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Abstract

We explore the potential of applying parallel tempering to combina-
torial optimization. In particular, we use travelling salesman problem
as a test case and compare the simulation results computed by parallel
tempering and simulated annealing. We study how different choices of
parameters affect the simulation results and give insight into relative
performance of the two methods. We found that when parameters
are chosen appropriately, both methods yield close approximation to
the actual minimum distance. However, parallel tempering yields more
consistent accurate results when a series of independent simulation are
performed. Our results demonstrate that parallel tempering has great
potential of becoming an alternative method to simulated annealing
for solving optimization problem.
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1 Introduction

In this work we explore the potential of applying parallel tempering to combi-
natorial optimization. Parallel tempering (PT), also called replica exchange
or simulated tempering [1, 2], is a Monte Carlo method intended primarily
for sampling a probability distribution function with a complex structure.
The original version of PT was developed by Swendsen & Wang [1]. In their
work, replicas of a system of interest were simulated at a set of different
temperatures. Replicas at adjacent temperatures undergo a partial exchange
of configuration information. Initially the method was applied to systems in
statistical mechanics. Recently, it has been successfully applied more broadly
13|, including in engineering, biology and material science. The main usage of
the method in the literature is to enhance the sampling of configurations. We
will use it to find near-optimal solutions to the traveling salesman problem.

The traveling salesman problem (TSP) is to determine the shortest route
(“tour”) starting from a home location (“city”), visiting all other cities ex-
actly once and then returning home. The problem is NP-hard, and so when
the number of cities is large, it is computationally infeasible to find the true
optimal tour: an approximation algorithm must be deployed. One of the sim-
plest constructive approximation techniques is the nearest-neighbor method.
In this method, the tour starts from any city and recursively chooses the
nearest city not yet visited. Many iterative improvement heuristics, such as
k-opt [4, 5, 6, 7| and Lin-Kernighan [8] have been developed over the past
decades.

The most popular Monte Carlo-based optimization method that has been
applied to the TSP is simulated annealing [9, 10]. Based on the Metropolis
method [11], simulated annealing (SA) includes a schedule of temperatures
and approaches the global minimum when the temperatures decrease grad-
ually. There are extensive studies in the literature of SA applied to the
TSP. The survey by Johnson et al. [12] remains one of the most compre-
hensive treatments of how to implement the algorithm and choose the most
appropriate parameters, and so we use it as a benchmark for our analysis.
By contrast, we are aware of only one preliminary study [13] that explores
parallel tempering for the TSP.

Our main contribution in this paper is demonstrating that a straightfor-
ward implementation of PT can outperform the SA benchmark in several
crucial respects, offering a simple but powerful alternative. We compare the
performance of SA and PT on the traveling salesman problem. We study



how different choices of parameters affect the simulation results and give in-
sight into relative performance. It is known that on random instances with
hundreds of cities, under appropriate selection of parameters, SA yields ap-
proximations that are roughly 1% above optimal [12]. We find that PT finds
approximations that are at least as good and typically more consistent, given
roughly equivalent computational resources. Moreover, if computational re-
sources are measured in terms of parallel time, our results suggest that PT
considerably improves upon SA’s results.

The article is organized as follows. In Section II, we describe our im-
plementations of simulated annealing (SA) and parallel tempering (PT). In
Section III, we present simulation results for each method. In Section 1V, we
compare the two methods. In our conclusion we discuss the implications of
these findings.

2 Methods

The use of Monte Carlo methods for the TSP is based on an analogy between
combinatorial optimization problems and statistical mechanics, described in
[9]. For example, configurations in combinatorial optimization problems cor-
respond to states in thermodynamics; the cost of a configuration in optimiza-
tion corresponds to the energy of a state in thermodynamics. In subsequent
sections, we use these terminologies interchangeably when both are clear in
the context of our discussion. In the case of the TSP, cost is distance, and a
configuration is a tour.

