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ABSTRACT:

The effect of initial conditions on the growth rate of turbulent Raylei gh‘—Tayldr (RT) mixing
has been studied using carefully formulated numerical simulations. An integrated large-eddy
simulation (ILES) that uses a finite-volume technique was employed to solve the three-
dimensional incompressible Euler equations with numerical dissipation. The initial conditions
were chosen to test the dependence of the RT growth parameters (a3, a5) on variations in (a) the
- spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support
the notion that the overall growth of the RT mixing is strongly dependent on initial conditions.
Variation in spectral shapes and bandwidths are found to have a complex effect of the late time
development of the RT mixing layer, and raise the question of whether we can design RT
transition and turbulence based on our choice of initial conditions. In addition, our results
provide a useful database for the initialization and development of closures describing RT

transition and turbulence. |
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NOMENCLATURE:

Alphabetical Listing

a,,b,,c,.d, spectral amplitudes P, spectral index
f volume fraction t time
8 gravity u,v,w velocity components
h, mix width: bubbles XY, 2 spatial co-ordinates
h, mix width: spikes Ax,Ay, Az cell-widths
h total mix-width At time-step
‘ h=h,+h, o
k wave-number A Atwood number
p ~ pressure integral mix width
Greek Symbols |
o growth-parameters v - viscosity
X ratio of KE r linear growth rate
A size of 8] | molecular mix parameter
computational cell
€ =Atufx A ratio of r.m.s. amplitudes
Subscript k
0 initial value e,n,s,w face values (e: east, w:
west, etc.)
1,2 heavy, light ENSW cell center values (e:
east, w: west, etc.)
b,s bubble, spike max maximum value
AN co-ordinates total total value
Supefscrigt

*

intermediate value

r.m.s. value
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1. INTRODUCTION

Rayleigh-Taylor (RT) instability [1-3] occurs when a light fluid ( ©,) accelerates a heavy

fluid (0,) in the presence of infinitesimal interfacial perturbations A, of wavelength A =27/k at

the interface. The instability iS of interest due to its impact in such fields of study as climate
dynamics [4,5], combustion and chemical reactor processes [6,7], pollutant dispersion [§],
Inertial Confinement Fusion (ICF) [9,10], and cosmic and stellar dynamics [11,12]. At early
times, for small enough initial perturbations (A<<1/k), the flow can be described by linear

analysis [13] and the amplitude grows exponentially according to:

h(t) = hy cosh{?), 1
where, I'=,/Agk is the classical growth rate, and the Atwood number

kAz =(p, —2,)[(p, = p,) is the non-dimensional density contrast between the two fluids. When

the flow transitions to nonlinearity (A ~1/k), the growth slows down and the amplitude
increases linearly with time. In this regime, the flow evolves into bubbles of lighter fluid rising
through the heavy fluid with a terminal velocity o« JAfor a single mode [14,15], and
corresponding spikes of heavy fluid falling through the light fluid. In fhe presence of a spectrum
of modes, the RT ﬂdw is dominated by successively longer wavelengths of the dominant
bubbles A, . For a constant acceleration, the mixing width growth attains self-similarity (i.e. as
the bubbles grow they preserve their aspect ratio) such that the mixing width grows quadratically
[16, 17] with time according to the relation:

| Py = A, @
hp and hg are the heights (above/below the initial density interface) of “rising” bubbles and
“falling” spikes respectively; «, and «, denote growth rate parameters (for the bubbles and
| spikes). The implication of Eq. (2) is that the flow has lost memory of the initial conditions and
the only relevant length scale is the self-similar scale Ag¢’. However, universal values of the
growth parameters has eluded both numerical and experimental investigation, and has been
attributed to the variations in the structure of the initial conditions employed in experiments and
simulations [18, 19].- Physically, self-similarity in RT can generally be achieved thi‘ough two

linﬁting scenarios: bubble merger and/or bubble competition [19,20]. Bubble merger occurs

4




when two or more bubbles merge to form a larger structure that then undergoes a second
~ generation of mergers and so on. In bubble competition, amplification and saturation of
successively longer wavelengths, already present in the initial spectrum, dominates the flow.
Haan [14] considered the constructive interference experienced by adjacent modes in a wave-
packet, triggering transition when the sum of modal amplitudes in the wave-packet is ~ o’k (o
being a non-linear threshold). Thus, individual modes may become nonlinear even when their
amplitudes are below the threshold due to their interaction with adjacent modes of similar phase.
We can interpret eq. (2) to be the quadratic envelope of the growth curves of all such individual
modes [20]. By changing the initial amplitudes of these modes, we may cause them to saturate
earlier (or later), and thus the slope of this envelope (o) can be changed. Since the disturbances
grow exponentially up to saturation, the time to nonlinearity (and thus o3) depends
logarithmically on the initial amplitudes.

