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Abstract: Based on a general global covariance function of log conductivity in multi-
faces sediments we developed the macrodispersion coefficient equations for the solute
transport in three-dimensional domain. Then we derived the longitudinal dispersivity to
show the scale dependence of this parameter. With an example, the time evolution trends
and the relative contributions of the auto- and cross-facies transition terms to the
macrodispersion have been discussed. Sensitivity analysis indicates that the values of the
longitudinal dispersion coefficient are positively correlated to facies mean length and the
difference of the mean log conductivity between different facies. The longitudinal
dispersivity coefficient also shows clearly a linear dependence on the global variance of

the log conductivity in the multi-facies sediments.
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1. Introduction

The Lagrangian approach was introduced in stochastic modeling of solutes transport
in porous media by Dagan (1989) and has received significant attention since, as
reviewed by Rubin (1995, 2003). Early work with the Lagrangian approach assumed that
log conductivity could be represented by a single, finite integral scale representing the
spatial correlation of log conductivity. Recently, attention has been focused on
representing log conductivity across different scales so that the integral scale may be
neither finite nor single valued (Zhang, 2002). Some work has sought to characterize
the scaling of the variance and correlation of log conductivity, or alternatively the
macrodispersivity, through conéidering a compendium of field observations and scaling
experiments, and has posed general scaling model. Some work has used these and other
models for the scaling of spatial correlation of log conductivity and illﬁstrated the
resulting behavior of solute spreading (e.g. Dagan, 1994; Cushman et al., 1994; Di
Federico and Neuman, 1998). In most of the prior work there has not been a strong link
between the model for the spatial correlation of log conductivity and the geology it is
supposed to represent.

-~ The Lagrangian approach requires a model for the univariate and spatial bivariate
moments for log conductivity. Recent work presented such models for bimodal domains
(Rubin, 1995), multimodal domains (Lu and Zhang, 2002), and hierarchical multimodal
domains (Ritzi et al., 2004). Here we use the multimodal models for developing the log
conductivity covariance function.

In this paper the Lagrangian approach will be used to derive the macrodispersion

coefficients for conservative solute transport through multi-modal heterogeneous



formations. The attractiveness of the approach here is that it offers the possibility of
relating the macrodispersion coefficients to the sedimentary architecture. We first
consider the geology, specifically that of unconsolidated multi-modal sediment resulting
from fluvial deposition (see Figure 1). We discuss how the spatial statistics for log-
conductivity at different scales are related to the multi-modal sediment across a range of

scales. We then study how the mean lengths of sediment facies affect macrodispersivity.

Figure 1. An example of the multi-facies sediments created with indicator Kriging model



2. Conductivity covariance function in multi-faces heterogeneous sediments
Let Y(x) be the spatial random function of log-conductivity, which can be divided

into subpopulations according to facies as per Rubin (1995),
N
Y(x) =D ()Y, (%), (1
k=1

where Y, (x) represents log-conductivity within facies k. According to Dai et al. (2004)
and Ritzi et al. (2004), the composite covariance C, (h;) of Y(x) can be represented in

terms of proportion, transition probability, and the in-unit or cross-unit covariance of

Y, (x) as

Cy(hy)= ZZ{Ch(h¢) + mkmi}pktla‘(h¢)_M)2: > 2

k=1 i=]

where m, and O',f denote the mean and variance ofY, (x) ; M, is the composite mean of
Y(x). It is assumed that the cross-covariances are negligible, i.e., C,,(h,) =0 fork =1,

and we apply the exponential functions for transition probability and auto-
covariance C,, (h;) (see Rubin, 1995; Dai et al., 2005),
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Where o and /4, are variance of log conductivity and integral scale of & facies, and 4, is

the indicator correlation length. Finally, we obtain the composite covariance function as
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where ’11;/ =44 (A4, +4,) and A, 1s the integral scale of log conductivity in facies k.