2.1 Metropolis Method

Simulated annealing and parallel tempering are both based on the Metropolis
method [11], one of the most widely used simulation approaches. Let us recall
the main elements of this method. The Metropolis algorithm generates a
sequence of states for a system in equilibrium at a certain temperature 7. It
is an acceptance-rejection method. At each step, given a current state, the
method attempts a trial move to a new state, and then determines whether
the trial is accepted or rejected using a formula of acceptance probability.
Let P be a probability density of a state,

exp[——@}



where Z = 3, exp[m%ﬁ)—] and F(z) is the energy at the state i. The selection
of the acceptance probability is motivated by the detailed balance condition:

P(o)m(o — n) = P(n)n(n — o) (1)

where P(0) is the probability at the old state 0 and n{o — n) is the transition
probability from the old state o to the new state n. If we define a{o — n)
to be the trial transition probability, define acc(o — n) to be the acceptance
probability and assume « is symmetric, then the condition for the acceptance
probability can be derived by the detailed balance condition (1) [14]:

acclo — n)  Pn) AE
acc{n — o) B P{o) = expl=—) @

T

where AE = E(n) — E{o). The Metropolis acceptance probability, one of
many satisfying the equation (2), is the following:

 Em . exp(—2E) if P(n) < P(o)
acclo — n) = { Ple) 1 ! if P(n) > P(o)

For implementation, a uniform random variable £ on [0,1] is sampled to
determine whether a trial is accepted or not. If £ < min (1,exp (—2F)),
then a trial is accepted; otherwise, a trial is rejected. The Metropolis method
uses a single temperature and proceeds in small steps from one configuration
to another. The temperature allows uphill moves and therefore gives the
particles a chance to get out of a local basin. Downhill moves are always
accepted. '

The Metropolis method has also been used to find a local minimum for a
physical system. The temperature T controls the size of the uphill move for
each step. Larger temperature 7" allows greater uphill moves, while smaller
T only permits small uphill moves. When the temperature is very low, the
method is essentially a greedy algorithm.

The Metropolis method is not effective when applied to a problem which
has a high energy barrier or multiple shallow basins. For such problems, a
particle is easily trapped in the basin and therefore not able to move freely
within the configuration space.



2.2 Simulated Annealing

The process of physical annealing begins with heating metal to a high tem-
perature and holding it there for a certain length of time, and then letting
it cool down slowly. This process allows an atom in the metal to achieve
minimal internal energy. Motivated by the concept of physical annealing,
simulated annealing uses a schedule of temperatures to solve optimization
problems. SA runs the Metropolis algorithm using a high temperature in
the beginning and reducing the temperature slowly, in the hope of reaching
a neighborhood that contains a global minimum.

The results of simulated annealing depend on the cooling schedule, i.e.,
the choice of temperatures and the number of Metropolis steps at each tem-
perature. The most widely used schedule for SA is exponentially decreasing
temperatures:

T(Z) = TQ?J
where Ty is the initial temperature, r < 1 is the cooling rate and 7T'(z) is the
temperature used after the ith reduction. Let Ny be the total number of
steps, and Nje,q the number of steps before a temperature decrease (called
temperature length). Niemperatures = f%ﬁ] — 1 is equal to the number of
temperature decreases during the simulation. The algorithm for SA is the
following:

1. Fori= 0, 1> ey Ntempe;r'aéures

2. Run Metropolis algorithm for Nje,en steps at the temperature T'(7),
until total number of steps Ny has been reached.

As discussed in the previous section, larger temperatures in a Metropolis
simulation result in the acceptance of larger increases in energy. Using a wide
range of temperatures allows a simulation to explore the energy landscapes
before it relaxes and arrives at the ground state. In the beginning, higher
temperatures are used so that the configurations giving greater increases in
energy will be accepted. 'This enables a simulation to cross high energy
barriers and hop among shallow energy basins, therefore exploring broad
energy landscapes. The lower temperatures are used to achieve configurations
with small uphill moves. The simulation then focuses on finding the local
minimum energy in a small region.

For the traveling salesman problem, our Metropolis trial move is known
as a 2-change. We select two links in the tour, and create a new TSP tour by



deleting these two links and then reconnecting the tour in the only other way
possible. For example, say our instance contains eight cities and the current
tour is

1—-2—3—-4—-5—6—7—8.

If the two links chosen are 1 — 2 and 6 — 7, the new tour connects 1 to 6,
reverses the order between 6 and 1, and then connects 2 to 7:

1—-6—-5—-4—-3—-2—7—8.