Youngs [21] performed large eddy simulations (LES) of RT at a resolution of 720x480x480,
initialized with a spectrum that had energy only in the high mode-numbers (90 - 180). The flow
evolved with a growth rate of o4, ~ 0.027, which doubled to o,~0.057 with the addition of a
single long wavelength in the initial spectrum at a mode-number of 2. Cabot & Cook [22], in
their large (3092%) direct numerical simulations (DNS) at a maximum Reynolds number (defined
asRe = hh/ ) of ~ 3x10* studied the effect of the initial spectral peak (k=kmg) on the growth
rate. They report self-similarity only for thé case with the highest value of the peak wave-number
kmax- Their plots of ¢ asymptotes to a value of 0.025 which is much lower than the
corresponding values obtained from experiments. The DNS of Young et al. [23] used an annular
spectrum that evolved through mode-coupling and gave & ~ 0.03. Simulations in which
numerical diffusion is suppressed through a Front-Tracking technique [24] found a higher value
for ¢ ~ 0.07. Thus, while most numerical simulations are initialized with annular spectra,
experiments have inherent long-wavelength content in their initiéd conditions [25-27].
Ramaprabhu & Andrews [18] imtialiied RT simulations with initial conditions that contained -
long wavelengths measured directly from their Water Channel [26], and found good agreement
between the experimental and numerical values of ¢. Similar long wavelength perturbations
have also been observed in the experiments of Banerjee ef al. [25] and Dimonte and Schneider
[27], suggesting that experiments do not evolve pufely through the bubble merger mechanism.

Ramaprabhu ez al. [19] suggests that these two processes (bubble merger and bubble
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competition) exist simultaneously in experiments and are in competition, or perhaps they are
complimentary. The current work examines the concepts described above through three-
dimensional numerical simulations with carefully imposed initial conditions. We explore
possible influences on the growth rates with simulations that have annular spectra at different
amplitudes. Effects associated with variation ‘of this annular spectrum, such as: the spectral

shapes (referred to as the Spectral Index (p;) herein, and quantified as the exponent of the wave-
number i.e. h, = k™ ); and, effects of spectral width and discretely banded spectra imposed on the

initial condition are also investigated. The remainder of the paper is organized as follows. In §2
we describe the governing equations and the numerical algorithm. Details of the computational
setup are provided in §3. Results from a multi-mode study are described in §4 followed by

discussion and conclusions in §5.
2. GOVERNING EQUATIONS & NUMERICAL DETAILS
(é) Governing Equations

The incompressible Euler equations are used in conjunction with the ILES (see below for

more details) modeling technique:

Volume conservation: Veu=0 ' 3
Df
Scalar transport: — = 4
p Dr “4)
Momentum: % =-Vp+pg (5)

with the fluid velocity g=(u,v, w), density, p, pressure, p, and gravity, g = (0,0,gz), and
scalar f. There are six independent variables and five equations; the seventh equation is a linear
equation of state for density such as p=L( f ) In the present work we take f to be the non-

dimensional density, or mixture fraction, defined as f = (p -0, )/ (pl -0, )

(b) Numerical Solution Procedure
Overview

For the present studies we have used ILES (Integrated Large Eddy Simulation) modeling

which involves solving Euler governing equations and using numerical diffusion to model
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turbulent diffusion. Success with this modeling technique for buoyancy driven flows has been
reported by Youngs [21]. The governing equations presented above are a coupled set of partial
differential equations for which there exist several solution procedures. The present work solves
the governing equations using the RTI3D code described by Andrews [28]. In particular, a
fractional time step technique is used in which for each time step an advection calculation is
followed by a Lagrangian source term update. The Lagrangian update is presented next, and this

is followed by a brief description of the advection step for the scalar f (more details about the

technique may be found in Andrews [28], and Andrews PhD thesis [29]).
Lagrangian momentum source term updates

The Lagrangian w momentum equation is:

. At
wh=w = (ph—po )+ 6
n n ptAy(pP pT) gz ()