3. Macrodispersivity equations

To derive the macrodispersivity equations, we use the same assumptions as Rubin
(1995): (1) the flow field is at steady state, (2) the conductivity field is weakly stationary,
(3) the velocity field is uniform in the mean, (4) the flow domain is unbounded, and (5)
the variance of the log conductivity is smaller than unity. Furthermore, assuming that the
mean displacement velocity of a solute particle is approximated at the first order by the

average fluid velocity, the macrodispersion coefficients are computed by:

D,y (6) = [ (U et (5)
kk
7, (K) = U( k—;J[(s "kk ]c ® GI=1,...d (5b)

where D;(t) is the macroscopic dispersivity tensor, u; is the velocity covariance, the
circumflex denotes the Fourier transform operator and Uy is the mean velocity. Following
Rubin (1995) and replacing the bimodal covariance function with the multimodal
covariance of Equation (4), we derived the longitudinal and transverse macrodispersion

coefficients in the three-dimensional domain as

%:kf{ 4P (PM A(r)+(1-p, AVA(TZH— /11 A(T3)Zp'(mk i J v
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where, A(r;)=1+— [6(e" —7, —1) —72(e" + 2)} , T,1s the dimensionless time expressed
T

ast, =tU,/ 4, 7,=tU/A,, 7, =tU,/ 4,
and B(z,) =e%_i4|:12(1+ 5 —e"’)+r,.2(5+e"' +r,.)} .

Equations (6) and (7) relate the macrodispersion coefficients to the facies
statistical parameters such as the facies proportion and correlation length, and the
variance and mean of log conductivity. The macrodispersion coefficients are positively
correlated with the mean difference (or the contrast) of log conductivity. Figure 2.shows

the macrodispersion coefficients increase with the increasing conductivity contrast, which

is defined as p=K,_ /K, ,where K and K, are the maximum and minimum

min ?

geometric means of conductivity within the N facies (K, =¢™, i =1, N ). Whenp =1,
the third term (also called the cross-facies-transition term) in (6) and (7) is zero and the
macrodispersion coefficients only consist of the first two terms (also called the auto-
transition terms or within-facies-transition). When p increases, the contribution of the
cross-transition term to the macrodispersion increases. When 5 > 10, the cross-transition
term dominates over the auto-transition terms. The results in Figure 2 indicate that the
variation of éonductivity within and across facies is the source of the macrodispersion

and in a homogeneous aquifer system the macrodispersion coefficients are zero.
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Figure 2. Sensitivity of the longitudinal and transverse macrodispersion coefficients to
conductivity contrast (p=K__ /K, ) in the three-dimensional domain (7 = Ut/ 4,).

When time is sufficiently large, the transverse macrodispersivity approaches zero,

while the longitudinal macrodispersivity has the following simplified expression,

D N A X
A:zo-kzpk pklk-'-(l—pk)}’y/_*_ 12 Zpi(mk_mi)2 . 6y
U1 k=1 20‘,c i=l

Equation (8) shows how different modes of variability in log conductivity contribute to

the macrodispersion at the later time. For a unimodal distribution of facies, N=1,

Equation (8) becomes D, /U, = 6> A, which is the same as the unimodal

macrodispersivity derived by Dagan (1989) and Gelhar (1993). Equation (8) provides a
way to estimate the longitudinal macrodispersivity of a multimodal conductivity field
from the facies proportions, mean and variance of log conductivity in each facies, and the
indicator correlation length.

In order to analyze the impact of facies mean lengths on macrodispersion with
equation (8), we create a set of synthetic data of log conductivity (Table 1), and use them
to estimate the longitudinal macrodispersion coefficients with variable mean length of the

floodplain. When we vary the mean length of floodplain from 1 to 30 m and fix other



parameters, we find a linear relationship among the mean length of the floodplain, the
indicator correlation length, and the macrodispersivity (see Figure 3), which means the
macrodispersivity increases with the increasing mean lengths of the facies.

Table 1. Sediment facies and their statistics of log conductivity

Facies k | Proportion | m, a; A,
Sand 1 0.07 -0.84 - 0.2 0.9
Silt sand 2 0.56 -3.14 0.5 1.0
Fine sand 3 0.19 -1.76 0.3 1.2
Coarse sand | 4 0.18 1.46 0.55 1.1
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Figure 3. Facies mean length vs. indicator correlation length and macrodispersivity.

4. Conclusions

The composite covariance function of multi-modal log conductivity for
heterogeneous sediments allows us to derive the associated macrodispersion coefficients
for solute transport in a three-dimensional domain. This, in turn, facilitates analyzing the

link between aquifer architecture and plume spreading. We can easily and independently



analyze the relative contributions of facies proportions, mean lengths, in-facies variance
and per-facies co-variance in log-conductivity, and the difference in mean log-
conductivity across facies. At late time, the longitudinal dispersivity coefficient clearly
shows a linear dependence on the variance of log conductivity, the mean length of facies

and the indicator correlation length.
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