We base the details of our SA implementation on the method described
in [12], as this is among the most competitive ones to date. Specifically:

e Letting n be the number of cities, set the initial temperature to be

1.5
Ty = ==
7

This results in an initial acceptance rate of approximately 1/2 [12].
e Set the cooling rate to be r = 0.95.

e Use the nearest-neighbor construction heuristic to establish the initial
tour: starting from the first city, keep connecting to the nearest city
that has not yet been used on the tour, and finally return to the starting
city. For Euclidean TSP instances, these initial tours are typically
about 20-25% longer than optimal.

e For the trial move, select the two links as follows. Pick a city #; at
random, and pick a second city ¢, from within a given neighborhood
of the first one. The neighborhood, defined in the next section, is such
that each city typically has around 20 neighbors. Now pick, with equal
probability, one of the two cities connected to ¢, and call it ¢3. Finally,
consider the branch of the tour that goes from ¢, to t3 without passing
through ¢y, and let 14 be the city connected to {5 on this branch. The
2-change consists of deleting links t3 — 3 and ty; — 15, replacing them
by fsl - tl and tg - t;3.

e Take the temperature length be proportional to the number of possible
configurations accessible via a 2-change. Since there are n possibili-
ties for ¢y, roughly 20 possibilities for {5 and 2 possibilities for t3, let
Niengtr, = 40am. The studies in [12]| use values of the proportionality
constant alpha between 10 and 100.
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Figure 1: SA with total number of steps Ny =1,000,000, initial tempera-
ture To = 1.5/4/200 ~ 0.1061, cooling rate r— 0.95, and number of steps at
each temperature Njepgen — 16,000 (corresponding to a = 2).

Figure 1 shows a sample run of SA on a TSP instance with n = 200. The
tour length at first grows significantly from its starting value, and fluctu-
ates greatly, since a large fraction of uphill moves are accepted. As the
temperatures decrease, the tour distances also decrease, and the fluctuations
gradually diminish.

The efficiency and accuracy of a simulation is largely determined by
the cooling schedule; i.e., the temperatures being used and the number of
Metropolis steps being run between two successive temperatures. We will
discuss how the choice of Niye and Nienqs, affect simulation results in Sec-
tion III.

2.3 Parallel Tempering

We have observed that applying multiple temperatures in a simulation is cru-
cial for sampling the configuration space with a complex structure. Parallel
tempering (PT), like simulated annealing, employs this important compo-
nent. The main difference between the two methods is that whereas SA uses
a fixed schedule of temperatures, PT swaps temperatures dynamically. SA is
also limited to solving optimization problems. It cannot be used for sampling
a distribution at a fixed positive temperature, and basic Metropolis sampling



can only do this efliciently for high enough temperatures.

PT simulates multiple replicas of a system concurrently, using a different
temperature for each replica. Periodically, a pair of neighboring temperatures
is selected and their configurations are swapped with a certain probability.
Specifically, let the temperatures of M replicas be equal to Ty, 75, ..., Ty,
where T} < Ty < ... < Ty. Simultaneously run M replicas of Metropolis
simulation. Every Nj,q, steps, select a temperature 73, ¢ = 1,2,..., M — 1
and exchange the configuration of 7; with that of 7}, with an acceptance
probability p. The probability p is related to the energy change and the
difference between the reciprocal of the temperatures 7; and T} 4:

p = min (1,exp (AJAFE)) (3)

where Af = & — = AE = F, — F,;; and F; is the energy of the replica
at tempemture 1;. jThe swap probability p is chosen in such a way that it
satisfies the detailed balance condition:

P(r, Bi)P(s, B;) x a[(r, :), (s, 8;) — (s, 8:), (7, B;)]
xacc((r, B;), (s, 05) = (s,5), (r, 5;)]
P(r, 3;) P(s, 3;) x a[(r, 3;), (s, 8:) — (r,5:); (5, 5;)]
xacc|(r, 8;), (s,3:) — (1. 5), (s, 5;)]

where 3, = :}, P(r,[3;) is the probability at state r and temperature Tj,
o[(r, i), (s, 0;) — (s,0.),(r,3;)] is the transition probability for swapping
the state r and state s , and acc is the acceptance probability of the transition
from state r to state s.

We describe the algorithm for PT as follows:

1. for j =1,..., Seotat

’ Afswap
2. Run Metropolis method for all M replicas for Ny, steps
3. Randomly select a temperature 7, among T}, ..., Th_;, and then per-
form a trial to swap the configuration at 7; with the configuration at

T:+1; Sample a uniform random variable £ on [0, 1] and accept the trial
swap when £ < p = min (1,exp (ASAE)).

