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Abstract

Bacterial community succession was investigated in a field-scale subsurface reactor formed by a
series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol
additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to
sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater
samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses
showed that the communities changed in a manner consistent with geochemical variations that
occurred along temporal and spatial scales. Canonical correspondence analysis revealed that
the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular
bacterial populations. As sulfate and U(VI) levels declined, sequences representative of
sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences
associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI)
remained at low levels. When engineering controls were compared to the population variation
via canonical ordination, changes could be related to dissolved oxygen control and ethanol
addition. The data also indicated that the indigenous populations responded differently to
stimulation for bio-reduction; however, the two bio-stimulated communities became more
similar after different transitions in an idiosyncratic manner. The strong associations between
particular environmental variables and certain populations provide insight into the establishment
of practical and successful remediation strategies in radionuclide-contaminated environments
with respect to engineering controls and microbial ecology.

Introduction

Uranium contamination from extraction processes for nuclear weapons production remains a



significant environmental problem, and the use of depleted uranium and other heavy metals in
non-nuclear weapons is an additional environmental hazard. Depleted uranium is weakly
radioactive and can damage mammalian kidneys due to heavy metal toxicity (Craft et al., 2004),
and the oxidized form of uranium [i.e., U(VI)] is soluble, and thus mobile in groundwater.
Particular microorganisms can use metals and metalloids such as U(VI) as an electron acceptor
(Lloyd, 2003), and the formation of U(IV) via reduction forms a less soluble precipitate that is
much less likely to contaminate water supplies. Populations within the community respond
differently to disturbances and processes, and it is the cumulative effect of multiple populations
directly or indirectly connected that facilitates overall activity. Therefore, work is needed to
understand the relationships between biotic and abiotic parameters in the context of
bioremediation.

The Field Research Center (FRC; http://www.esd.ornl.gov/orifrc/) on the Oak Ridge
Reservation in eastern Tennessee was established by the U.S. Department of Energy (DOE) to
evaluate in situ strategies for the long-term treatment of radionuclide wastes. Mixed wastes are
difficult and expensive to remediate effectively with current physical and chemical technologies,
but bioremediation with indigenous microorganisms holds promise as a cost effective and
comparatively unobtrusive technology for in situ remediation (Iwamoto and Nasu, 2001).
Many aspects of bioremediation must be better understood for successful and efficient
applications including: the complex relationships between the microorganisms involved in
contaminant removal, changes in pollutant concentration, and geochemical and hydrological
conditions.

The study site had an initial pH of approximately 3.5 and was contaminated with nitrate,
toxic metals, and organic contaminants that resulted from waste disposal over a30 year period

(Fig. 1). During the course of the above study, we characterized changes in bacterial



community structure over time and space at the injection well (intermittent ethanol additions); at
the extraction well used to capture and recycle water; at wells within the treatment zone
(between the injection and extraction well); and at up- and down-gradient wells. The results
demonstrate how system hydraulics and engineering control measures can impact structure and
function and alter community dynamics within U(VI)-reducing communities.

Materials and Methods

Site description and biostimulation tests

The well and pump system consisted of an outer groundwater recirculation loop with a nested
inner recirculation loop (Fig. 1). The outer loop, with recirculation between wells FW103 and
FWO024, created a hydraulic barrier that reduced the amount of contaminated groundwater from
entering the nested inner loop (Fig. 1). Within the inner loop, the carbon/electron donor
(ethanol) was injected weekly into well FW104 and extracted at well FW026, and FW101 and
FW102 (13.7 m depth) were the stimulated zone. Ethanol was selected based upon previous
batch microcosm experiments with field samples (Wu ef al., 2006).  The recirculation flow
rates in the inner loop and outer loop (from FW103 to FW024) were 0.45 /min. Additional
clean water was injected at well FW024 at 0.7 to 0.9 I/min to minimize entry of ambient
groundwater, increase the pH, and remove nitrate. Detailed descriptions are described
elsewhere (Luo et al, 2006; Hwang et al, 2006; Wu et al, 2006a, 2007,

http://www.esd.ornl.gov/orifrc/).  Stimulation of bacterial growth with ethanol began on day

137 (January 7, 2004) and ended on day 754 (September 15, 2005) (Wu ef al., 2006b; 2007).
The ethanol solution (industrial grade,88.1% ethanol, 4.7% methanol, and 7.2% water w/w) had
a chemical oxygen demand (COD) to weight ratio of 2.1. The solution was prepared at a COD
of 6.9 to 9.8 g/l in a storage tank and injected weekly at FW104 over a 48-hour period to give

120 to 150 mg/l of COD at FW104 except during a starvation experiment from days 713 to day



754. The groundwater temperature fluctuated between 12°C and 21°C due to seasonal variation
over the course of the study (data not shown). For later time points, dissolved oxygen (DO)
was maintained at low levels (<0.03 mg/1) as previously described (Wu et al., 2007).

Analytical methods

Groundwater samples were collected from the injection, extraction and monitoring wells to track
biogeochemical changes. Anions (nitrate, sulfate, bromide, etc.) were analyzed with an ion
chromatograph (Dionex DX-120) as previously described (Wu et al., 2006b). Chemical oxygen
demand (COD) was used to monitor the consumption of electron donor (ethanol) and metabolic
by-products (e.g., acetate). COD, sulfide and Fe*" were determined using a Hatch DR2000
spectrophotometer (Hatch Chemical). U(VI) concentration was determined by kinetic
phosphorescence analysis using a KPA-11 analyzer (ChemCheck Instruments).

Sample collection, DNA extraction, and DNA purification

Groundwater was collected (approximately 2 to 5 liters), filtered, and the filters stored at —80°C
until DNA could be extracted. Biomass collected on the filters (Nucleopore, polycarbonate, 0.2
um) was washed, vortexed, and centrifuged with 1X PBS buffer prior to DNA extraction.
Samples were suspended in 1X PBS buffer and the cells were disrupted through two cycles of
freeze-thaw and grinding in sterile sand as described previously (Zhou et al., 1996). DNA was
extracted and purified from all samples with a PowerSoil™ DNA Isolation Sample Kit (MO
BIO). Based upon total cell counts and an assumed DNA amount per cell (~5 fg), recovery
efficiency was estimated to be 30-40% for all samples.

