advection calculation is 

followed by a Lagrangian source term update. The Lagrangian update is presented next, and this 

is followed by a brief description of the advection step for the scalar f (more details about the 

technique may be found in Andrews [28], and Andrews PhD thesis [29]). 

Lagrangian momentum source tenn updates 

The Lagrangian w momentum equation is: 

wn+1/2 +~(pn _pn)+ g
nAP . T z (6) 

PtilY 

The n +1/2 superscript refers to a value from the advection calculation, and * to an intermediate 

value that does not necessarily satisfy continuity. The subscripts refer to spatial position (north 

face), typical of the SIMPLE method [30], and a staggered arrangement of momentum and mass 

cells is used. Following the SIMPLE practice, velocity corrections are defined so that 

U~;l =u;'e +AUi,e (and similarly for the other velocities) and a new pressure p;+l =p; +App 

where Ap is a pressure correction. By substituting these expressions for n+1 into the volume 

conservation equation and then subtracting equation (6) evaluated with the * we arrive at the 

usual Poisson equation for pressure corrections: 

(7) 

with Div the divergence of the * velocity values. The Poisson equation (7) is solved using a Full 

Multi-Grid method, and the pressure corrections are used in a SIMPLE style [30] to provide 

updated (n+ 1) velocities and pressures that simultaneously satisfy the momentum equations (5) 

and volume conservation. 

Transport procedures 

The 3D transport procedures are split into xly/z-steps, this fractional splitting simplifies the 

calculation to one-dimensional updates that lends itself to high order calculation of cell fluxes 

with the Van Leer [31] method. There follows a brief description of the scalar x-step advection, 
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the y and z steps being similar, and similar advection steps are perlormed for the momentum. The 

x-step advection for the scalar is given by: 

(8) 


where P refers to the center of a control volume, e the east face, and w the west face. The face 

values for the u velocities are available, and the face values for the scalar are computed using a 

second order approximation with Van-Leer limiting to prevent non-physical oscillation as: 

. (1- BJ 
Ie IUPwind + szgn(Be) 2 Ill,De (9) 

where Be =t1t uJIll, , and upwind values are taken according to the sign of Be' The derivative 

is evaluated following Van Leer [31] as: 

_ . {I I 21t1 wl 21t1 el}De -S mm D, Ill, , Ill, (10) 

I if t1 e andt1 w>0 

where t1w = I; I;, t1 e =I; - I; and S = -1 if t1 e andt1w< O. 
{ o otherwise 

Van Leer limiters have been used in equation (10) to limit the gradient of the volume fraction 

profile, thereby preventing spurious oscillations. The representation for the gradient of the cell 

profile D determines the accuracy of the representation. In the present 

work D=(6. e +6. w )f(21ll,) , so the gradient is computed with a central difference so this scheme 

is referred to as "2nd order". Of significant importance in the simulation of R-T flows is the 

convection calculation of the fluxes of mass and momentum. A third-order Van Leer method 

[31] used to compute convective fluxes, minimizes numerical diffusion and prevents spurious 

overshoots and undershoots that occur due to the use of higher order numerical schemes. A two­

phase, 2D version of this code was tested and validated for both RT and Kelvin-Helmholtz flows 

by Andrews [27). The 3D, single-phase version was used extensively [18-20] to compute both 

the single-mode and multi-mode RT problem, and compared well with other benchmark codes 

commonly used in the study of RT. Over the last 30 years, great progress has been made in the 

development of numerical methods employed in the study of RT flows. However, numerical 

diffusion has served to degrade the resolution and accuracy of these methods. This numerical 

diffusion is now being taken advantage of through the ILES technique [21]. 
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While RTf-3D solves the Euler equations with no explicitly specified viscosity, numerical 

diffusion serves to dissipate small scales in a similar manner to physical viscosity. Such 

numerical techniques refe.rred to as liES have been demonstrated to be particularly attractive for 

flows with discontinuities (RT) and shocks (as in Richtmyer-Meshkov (RM) Instability) [21]. 

