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Abstract: Based on a general global covariance function of log conductivity in multi­

faces sediments we developed the macrodispersion coefficient equations for the solute 

transport in three-dimensional domain. Then we derived the longitudinal dispersivity to 

show the scale dependence of this parameter. With an example, the time evolution trends 

and the relative contributions of the auto- and cross-facies transition terms to the 

macrodispersion have been discussed. Sensitivity analysis indicates that the values of the 

longitudinai dispersion coefficient are positively correlated to facies mean length and the 

difference of the mean log conductivity between different facies. The longitudinal 

dispersivity coefficient also shows clearly a linear dependence on the global variance of 

the log conductivity in the multi-facies sediments. 
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macrodispersion coefficient equations 



1. Introduction 

The Lagrangian approach was introduced in stochastic modeling of solutes transport 

In porous media by Dagan (1989) and has received significant attention since, as 

reviewed by Rubin (1995, 2003). Early work with the Lagrangian approach assumed that 

log conductivity could be represented by a single, finite integral scale representing the 

spatial correlation of log conductivity. Recently, attention has been focused on 

representing log conductivity across different scales so that the integral scale may be 

neither finite nor single valued (Zhang, 2002). Some work has sought to characterize 

the scaling of the variance and correlation of log conductivity, or alternatively the 

macrodispersivity, through considering a compendium of field observations and scaling 

experiments, and has posed general scaling model. Some work has used these and other 

models for the scaling of spatial correlation of log conductivity and illustrated the 

resulting behavior of solute spreading (e.g. Dagan, 1994; Cushman et aI., 1994; Di 

Federico and Neuman, 1998). In most of the prior work there has not been a strong link 

between the model for the spatial correlation of log conductivity and the geology it is 

supposed to represent. 

The Lagrangian approach requires a model for the univariate and spatial bivariate 

moments for log conductivity. Recent work presented such models for bimodal domains 

(Rubin, 1995), multimodal domains (Lu and Zhang, 2002), and hierarchical multimodal 

domains (Ritzi et aI., 2004). Here we use the multi modal models for developing the log 

conductivity covariance function. 

In this paper the Lagrangian approach will be used to derive the macrodispersion 

coefficients for conservative solute transport through multi-modal heterogeneous 
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fonnations. The attractiveness of the approach here is that it offers the possibility of 

relating the macrodispersion coefficients to the sedimentary architecture. We first 

consider the geology, specifically that of unconsolidated multi-modal sediment resulting 

from fluvial deposition (see Figure 1). We discuss how the spatial statistics for log-

conductivity at different s·cales are related to the multi-modal sediment across a range of 

scales. We then study how the mean lengths of sediment facies affect macrodispersivity. 

Figure 1. An example of the multi-facies sediments created with indicator Kriging model 
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2. Conductivity covariance function in multi-faces heterogeneous sediments 

Let Y(x) be the spatial random function of log-conductivity, which can be divided 

into subpopulations according to facies as per Rubin (1995), 

N 

Y(x) = I/k(X)Y,JX) , (1) 
k=1 

where Yk (x) represents log-conductivity within facies k. According to Dai et ai. (2004) 

and Ritzi et ai. (2004), the composite covariance Cy(h¢,) of Y(x) can be represented in 

terms of proportion, transition probability, and the in-unit or cross-unit covariance of 

N N 

Cy(h¢) = LL {Cki(h¢)+mkm,}P/ki(h¢)-M~ , (2) 
k=1 1=1 

where mkand a; denote the mean and variance ofYk(x); My is the composite mean of 

Y(x). It is assumed that the cross-covariances are negligible, i.e., CId(h¢) =0 fork *- i, 

and we apply the exponential functions for transition probability and auto-

covariance Ckk (h¢)(see Rubin, 1995; Dai et aI., 2005), 

_ h, 

tid (h¢) =P, + (Old - p,)e AI (k, i = 1, N ), (3a) 

h; 

Ckk(h¢)=a;e Ak (k = 1,N), (3b) 

Where a; and Ak are variance of log conductivity and integral scale of k facies, and Al is 

the indicator correlation length. Finally, we obtain the composite covariance function as 
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where Alp' =~AI /(~ + AI) and Ak is the integral scale of log conductivity in facies k. 

