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Figure 1: SA with total number of steps Ntotal =1,000,000, initial tempera­
ture To = 1.5/ v'200 ~ 0.1061, cooling rate T - 0.95 , and number of steps at 
each temperature Nlength = 16,000 (corresponding to a = 2) . 

Figure 1 shows a sample run of SA on a TSP instance with n = 200 . The 
tour length at first grows significantly from its starting value, and fluctu­
ates greatly, since a large fraction of uphill moves are accepted. As the 
temperatures decrease , the tour distances also decrease, and the fluctuations 
gradually diminish. 

The efficiency and accuracy of a simulation is largely determined by 
the cooling schedule; i.e. , the temperatures being used and the number of 
Metropolis steps being run between two successive temperatures. We will 
discuss how the choice of Ntotal and Nlength affect simulation results in Sec­
tion III. 

2.3 Parallel Tempering 

vVe have observed that applying multiple temperatures in a simulation is cru­
cial for sampling the configuration space with a complex structure. Parallel 
tempering (PT), like simulated annealing, employs this important compo­
nent. The main difference between the two methods is that whereas SA uses 
a fixed schedule of temperatures, PT swaps temperatures dynamically. SA is 
also limited to solving optimization problems. It cannot be used for sampling 
a distribution at a fixed positive temperature, and basic Metropolis sampling 
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Figure 2: Tour distances at each step for temperatures T j 
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Figure 3: (Left) A blow up of Figure 2. Vve see jumps due to a swap of 
configurations between T2 and T3 at step ~ 2.4 x 103 and a swap of configu­
rations between T j and T2 at step ~ 3 x 103 (Right) A corresponding plot for 
the attempt swaps at each temperature and the attempt probabilities. Each 
"square" represents an attempt swap, corresponding to a "diamond" which 
means the attempt probability. A "cross" means a swap is accepted. 
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Figure 4: (Left) The tour distances at each step for fixed replicas VV 
1, W = 2, W = 3. (Right) For a given replica, the swap moves create a 
random walk in temperature space. 

There are two ways to view the temperature swaps . At any particular tem­
perature Ti, an accepted temperature swap move creates a global update; the 
current state at Ti is exchanged with the state at TH! This global change in 
state creates a sudden change in energy. See Figure 2 and Figure 3. 

Alternatively, for a given replica the swap moves create a random walk 
in temperature space. 'When a replica drifts to a high temperature, it can 
overcome energy barriers and explore broad energy landscapes. 'When the 
replica returns to lower temperatures, it only moves locally in the small 
region . If the global minimum happens to reside in the region, small uphill 
moves increase the chance of finding the global minimum. Figure 4 (Left) 
shows the distances at each time step when the replicas a.re fixed . and (Right) 
the random walks of three replicas in temperature space. From Figure 2 to 
4, we use five replicas and five temperatures. For the sake of clarity, we only 
show three of them here. 

The values of two neighboring temperatures and their corresponding en­
ergy affect the swap acceptance rate. If 6j36E > 0 i.e. the replica with 
higher temperatures has lower energy, then the swap acceptance probability 
p is equal to 1. In this case, a definite temperature swap will further relax 
the low-energy replica; simultaneously, the high-energy replica will have a 
higher temperature and more likely be able to escape a local potential well. 

If 6j36E < 0 i.e. the replica with higher temperature has higher energy, 
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Figure 5: 200 cities uniformly distributed on [0,1] x [0,1] 

3.1 Simulated Annealing 

Using an implementation very similar to the one described in Section 2.2, 
we run SA on our n = 200 instance with an initial temperature of To = 
1.5/ .)200 :::::: 0.1061 and cooling rate r = 0.95, analyzing the effects of varying 
the total number of steps Ntotal and temperature length Nlength. The aim is 
to establish a competitive baseline against which PT can subsequently be 
compared. 

We first show that when other parameters are the same, running more 
steps will improve the approximation only up to a certain saturation point. 
Figure 6 demonstrates this effect for temperature length Nlength =10,000. 
When Ntotal =10,000,000, Ntemperatures = fNNt oial 1 - 1 = 999, and 

length. 

lIowest = TorNt ernpe"atuTe8 :::::: 0.1061· (0.95)99 :::::: 6.6123 x 10-4 . (4) 

This temperature appears to be low enough that the simulation is no longer 
able to escape from a potential well. When we increase Ntotal to 5,000, 000 
and 10,000,000, lIowest becomes approximately 10- 13 and 10-24 . Such low 
temperatures at the end of the computation make the simulation steps es­
sentially greedy moves. These extra steps do not improve the accuracy of the 
results because the simulation has already become stuck in a local minimum. 