The effective numerical viscosity of the IIES technique used here was determined through 

comparison of single-mode simulations with linear theory results [13]. Details about the 

technique used may be found elsewhere [19, 20]. The implication of a numerical viscosity for 

multi-mode simulations is that similar to a physical viscosity, it sets an upper bound for the 

fastest growing modes. Smaller wavelengths, present in the initial conditions, or generated 

through nonlinear interactions (mode-coupling), are smeared out by the numerical viscosity. 

3. PROBLEM SET UP AND COMPUTATIONAL DETAILS 

Figure la is a schematic of the computational domain used in the current work. The 

dimensions of the three dimensional box are Imxlmx2m (LxLx2L) in the X-, y- and z-directions, 

respectively (where z-: is the direction of gravity). The interface between the heavy (PI) and light 

(P2) fluids is at z = O. The densities were chosen to be PI =3.0 kg/m3 and P2 =1.0 kg/m3 which 

corresponds to At 0.5, while the acceleration due to gravity gz was set to be - 9.81 ms-2
• 

Perturbations ho(x, y) are imposed at the interface (z = 0) as fluctuations of a constant density 

surface (see fig. Ib). These are then converted to volume fraction fluctuations using: 

11 (x, y) 1+ ho(x, y)/il, for ho < 0 
(11)

fr (x, y) = ho (x, y)/il. for ho > 0 

where ~ is the width of the computational cell. The pressure is initialized to the hydrostatic value 

in this incompressible problem using, p(z):::;: - Jpgdz, where P = hpJ + f2P2' is the unperturbed 

initial density field. This is an important initial condition to set, because without it the algorithm 

will seek to establish the hydrostatic condition on the first time step, involving hundreds, if not 

thousands, of iterations for the pressure correction calculation. If an initial hydrostatic pressure 

field is provided, only three or four iterations are required on the first time step for pressure 

convergence. Periodic boundary conditions were used in the x- and y-directions, while zero-flux 

conditions were imposed in the z-direction. All the simulations reported here used a resolution of 

128x128x256 grid points (totaling 4.2 million cells) in the x-, y- and z-directions, respectively. 
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The calculations were stopped when the bubble height reached -0.9 m to avoid boundary effects . 

. The simulations· were executed on the mc Cluster at Missouri S&T. The run-times averaged 

around 3 CPU hours per calculation. Each of these simulations required 2GB of RAM and ­

4GB of storage. 

(a) Multimode Calculations· Initial Conditions: 

The multimode calculations were designed to test the dependence of the growth constant Qb 

on the spectral index, spectral bandwidth, discrete spectral shapes and mode coupling. Modes 16­

32 are selected for the mode coupling case to able cross comparison of the present simulations 

with the a-group results [20]. Dimonte et ai. [20] suggests that this mode coupling case is least 

sensitive to initial conditions because it involves the nonlinear coupling of saturated high-k 

modes of intrinsic scales h -11k. To assure that the low-k modes are generated exclusively by 

mode coupling, the initial perturbations are chosen to have finite amplitudes only in an annular 

shell in k-space at the largest resolvable wave numbers (see figure 2), namely, modes 16-32 for 

the 128x128x256 simulations [20]. The initial perturbations are taken to be: 

hex, y) = Iak cos{kxx)coS(kyY)+ bk cos(kxx)sin(kyY)+ 
kx,ky (12) 

ck sin{kxx)cos(kyY) +dk sin(kxx)sin(kyY) 

where k ~k; + kj , and the spectral amplitudes are chosen randomly but give an r.m.s. 

amplitude of - 3.15xlO-5 L. Figures 2a & b show the multimode perturbation amplitudes in both 

physical and wave-number space. Table 1 is a list of all the numerical simulations (NS) 

presented in this work. Simulations 1-3 were performed to study the effect of Spectral Index on 

the RT growth. These calculations had energy in mode numbers (n =kL/21l) 16-32, but had 

spectral indices (Ps) of -1, 0 (white noise, a-group IC case) and 1. A spectral index of 1 

corresponds to more energy in the high mode-numbers as compared with a spectral index of 0 

(white noise). Correspondingly, calculations with spectral index of -1 had more energy in the low 

mode-numbers as compared with the other cases (i.e. ps = 0 and 1). Simulations 4-5 were 

initialized with the smallest mode-numbers (longest wavelength) Nmin = 2 and 8; the objective 

being to study the effect of spectral bandwidth on the growth parameters. The energy density 

spectrum has the canonical property: 
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(13) 