4. return to step 1.
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Figure 2: Tour distances at each step for temperatures 7, = 0.0025,7, =

0.004, 75 = 0.006.
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Figure 3: (Left) A blow up of Figure 2. We see jumps due to a swap of
configurations between T3 and T at step =~ 2.4 x 10 and a swap of configu-
rations between Ty and T; at step &~ 3x 10° (Right) A corresponding plot for
the attempt swaps at each temperature and the attempt probabilities. Each
“square” represents an attempt swap, corresponding to a “diamond” which
means the attempt probability. A “cross” means a swap is accepted.
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Figure 4: (Left) The tour distances at each step for fixed replicas W =
LW =2,W = 3. (Right) For a given replica, the swap moves create a
random walk in temperature space.

There are two ways to view the temperature swaps. At any particular tem-
perature 7;, an accepted temperature swap move creates a global update; the
current state at 7} is exchanged with the state at 7}, This global change in
state creates a sudden change in energy. See Figure 2 and Figure 3.

Alternatively, for a given replica the swap moves create a random walk
in temperature space. When a replica drifts to a high temperature, it can
overcome energy barriers and explore broad energy landscapes. When the
replica returns to lower temperatures, it only moves locally in the small
region. If the global minimum happens to reside in the region, small uphill
moves increase the chance of finding the global minimum. Figure 4 (Left)
shows the distances at each time step when the replicas are fixed. and (Right)
the random walks of three replicas in temperature space. From Figure 2 to
4, we use five replicas and five temperatures. For the sake of clarity, we only
show three of them here.

The values of two neighboring temperatures and their corresponding en-
ergy affect the swap acceptance rate. If AGAFE > 0 ie. the replica with
higher temperatures has lower energy, then the swap acceptance probability
p is equal to 1. In this case, a definite temperature swap will further relax
the low-energy replica; simultaneously, the high-energy replica will have a
higher temperature and more likely be able to escape a local potential well.

If ABAE < 0 i.e. the replica with higher temperature has higher energy,

10



then the acceptance probability p is less than 1. p increases as |ASAF)|
decreases. Such a swap gives the lower energy replica a chance to get out of
the local potential well, and let higher-energy replica relax.

Our intention in implementing PT on the traveling salesman problem is
to make it as analogous to SA as we can. Thus, we initialize tours for all
replicas with the nearest-neighbor construction heuristic, and we use the same
2-changes for trial moves. On the other hand, PT can potentially require
many more parameters to be set, including the number of replicas and the
exact temperature for each replica. While there has been some study [13] of
the latter, we content ourselves with employing a set of temperatures that
gives satisfactory results and avoid fine tuning for the present purposes.

3 Simulation Results

For our simulations, we use an instance of 200 cities, distributed uniformly at
random over the unit square [0, 1) as shown in Figure 5. We adopt periodic
boundary conditions, so that the distance d between two cities at (z;,y;) and
(x;,v,) is defined as

d:zt :min(lxi —‘T’jl 1= 1371 —%'D:dy :min({yé ‘yj[al”' l?ji _?}jD

d=\j&2+d

For the instance we use, we find with the Concorde TSP solver [15] that the
true optimal tour length is 10.384906. Based on this exact minimum, we
calculate the “percent above minimum” for all of our SA and PT results.

In view of the uniform distribution of cities, we define the neighborhood
relation in our 2-change move (for both SA and PT) as follows. A city’s
neighborhood consists of all other cities that are within a distance of 2.5/+/n.
Since the expected number of cities in a disc or radius 7 is simply «r2n, this
means the neighborhood contains, in expectation, 7{2.5)? ~ 19.635 cities,
very close to the target of 20. ‘

Figures 6 to 8 show our benchmark results computed using SA, and Fig-
ures 9 to 10 show results computed using PT. On each Figure, 5 independent
simulations, numbered 1,2,...,5, are presented.

11
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Figure 5: 200 cities uniformly distributed on [0, 1] x [0, 1]

3.1 Simulated Annealing

Using an implementation very similar to the one described in Section 2.2,
we run SA on our n = 200 instance with an initial temperature of T, =
1.5/4/200 ~ 0.1061 and cooling rate 7 = 0.95, analyzing the effects of varying
the total number of steps Ny and temperature length Niepgen. The aim is
to establish a competitive baseline against which PT can subsequently be
compared.