SSU rRNA gene PCR amplification, cloning, and sequence determination

SSU rRNA gene sequences were amplified by PCR with universal bacterial primers FD1 (5’
AGA GTT TGA TCC TGG CTC AG 3’) and 1540R (5> AAG GAG GTG ATC CAG CC 3’) as

previously described (Fields et al, 2005; 2006). Each 20 ul PCR reaction contained



approximately 5-10 ng/ul of DNA, 200 nM of each primer, 10 ul of Bulls Eye Taqg DNA
polymerase 2.0 mix (Midwest Scientific), and the adjusted volume of sterilized water. The
lowest number of PCR cycles was determined for each sample to minimize PCR-induced
artifacts and five PCR reactions were combined prior to cloning. PCR conditions were as
follows: denaturation at 94°C for 2 min, the number of optimal cycles of 94°C for 30 s,
annealing at 58°C for 1 min, extension at 72°C for 1 min, and a final extension at 72°C for 7 min.
Negative PCR controls without DNA template were run concurrently for each sample. PCR
products (5 wl) mixed with DNA loading buffer (2 ul) were visualized by agarose gel
electrophoresis in a 0.8% agarose TAE gel stained with ethidium bromide. Clone libraries were
constructed via methodology to minimize possible biases introduced by PCR as previously
described (Fields ef al., 2005; 2006) and the predominant population in this study was verified
via qPCR.

The PCR products were purified via a spin column purification kit (Promega). Clone
libraries were constructed with the TOPO TA pCR"®2.1 cloning kit (Invitrogen) according to the
manufacturer’s instructions. Transformants from each clone library were checked for inserts by
PCR with M13 primers (30 cycles of the PCR conditions described above except an annealing
temperature of 60°C and a final extension time of 10 min). The amplification products were
analyzed by agarose gel electrophoresis.

PCR products from each clone were purified with a Montage PCR,9¢ plate according to
manufacturer’s instructions (Millipore). DNA sequences were determined with a Big-DYE
Terminator v3.1 cycle sequencing kit (Applied Biosystems) according to manufacturer’s
instructions at 1:4 dilution with an internal sequencing primer (529r) as previously described
(Fields et al., 2005; 2006). Sequence reaction products were run on an ABI 3730 DNA

sequencer.



DNA sequence analysis

DNA sequences were analyzed with Sequencher™ (v.4.0, Gene Codes Corporation) and vector
sequences were removed. The sequences were analyzed for chimeras with Chimera-Check
(Cole et al., 2003) and Bellerophon (Huber ef al, 2004) and, the chimeric sequences were
removed from further analyses. SSU rRNA gene sequence identification was done via
comparison to  known sequences in GenBank with the BLASTN server

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and the RDP (http://rdp.cme.msu.edu/index.jsp).

Unique SSU rRNA gene sequences were parsed into operational taxonomic units (OTUs) based
on 97% sequence identity. All clone sequences and reference sequences were aligned with
Clustal W (Thompson et al, 1994) and phylogenetic trees were constructed with the
Neighbor-joining method and Jukes-Cantor distance model with bootstrap values of 500
replicates within MEGA v.4.0 (Tamura et al., 2007).

Quantitative-PCR (qPCR)

Based upon clone library data, quantification of bacterial DNA for Desulfovibrio and Geobacter
populations was performed with a Rotor-Gene 3000 Real-Time PCR Detection System (Corbett
Life Sciences) and Rotor-Gene Interface software (v6.0.31; Corbett Life Sciences). PCR
primers Dsv691F/Dsv826R and Geo494F/Geo825R were used as previously described (Fite et
al., 2004; Holmes et al., 2002). Amplification reactions were done with Platinum Quantitative
PCR SuperMix-UDG following the manufacturers’ instructions (Invitrogen). DNA
concentrations were approximately 100 ng per reaction, and the DNA was purified prior to qPCR
by the CTAB method. Primer concentration was optimized with genomic DNA from
Desulfovibrio vulgaris and Geobacter metallireducens. The following temperature profiles
were used for amplification: one cycle at 95°C for 1 min, followed by 40 cycles of denaturation

at 95°C (10 s), primer annealing (15 s) at 62°C, and extension (30 s) at 72°C. Quantification



was performed with standard curves made from known concentrations of DNA. Melt curve
analyses were done by heating the PCR mixtures from 60°C to 95°C (1°C per cycle of 10 s) with
simultaneous measurements of SYBR Green™ signal intensities.

Statistical analysis

Rarefaction curves, OTU richness, bacterial community diversity measures (e.g.,
Shannon-Weiner (H’) index, 1/Simpson’s (1/D) index, and Chaol) and sample coverage for each
clone library were determined by the software program DOTUR (Schloss and Handelsman,
2005) with a 3% difference in nucleic acid sequences, and the evenness index (E) was calculated
within Krebs software as previously described (Brown and Bowman, 2001). The H’ index
considers the equitability of the OTU distribution, 1/D also considers both richness and abundance,
and Chaol is a non-parametric estimation of OTU richness. However, composition and
abundance may not be completely epitomized by clone distribution; therefore, measurements and
indices were used for relative comparisons (Yan et al., 2003; Fields et al., 2006). Comparisons
between clone libraries were done with different approaches. LIBSHUFF

(http://www.arches.uga.edu/~whitman/libshuff.html)) analysis was used to construct a pairwise

comparison of the SSU rRNA gene libraries as previously described (Fields et al., 2006).
UPGMA and a neighbor-joining method were used to construct phylogenetic trees with distance
matrices based upon correlation values of AC,y values with MEGA v4.0 (Tamura et al., 2007).
Ordination Analyses