The n+ 1/ 2 superscript refers to a value from the advection calculation, and * to an intermediate
value that does not necessarily satisfy continuity. The subscripts refer to spatial position (north
face), typical of the SIMPLE method [30], and a staggered arrangement of momentum and mass
cells is used. Féllowing the SIMPLE practice, velocity corrections are defined so that
ufjl =u: e' + Auf,e (and similarly for the other velocities) and a new pressure p}’,’” =pp +App
where Ap is a pressure correction. By substituting these expressions for n+1 into the volume
conservation equation and then subtracting equation (6) evaluated with the * we arrive at the
usual Poisson equation for pressure corrections: |

aplpy +aghp, +ay Apy +aybpy +asApg ==Div » )
with Div the divergence of the * velocity values. The Poisson equation (7) is solved using a Full
Multi-Gﬁd method, and the pressure corrections are used in a SIMPLE style [30] to provide
updated (n+1) velocities and pressures that simultaneously satisfy the momentum equations (5)

and volume conservation.
Transport procedures

The 3D transport procedures are split into x/y/z-steps, this fractional splitting simplifies the
calculation to one-dimensional updates that lends itself to high order calculation of cell fluxes

with the Van Leer [31] method. There follows a brief description of the scalar x-step advection,
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the y and z steps being similar, and similar advection steps are performed for the momentum. The
x-step advection for the scalar is given by:

Iy = fi + Aydadlu, f, ~u,f,) ®)
where P refers to the center of a control volume, ¢ the east face, and w the west face. The face

values for the u velocities are available, and the face values for the scalar are computed using a

second order approximation with Van-Leer limiting to prevent non-physical oscillation as:
fe = Fopuina + 5ign(€, )" - 5 )AxD | )

where €, =Atu,/Ax, and upwind values are taken according to the sign of £,. The derivative

is evaluated following Van Leer [31] as:

D, Smm{]Dl Ax Ax} (10)

, 1 ifA,andA, >0
where A, =fr—fo A =fc—fr and S=4-1 ifA,andA_ <0,
0 otherwise

Van Leer limiters have been used in equation (10) to limit the gradient of the volume fraction
profile, thereby preventing spurious oscillations. The representation for the gradient of the cell

profile D  determines the accuracy of the representation. In the present
work D = (Ae +A, )/ (2Ax) , so the gradient is computed with a central difference so this scheme

is referred to as "2nd order". Of significant importance in the simulation of R-T flows is the
_ convection calculation of the fluxes of mass and momentum. A third-order Van Leer method
[31] used to compute convective fluxes, minimizes numerical diffusion and prevents spurious
overshoots and undershoots that occur due to the use of higher order numerical schemes. A two-
phase, 2D version of this code was tested and validated for both RT and Kelvin-Helmholtz flows
by Andrews [27]. The 3D, single-phase version was used extensively [18-20] to compute both
the single-mode and multi-mode RT problem, and compared well with other benchmark codes
commonly used in the study of RT. Over the last 30 years, great progress has been made in the
development of numerical methods employed in the study of RT flows. However, numerical
diffusion has served to degrade the resolution and accuracy of these methods. This numerical

diffusion is now being taken advantage of through the ILES technique [21].




While RTI-3D solves the Euler equations with no explicitly specified viscosity, numerical
diffusion serves to dissipate small scales in a similar manner to physical viscosity. Such
numerical techniques referred to as ILES have been demonstrated to be particularly attractive for
flows with discontinuities (RT) and shocks (as in Richtmyer-Meshkov (RM) Instability) [21].
The effective numerical viscosity of the ILES technique used here was determined through
comparison of single-mode simulations with linear theory results [13]. Details about the
technique used may be found eisewhere [19, 20]. The implication of a numerical viscosity for
multi-mode simulations is that similar to a physical viscosity, it sets an upper bound for the
fastest growing modes. Smaller wavelengths, present in the initial conditions, or generated

through nonlinear interactions (mode-coupling), are smeared out by the numerical viscosity. -
3. PROBLEM SET UP AND COMPUTATIONAL DETAILS |

Figure 1a is a schematic of the computational domain used in the current work. The

dimensions of the three dimensional box are 1mx1mx2m (LxLx2L) in the x-, y- and z-directions,

respectively (where z- is the direction of gravity). The interface between the heavy ( 0, ) and light

(0,) fluids is at z = 0. The densities were chosen to be 0, =3.0 kg/m® and p, =1.0 kg/m® which

corresponds to A; = 0.5, while the acceleration due to gravity g; was set to be - 9.81 ms™.

Perturbations hg(x, y) are imposed at the interface (z = 0) as fluctuations of a constant density

surface (see fig. 1b). These are then converted to volume fraction fluctuations using:
file y)=1+hy(x, y)/A,  forh, <0

» 11
filxy)= hy(x yVA,  forh, >0 (i

where A is the width of the computational cell. The pressure is initialized to the hydrostatic value
in this incompressible problem using, p(z)=- _[pgdz , where p = f,0, + f,0,, is the unperturbed

initial density field. This is an important initial condition to set, because without it the algorithm
will seek to establish the hydrostatic condition on the first time step, involving hundreds, if not
thousands, of iterations for the pressure correction calculation. If an initial hydrostatic pressure
field is provided, only three or four iterations are required on the first time step for pressure
convergence. Periodic boundary conditions were used in the x- and y-directions, while zero-flux
conditions were imposed in the z-direction. All the simulations reported here used a resolution of

128x128x256 grid points (totaling 4.2 million cells) in the x-, y- and z-directions, respectively.
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The calculations were stopped when the bubble height reached ~0.9 m to avoid boundary effects.