We first show that when other parameters are the same, running more
steps will improve the approximation only up to a certain saturation point.
Figure 6 demonstrates this effect for temperature length Nyepg, =10,000.
When Niotar =10,000,000, Niemperatures = | %ﬁ —1=999, and

Tiowest = TorNtemreratures 50,1061 - (0.95)%° ~ 6.6123 x 107*. (4)

This temperature appears to be low enough that the simulation is no longer
able to escape from a potential well. When we increase Ny to 5,000, 000
and 10, 000, 000, Tjowes: becomes approximately 107'% and 10724, Such low
temperatures at the end of the computation make the simulation steps es-
sentially greedy moves. These extra steps do not improve the accuracy of the
results because the simulation has already become stuck in a local minimum.
In Figure 7, we instead use a fixed computational budget Ny, = 10,000, 000
but varying temperature lengths. If the simulation does not run long enough

12
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Figure 6: SA simulation: three different N, values 1,000,000, 5,000, 000,
10, 000, 000 are used for each of the 5 independent runs; Njengn = 10,000 for
all simulations. The results computed by different N, for each of the kth
simulation are indistinguishable, £ = 1,2, ..., 5.

at a given temperature, not only will 7Tj,uest be unnecessarily low but the
system may not even equilibrate at each temperature. Figure 7 (Left) shows
that in most (but not all) cases, SA results improve as Nienqy increases,
with the best results in 3 out of the 5 runs occurring for Nienen =160,000,
where Tjoese =~ 0.0044. Using the temperature length parametrization of
Niengtn = 40an discussed earlier, this corresponds to o = 20. On the other
hand, given fixed N;,,;, temperature lengths that are too long can result in
Tiowest N0t being low enough. Figure 7 (Right) shows that doubling Ny,
to 320,000 (o = 40), where Tjppes: = 0.0216, leads to significantly worse
approximations.

From this discussion, we reach a recipe for choosing Ny and Nigngin-
We determine the lowest temperature 7j,..ss by choosing a suitable ratio
of Niotar and Niengen, 1-€., Niemperatures- Lhe ratio must be large enough (so
that Tjowes: 1S small enough) to provide a good approximation to the op-
timal solution, but not so large as to be inefficient. Once the ratio is de-
termined, we increase Niengn and Ny, simultaneously, without changing
Niemperatures- 1his ensures that the simulation equilibrates at each tempera-
ture and the computation can converge to a near-optimal solution. Figure 8
demonstrates the results computed using this recipe. For each set of compu-

13
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Figure 7: Five independent SA simulations using a fixed computational bud-
get Nyt = 10,000,000 and different temperature lengths. (Left) Three
different values Niepg, = 30,000, 60,000 and 160,000. Best results are ob-
tained when Njengn, = 160,000 is used, suggesting that simulations with
smaller temperature lengths fail to equilibrate. (Right) Two different values
Niengtn = 160,000 and 320,000. Here, the simulation with the smaller tem-
perature length gives better results, suggesting that the larger one fails to
reach low enough temperatures.
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Figure 8: SA simulation: Three sets of five independent simulations for fixed
Niemperatures = 62 and corresponding lowest temperature Tjopes: ~ 0.0044.
Three different values Nienqen = 16,000, 160, 000 and 640, 000 are used in the
simulations, with Ny = 1,000,000, 10,000,000 and 40,000, 000, respec-
tively.

tations, Niemperatures 1S fixed at 62. When increasing the temperature length
from 16,000 to 160,000 and then to 640,000, we obtain more accurate ap-
proximations to the optimal solution, in most cases well within 1% of optimal
(in fact, one out of the five test simulations even hits the exact optimum).
This is consistent with the results in [12].

3.2 Parallel Tempering

Having established benchmark results with SA, now we run our parallel tem-
pering implementation, quantitatively demonstrating its properties by vary-
ing the input parameters. There are three sets of parameters in PT: the
total number of steps Niqr, the number of steps Nyyq, between trial swaps,
and the set of temperatures 7 = {7}, Ty, ...... ,Th}. We aim to choose Nyyap
large enough so that a replica equilibrates after (M — 1)Ngyqp steps, which
is the expected number of steps between when one of the M — 1 neighboring
replica pairs attempts a swap. For the temperatures, T,,.. = Ty should be
large enough that the replica at temperature 7),,, can cross over substantial
energy barriers and 7,,;, = T should be small enough that the replica at

15




temperature T,,,, will approach the energy minimum. Finally, in order for
PT to be effective, the spacing between temperatures must be small enough
that a significant fraction of attempted swaps are accepted.