Thus, all the simulations were initialized with the same perturbation r.m.s. amplitude, thereby 

ensuring that all the simulations had the same initial energy. Similarly cases 6, 7 and 8 take into 

account the effect of discrete banded spectra. Energy was deposited in two concentric bands 

between mode numbers 4-6 and 16-32. Care was taken to ensure that the total energy used for 

these simulations was identical to the energy used in cases 1-5 by re-writing eq. (13) for a 

banded spectrum such that: 

~2 k kl kl1lJlJ< h{2 ~2 
-= JEhO(k)dk= JEh1(k)dk+ JEh2 (k)dk=-+- (14) 
2 k2 2 2k.run kmin 

The ratio of the r.m.s amplitudes (A =h~2 / h{2 ) in the two concentric bands were varied to 

test the influence of the small mode-numbers on the simulations. Cases 6, 7 and 8 are simulations 

that correspond to A =5, 50 and 100 respectively. Figure 3 shows the azimuthally averaged 

initial perturbations for all the simulations (1-8). We also address the issue of the peak wave­

number in the presence of numerical viscosity in these simulations. Numerical viscosity (similar 

to other stabilizing mechanisms like surface tension) places an upper bound on the fastest 

growing wave-numbers. The peak wave-number kp may be detennined as [32,33]; 

(15)kp =O.5( ~!r 
with a peak growth rate of - O.4(g 2 / V Y'3 . From the above, the fastest growing mode number 

for the current simulations was determined to be Np - 24 [20], and within the range of modes 

imposed in our initial conditions. This guarantees that the linear growth stage is reproduced 

accurately by these calculations. Most numerical simulations of RT [19-23] are initialized with a 

similar annular distribution of energy. It is expected that the mode-coupling cases will produce a 

much lower growth rate than the simulations initialized with the longer modes [20], because the 

long wavelengths dominate the flow at late time. The cases reported in this work are listed 

below: 

i. Spectral Index study: Cases 1-3 (note that case 1 is similar to a-group M128 simulation 

and is treated as a base case for comparison purposes). 


Ii. Spectral Bandwidth study: Cases 4 and 5 
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111. Effect of discrete banded spectra: Cases 6 8. 

4. RESULTS 

In this section, we analyze the 3D data fields from each of the numerical simulations 

described above (cases 1-8) to quantify growth rate, self-similarity, molecular mixing and energy 

dissipation for comparison with experiments and previous RT simulations. 

The fluid penetration is characterized in terms of the species concentration or volume fraction of 

the' 'heavy" fluid h averaged in the span-wise direction such that: 

< 11 >= ffltdxdyl L2 (16) 

Vertical profiles of < 11 > are shown in figure 4 for (a) early, and for (b) late times for 

simulations 1-3. The profiles are nearly linear and symmetric, characteristic of the moderate 

Atwood number of 0.5 used in these simulations [17,20,25]. The evolution of the mixing zone is 

also depicted for Case 1 in figure 5a by the iso-surfaces of Ji at Atgt21L == 5.31 and 19.62 

respectively. At early time, there are numerous bubbles with wavelengths larger than the 

imposed modes, and that correspond to the most unstable mode. As the bubbles penetrate, the 

flow becomes self similar and the bubbles increase in size. A similar phenomenon may also be 

observed from the iso-surfaces of spikes at these moderate Atwood numbers (see figure 5b). 

Figure 6 shows the evolution of the bubble and spike amplitudes as a function of a non-

dimensional self-similar length AtgrlL. The bubble and spike amplitudes hb and hsare defined 

by the z- location where the plane averaged values of <h > reaches values of 99% and 1 % 

volume fractions, respectively, relative to the original mid-position of the interface (z == 0), We 

also observe a ratio of hJhb - 1.25 at late time which is consistent with the experimental 

observations [25-27] and with NS [19] at At = 0.5. The bubble and spike amplitudes are 

subjected to statistical fluctuations, especially at late time when there are few bubbles and spikes. 