Overall variation in bacterial community composition throughout the treatment process was
characterized by Jackknife environmental cluster analysis and principal coordinates analysis
(PCoA) within the UniFrac software package (Lozupone ef al., 2007) according to specified

instructions given at the UniFrac website (http:/bmf2.colorado.edu/unifrac/index.psp) and

correspondence analysis (CA), detrended correspondence analysis (DCA), and canonical



correspondence analysis (CCA) were performed with Canoco v4.5 (Microcomputer Power Inc.).
Detrended correspondence analysis (DCA), an indirect gradient analysis technique that detrends
by segments, was used to obtain the length of the gradient in the species data to allow for the
selection of the appropriate method (unimodal or linear). When comparisons were done
between all wells, species data was reported in percent OTUs. When bacterial community
profiles were compared between the injection and the two inner bioreduction wells only, species
data was reported as percentage in bacterial families instead of percent OTUs. DCA revealed
that the two data sets exhibited a unimodal (gradient length=6.74 and 3.51 for comparison
between all wells and wells of the bioreduction zone, respectively) response to the explanatory
variables. Thus, canonical correspondence analysis (CCA), a direct gradient analysis, was used
to examine the relationship between bacterial community profiles and environmental factors (i.e.
well characteristics, time, pH, sulfate, nitrate, and subsurface manipulations). CCA has been
shown to provide a flexible and meaningful constrained ordination of ecological species
abundance data with environmental variables (Anderson and Willis, 2003). Partial CCA
(pCCA) was also used to discern patterns related to one set of variables while controlling for a
different set of variables (co-variables; see Table 3).

A total of 14 explanatory variables were used when communities from all wells were
analyzed: 6 dummy variables were assigned to characterize spatial locations (extraction,
injection, and the inner and outer wells); 4 dummy variables were assigned to characterize
engineered conditions of the subsurface (residual denitrification, ethanol stimulation without
dissolved oxygen control, ethanol stimulation with dissolved oxygen control, and ethanol
limitation with dissolved oxygen control); and pH, sulfate, nitrate, and time were each
considered as a variable. A total of 14 explanatory variables were used when communities

from the injection and the two inner bioreduction wells were compared: 3 dummy variables



were assigned to characterize spatial locations, 4 dummy variables for the engineered conditions
of the subsurface as described above and pH, COD, uranium, nitrate, sulfide, sulfate, and time
were each considered as a variable.

Variance partitioning as described by Anderson and Gribble (1998) and Muylaert et al.
(2000) was performed to determine which variables (i.e. environmental, spatial, or temporal)
could best explain the observed distribution of species composition (Table 3). The p values for
the canonical axes were produced by Monte-Carlo permutation tests to determine the
significance of microbial community changes in relation to environmental variables. CCA does
not depend on parametric distributional assumptions and performs well with skewed species
distributions (Palmer, 1993). Thus, species data were not transformed and explanatory
variables were standardized.

Results

Biostimulation and U(VI) reduction

Nitrate concentrations dropped to below 0.05 mM after day 540 once stimulation was initiated
on day 137 (Fig. 2). U(VI) concentrations decreased to below U.S. EPA Maximum
Contaminant Limit for drinking water (0.03 mg/l) after day 615 in FW102. During ethanol
injection, the COD concentration in wells FW104, FW101, and FW102 increased initially and
then decreased as ethanol was consumed (Table 1). However, COD levels decreased to near
zero when ethanol was not added from day 713 to day 754. The same trend was observed for
sulfide concentrations and the opposite was observed for sulfate levels.  Uranium
concentrations in the injection well, FW104, decreased less rapidly than the two inner
bioreduction wells, FW101 and FW102. A slight rebound in uranium concentration occurred
after ethanol injection stopped, but U(VI) levels remained below 0.2 mg/1.

Tracer tests with bromide indicated that the outer- and inner-loops were hydraulically



connected. Approximately 9% of the water injected at well FW104 flowed to the outer-loop
extraction well FW103, and approximately 17% of the water injected to the outer-loop well
FW024 flowed to the inner-loop extraction well FW026 (Luo et al., 2007). As a result, small
amounts of ethanol injected into the inner-loop leaked to the outer-loop wells.

Bacterial diversity (richness and relative abundance)
A total of 23 clone libraries were constructed for the six tested wells. Approximately 80 to 100
clones (90+7; Table 2) were analyzed for each library and approximately 2,000 SSU rRNA gene
sequences (approximately 500 bp in length) were analyzed to determine population distributions
over the tested time period. When a 3% OTU cut-off was used, rarefaction curves for most
clone libraries approached saturation (Fig. S1), and the percent coverage for sampled diversity
ranged from 63% to 93%. The relative bacterial diversity and OTUs declined over time in well
FWO024 (Table 3). Although the number of sampled OTUs was initially stable in the injection
well, FW104, an increase in sampled bacterial diversity (Table 2) and evenness (data not shown)
was eventually observed. However, in the two bioreduction wells, FW101 and FW102, a
fluctuation in diversity and evenness was observed from days 166 to 726. In general, diversity
increased during periods of ethanol addition. Diversity decreased in FWI101 prior to
implementation of DO control (maintenance of low DO, <0.03 mg/l), but recovered to levels
comparable to that of FW102 by day 622.
Bacterial composition and structure
For the purposes of this study, composition equates to richness and structure represents diversity.
Phylogenetic analysis of the sampled SSU rRNA gene sequences revealed that bacterial
communities in the groundwater changed in composition and structure throughout the different
stages of treatment (Fig. 3A-D). Initially, B—Proteobacteria predominated, but as ethanol

stimulation continued sequences indicative of other bacterial phyla such as 6-Proteobacteria,



Actinobacteria, Acidobacteria, and Firmicutes became prevalent (Fig. 3A). At day 166,
B—Proteobacteria was the major group in the FW024, FW104, FWI101, and FW102 libraries.
However, as diversity increased, the P—Proteobacteria populations fluctuated in FW104,
FW101, and FWI102 (Fig. 3A). Predominant sequences within the [-Proteobacteria were
closely related to Herbaspirilllum, Zooglea, Dechloromonas, Ferribacterium, Hydrogenophaga,
Curvibacter, and Acidovorax spp. (Fig. S2B and C). Both Zooglea and Acidovorax sequences
and isolates have been observed previously in FRC groundwater (Fields et al., 2005).