To see the effect of the choice of temperatures, let 7/° and 7;"" be two
sets of five temperatures:

T = 0.0025, 0.004, 0.006, 0.008, 0.01

T = 0.012,0.014, 0.016, 0.018, 0.02
779" are higher than 7°°. Let Ty be the union of the 7/°* and 7;"#"

T = T, UL,

so that 7y includes a broader range of temperatures.

We find that PT clearly benefits from both the high and low temperatures
in 7yp. Figure 9 uses Ny = 2,000,000 total steps and Ngyep = 6,000
steps between trial swaps. In the simulations (Left) at 7/°% and 7y, we see
significant improvement when the higher set of temperatures are included in
the simulation. In the context of thermal dynamics, this means the system
needs the highest temperatures to avoid being trapped in potential wells and
to allow exploration of broad energy landscapes. Similarly, in the simulations
(Right) at 7;“’9"7“ and Ty, we again see that 73g yields better results. Including
the lowest temperatures is thus needed once a replica has entered in the basin
that contains a good minimum, in order to guide it downhill toward that
minimum.

We also find that unlike simulated annealing, PT can in many cases
improve its simulation results simply by running more steps. The rate of
improvement, depends on the selection of temperatures. Figure 10 shows
three simulations using the low temperatures 7% with Ny, = 2,000, 000,
20,000, 000 and 40,000,000, and two simulations using 7o with Ny =
2,000,000 and 20,000,000. From the three sets of results computed us-
ing 77°“, we see that, although running more steps yields smaller values,
the speed of the improvement is quite slow. On the other hand, if we in-
clude high temperatures and simulate using 735, the approximations improve
significantly. We see considerably decreased values when we run Ny, =
20, 000, 000 steps using 7iq.

Finally, we note that the temperature spacing we choose is almost linear,
but not exactly. These spacings have been chosen to try to keep swap accep-
tance probabilities relatively uniform (and around 20%} across the different
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Figure 9: PT simulation: Two sets of five independent runs with Ny, =
20,000,000 and Ny = 6,000, using temperatures (Left) 7}° and Ty, and
(Right) ’Z},mgh and 7;9. PT requires sufficiently high and low temperatures.

replica pairs. Some theory exists as to how temperature spacings should be
determined [13], and this is a study in itself, beyond the scope of our work.
Our aim for now is simply to show that there exists a relatively straightfor-
ward set of temperatures that allows PT to perform well.

4 Comparison

In the previous two sections, we have demonstrated that both SA and PT
obtain good approximations of the actual minimum (well within 1%) for a
sample instance of the traveling salesman problem, after suitable choice of
parameters. We also find that the results computed by SA fluctuate more,
while those computed by PT are more consistent. We are interested in un-
derstanding how often we can obtain such a good approximation if we repeat
the simulation many times.

In particular, we compute 100 independent runs for SA and PT. Figure
11 shows the distribution (histogram) of these independent simulations of SA
and PT. The parameters we use for SA are Ny = 40,000,000, Njengip =
640,000, T, = 0.10, » = 0.95, and the parameters for PT are Ny =
20, 000,000, 719, Nswep = 6,000. We confirm that the results computed
by SA vary considerably more than those by PT. The SA results fluctuate
between 0% and 2% above the actual optimum, and PT results fluctuate
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Figure 10: PT simulation: four sets of five independent runs. The first three
sets use Ny = 2,000, 000, 20, 000, 000 and 40,000, 000 and 7%, while the
fourth set uses N;yqy = 20,000, 000 and 7;9. This demonstrates that running
more steps improves accuracy, but the extent of improvement may be limited
by the temperature selection.

between 0% and 0.34% above the actual optimum.

In Figure 12, we examine these 100 independent runs for SA and PT
in a different way from above. We group them into 20 sets of 5 runs each,
and for each set choose the best of the 5. This again demonstrates that
PT yields results that are more consistent than those from SA, and almost
always considerably closer to optimal.