To account for this problem, we also plot the integral mix width CW) defined by Andrews and 

Spalding [3] as: 

(17) 


which measures the overlap of the heavy (11) and the light (/2) fluids where h + 12 == 1. The 

factor of 6 derives from considering the width of a linear profile [3]. At small to moderate 
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Atwood numbers where hb - hs, we find that Wlhb,s - 2 which is consistent with earlier NS 

[19,20]. 

The growth-rate parameter ab is measured by using the definition from Ristorcelli and Clark 

(2004), (RC) [34] who, through a self-similar analysis for small Atwood RT mixing, obtained an 

ordinary differential equation for the planar average of the mixing layer half-width hb as: 

h2 

a - b (18)
b.RC - 4"g~ 

As an exact mathematical result (18) validates the form of heuristically derived equations [35,36] 

that resulted from phenomenological buoyancy-drag type models. For constantab,RC' At and g, 

the solution to (18) (taking only the positive root as physically realizable) can be written as: 

hb = ho + 2~ab,Rc"ghot + a b,Rc"gt
2 

, (19) 

where ho is a virtual starting thickness, that effectively depends on how long it takes for the flow 

to become self-similar, which in tum depends on the spectrum of initial perturbations. The 

growth rate constants for both the bubbles and spiked are calculated based on this definition (eq. 

18), To cross-compare our results with earlier simulations, we also calculate the growth­

parameters based on a definition used by Read [37]; obtained by differentiating hb•s with respect 

to "gt2 
• Since these definitions are applicable only when the flow becomes self-similar, the 

values of ab,~.1isted in Table 2 were calculated for "gt2 >10, when almost all the NS cases (1­

5) studied in this work became self-similar. 

(a)Effect of spectral index Cps): 

Cases 1,2, and 3 had the r.m.s amplitude and energy in the same mode-number band (16-32) 

but spectral indices (Ps) = -1, 0 (white noise), and +1 respectively. From the time traces of hb 

shown in figure 7, it may be observed that the ps =+1 case (case 2) grew the fastest at early time 

as it has more initial energy at the high wave-numbers (see figure 7a) . The ps =-1 simulation 

(case 3) has the slowest growth as the NS is initialized with more energy in the low-amplitude, 

low wave-number (long wavelength), part of the spectrum sampled by the flow. The 

corresponding growth-parameters are plotted in figure 7b and show little sensitivity to Ps. 

Similarly, the time traces of hs displayed in figure 7c show no sensitivity to the changes in the 

values of the spectral index Ps and the amplitudes of the spikes were almost identical at late time .. 
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In addition to large-scale structures being felt in the bubbles and spike growth parameters, 

small-scale effects, namely the molecular mix parameter e [38], were also investigated. Values 

for ewere computed from volume fraction profiles as 

(20) 


where (.) denotes averaging over the x-y plane. eapproaches 1 for completely mixed fluids, and 

o for immiscible fluids . Thus, e is a parameter that characterizes molecular mixing. The 

evolution of e with Agt2 is shown in fig. 7 Cd) for cases 1, 2 and 3. For all these cases, e 
asymptotes to a value of -0.8 that is consistent with experiments [25, 26, 39]; although at 

slightly different rates. Interestingly the level of diffusion in ILES is expected to be higher than 

that due to true physical mass or momentum, however, theNS produces the same level of 

molecular mixing as experiments and high-resolution DNS. The high-resolution ILES study of 

Youngs [21] gave a value of 0.81 for e in the self-similar stage. The ILES concept is that 

numerical diffusion captures the molecular mixing associated with unresolved small-scales 

implicitly in the numerical scheme, and our results support this conclusion for RT mixing. 

Energy Budget: 

Development of the RT flow into self-similarity involves the conversion of initially available 

potential energy to kinetic energy. The ratio of the kinetic energy of the flow to the 

accompanying loss in potential energy has been found to be nearly constant for such flows [19, 

20, 25, 26, 40] at a value of 0.5. We use the approach outlined in [19] to define this ratio: 

assuming for low A, a linear profile of the volume fractions, and hs - hb = h, then the loss in 

potential energy may be written as 

In eq. (21), the error in assuming hs - hbresults in an overall error in LlP.E. of ± 5% for the 

NS presented in this paper. The corresponding gain in kinetic energy is more difficult to evaluate 

because density and velocity fluctuations are correlated. However, if we replace the respective 

densities by their average, the average velocity can be estimated as w - h, which gives a vertical 

kinetic energy of : 
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KE = 1 
+h

Jpw 2dxdydZ =ph 2h (22)z 
-h 

The ratio of eq. (21) and (22) gives: 
• 2

KE hz 3--= 12abRc (23)
ME A,gh . 