In Figure 7, we instead use a fixed computational budget Ntotal = 10,000, 000 
but varying temperature lengths. If the simulation does not run long enough 
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Figure 6: SA simulation: three different Ntotal values 1, 000,000, 5,000,000, 
10,000,000 are used for each of the 5 independent runs; Nlength = 10,000 for 
all simulations. The results computed by different Ntotal for each of the kth 
simulation are indistinguishable, k = 1,2, ... ,5. 

at a given temperature, not only will lIowest be unnecessarily low but the 
system may not even equilibrate at each temperature. Figure 7 (Left) shows 
that in most (but not all) cases, SA results improve as Nlength increases, 
with the best results in 3 out of the 5 runs occurring for Nlength =160,000, 
where lIowest ~ 0.0044. Using the temperature length parametrization of 
Nlength = 40an discussed earlier , this corresponds to a = 20. On the other 
hand, given fixed Ntotal, temperature lengths that are too long can result in 
Tlowest not being low enough. Figure 7 (Right) shows that doubling Nlength 

to 320,000 (ex = 40), where lIowest ~ 0.0216, leads to significantly worse 
approximations. 

From this discussion, we reach a recipe for choosing Ntotal and Nlength' 

We determine the lowest temperature Tlowest by choosing a suitable ratio 
of Ntotal and Nlength, i.e. ) Ntemperatures' The ratio must be large enough (so 
that lIowest is small enough) to provide a good approximation to the op­
timal solution, but not so large as to be inefficient. Once the ratio is de­
termined, we increase Nlength and Ntotal simultaneously, without changing 
Ntemperatures' This ensures that the simulation equilibrates at each tempera­
ture and the computation can converge to a near-optimal solution. Figure 8 
demonstrates the results computed using this recipe. For each set of compu-

13 



3.5 16 
0 

0 N""""" ~30,OOO 
14 • • 3 N coo"," = 60,000 . • 

II N cooling = 160,000 12 
2.5 

10 
2 II 0 

I : 
N""","", ~20,OOO I 

1.5 
N""""" = 160,000 

" 

" 0.5 

" " II 
0 0 
1 3 1 3 

Simulation Simulation 

Figure 7: Five independent SA simulations using a fixed computational bud­
get Ntotal = 10, 000, 000 and different temperature lengths. (Left) Three 
different values NZength = 30,000, 60,000 and 160,000. Best results are ob­
tained when NZength = 160,000 is used, suggesting that simulations with 
smaller temperature lengths fail to equilibrate. (Right) Two different values 
NZength = 160,000 and 320,000. Here, the simulation with the smaller tem­
perature length gives better results, suggesting that the larger one fails to 
reach low enough temperatures. 
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Figure 8: SA simulation: Three sets of five independent simulations for fixed 
Ntemperatures = 62 and corresponding lowest temperature TlolVest ~ 0,0044. 
Three different values Nlength = 16, 000, 160,000 and 640, 000 are used in the 
simulations, with Ntotal = 1,000, 000, 10,000, 000 and 40,000,000, respec­
tively. 

tations, Ntemperature.5 is fixed at 62. When increasing the temperature length 
from 16,000 to 160, 000 and then to 640, 000, we obtain more accurate ap­
proximations to the optimal solution, in most cases well within 1 % of optimal 
(in fact, one out of the five test simulations even hits the exact optimum). 
This is consistent with the results in [12]. 

3.2 Parallel Tempering 

Having established benchmark results with SA, now we run our parallel tem­
pering implementation, quantitatively demonstrating its properties by vary­
ing the input parameters. There are three sets of parameters in PT: the 
total number of steps Ntotal, the number of steps N.5lVap between trial swaps, 
and the set of temperatures T = {TI ' T 2 , ...... , T M }. We aim to choose N.slVap 

large enough so that a replica equilibrates after (M - l)N.slVap steps, which 
is the expected number of steps between when one of the 111 - 1 neighboring 
replica pairs attempts a swap. For the temperatures, Tmax = TM should be 
large enough that the replica at temperature T max can cross over substantial 
energy barriers and T m in = TI should be small enough that the replica at 
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Figure 9: PT simulation: Two sets of five independent runs with Ntotal 

20, 000,000 and N swap = 6,000, using temperatures (Left) 7;low and ~o, and 
(Right) 7;hi9h and ~o. PT requires sufficiently high and low temperatures. 

replica pairs. Some theory exists as to how temperature spacings should be 
determined [13], and this is a study in itself, beyond the scope of our work. 
Our aim for now is simply to show that there exists a relatively straightfor­
ward set of temperatures that allows PT to perform well. 

