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Abstract

The mode-independent part of the magnetic curvature driven turbulent convective (TurCo) pinch
of the angular momentum density [Hahm et al., Phys. Plasmas 14, 072302 (2007)] which was origi-
nally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equiparti-
tion (TEP) theory. It is shown that the previous results can be obtained from the local conservation
of “magnetically weighted angular momentum density,” nm;U R/ B2, and its homogenization due
to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel
acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be
responsible for the TEP part of the TurCo pinch of angular momentum density in the previous
work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition,
the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that
there should be a difference in scalings between the momentum pinch originated from inherently

toroidal effects and that coming from other mechanisms which exist in a simpler geometry.



I. INTRODUCTION

Understanding momentum transport, which influences plasma rotation, is very important
since it can play a crucial role in reducing turbulence and transport as well as in stabilizing
MHD instabilities including the Resistive Wall Mode (RWM). In most cases, the toroidal
momentum transport from experiments is observed to be anomalous, i.e., higher than neo-
classical theory predictions, and therefore, believed to be caused by low frequency, ion gyro-
radius scale, electrostatic drift wave turbulence, including ion temperature gradient (ITG)
mode turbulence and trapped electron mode (TEM) turbulence. For instance, the toroidal
momentum diffusivity x,, was comparable to the ion thermal diffusivity x;,' in TFTR ex-
periments, in rough agreement with theoretical predictions based on ITG turbulence.?

While the toroidal momentum transport is often described by a diffusion coefficient x4 s
alone, there’s accumulating evidence that a variety of rotation phenomena of great poten-
tial importance cannot be properly characterized by the diffusion coefficient only. This
includes the observation of spontaneous toroidal rotation of plasmas in the absence of ap-
parent external torque input®>'!'. Some prefer to call it an “intrinsic rotation.”® In many
cases, rotation profiles are peaked near the axis, even for off-axis deposition, zero torque, or
no neutral beam injection (NBI), suggesting the existence of a nondiffusive inward flux of
toroidal angular momentum.'? In addition, recent perturbation experiments on JT60-U!314
and NSTX!® neutral beam heated plasmas showed the need for an “inward pinch term” of
angular momentum to match the measured centrally peaked rotation profiles.

Theoretically, one can write an expression for the radial flux of the toroidal momentum
as,

d
H¢, = —X¢%U¢ + V;m'ncthg + S.

Here, the non-diffusive component of the turbulence driven radial transport of toroidal
momentum'® includes not only the turbulent convective (TurCo) pinch (Vyiner), but also the
residual stress (S), which does not depend on the flow explicitly. It should be emphasized
that a non-diffusive flux of momentum can be obtained from various physics mechanisms.!”25
Depending on plasma parameters and configurations, a specific mechanism can be more
relevant than others, and sometimes a combination of two or more mechanisms is necessary

to reproduce basic features of experiments. For instance, a commonality of spontaneous

rotation of plasmas?® in NBI-free H-mode plasmas is the empirical “Rice” scaling® which



states that the rotation at the axis is in the co-current direction, and proportional to the
incremental stored energy divided by the plasma current. This scaling is suggestive of a
mechanism associated with the VP;,-driven E x B shear. It is also of interest to study
physics mechanisms for an inward pinch of toroidal angular momentum in the absence of
E x B shear, since spontaneous rotation has also been observed in L-mode®?” and OH

68 in which the E x B shear effect is expected to be weak.

plasmas

After the details of a quasilinear derivation from the gyrokinetic equation® and turbulent
equipartition (TEP) interpretation of the mode-independent part of the turbulent convective
(TurCo) pinch of angular momentum density were published in Ref. 24, we presented® a
simpler and more intuitive derivation of the TEP pinch based on an ansatz of local angular
momentum conservation and homogenization. In this paper, we recapitulate the essence of
these two different approaches and clarify their relation. This puts the TEP interpretation
of the mode-independent part of the TurCo pinch, which was originally derived from the
gyrokinetic equation, on a firmer and more transparent theoretical ground.