If there are no other energy sinks, i.e. KE)ME - 1, we can place an upper bound on 

ab,RC ..... 0.083. However, the dissipated energy D and kinetic energy in the horizontal directions 

KEx and KEy must also be considered when calculating the global energy balance as: 

(24) 


The total gain in kinetic energy (KEtotaD can be evaluated by integrating over the entire 

computational domain: 

1 J . - -KElolal ='2 p(V.V)dxdydz (25) 

The ratio K~otaliME is plotted for cases 1- 3 in figure 8. The fraction of energy dissipated is 

given by 1-KEtotallME, and approaches a value ..... 0.55 for these simulations. This is in good 

agreement with recent experiments by the authors [25], where they report a value of DIP.E. = 

0.52 from their simultaneous measurements of density and velocity fields using hot-wire 

anemometry. Figure 8 is a plot of KE,otalIM.E. from all simulations in cases 1-3 and shows 

only a slight dependence on the spectral index. The ratio of the vertical to the horizontal 

components of kinetic energies, X = (KEx + KEy)1 KEz from these simulations was determined 

to be - 0.61. In comparison, Youngs (1994) gives a value of - 0.48 for KErorallME. and ..... 0.7 

for the ratio of kinetic energy components (X). These values are in good agreement with the 

experimentally observed values of 0.62 for X inferred from a velocity ratio of - 1.8 obtained 

from the hot-wire measurements [25]. Dimonte et al.[20] combined the energy balance in eq. 24 

with vertical kinetic energy expression of eq. (23) to obtain a bound of abfrom the energy 

budget calculations as: 

KEloral/MEa ..... -"::::';=-'---,-- (26) 
b 12[1 +X] 
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At early times, when energy dissipation is small, i.e. K~otallME -1, a value of ab - 0.053 is 

obtained from the NS for case 1. With the observed ratio of KEtotal1ME - 0.49at late times, eq. 

(23) yields a value of 0.0247 which is consistent with the NS results and the late time values of 

plotted in figure 7b (for case 1).ab 

(b) Effect of spectral band-width: 

Ramaprabhu et ai. [19] studied the effect of the longest wavelength imposed in the initial 

conditions by varying the smallest mode-number in the wave-packet, Nmin from 1 to 3. The 

growth-rate parameter tAb was found to be insensitive to such variations. For much higher values 

of Nmin , mode-coupling is expected to playa more dominant role, accompanied by a decrease in 

tAb. Cases 4 and 5 illustrate the effect of variation of spectral bandwidth of the IC on both the 

large scale (growth-constants, amplitude) and small-scale (molecular mixing, KE release) 

parameters in the RT mix. Cases 4 and 5 were initialized with Nruin of 2 and 8 respectively, and 

with the same net initial energy as cases 1-3. Figure 9 plots the values of tAb,s for the different 

values of Nmin. Inspection of figure 9 reveals that the growth parameters for the bubbles and 

spikes vary with the change in the minimum mode number. It is observed that the incorporation 

of longer wavelengths leads to an increase in ab which asymptotes to a value of 0.023, which is 

consistent with cases 1-3. However, there appears to be no clear trend for Us. Simulation 4 which 

is initialized with Nruin = 2 is found to be the most efficient amongst cases 1-5 for extracting 

kinetic energy from the initial density distribution KEtotal1ME - 0.7. This again suggests that 

the presence of long wavelengths is an efficient way to extract energy while minimizing 

dissipation. Indeed, it appears that there is a "critical" Nruin, somewhere between 16 and 8 at 

which energy dissipation governs the flow. This simulation also had the largest growth-rate 

which implies the appearance of large-scale structures in the flow at early times. Thus, the rate of 

extraction of potential energy was much higher than that observed in simulations 1 and 5. The 

molecular mix parameter eat late time is insensitive to the single banded structure (see figure 

10), perhaps because all the simulations had high wave-number IC's that drives diffusion at the 

smallest scales resolved. 
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(c) Effect of discrete banded spectra: 

Figure 11 to 13 present the results from partitioned initial banded spectra, cases 6,7 and 8 of 

figure 3, and also shown for reference are the results for case 1 (the alpha group problem). 