FW103 at day 535 was predominated by Rhodocyclaceae populations (49%), and the
sequences were similar to clones from FW024 on the same sampling day. Like FW024, the
sampled community in FW103 also shifted to Comamonadaceae populations (51%) at 747 day
(Fig. 3B). Most of the clone populations in the Comamonadaceae family had 98% sequence
identity to Rhodoferax ferrireducens, while others had 98% sequence identity to A. delafieldii
(Fig. S2B and C). Clone libraries from FW104 and FW101 were predominated by an
Oxalobacteraceae population at day 166 and the clone sequences had >97% sequence identity to
Herbaspirillum spp. (AJ012069) (Fig. S2B). FW104 shifted from predominance by an
Oxalobacteraceae population (40%) in the residual denitrification phase to predominance by
Rhodocyclaceae population (most closely related to an uncultivated Thauera spp. clone,
DQ426920) in the uranium reduction phase prior to DO control (Fig. 3B). The Rhodocyclaceae
populations declined while Comamonadaceae populations increased (22%) during the initial
phase of uranium reduction with DO control and the majority of the clone library had 98%
sequence identity to R. ferrireducens (Fig. 3B and Fig. S2B). Hydrogenophilaceae populations
increased (16%) by day 747 (Fig. 3B) and the clone populations had >97% sequence identity to
an uncultivated Thiobacillus sp. clone (EF413894) (Fig. S2A) and these results might coincide

with the infiltration of oxygen.



FW101 shifted from predominance by Oxalobacteraceae (68%) to Comamonadaceae
populations (25%) (Fig. 3B), and the majority of the clone population had >97% sequence
identity to A. delafieldii (Fig. S2C). Gallionellaceae populations were detected at 20% and 8%
of the population at days 278 and 558 respectively, but were not detected once the well entered
the phases of uranium reduction with DO control and ethanol limitation. Community dynamics
in well FW102 was unlike FW101, with predominance by Burkholderiaceae (43%) and
Rhodocyclaceae populations (17%) at day 166. Despite the differences in the bacterial
community at 166 day, the two wells had a similar overall community structure by days 641 and
622 for FW101 and FW102, respectively (Fig. 3B).

After initiation of weekly ethanol additions, d-Proteobacteria populations were detected by
day 278 in wells FW101 and FW102 and by day 535 in FW104 (Fig. 3C). Phylogenetic
analysis of the 0-Proteobacteria at the family level revealed differences in each well at the
respective  sampling  days. However,  Desulfovibrionaceae  and  uncultivated
Desulfovibrionaceae populations predominated in both wells at the end of the experiment (Fig.
3C and 4). For comparison, 6-Proteobacteria sequences were detected at <3% in FW024 (outer
loop injection well), FW103 and FW026 (down-gradient wells).

While &-Proteobacteria bacteria were predominant in both FW101 and FW102, the
sampled communities within these wells changed over time (Fig. 3A). The &-Proteobacteria
populations in FW101 shifted from predominance by Geobacteraceae populations (25%) during
earlier stages of uranium reduction (278 day) to predominance by Desulfovibrionaceae during
DO control (54%). Geobacteraceae were also detected in FW102 at day 278 (5%) and at a
higher percentage on day 622 (25%) during the uranium reduction phase (no DO control), but
declined at the later time points (<3%). Desulfovibrionaceae populations increased (to 56%)

during the uranium reduction phase with DO control, but declined during the ethanol limitation



phase (Fig. 3C). The majority of Desulfovibrionaceae clones had 98% sequence identity to
Desulfovibrio magneticus (D43994) (Fig. 5). The majority of the Geobacteraceae clones had
100% sequence identity to an uncultivated Geobacter clone (AY780563) (Fig. 5). To validate
these results, qPCR was used to quantify Desulfovibrio spp. and Geobacter spp. from the same
samples. The qPCR results demonstrated an increase in gene copy number for
Desulfovibrionaceae (Fig. 4), and a similar trend for these populations correlated to the clone
library analyses (r*=0.9).

Acidobacteria, Actinobacteria and o-Proteobacteria populations were more consistently
observed for the tested wells during the time course, whereas Firmicutes populations were
detected in certain wells at certain days (Fig. 3D). The highest level of a-Proteobacteria (33%
of clones) occurred in FW024 on day 535. The majority of a-Proteobacteria clones had 97%
sequence identity to Sphingobium herbacidovorans (EF065102) (Fig. S3). Sphingobium
sequences were previously detected at an uncontaminated background site (Fields ez al., 2005).

Acidobacteria populations were detected at low levels in FW024 and FW102 at all time
points. In FW101, Acidobacteria peaked on day 278 (25% of clones) and declined thereafter
(Fig. 3D). The majority of the clone populations had 97% sequence identity to Geothrix
fermentans (U41563) (Fig. S4). Actinobacteria populations were consistently detected and
represented 7% of the clones for FW026 on day 535 and lower levels at FW024, FW104, and
FW103 throughout the experiment. Changes in the Actinobacteria population were especially
pronounced in FW101 and FW102 (Fig. 3D). The majority of these clones had 98% sequence
identity to an uncultivated Actinobacterium clone (AJ888538) (Fig. S5). A study by Gremion
et al. (2003) suggested that Actinobacteria populations were a major metabolically active group
in a heavy-metal contaminated soil.

Firmicutes were detected at <3% of clones between days 535 and 712 in FW104 and did not



change significantly (<5% of clones). In both FW101 and FW102; however, Firmicutes
populations increased to 25% during the ethanol limitation phase (day 713-754). The clone
populations of the Firmicutes family in these two wells during this phase had 96%-98%
sequence identity to an uncultivated Desulfosporosinus spp. clone (AY607216) (Fig. S6).