" The simulations were executed on the NIC Cluster at Missouri S&T. The run-times averaged
around 3 CPU hours per calculation. Each of these simulations required 2GB of RAM and ~
4GB of storage.

(a) Multimode Calculations - Initial Conditions:

- The multimode calculations were designed to test the dependence of the growth constant ¢4,
on the spectral index, spectral bandwidth, discrete spectral shapes and mode coupling. Modes 16-
32 are selected for the mode coupling case to able cross comparison of the present simulations
with the a-group results [20]. Dimonte et al. [20] suggests that this mode coupling casé is least
sensitive to initial conditions because it involves the nonlinear coupling of saturated high-k
modes of intrinsic scales & ~1/k. To assure that the low-k modes are generated exclusively by’
 mode coupling, the initial perturbations are chosen to have finite amplitudes only in an annular
shell in k-space at the largest resolvable wave numbers (see figure 2),’ namely, modes 16-32 for

the 128x128x256 simulations [20]. The initial perturbations are taken to be:

h(x,y)= Y a, (:Qs(kx}x)cos(}’cy y)+b, cos(kxx)sin(ky y)+
i, (12)
c, sin(kxx)cos(k}, y)+ d, sin(kxx)sin(ky y)

where k =k} +k;, and the spectral amplitudes are chosen randomly but give an r.m.s.

amplitude of ~ 3.15x107° L. Figures 2a & b show the multimode perturbation a_mplitudes in both
physical and wave-number space. Table 1 is a list of all the numerical simulations (NS)
presented in this work. Simulations 1-3 were performed to study the effect of Spectral Index on

the RT growth. These calculations had energy in mode numbers (n=kL/27) 16-32, but had

spectral indices (ps) of -1, 0 (white noise, o-group IC case) and 1. A spectral index of 1
coﬁesponds to more energy in the high mode-numbers as compared with a spectral index of 0
(white noise). Correspondingly, calculations with spectral index of -1 had more energy in the low
mode-numbers as comparéd with the other cases (i.e. };S = 0 and 1). Simulations 4-5 were
initialized with the smallest mode-numbers (longest wavelength) Nmin = 2 and 8; the objective
being to study the effect of spectral bandwidth on the growth parameters. The energy density

spectrum has the canonical property:
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2 gy
-h;_z [E,o(0de . (13)

k,
Thus, all the simulations were initialized with the same perturbation r.m.s. amplitude, thereby
ensuring that all the simulations had the same initial energy. Similarly cases 6, 7 and 8 take into
account the effect of discrete banded spectra. Energy was deposited in two concentric bands
between mode numbers 4-6 and 16-32. Care was taken to ensure that the total energy used for
these simulations was identical to the energy used in cases 1-5 by re-writing eq. (13) for a

banded spectrum such that:

” k k& kinax 72 772
fo _ TEho(k)dk= [E ()dk + [E,,(k)dk = LA (14)
2 Ksin Koty ky 2 2

The ratio of the r.m.s amplitudes (A = }z—;_z/ EZ’-) in the two concentric bands were varied to
test the influence of the small mode-numbers on the simulations. Cases 6, 7 and 8 are simulations
that correspond to A =5, 50 and 100 respectively. Figure 3 shows the azimuthally averaged
initial perturbations for all the simulations (1-8). We also address the issue of the peak wave-
number in the presence of numerical viscosity in these simulations. Numerical viscosity (similar
to other stabilizing mechanisms like surface tension) places an upper bound on the fastest
growing wave-numbers. The peak wave-number &, may be determined as [32, 33]:

A 143
k, zo.s(-vf-ﬁj (15)

with a peak growth rate of ~ 0.4(g2 / v)m. From the above, the fastest growing mode number
~ for the current simulations was cietermined to be N, ~ 24 [20], and within the range of modes
imposed in our initial conditions. This guarantees that the linear growth stage is reproduced
accurately by these calculations. Most numerical simulations of RT [19-23] are initialized with a
similar annular distribution of energy. It is expected that the mode-ci)upling cases will produce a
much lower growth rate than the simulations initialized with the longer modes [20], because the
long wavelengths dominate the flow at late time. The cases reported in this work are listed
- below:

i. Spectral Index study: Cases 1-3 (note that case 1 is similar to o-group M128 simulation

and is treated as a base case for comparison purposes).

ii. Spectral Bandwidth study: Cases 4 and 5

11




iii. Effect of discrete banded spectra: Cases 6 — 8.