4 Comparison 

In the previous two sections, we have demonstrated that both SA and PT 
obtain good approximations of the actual minimum (well within 1%) for a 
sample instance of the traveling salesman problem, after suitable choice of 
parameters. We also find that the results computed by SA fluctuate more, 
while those computed by PT are more consistent. vVe are interested in un­
derstanding how often we can obtain such a good approximation if we repeat 
the simulation many times. 

In particular, we compute 100 independent runs for SA and PT. Figure 
11 shows the distribution (histogram) of these independent simulations of SA 
and PT. The parameters we use for SA are Ntotal = 40 , 000,000, Nlength = 

640,000 , To = 0.10, r = 0.95, and the parameters for PT are Ntotal = 

20, 000, 000, ~o , N swap = 6,000. We confirm that the results computed 
by SA vary considerably more than those by PT. The SA results fluctuate 
between 0% and 2% above the actual optimum, and PT results fluctuate 
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Figure 10: PT simulation: four sets of five independent runs. The first three 
sets use Ntotal = 2, 000, 000, 20, 000, 000 and 40, 000, 000 and ~low, while the 
fourth set uses Ntotal = 20, 000, 000 and ~o. This demonstrates that running 
more steps improves accuracy, but the extent of improvement may be limited 
by the temperature selection. 

between 0% and 0.34% above the actual optimum. 
In Figure 12, we examine these 100 independent runs for SA and PT 

in a different way from above. 'vVe group them into 20 sets of 5 runs each, 
and for each set choose the best of the 5. This again demonstrates that 
PT yields results that are more consistent than those from SA, and almost 
always considerably closer to optimal. 

One question raised when comparing SA and PT is how to choose pa­
rameters for each method to perform an unbiased comparison. The two sets 
of parameters used in Figure 12 produce the best results that we were able 
obtain for each method. In this comparison, PT spends five times more com­
putational time than SA. To ensure a more unbiased comparison, we perform 
a simulation of SA running five times longer. Figure 13 shows the results 
from SA using Ntotal = 200, 000, 000, Nlength = 3,200, 000 (corresponding to 
a = 400). Interestingly, there is no noticeable improvement gained by using 
these larger values of Ntotal and Nlength . 
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Figure 11: Histograms for SA (left) and PT (right) simulation; SA uses 
Ntotal = 40, ODD, ODD, Nlength = 640, ODD, To = 0.10, r = 0.95, and PT uses 
Ntotal = 20,000, 000,710, N swap = 6,000. 

Figure 12: The best value from 5 independent runs repeated 20 times by 
SA and PT; SA uses Ntotal = 40,000,000, Nlength = 640,000, To = 0.10, 
r = 0.95, and PT uses Ntotal = 20,000,000, 710, N swap = 6,000. 
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Figure 13: SA simulation with Ntotal = 200,000,000 , NZength = 3,200,000, 
To = 0.10, T = 0.95. 

5 Conclusion 

Vve have presented a straightforward implementation of parallel tempering 
for combinatorial optimization, comparing it to benchmark results from a 
state-of-the-art implementation of simulated annealing. vVe use a traveling 
salesman problem instance with 200 cities distributed uniformly on a unit 
square, and with periodic boundary conditions. A trial move in the simula­
tions randomly selects two cities and rearranges the original tour to obtain 
a new tour connecting the two cities. vVe find that when the parameters 
are chosen appropriately, both methods can closely approximate the actual 
minimum distance. 

Moreover , our numerical study shows how the parameters for SA and PT 
influence the approximation, and they provide guidelines for selecting the 
best parameters for the two methods. For simulated annealing, we use the 
initial temperature and cooling rate suggested in the literature as a starting 
point. Our simulations show that SA requires a sufficiently large temperature 
length, as well as a sufficiently low (but not too low for efficiency) temperature 
at the end of the simulation. This means once we determine the lowest 
temperature, with the initial temperature and cooling rate being fixed, we 
should increase the total steps and temperature length simultaneously to 
find the optimal value. For PT, we demonstrate that the method requires 
sufficiently high and low temperatures to approach the optimal solution. The 
high temperatures are used for exploring the energy landscape, and the low 
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