Inspection of Figure 11 reveals that cases 1 and 6 are remarkably similar, so it is evident that a 

missing band of wave-numbers is not recognized as the high wave-number band mode-couples 

to fill-in the missing domain, and the low wave-number modes retain their identity while waiting 

for the high wave numbers to develop. However, figure 11 shows that in cases 7 and 8 the mix 

width accelerates at about AtgilL = 10, and apparently there has been a transition in the 

development rate of the mixing region. We attribute this change in growth rate to the "late" 

appearance of the low wave-number (long wavelength) embedded in the initial conditions, 

associated with their reduced initial amplitudes that delays their appearance. This in-tum causes 

an extended period for the mode-coupling regime (that explains the slight reduction just before 

A t gt2/L = 10). The Qb measures of figure 12 plainly reveal the dramatically different growth rates 

associated with the partitioned energy spectra. The peak in case 8 suggests a narrowing of the 

energy budget into the long wavelengths at late time, associated with an increased dissipation of 

the short wavelength band. Again, the molecular mix parameter shown in figure 13 seems 

independent of the initial spectrum, because it is only dependent on the presence of the high 

wave-number band. 

5. Conclusions 

The effect of initial conditions on the growth of turbulent Rayleigh-Taylor (RT) instability 

has been studied using integrated large-eddy simulation (ILES). We have explored possible 

influences on the growth rate with simulations that are initialized with annular spectra at 

different amplitudes. The initial conditions were chosen to test the dependence of the RT growth 

parameters (a.b, a.s) on variations in spectral bandwidth, spectral shape, and study the effects of 

initially partitioned (banded) spectra. 

Spectral indices (Ps) =-1, 0 (white noise), and +1 were chosen for testing. It was observed 

that the Ps = +1 case grew the fastest initially as it has more energy was initially in the high 

wave-numbers. The Ps = -1 simulation had the slowest growth as the NS was initialized with 

more energy in the low-amplitude, low wave-number, part of the spectrum sampled by the flow. 

However, the growth parameters ab,s showed no sensitivity to changes in the values of the 
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spectral index Ps. In addition, the effect of the longest wavelength imposed in the initial condition 

was investigated by varying the smallest mode-number in the wave-packet such that Nmin =2 , 8 

and 16. The growth parameters were found to vary with the change in the minimum mode 

number; the incorporation of longer wavelengths leads to an increase in ab which asymptotes to a 

value of 0.023 for Nmin ~ 8. For all these cases, the molecular mixing parameter e remains 

insensitive to variations in IC's and was found to asymptote to a value of -0.8 (consistent with 

experiments), perhaps because all the simulations had a high wave-number band in the IC's that 

promoted diffusion at the smallest resolved scales. The present ILES simulations produced the 

same level of molecular mixing as experiments and high-resolution DNS. The effect of 

partitioned initial banded spectra was also studied, and dramatically different late-time (AtKr IL > 

10) transition and growth rates were observed. The late appearance of the low wave-number 

modes embedded in the initial conditions, whose appearance is delayed by their reduced initial 

amplitude, was found to cause an extended period for the mode-coupling regime,. and late-time 

accelerated growth of the mixing region. 

Our findings further support the notion that the overall growth of the RT mixing is strongly 

dependent on initial conditions. The result also raise the possibility of design and active control 

of RT transition and turbulence, based on the choice of the shape and size of the initial 

perturbation spectrum. In addition, our results provide a useful data1;lase for the initialization and 

development of closures describing RT transition and turbulence. 
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FIGURE & TABLE CAPTIONS: 

Fig.1.Schematic of (a) computational domain used in NS. The box size is Imxlmx2m (in the X-, 

y- and z-directions) with densities PI ==3.0 kg/m3, P2 ==1.0 kg/m3 and gz == - 9.81 ms-2
; 

(b) location of density perturbations imposed on the interface at t = O. 