4. RESULTS

In this section, we analyze the 3D data fields from each of the numerical simulations
described above (cases 1-8) to quantify growth rate, self-similarity, molecular mixing and energy

dissipation for comparison with experiments and previous RT simulations.

The fluid penetration is characterized in terms of the species concentration or volume fraction of

the “‘heavy’’ fluid f; averaged in the span-wise direction such that:
< f,>= [[fidxdy/ I* ' (16)

Vertical profiles of < f, >are shown in figure 4 for (a) early, and for (b) late times for
simulations 1-3. The profiles are nearly linear and symmetric, characteristic of the moderate
Atwood number of 0.5 used in these simulations [17,20,25]. The evolution of the mixing zone is
also depicted for Case 1 in figure 5a by the iso-surfaces of f; at Agt/L = 531 and 19.62
respectively. At early time, there are numerous bubbles with wavelengths larger than the
imposed modes, and that correspond to the most unstable mode. As the bubbles penetrate, the
 flow becomes self similar and the bubbles increase in size. A similar phenomenon may also be
observed from the iso-surfaces of spikes at these moderate Atwood numbers (see figure 5b).

Figure 6 shows the evolution of the bubble and spike amplitudes as a function of a non-

dimensional self-similar length A,g#*/L. The bubble and spike amplitudes h, and h are defined

by the z- location where the plane averaged values of < f; > reaches values of 99% and 1%
- volume fractions, respectively, relative to the original mid-position of the interface (z = 0). We
also observe a ratio of AgJhy, ~ 1.25 at late time which is consistent with the experimental
observations [25-27] and with NS [19] at A; = 0.5. The bubble and spike amplitudes are
subjected to statistical fluctuations, especially at late time when there are few bubbles and spikes.
To account for this problem, we also plot the integral mix width (W) defined by Andrews and
Spalding [3] as:

W =6 [{f,)f,)dz a7
which measures the overlap of the heavy (f,) and the light(f,)fluids where f, + f, =1. The

factor of 6 derives from considering the width of a linear profile [3]. At small to moderate
12




Atwood numbers where A~ A, we find that W/hys ~ 2 which is consistent with earlier NS
[19,20].

The growth-rate parameter ¢, is measured by using the definition from Ristorcelli and Clark
(2004), (RC) [34] who, through a self-similar analysis for small Atwood RT mixing, obtained an
ordinary differential equation for the planar average of the mixing layer half-width A, as:

__h
Gy re = m .
- As an exact mathematical result (18) validates the form of heuristically derived equations [35,36]

(18)

that resulted from phenomenological buoyancy-drag type models. For constant &, x., A; and g,

the solution to (18) (taking only the positive root as physically realizable) can be written as:
by, = hy + 2[00, g A 8hyt + 0 g A, gt (19

where hg is a viftual starting thickness, that effectively depends on how long it takes for the flow
to become self-similar, which in turn depends on the spectrum of initial perturbations. The
growth rate constants for both the bubbles and spiked are calculated based on this definition (eq.
18). To cross-compare our results with earlier simulations, we also calculate the growth-

parameters' based on a definition used by Read [37]; obtained by differentiating hy s with respect

to Agt®. Since these definitions are applicable only when the flow becomes self-similar, the
values of &, listed in Table 2 were calculated for A, gt* >10, when almost all the NS cases (1-

5) studied in this work became self-similar.
(a)Effect of spectral index (ps):

Cases 1, 2, and 3 had the r.m.s amplitude and energy in the same mode-number band (16-32)
but spectral indices (ps) = —1, 0 (white noise), and +1 respectively. From the time traces of hy
shown in figure 7, it may be observed that the p, = +1 case (case 2) grew the fastest at early time
as it has more initial energy at the high wave-numbers (see figure 7a) . The p,; = -1 simulation
(case 3) has the slowest ngW‘th as the NS is initialized with more energy in the low-amplitude,
low wave-number (long wavelength), part of the spectrum sampled by the flow. The
corresponding growth-parameters are plotted in figure 7b and show little sensitivity to p;.
Similarly, the time traces of ks displayed in figure 7c show no sensitivity to the changes in the
values of the spectral index p, and the amplitudes of the spikes were almost identical at late time. .
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In addition to large-scale structures being felt in the bubbles and spike growth parameters,
small-scale effects, namely the molecular mix parameter 8 [38], were also investigated. Values

for 8 were computed from volume fraction profiles as

0= I<f1f2>dz
Rflez)dz

where <0> denotes averaging over the x-y plane. § approaches 1 for completely mixed fluids, and