Spatial and temporal analysis of the bacterial community

The temporal and spatial differences in the wells were further analyzed using hierarchical
clustering with an UPGMA algorithm and principal coordinates analysis (PCoA) (Fig. 6A and
6B). The three wells most affected by groundwater recirculation and ethanol addition, FW104,
FW101, and FW102, clustered together at day 166, which indicated that these wells were
initially similar in community composition. The up-gradient well, FW024, did not have a
major shift in bacterial community structure or composition over the tested time period.
Moreover, the bacterial communities in the three wells FW104, FW101, and FW102 were
similar to that of FW024 on day 166 (i.e., prior to ethanol addition), which suggested that the
initial communities were similar before the treatment strategy was implemented.

FW024 at day 712 clustered with FW103 at day 747 (>99.9% confidence) (Fig. 6A).
These two wells were the outermost up- and down-gradient wells, respectively. Similarly, the
two down-gradient wells, FW026 and FW103, clustered together at day 535 with >99.9%
support. FW101 at days 278, 535, and 622 clustered with FW104 on day 641, 712, and 746.
These data suggested that the injection well lagged in bacterial community development
compared to the communities at the down-gradient monitoring wells that were most directly
affected by ethanol addition. Community structure for monitoring wells FW101 and FW102
clustered at days 641 and 622 (90 to 99% confidence) and days 726 and 670 (99% confidence).
These results indicated that the bacterial communities from the wells most directly impacted by

ethanol addition were altered in different ways and ultimately became more similar to one



another than the other wells.

Correspondence analysis resulted in similar results to the PCoA that clustered the inner
wells (Fig. S7). In addition, lineage specific analyses revealed that clustering at earlier time
points was due to the shared presence of several denitrifying bacterial populations. Samples
from FW026 and FW103 at day 535 clustered because of the shared presence of both
iron-oxidizing and iron-reducing populations, and samples from the two inner bioreduction wells
clustered due to the shared presence of sulfate-reducing populations (Fig. 6B). LIBSHUFF
analyses of the injection and two bio-stimulation wells revealed similar results in which the
bacterial communities developed changes in parallel while the injection well lagged (p<0.001)
(data not shown). These results indicated that the bacterial communities within treated wells
diverged sharply from those in up- and down-gradient wells, and that the community changes
could be correlated to changes in geochemical conditions (e.g., electron acceptors) during
stimulation for bioremediation
Bacterial community structure and groundwater variable relationships

When CCA was done based upon population distributions with time and space as the
variables, treatment wells (ethanol delivery) could be easily distinguished from outer and
inner-loop wells, and injection wells and treatment wells displayed a trajectory that followed a
temporal vector (data not shown). The CCA identified major species-environment correlations,
and F-ratios were used to determine the variance for the independent variables as previously
described (ter Braak and Smilauer, 2002). The test of significance (global permutation tests)
based upon all canonical eigenvalues ranged from 0.002 to 0.04 and indicated that the relations
between the species and the measured environmental variables were highly significant.

When both the bacterial community structure and physicochemical variables were

compared via pCCA with engineering controls and geochemistry as variables and spatial location



as co-variables, the association of FW101 and FW102 at later time points was observed (Fig. 7
and 8). There was a shift in community structure between times with and without DO control,
irrespective of ethanol addition. Upon examination of the inner bioreduction wells only, the
pCCA suggested that environmental variables (with space as a co-variable) could explain
approximately 63% of the species data (p=0.018) (Table 3). U(VI), nitrate, COD, sulfide, and
sulfate strongly associated with the shifts in bacterial community patterns, and the correlations
were meaningful in a biogeochemical context (e.g., nitrate decline corresponded to decline in
denitrifiers; sulfide correlated to the predominance of sulfate-reducing bacteria).

At day 166, FW104, 101, and 102 had high concentrations of nitrate and uranium and the
associated bacterial communities were predominated by phyla common for nitrate-reducing
bacteria (e.g., P-Proteobacteria and vy-Proteobacteria) (Fig. 8). Proceeding in a direction
opposite to the gradient for nitrate and uranium indicates a negative correlation between nitrate
and uranium and other bacterial communities. By contrast, nitrate-reducing species correlated
positively to increasing chemical oxygen demand (COD), a measure of the available ethanol.
The ordination diagram indicated that patterns of bacterial community were strongly associated
with the spatial and temporal differences in the geochemistry of the groundwater and that these
markers could represent good indicators for radionuclide reduction potential and monitoring.
For clarity, higher divisions of bacterial classification were used in the comparisons, and
associations of particular populations could be discerned for the bio-stimulated wells. Thus, as
the Acidobacteria, Geobacteraceae, Actinobacteria, Desulfovibrionaceae, and Firmicutes
populations increased, the Ilevels of nitrate had declined and uranium declined.
Desulfovibrionaceae and Firmicutes populations were also strongly associated with the sulfate
(decline) and sulfide (increase) levels (Fig. 8).

It is interesting to note that Acidobacteria and Geobacteraceae populations were positively



correlated with higher COD levels (Fig. 8). The results suggested that these populations were
more prevalent when ethanol levels were higher during earlier and intermediate time points. In
contrast, the SRB sequences (namely, Desulfovibrioaceae) predominated at later time points
along with sequences for Firmicutes, namely Desulfosporosinus spp. and uncultivated
Clostridium species (Fig. 8).

Samples that had a decrease in nitrate and U(VI) levels were clustered, and the phases of
DO control with and without ethanol had similar community structure and composition (Fig. 7
and 8). The relationships between the samples based upon community structure and the
engineering controls were also highly significant (p<0.01). However, the samples that
represented time points when DO control was implemented compared to no DO control (with
ethanol delivery) had a shift in community structure and the associated populations were
Desulfovibrio, Desulfosporosinus, and Hydrogenophilaceae species as well as Bacteroidetes and
Caulobacteraceae. The pCCA data also suggested that the DO control phases had similar
community structure and composition independent of ethanol addition. These results indicated
that stimulant levels could be decreased or stopped at least for the tested time period without
major shifts in population composition or distribution.