Our quantitative predictions can be summarized as the following. To the lowest order
in /Ry, with Ry the major radius at the magnetic axis, the TEP pinch velocity is driven
by the magnetic field curvature (or equivalently, VB in low-3 plasmas), rather than ion

thermal effects, and given by

VTEP ~ 2Fballoon (1)

for the angular momentum density nUR, and

3FCL oon
yITEP o _ O ball (2)

Mom — RO XMom

for the parallel momentum density nU|. Here, xang and Xuom are diffusivities for angular
momentum and parallel momentum respectively. A dimensionless coefficient on the order
of unity, Fyeuoon characterizes the “ballooning structure” of the turbulence. For poloidally
symmetric, flute-like turbulence intensity, Fpu00n — 0. For strongly outward ballooning
fluctuations (peaked at the low-B side), as are often found from comprehensive linear kinetic
calculations®? based on profiles from experiments, Fyaoon =~ 1,2* and the pinch is inward in
radius. The TEP pinch originates from the fact that magnetic curvature can modify the
acceleration of ions along the magnetic field, as can be appreciated from the gyrokinetic

equations.?. When the magnetic curvature (b x (b - V)b) changes its sign along the B
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field as one moves from the low B field (bad curvature) side to the high B field (good
curvature) side, the variation of fluctuation amplitude along the magnetic field (a property
of ballooning fluctuations in toroidal geometry) can yield a net acceleration. This symmetry
breaking mechanism due to magnetic curvature, alongside the k-symmetry breaking due to
the E x B shear,?? constitutes the unified “B*-symmetry breaking” as discussed in Ref. 24.

In this paper, we also discuss theoretical issues which arise when one calculates the tur-
bulence driven radial flux of parallel flow in the rotating frame. In particular, we identify
terms in the gyrokinetic equation which lead to the diffusive flux and the momentum pinch
respectively. We demonstrate that the magnetic curvature modification of the parallel ac-
celeration in the nonlinear gyrokinetic equation in the laboratory frame,?® which was shown
to be responsible for the TEP part of the TurCo pinch of angular momentum density in
our previous work,?* is closely related to the Coriolis drift coupling to the perturbed electric
field.23:3%:31 We also highlight the origin of the diffusive flux in the rotating frame.

The remainder of this paper is organized as follows. In Sec. II, the standard quasilinear
derivation of the TEP part of the TurCo pinch is briefly reviewed with a focus on its
insensitivity to the plasma model, and key physics assumptions. A simple TEP theory
interpretation based on the local magnetically weighted angular momentum conservation is
given in Sec. III. In Sec. IV, we present theoretical issues which arise when one formulates
the turbulence driven radial flux of parallel flow in the rotating frame. Theoretical issues
related to scalings of the momentum pinch are discussed in Sec. V. Conclusions are drawn

in Sec. VI.

II. QUASILINEAR DERIVATION OF TEP MOMENTUM PINCH
IN TOROIDAL GEOMETRY

In this section, we briefly review the standard quasilinear derivation of the TEP part of
the TurCo pinch?* with a focus on mode-independent key physics. We show that a careful
treatment of geometric effects due to nonuniform B (with nonvanishing curvature V x b),
yields a novel pinch mechanism for parallel momentum and angular momentum densities.
We cast the expressions in a form where not only the new momentum pinch terms are clearly
identified, but also the underlying approximate conservation laws responsible for the TEP

pinch are transparent. A more detailed derivation can be found in Ref. 24. Here, we discuss



the essential physics ingredients in a simpler manner.
The nonlinear electrostatic gyrokinetic equation with proper conservation laws in general

geometry is given by Egs. (19),(21) and (22) of Ref. 28:

%+%-VF+%2—Z= , (3)

with
=g + e X [V (66) + myiV B, (4)

and
% _ _% [e:V (86 + miuV B]. (5)

Here, the gyrokinetic Vlasov equation, Eq. (3) is written in terms of the gyro-center dis-
tribution function F(R, y,v),t), with g = v7 /2B, and ({...)) denotes an average over the

gyrophase. B* is defined by
mi.CU”VXb.

7

B*=B+

We can derive the nonlinear evolution of the parallel momentum density per ion mass,
nlU) = 27 [ dpdvB*Fu), by taking a moment of the nonlinear gyrokinetic equation, Eq.