(20)

0 for immiscible fluids . Thus, & is a parameter that characterizes molecular mixing. The
evolution of 9 with Agz"2 is shown in fig. 7 (d) for cases 1, 2 and 3. For all these cases, 8
asymptotes to a value of ~0.8 that is consistent with experiments [25, 26, 39]; although at
slightly different rates. Interestingly the level of diffusion in ILES is expected to be higher than
that due to true physical mass or momentum, however, the NS produces the same level of
molecular mixing as experiments and high-resolution DNS. The high-resolution ILES study of
Youngs [21] gave a value of 0.81 for 6 in the self-similar stage. The ILES concept is that
numerical diffusion captures the molecular mixing associated with unresolved small-scales

implicitly in the numerical scheme, and our results support this conclusion for RT mixing.

Energy Budget:

Developmeht of the RT flow into self-similarity involves the conversion of initially available
potential energy to Kinetic ehergy. The ratio of the kinetic energy of the flow to the
accompanying loss in potentiél energy has been found to be nearly constant for such flows [19,
20, 25, 26, 40] at a value of 0.5. We use the approach outlined in [19] to define this ratio:
assuming for low A, a linear profile of the volume fractions, and A; ~ ks = h, then the loss in

potential energy may be written as

()02 -pl)ghz . (21)

0 h
APE.= [(o ~(p)gedz+ [(p) - py)gade ===
- 0

In eq. (21), the error in assuming kg ~ hy results in an overall error in AP.E. of £ 5% for the
NS presented in this paper. The corresponding gain in kinetic energy is more difficult to evaluate

because density and velocity fluctuations are correlated. However, if we replace the respective

densities by their average, the average velocity can be estimated as w ~ h, which gives a vertical

kinetic energy of :
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~ 1 +h s =
KE, = i—z-ipw dxdydz = ph*h (22)

The ratio of eq. (21) and (22) gives:

KE, _, I
APE  Azgh

=120, e - (23)

If there are no other energy sinks, ie. KE, /APE ~1, we can place an upper bound on
&, ge ~ 0.083. However, the dissipated energy D and kinetic energy in the horizontal directions
KE, and KE,; must also be considered when calculating the global energy balance as:

APE=KE +KE +KE +D=KE,  +D (24)
The total gain in kinetic energy (KE.,) can be evaluated by integrating over the entire

computational domain:

KE

total

N
> jp(V-V)dxdydz 25)

The ratio KE,,,,/APE is plotted for cases 1- 3 in figure 8. The fraction of energy dissipated is

given by 1-KE, ,/APE, and approaches a value ~ 0.55 for these simulations. This is in good

agreement with recent experiments by the authors [25], where they report a value of D/P.E. =

0.52 from their simultaneous measurements of density and velocity fields using hot-wire
anemometry. Figure 8 is a plot of KE, ,/AP.E. from all simulations in cases 1-3 and shows
only a slight dependence on the spectral index. The ratio of the vertical to the horizontal
components of kinetic energies, X =(KE, + KEy ) / KE, from these simulations was determined
to be ~ 0.61. In comparison, Youngs (1994) gives a value of ~ 0.48 for KE, ,/AP.E. and ~ 0.7

for the ratio of kinetic energy components (X). These values are in good agreement with the
experimentally observed values of 0.62 for X inferred from a velocity ratio of ~ 1.8 obtained

from the hot-wire measurements [25]. Dimonte et al.[20] combined the energy balance in eq. 24
with vertical kinetic energy expression of eq. (23) to obtain a bound of &jfrom the energy

budget calculations as:

KEmtal / APE

“ " T+ x] (26)
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At early times, when energy dissipation is small, i.e. KE, /APE~1, a value of ¢,~ 0.053 is

obtained from the NS for case 1. With the observed ratio of KE, ;/APE ~ 0.49at late times, eq.
(23) yields a value of 0.0247 which is consistent with the NS results and the late time values of

&, plotted in figure 7b (for case 1).