Total variation of the species data was partitioned into six categories (Table 3). When all
wells were considered, the environmental (i.e., geochemistry) and space variables accounted for
the majority of variation (32.0% and 24.6%, respectively, Fig. 9). However, 36% of the
biological variation was unexplained (Fig. 9). When only the bio-stimulated wells were
considered, the environmental variable could account for approximately 50.1% of the variability,
and the unexplained portion of the variability was 17.3% (Fig. 9).

Discussion

Diversity and community function



Microbial communities have been extensively characterized at uranium-contaminated sites
(Abdelouas et al, 2000; Anderson et al., 2003; Chang et al., 2001, 2005; Elias ef al., 2003;
Nevin et al., 2003; Vrionis et al., 2005;) including the OR-FRC (Yan et al., 2003; North et al.,
2004; Fields et al., 2005, 2006; Akob et al., 2007). In general, it is assumed that bacterial
diversity will depend upon the degree of contamination and will change in structure and
composition in response to geochemical changes (e.g., nutrients, pH, Ej, etc.). In our study,
transitory trends were suggested from nitrate-reducing to iron-related redox metabolism to
sulfate-reducing populations, and these results indicated that bacteria exhibited distributions at
the landscape scale in agreement with predictable geochemical factors. During biostimulation,
population distributions followed geochemical parameters (i.e., nitrate- to iron- to
sulfate-reduction) with spatial differences that matched the expected geochemical changes;
however, the bio-stimulated communities displayed idiosyncratic responses during the transitions
(communities were dissimilar at intermediate time points). As described by Lawton et al.
(1998), the idiosyncratic theory assumes that the relationship between species richness and
ecosystem function does not follow a consistent pattern. In addition, the measured variables
could only account for 50% of the biological variability in the stimulated wells.

The bioreduction wells (FW101 and FW102) had different streamlines passing from the
injection well and progressed differently to a common community structure dominated by
sulfate-reducing bacteria. The bioreduction wells displayed a variety of responses when diversity
and uranium levels were compared as a measure of ecosystem process (i.e., uranium reduction),
and the comparison of nitrate levels to diversity displayed a similar relationship (Table 2; data
not shown). The results suggested that the population distributions depended on the particular
conditions of the local environment. Further work is needed to discern the relationships

between specific ecosystem processes and bacterial diversity, but the present study implied that



population distributions depended on the particular conditions experienced as opposed to a
system that is insensitive to diversity or one in which diversity contributes to ecosystem
processes in a unique but predictable fashion.

The observed increase in bacterial diversity could be attributed to the input of the energy
and carbon source that allowed increased colonization. The diversity of the treatment wells
increased during the greatest decline in soluble U(VI) levels but fluctuated when U(VI) levels
further decreased below 0.03 mg/l. The diversity increase was more likely a consequence of
nutrient addition rather than the decline in U(VI) levels since uranium is not the only toxic
contaminant present in the OR-FRC groundwater (Fields et al., 2006). The increase in
diversity most likely altered population distributions thereby changing the functionality of the
community. It would appear that carbon/energy levels increased above a minimum required for
survival (or at least to the limit of detection) of various species. This type of response has been
observed for plant diversity as productivity increases from very low levels (Huston and
DeAngelis, 1994).

Engineering controls

Multivariate analytic tools are commonly used in macro-ecology studies to identify diversity and
distribution patterns of plants and animals in relation to environmental parameters. Ramette
(2007) suggested that these tools can also be readily applied in microbial ecology to help reduce
data set complexity as DNA sequence data is increasingly available due to high-throughput
sequencing technologies. Indeed, microbial ecology studies have increasingly used multivariate
analyses to relate environmental variation to bacterial composition in aquatic systems (Yannarell
and Triplett., 2005; Kent et al., 2007; Rubin and Leff, 2007), to determine bacterial community
dynamics in relation to temporal variation in marine ecosystems (Pringault et al., 2007; Sapp et

al., 2007), to develop microbial communities as indicators of ecosystem stress (Cao et al., 2006;



Cordova-Kreylos et al., 2006; Fields et al., 2006), as well as to link geophysical signatures to
microbial communities (Allen et al., 2007).

In our study, the use of pCCA enabled the identification of the crucial engineering controls
for which bacterial community composition shifts appeared significantly related. We first
compared bacterial community composition shifts between all wells and found that while the
majority of the variation could be explained by spatial and environmental variables, a portion of
the variance remained unexplained. Other ecological studies that used variance partitioning
have also observed high levels of unexplained variation (Titeux et al., 2004). When we
examined the bacterial community composition between the bioreduction wells only, the
unexplained variation decreased. Tieteux et al. (2004) suggested that the high unexplained
species assemblages could be due to unaccounted factors such as the fluctuations of communities
along temporal and spatial scales, unmeasured environmental variables, and limitations in
separating geographical factors that could be due to spatially structured processes. Our results
suggested that other geochemical variables could be important indicators, and while it is difficult
to measure everything, future efforts should attempt to include a range of variables to represent
an even more holistic approach.

Changes in bacterial diversity were expected to result from engineering controls, and the
pCCA indicated that bacterial populations shifted with DO control measures and carbon/energy
source additions. When ethanol was added major shifts in sampled diversity and structure
occurred, but when ethanol was withheld, DO control was needed to prevent further changes in
the bacterial community. These results suggested that engineering controls impacted the
development of bacterial communities with the desired metabolic activity. As pointed out by
Kassen and Rainey (2004), microbiologists typically define function via mechanisms that

involve genes and gene products, but a broadened perspective should include fitness of