One question raised when comparing SA and PT is how to choose pa-
rameters for each method to perform an unbiased comparison. The two sets
of parameters used in Figure 12 produce the best results that we were able
obtain for each method. In this comparison, PT spends five times more com-
putational time than SA. To ensure a more unbiased comparison, we perform
a simulation of SA running five times longer. Figure 13 shows the results
from SA using Ny = 200,000,000, Nienger, = 3,200,000 (corresponding to
« = 400). Interestingly, there is no noticeable improvement gained by using
these larger values of Ny and Niengen-

18



— "
05 25 0 05

1 15 1 5
Percent Above Minkmum computed by SA Percent Above Minimum computed by PT

Figure 11: Histograms for SA (left) and PT (right) simulation; SA uses
Niotar = 40,000,000, Nienger, = 640,000, Ty = 0.10, 7 = 0.95, and PT uses
Niotar = 20,000,000, T19, Nsyep = 6,000.

o PT
= SA
0.6 d
£l
£ 0.5' .
g .
E kX
€ 04f : .
2 .
fe)
= 03F & . B
Q
o
<}
& 0.2
" -]
- ] o
e o0 o0 o0 ’ e °
o
° oo0e ° ° ¢ o 9
0_. 1 % 1 = 1.
0 5 10 15 20

The best result in five independent runs
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5 Conclusion

We have presented a straightforward implementation of parallel tempering
for combinatorial optimization, comparing it to benchmark results from a
state-of-the-art implementation of simulated annealing. We use a traveling
salesman problem instance with 200 cities distributed uniformly on a unit
square, and with periodic boundary conditions. A trial move in the simula-
tions randomly selects two cities and rearranges the original tour to obtain
a new tour connecting the two cities. We find that when the parameters
are chosen appropriately, both methods can closely approximate the actual
minimum distance.

Moreover, our numerical study shows how the parameters for SA and PT
influence the approximation, and they provide guidelines for selecting the
best parameters for the two methods. For simulated annealing, we use the
initial temperature and cooling rate suggested in the literature as a starting
point. Our simulations show that SA requires a sufficiently large temperature
length, as well as a sufficiently low (but not too low for efficiency) temperature
at the end of the simulation. This means once we determine the lowest
temperature, with the initial temperature and cooling rate being fixed, we
should increase the total steps and temperature length simultaneously to
find the optimal value. For PT, we demonstrate that the method requires
sufficiently high and low temperatures to approach the optimal solution. The
high temperatures are used for exploring the energy landscape, and the low
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temperatures are used in finding the minimum in a local energy basin. We
also show that running more time steps almost always improves P'T's results.
The degree of improvement depends on the temperature selection. We see
minor improvement when we use the set of temperatures from 0.0025 to
0.01, but find more improvement (lower values) when using the full range of
temperatures from 0.0025 to 0.02.

A significant advantage of parallel tempering is that it yields more con-
sistent results. For example, for 100 independent simulations using the our
best set of parameters, we find that the results of SA fluctuate considerably
more than those of PT. This implies that it takes more simulations for SA
to obtain a desired result, and that PT yields higher confidence,

A disadvantage of parallel tempering is that for the same number of steps,
it takes longer to run because it concurrently simulates multiple replica.
This disadvantage can be overcome by running the simulation on a parallel
machine.

One caution in interpreting these results is that it is difficult to ensure
that a computational comparison between the two methods is fair. Our study
is biased in favor of SA because it employs knowledge from many previous
experiments with SA on TSP. On the other hand, it also has a bias in favor of
PT, in that more computational time was used for PT than SA. Nevertheless,
we found that the SA results do not improve with additional computational
time.

A major open question is how systematically to select an efficient set of
temperatures for PT. The temperature spacing we use is linear, with the
exception of the two lowest temperatures. From the swap acceptance prob-
ability condition, keeping the acceptance rate constant across neighboring
temperature pairs means that AGAFE must be kept constant. If E(T) can be
replaced by its thermal average [13|, which for the TSP is believed to scale
as ~ T? [16], then this suggests the gap between successive temperatures
should scale as T2, However, empirically it is not clear to us that PT ac-
tually performs as well with this prescription. We hope that our success in
employing PT as an optimization algorithm will motivate further study of
this question.
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