(b) Effect of spectral band-width:

Ramaprabhu et al. [19] studied the effect of the longest wavelength imposed in the initial
conditions by varying the smallest mode-number in the wave-packet, Ny, from 1 to 3. The
growth-rate parameter o was found to be insensitive to such variations. For much hi gher values
Of Nyin, mode-coupling is expected to play a more dominant role, accompanied by a decrease in
. Cases 4 and 5 illustrate the effect of variation of spectral bandwidth of the IC on both the
large scale (growth-constants, amplitude) and small-scale (molecular mixing, KE release)
parameters in the RT mix. Cases 4 and 5 were initialized with N, of 2 and 8 respectively, and
with the same net initial energy as cases 1-3. Figure 9 plots the values of ¢ for the different
values of Ny, Inspection of figure 9 reveals that the growth parameters for the bubbles and
spikes vary with the change in the minimum mode number. It is observed that the incorporation
of longer wavelengths leads to an increase in a, which asymptotes i:o a value of 0.023, Which is
consistent with cases 1-3. However, there appears to be no clear trend for o,. Simulation 4 which
is initialized with Npyi, = 2 is found to be the most efficient amongst cases 1-5 for extracting
kinetic energy from the initial density distribution KE, ,,/APE~0.7. This again suggests that
the presence of long wavelengths is an efficient way to extract energy while minimizing
dissipation. Indeed, it appears that there is a “critical” Nmia, somewhere between 16 and 8 at
which energy dissipation governs the flow. This simulation also had the largest growth-rate
which implies the appearance of large-scale structures in the flow at early times. Thus, the rate of
extraction of potential energy was much higher than that observed in simulations 1 and 5. The
molecular mix parameter #at late time is insensitive to the single banded structure (see figure
- 10), perhaps because all the simulations had high wave-number IC’s that drives diffusion at the

smallest scales resolved.
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(c¢) Effect of discrete banded spectra:

Figure 11 to 13 present the results from partitioned initial banded spectra, cases 6,7 and 8 of
figure 3, and also shown for reference are the results for case 1 (the alpha group problem).
Inspection of Figure 11 reveals that cases 1 and 6 are remarkably similar, so it is evident that a
missing band of wave-numbers is not recognized as the high wave-numbei band mode-couples
to fill-in the missing domain, and the low wave-number modes retain their identity while waiting
for the high wave numbers to develop. However, figure 11 shows that in cases 7 and 8 the mix
width accelerates at about Agr/L = 10, and apparently there has been a transition in the
development rate of the mixing region. We attribute this change in growth rate to the “late”
appearance of the low wave-number (long wavelength) embedded in the initial conditions,
associated with their reduced initial amplitudes that delays their appearance. This in-turn causes
an extended period for the mode-coupling regime (that explains the slight reduction just before
Agt’/L = 10). The o5 measures of figure 12 plainly reveal the dramatically different growth rates
associated with the partitioned energy spectra. The peak in case 8 suggests a narrowing of the
energy budget into the long wavelengths at late time, associated with an increased dissipation of
the short wavelength band. Again, the molecular mix parameter shown in figure 13 seems
independent of the initirall spectrum, because it is only dependent on the presence of the high

wave-number band.

5. Conclusions

The effect of initial conditions on the growth of turbulent Rayleigh-Taylor (RT) instability
has been studied using integrated large-eddy simulation (ILES). We have explored possible
influences on the growth rate with simulations that are initialized with annular spectra at
different amplitudes. The initial conditions were chosen to test the dependence of the RT growth
parameters (ap, o) on variations in spectral bandwidth, spectral shape, and study the effects of
initially partitioned (banded) spectra. |

Spectral indices (p;) = -1, 0 (white noise), and +1 were chosen for testing. It was observed
that the py = +1 case grew the fastest initially as it has more energy was initially in the high
* wave-numbers. The ps = -1 simulation had the slowest growth as the NS was initialized with
more energy in the low-amplitude, low wave-number, parclof the spectrum sampled by the flow.

However, the growth parameters ¢, showed no sensitivity to changes in the values of the
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spectral index ps. In addition, the effect of the longest wavelength imposed in the initial condition
was investigated by ifarying the smallest mode-number in the wave-packet such that Ny, =2 , 8
and 16. The growth parameters were found to vary with the change in the minimum mode
number; the incorporation of longer wavelengths leads to an increase in a;, which asymptotes to a
value of 0.023 for Ny = 8. For all these. cases, the molecular mixing parameter & remains
insensitive to variations in IC’s and was found to asymptote to a value of ~0.8 (consistent with
experiments), perhaps because all the simulations had a high wave-number band in the IC’s that
promoted diffusion at the smallest resolved scales. The present ILES simulations produced the
same level of molecular mixing as experiments and high-resolution DNS. The effect of
partitioned initial banded spectra was also studied, and dramatically different late-time (A,gf*/L >
10) transition and growth rates were observed. The late appearance of the low wave-number
modes embedded in the initial conditions, whose appearance is delayed by their reduced initial
amplitude, was found to cause an extended period for the mode-coupling regime,. and late-time
accelerated growth of the mixing region. ‘