individual populations. Fitness could be a measure of population survival and reproduction and
is an ecological measure that relates genotype interactions with biotic and abiotic variables.
Other field studies observed bacterial population shifts during short-term push-pull
stimulations that were predominated by iron-reducing populations (North ef al., 2004) or a mix
of sulfate-reducing and/or iron-reducing populations (Abdelouas et al., 2000; Vrionis et al.,
2005), while others observed predominance by SRBs, namely Desulfosporosinus (Nevin et al.,
2003), Desulfosporosinus and Clostridium (Suzuki et al., 2003), Desulfobacter species (Vrionis
et al., 2005). Over the tested period in our study, the communities became dominated by
sulfate-reducing populations closely related to Desulfovibrio species. It is likely that additional
populations are directly and/or indirectly involved in U(VI) bio-reduction at this site, and it will
become increasingly important to develop more sensitive molecular techniques as well as more
robust cultivation methods to better understand remediation strategies.
Biotic associations
Similar to previous studies, we observed nitrate to be a major factor that influenced U(VI)
reduction. After nitrate removal, a major shift in bacterial communities was observed with
continued ethanol additions. Community structure first transitioned to nitrate-reducing and then
populations of iron-oxidizers (G. ferruginea) and iron-reducers (Geothrix spp., Geobacter spp.,
Holophaga spp.). G. ferruginea is able to live in low-oxygen conditions (Anderson and
Pedersen, 2003) and has been found in many acidic metal-rich waters (Kim et al., 2002; Bruneel
et al., 2006; Hallberg et al., 2006). Geothrix spp. have been isolated from a hydrocarbon
contaminated aquifer (Coates et al., 1999) and were also enriched when exposed to petroleum
compounds in laboratory experiments (Abed et al., 2002). Geothrix-like sequences were also
detected in the stimulated treatment zones of FRC sediments (Cardenas et al, 2008).

Geobacter spp. have been found in metal-polluted freshwaters (Cummings et al., 2003) and



detected in high numbers at sites treated for U(VI) remediation (Holmes et al., 2002; Anderson et
al., 2003). The metabolic potential of iron-oxidizing and iron-reducing populations could have
further implications on the stability of U(VI) immobilization as iron-oxidizing populations can
potentially re-oxidize U(IV) and/or oxidize Fe(I) in a nitrate-dependent manner. The dynamics
between iron-oxidizers, iron-reducers, and sulfate-reducers warrants further investigation at
contaminated field sites.

Geobacter sequences were observed throughout the experiment but were highest when
COD levels (i.e., organic carbon) were elevated. The Geobacter populations appeared to
associate with Acidobacteria populations (e.g. Geotherix spp,. and Holophaga spp.), but the
nature of possible interactions between these populations is unknown. Further work is needed
to examine possible direct or indirect interactions. It is not known if niche complementarity
would lead to greater stability in bioremediation processes although studies have shown that it
can explain positive relationships between diversity and function in prairie grasslands (Tilman et
al., 1996).

Diverse Acidobacteria have been detected in different uranium-contaminated sites (Barns et
al., 2007); however, little is known regarding physiology or ecology. The abundance of
Acidobacteria in groundwater suggested an ability to tolerate high levels of metal- and
nitrate-contamination, but the data also indicated that the Acidobacteria did not continue to
compete with sulfate- and metal-reducing populations. Further analysis by pCCA revealed that
the prevalence of Geobacter and Acidobacteria populations was more strongly correlated to the
availability of ethanol rather than low U(VI) levels. These results emphasized the importance
for a better understanding of population interactions leading to competition and/or mutually
beneficial use of nutrient and energy sources.

In terms of the ecosystem process of interest in our study, multiple species could be



classified into the same ‘functional group’ (i.e., heavy-metal reduction). For instance, both
iron- and sulfate-reducers could be considered at least partially substitutable with respect to
contribution to the ecosystem process of interest (i.e., U(VI) reduction); however, iron- and
sulfate-reducers can be very different organisms with respect to biogeochemistry and community
interactions. Different studies have demonstrated the utility and predominance of iron- and
sulfate-reducers at respective sites.  Further work is still needed to determine how
environmental conditions at respective sites can be controlled to optimize community structure,
diversity, and function within the context of desired ecosystem processes.

When DO control measures were compared to community composition, the results
suggested that Geobacter spp. were more oxygen tolerant as the populations were detected at
higher levels when dissolved oxygen was not being controlled and that Desulfovibrio spp. were
able to adapt to more anoxic conditions. An alternative explanation might be an interaction
between Geobacter and an oxygen-tolerant microorganism.  However, as mentioned
previously, the COD levels were also higher when DO was not specifically controlled.
Separate studies at the OR-FRC showed that metal-reducing populations such as Geobacter spp.
and Anaeromyxobacter spp. predominated in contaminated sediments following in situ
biostimulation of microbial populations during push-pull tests (Petrie et al., 2003; North et al.,
2004; Michalsen et al., 2007). However, different electron donors and engineering controls
were used, and these comparisons also support the notion that there is an
idiosyncraticrelationship between population distribution and ecosystem process in terms of
biostimulation for heavy-metal reduction.As ethanol was being limited, Firmicutes were detected
at increasing levels in the groundwater and were especially pronounced in FW102. The
Firmicutes sequences were closely related to the fermenting bacteria, Clostridium spp., the

sulfate-reducing, Desulfosporosinus spp, and other sequences closely related to the



Peptococcaceae family.

Research has shown that both Clostridium spp. and Desulfosporosinus spp. can be
stimulated in uranium mine sediments (Suzuki ef al., 2003) and Desulfosporosinus spp. have also
been enriched in high-salinity subsurface sediment stimulated for U(VI) reduction (Nevin et al.,
2003), as well as heavy metal column experiments (Geets et al., 2006). Clostridium spp. were
shown to be able to reduce U(VI) (Francis et al., 1994; Madden et al., 2007) and similar
populations were also detected in other OR-FRC sediments using glycerol-amended enrichments
(Petrie et al., 2003).  Clostridium populations were also suggested to be active members of the
OR-FRC microbial community through a study of RNA-derived clone libraries (Akob et al.,
2007) and low G+C bacteria have been isolated from OR-FRC groundwater (Fields et al., 2005).

pCCA analysis indicated that bacterial communities were similar in the DO control phases
regardless of electron donor availability. Indeed, Desulfovibrio populations were still
predominant during this phase despite the fact that the subsurface condition may have started to
favor fermentative metabolism by Firmicutes. The presence of populations that have both
sulfate- and metal-reducing capabilities at the later phases of our study suggested a potential for
continued uranium-reduction during the periods when soluble electron donor is not provided.
This was further observed via pCCA in which Firmicutes and Desulfovibrio populations were
negatively correlated with U(VI) levels.