3. Macrodispersivity equations 

To derive the macrodispersivity equations, we use the same assumptions as Rubin 

(1995): (1) the flow field is at steady state, (2) the conductivity field is weakly stationary, 

(3) the velocity field is uniform in the mean, (4) the flow domain is unbounded, and (5) 

the variance of the log conductivity is smaller than unity. Furthermore, assuming that the 

mean displacement velocity of a solute particle is approximated at the first order by the 

average fluid velocity, the macrodispersion coefficients are computed by: 

(5a) 

(5b) 

where D;lt) is the macroscopic dispersivity tensor, uji is the velocity covariance, the 

circumflex denotes the Fourier transform operator and UI is the mean velocity. Following 

Rubin (1995) and replacing the bimodal covariance function with the multimodal 

covariance of Equation (4), we derived the longitudinal and transverse macrodispersion 

coefficients in the three-dimensional domain as 

(6) 

(7) 
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TIwhere, A(T;) =1+ e
T
: 4 [6(e -T; -1 )_T;2(eTI + 2)J, 1)S the dimensionless time expressed 

I 

Equations (6) and (7) relate the macrodispersion coefficients to the facies 

statistical parameters such as the facies proportion and correlation length, and the 

variance and mean of log conductivity. The macrodispersion coefficients are positively 

correlated with the mean difference (or the contrast) of log conductivity. Figure 2 shows 

the macrodispersion coefficients increase with the increasing conductivity contrast, which 

is defined as p =Kmax / Kmin ' where Kmax and Kmin are the maximum and minimum 

geometric means of conductivity within the N facies (K; =em, , i = 1, N ). When p = 1, 

the third term (also called the cross-facies-transition term) in (6) and (7) is zero and the 

macrodispersion coefficients only consist of the first two terms (also called the auto-

transition terms or within-facies-transition). When p increases, the contribution of the 

cross-transition term to the macrodispersion increases. Whenp~ 10, the cross-transition 

term dominates over the auto-transition terms. The results in Figure 2 indicate that the 

variation of conductivity within and across facies is the source of the macrodispersion 

and in a homogeneous aquifer system the macrodispersion coefficients are zero. 
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Figure 2. Sensitivity of the longitudinal and transverse macrodispersion coefficients to 
conductivity contrast (p =Kmax/Krrun ) in the three-dimensional domain ( r = U)t / AI ). 

When time is sufficiently large, the transverse macrodispersivity approaches zero, 

while the longitudinal macrodispersivity has the following simplified expression, 

(8) 

Equation (8) shows how different modes of variability in log conductivity contribute to 

the macrodispersion at the later time. For a unimodal distribution of facies, N:;: 1, 

Equation (8) becomes D)) IU) = 0'2A , which is the same as the unimodal 

macrodispersivity derived by Dagan (1989) and Gelhar (1993). Equation (8) provides a 

way to estimate the longitudinal macrodispersivity of a multimodal conductivity field 

from the facies proportions, mean and variance of log conductivity in each facies, and the 

indicator correlation length. 

In order to analyze the impact of facies mean lengths on macrodispersion with 

equation (8), we create a set of synthetic data of log conductivity (Table 1), and use them 

to estimate the longitudinal macrodispersion coefficients with variable mean length of the 

floodplain. When we vary the mean length of floodplain from 1 to 30 m and fix other 
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parameters, we find a linear relationship among the mean length of the floodplain, the 

indicator correlation length, and the macrodispersivity (see Figure 3), which means the 

macrodispersivity increases with the increasing mean lengths of the facies. 

Table 1. Sediment facies and their statistics of log conductivity 

Facies k Proportion mk 
2 

O'k Ak 

Sand 1 0.07 -0.84 0.2 0.9 
Silt sand 2 0.56 -3.14 0.5 1.0 
Fine sand 3 0.19 -1.76 0.3 1.2 

Coarse sand 4 0.18 1.46 0.55 1.1 

--Indicator correlation length 
- Macrodispersivity 

5 10 15 20 25 30 
Mean length of Floodplain (m) 

Figure 3. Facies mean length vs. indicator correlation length and macrodispersivity. 

4. Conclusions 

The composite covanance function of multi-modal log conductivity for 

heterogeneous sediments allows us to derive the associated macrodispersion coefficients 

for solute transport in a three-dimensional domain. This, in tum, facilitates analyzing the 

link between aquifer architecture and plume spreading. We can easily and independently 
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analyze the relative contributions of facies proportions, mean lengths, in-facies variance 

and per-facies co-variance in log-conductivity, and the difference in mean log­

conductivity across facies. At late time, the longitudinal dispersivity coefficient clearly 

shows a linear dependence on the variance of log conductivity, the mean length of facies 

and the indicator correlation length. 
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