Fig.2.Initial perturbations (at z == 0 in Fig. Ib) for simulation 1 in (a) physical, and (b) wave­

number space. 

Fig.3.Azimuthally averaged initial perturbations for all NS listed in Table 1. Root mean square 

amplitude is 3.15 xlO-4L. 

Fig.4.Profiles of "heavy" fluid volume fraction averaged over horizontal planes at AtgrIL values 

of 5.31 and 19.62. 

Fig.5.Iso-surfaces of (a)!l (bubbles) (b)fz (spikes) at Atgt2/L = 5.31 and 19.62. 

Fig.6.Evolution of bubble and spike amplitudes (hb and hs), and integral mix width for case 1 

(energy in modes 16-32 with SJ.= 0) 

Fig.7.Evolution of (a) bubble amplitudes, (b) growth-parameter for bubbles,( c) spike amplitudes, 

and (d) molecular mix parameter e, for case 1 (Ps=O), 2 (Ps=+I) and 3 (Ps==-I). All 

simulations had the same total energy in modes 16-32. 

Fig.8.Evolution of (a) KEtotal/M.E. and (b) ab based on energy budget for cases 1,2 & 3. 

Fig.9.Effect of longest wave-length (Nmin) on (a) the growth parameters ab,RC and Clc,RC, and on 

(b) the KEtotal/M.E. for simulation initialized with Nmin =16, 8 and 2. 

Fig.10.Evolution of molecular mix parameter e, for case 1 (Nmin= 2, 8 and 16). All simulations 

had the same total energy with amplitude 3.15xlO~. 

Fig.ll.Evolution of bubble amplitudes for case 1 (single band, N: 16-32) and cases 6 -8 (double 

band, N: 4-6 & 16-32 with A =5, 50 and 100 respectively). All simulations had the same 

total energy at t = O. 

Fig.12.Evolution of growth rate parameter for bubbles for case 1 (single band, N: 16-32) and 

cases 6 -8 (double band, N: 4-6 & 16-32 with A = 5, 50 and 100 respectively). 

Fig.13.Evolution of molecular mix parameter for case 1 (single band, N: 16-32) and cases 6 -8 

(double band, N: 4-6 & 16-32 with A = 5,50 and 100 respectively). 

Table1. List of simulations used in the current work. 


Table2. List of growth parameter, KEtotaz/ME and Bfor all simulations. 
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Tune'" 0.00 

(a) (b) 

Fig.I. Schematic of (a) computational domain used in NS. The box size is Imxlmx2m (in the X-, 
2 y- and z-directions) with densities Pi =3.0 kglm3

, Pz =1.0 kgim3 and gz = - 9.81 ms- ; (b) 

location of density perturbations imposed on the interface at t =O. 

(a) (b) 

Fig.2. Initial perturbations (at z = 0 in Fig. Ib) for case 1 in (a) physical, and (b) wave-number 
space. 
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Table1. List of simulations used in the current work. 

Case # IC Modes SI 

1 16-32 0 

2 16-32 +1 

3 16-32 -1 

4 8-32 0 

5 2-32 0 

6 4-6 & 16-32, A =5 0 

7 4-6 & 16-32, A = 50 0 

8 4-6 & 16-32, A =100 0 

Table2. List of growth parameters, KEtotallME and 8 for all simulations. 

Ristorcelli & Clark a-group definition 
(2004) definition 

dhbsCase # = a = . KEtotallME eabs . 4At ghb•s 
b.s d(A gt 2 )

t 

CXt, ~ CXt, ~ 

1 0.0229 0.0271 0.0219 0.0263 0.499 0.833 

2 0.0270 0.0305 0.0241 0.0324 0.442 0.818 

3 0.0349 0.0258 0.0304 0.0281 0.537 0.821 

4 0.0285 0.0244 0.0276 0.0205 0.679 0.783 

5 0.0224 0.0299 0.0181 0.0345 0.783 0.817 

6 0.0302 0.0392 0.0306 0.0434 0.584 0.761· 

7 0.0406 0.0337 0.0493 0.0346 0.573 0.793 

8 0.0461 0.0317 0.0554 0.0331 0.478 0.846 
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