While microbial communities adsorbed in the sediments can be significantly different from
the planktonic populations in the aquifer, a recent study that characterized sediments at day 774
showed that Desulfovibrio spp. were the most abundant genus in the bio-stimulated zone
(Cardenas et al., 2008), and our results with groundwater also showed a predominance of
Desulfovibrio sequences at this time period. The Cardenas et al. (2008) study also detected

Desulfosporosinus, Geobacter, Anaeromyxobacter, Geothrix, and Acidovorax related sequences



associated with the sediment, and similar sequences were detected in our temporal study of the
groundwater albeit at different proportions. These results suggested that some predominant
populations might inhabit both the solid- and aqueous-phases (e.g., Desulfovibrio), while others
might be exclusive to solid-phases (e.g., Acidobacteriaceae). In the case of this test site,
Desulfovibrio sequences predominated in both the sediments and groundwater; however, it is not
known if the predominance of the same putative population(s) in the solid- and aqueous-phases
would be unique to an engineered site and/or dependent upon the existing community
composition. While not the focus of this study, future work is needed to discern the importance
and functionality of surface-adhered versus aqueous-phase communities.

Conclusion

The development of certain bacterial populations corresponded to the manipulated groundwater
geochemical variables and showed that it is possible to stimulate the desired function in an
engineered system. In terms of U(VI) immobilization, the wells responded differently, but
prolonged engineering controls were able to stimulate growth of bacterial communities with the
desired U(VI) reduction capacity. The notion of niche development through the application of
selective pressures provides a possible framework for use of molecular ecology to improve
process performance. Questions remain about how diversity and stability are related in terms of
biochemical function, whether all in sifu engineered systems would behave similarly, and
whether the niche exclusion and selection concepts can be applied to improve models of active

transport.
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Table 1. Chemical properties of groundwater during the bioremediation process.

Sample Well Days COD Sulfate Sulfide pH Nitrate  U(VI)
number (mg/1) (mg/l) (mg/1) (mM) (mg/l)




—

FW024 166 9 31.6 ND 5.89 0.198 0.50

2 535 7 26.3 ND 5.92 0.190 0.07
3 712 <2 130 ND 5.75 0.015 0.017
4 FW104 166d 40.0 88.0 ND 6.16 0.811 1.053
5 535d 137 42.0 0.00 6.88 0.038 0.174
6 641d 137 40.6 1.52 5.93 0.0017  0.165
7 712d 119 58.7 9.34 5.70 <0.001  0.142
8 746d 4.00 111 0.01 5.77 0.011 0.137
9 FW101-2 166d 17.0 89.3 ND 6.51 0.211 0.791
10 278d 3.00 47.6 NA 6.43 0.0047  0.152
11 535d 70.0 39.3 2.23 6.35 <0.001  0.186
12 558d 95.0 17.9 2.74 5.88 <0.001  0.175
13 622d 96.0 2.23 7.48 6.03 <0.001  0.068
14 641d 108 2.78 9.90 6.02 0.001 0.042
15 726d 8.00 101 0.84 6.00 <0.001  0.062
16 FW102-2 166d 9.00 76.5 ND 6.33 0.711 0.696
17 278d 2.00 27.3 NA 5.97 0.047 0.027
18 622d 51.0 8.66 3.37 6.24 <0.001  0.021
19 670d 59.0 9.72 7.35 6.25 <0.001  0.002
20 726d 12.0 96.3 0.66 6.24 <0.001  0.023
21 FWO026 535 32.0 41.6 0.04 6.11 0.085 0.242
22 FW103 535 10 27.1 ND 6.12 0.147 0.083
23 <2 135 ND 5.97 0.021 0.05 <2

NA denotes data not analyzed. ND: Not determined (below detection limit).

Table 2. Characteristics and diversity estimates for SSU rRNA gene clones from groundwater



samples at different time points.

Sample Well Days Number  OTUP H* 1/D° Chao-1°  Evenness'
number of clones®

1 Fw024 166 83 34 3.13 17.2 53.1 0.83
2 535 84 31 2.79 10.4 73.0 0.76
3 712 90 20 2.26 6.20 27.3 0.68
4 FW104 166d 84 24 2.58 9.35 69.5 0.74
5 535d 81 27 2.66 8.21 40.0 0.76
6 641d 80 24 2.93 14.3 29.2 0.80
7 712d 97 25 2.89 16.7 26.2 0.83
8 746d 89 41 3.37 28.4 95.2 0.84
9 FW101-2 166d 84 16 1.97 4.56 19.0 0.64
10 278d 85 16 2.24 7.83 19.0 0.73
11 535d 83 33 3.10 17.1 50.0 0.83
12 558d 98 22 2.25 5.21 29.5 0.66
13 622d 98 35 3.00 14.3 70.0 0.78
14 641d 87 20 2.55 11.4 32.0 0.78
15 726d 92 23 2.25 5.09 42.5 0.64
16 FW102-2 166d 103 28 2.30 4.81 47.4 0.63
17 278d 100 42 3.16 15.12 150.8 0.79
18 622d 98 39 3.16 18.35 126.8 0.81
19 670d 101 30 2.57 8.43 72.0 0.69
20 726d 95 52 3.61 32.13 101.6 0.93
21 FW026 535 84 36 3.10 16.60 72.1 0.80
22 FW103 535 85 24 2.33 6.46 48.0 0.67
23 747 90 28 2.49 6.337 58.6 0.67

"Number of clones sequenced from each library.
bOperational taxonomic unit (OTU) based on partial SSU rRNA gene sequences (>97%).

‘Shannon-Weiner index, higher number represents higher diversity.

Reciprocal of Simpson’s index, higher number represents higher diversity.



°Chao-1 estimates; ‘Evenness index