Our findings further support the notion that the overall growth of the RT mixing is strongly
dependent on initial conditions. The result also raise the possibility of design and active control
of RT transition and turbulence, based on the choice of the shape and size of the initial
perturbation spectrum. In addition, our results provide a useful database for the initialization and

development of closures describing RT transition and turbulence.
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FIGURE & TABLE CAPTIONS:

Fig.1.Schematic of (a) computational domain lised in NS. The box size is Imx1mx2m (in the x-,
y- and z-directions) with densities o, =3.0 kg/m®, p, =1.0 kg/m® and g, = - 9.81 ms™;
(b) location of density perturbations imposed on the interface at t = 0.

Fig.2.Initial perturbations (at z = 0 in Fig. 1b) for simulation 1 in (a) physical, and (b) wave-
number space. |

Fig.3.Azimuthally averaged initial perturbations for all NS listed in Table 1. Root mean square
amplitude is 3.15 x10™*L.

Fig.4.Profiles of “heavy” fluid volume fraction averaged over horizontal planes at Agt/L values
of 5.31 and 19.62.

Fig.5.Iso-surfaces of (a) f (bubbles) (b) £, (spikes) at A;gtzlL =5.31 and 19.62.

Fig.6.Evolution of bubble and spike amplitudes (A, and k), and integral mix width for case 1
(energy in modes 16-32 with S.1.=0)

Fig.’?.Evolution of (a) bubble amplitudes, (b) growth-parameter for bubbles,(c) spike amplitudes,
and (d) molecular mix parameter 0, for case 1 (p=0), 2 (ps=+1) and 3 (ps=-1). All
simulations had the same total energy in modes 16-32.

Fig.8.Evolution of (a) KE, ,;/AP.E.and (b) as based on energy budget for cases 1,2 & 3.

Fig.9.Effect of longest wave-length (Nmin) on (a) the growth parameters apgc and dcge, and on

(b) the KE,,,/AP.E. for simulation initialized with Ny, = 16, 8 and 2.

Fig.10.Evolution of molecular mix parameter 0, for case 1 (N,;,= 2, 8 and 16). All simulations
had the same total energy with amplitude 3.15><1()de.

Fig.11.Evolution of bubble amplitudes for case 1 (single band, N: 16-32) and cases 6 -8 (double
band, N: 4-6 & 16-32 with A = 5, 50 and 100 respectively). All simulations had the same
total energy at t = 0.

Fig.12.Evolution of growth rate parameter for bubbles for case 1 (single band, N: 16-32) and
cases 6 -8 (double band, N: 4-6 & 16-32 with A = 5,50 and 100 respectively).

Fig.13.Evolution of moleculér mix parameter for case 1 (single band, N: 16-32) and cases 6 -8
(double band, N: 4-6 & 16-32 with A =5, 50 and 100 respectively).

Tablel. List of simulations used in the current work. |

- Table2. List of growth parameter, KE,./APE and @for all simulations.
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Tihe= 0,00

(@) (b)

Fig.1. Schematic of (a) computational domain used in NS. The box size is Imx1mx2m (in the Jé,
y- and z-directions) with densities p, =3.0 kg/m’, p, =1.0 kg/m® and g, = - 9.81 ms™>; (b)
location of density perturbations imposed on the interface at t = 0.

(@) )

Fig.2.  Initial perturbations (at z = 0 in Fig. 1b) for case 1 in (a) physical, and (b) wave-number
space.
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Tablel. List of simulations used in the current work.

Case # IC Modes SI (ps)
1 16-32 0

16-32 +1
16-32 -
8-32
2-32
4-6 & 16-32, A=5
4-6 & 16-32, A =50
4-6 & 16-32, A =100

o =1 ON W B W N
(ool e T e T e B o

Table2. List of growth parameters, KE;,,/APE and 0 for all simulations.

Ristorcelli & Clark c~group definition

(2004) definition
X dh,
Case # a, = bys a,, = —————'S-E—- KEmta]/APE ¢
*adgh, T dAg)
oy Ot ot o
1 0.0229 0.0271 0.0219 0.0263 0.499 0.833

0.0270 0.0305 0.0241 0.0324 0.442 0.818

0.0349 0.0258 0.0304 0.0281 0.537 0.821
0.0285 0.0244 0.0276 0.0205 0.679 0.783
0.0224 0.0299 0.0181 0.0345 0.783 0.817
0.0302 0.0392 0.0306 0.0434 0.584 0.761
0.0406 0.0337 0.0493 0.0346 0.573 0.793
0.0461 0.0317 0.0554 0.0331 0478 0.846
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