(3), or equivalently of a conservative form of the nonlinear gyrokinetic equation (Eq. (24)

of Ref. 28):
(9 (FB*) *dR (9 *dU” -
—5 TV <FB dt) + 5o (FB o =0 (6)

With the Mach number using the sound speed M, = %‘:, we adopt an ordering kgps > ;LRMS,
and assume M; < 1 so that we can ignore B - VnU”2 in comparison to B - V. The pressure
moments per unit mass are defined as usual.2* With these considerations, we can write a

nonlinear evolution equation for the parallel momentum, by multiplying Eq. (6) by v and

integrating over the velocity space, to obtain

%(mmU”) = —cbxVigp- V(m"gU”) — 2mnUb % (b- V)b - Vi
m;c Pl amic Lt

—nieib-Vép—b- VP, (7)

The 2nd term on the RHS of Eq.(7) originates from the magnetic curvature modification
of the parallel acceleration in Eq. (5). The last two terms are the origin of the E x B

shear induced residual stress.?> The E x B shear has been known to produce a nondiffusive

5



radial flux of the parallel flow in simple geometry.'® The physics of residual stress has been
extensively discussed in Ref. 22. Therefore, from this point, we don’t keep these terms in
this paper, which focuses only on the inward pinch driven by toroidal effects. In low-£
plasmas, b x (b- V)b = (V x b); ~ —B x V(5). With this approximation, by combining
the second term on the RHS into the first term, Eq. (7) can be further simplified to:

0 ,m;nU, cbxVigp m;nU|
st )= 5 V)
m2cbxV B P.U mZcbxV B P
I T Ik N ®)

It’s also instructive to write Eq. (8) in a continuity form, anticipating that we’ll eventually
calculate the radial flux of the parallel angular momentum, and that the divergence of
that term will determine the time evolution of the mean angular momentum density. The
algebra is nontrivial due to the fact that the E x B flow is no longer incompressible in an
inhomogeneous plasma ( i.e., V- ug = V-(22Y2) # 0). Fortunately, we can make a low-3
approximation, i.e., V-(ugB?) = 47J - V¢ < B?V - ug, to make further analytic progress.
Then, we can again rewrite Eq.(8) as follows:

0

minUH mmU”

sl )= Vi )
TV x VB) ()] - v (3b x B (L) ©)

It’s important to recognize the following facts. First, since B o< 1/R in tokamaks, we note
that %U” ox minU| R = minRQwH is the parallel angular momentum in tokamak geometry,

with w) being the parallel angular rotation frequency, and I = m;nR? being the density of

5-)0ug)” essentially leads to the radial

the moment of inertia. The expression “V-(m;d(
flux of the parallel angular momentum. We note that the relation B < 1/R does not hold
for all geometries. For instance, in a spherical torus, further refinement in the analysis using
a more realistic MHD equilibrium is desirable. The rest of the terms in Eq. (9) can be
identified as the geodesic curvature driven momentum flux Ilg.,,2* which is subdominant to
the standard E x B drift induced contribution from the first term on the RHS of Eq. (9).
So, as far as the evolution of the mean angular momentum profile is concerned, we’ll ignore
these terms from now on.

Typically, transport analyses®® deal with the temporal evolution of the flux-surface-

averaged toroidal angular momentum density (m;nR?)w,, where the toroidal angular fre-

quency is a flux function. In this paper, we use an orthogonal set of variables (v, 8, () to
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denote the radial, poloidal, and toroidal coordinates, respectively. The equilibrium magnetic
field B is given by
B = V(X Vi + g() V¢, (10)

where diy = RBydr, and the toroidal magnetic field strength is given by B, = g¢(¢)/R.

Following the same procedure described in Ref. 24, we obtain

5 10,
g (minB)w)) = =V - Tang) = =5 7 [V (TLang VY)]
10,
= —praalV (mié(nUj R) b x V36" V)]
]_ 8 / 8 *
~ oV <m,-cR§kj (U R 06) (11)

Here, we used the fact that & < k.. For the evaluation of the nonlinear turbulent flux of

Turb

angular momentum IT,7%

in Eq. (9), the expression for the perturbed angular momentum

§(nU|R) can be obtained from Eq. (7). In k-space, it can be written as

[—z'wk + Awk + i(3wd||k + dek)](S(nU”R)k = —(5v,ké¢-V(n0U0R)

, 0T oT
nolUo R — Z@“dllk% + Walk Tik

dx
T

—7}2wd||ke )n()U()R. (12)

It is noteworthy that 6(nUjR) can be driven not only by the radial gradient of nUj R, which
eventually leads to a diffusive radial flux, but also by the gradient of B. This is contained
in the definitions of wax . wWaK = cg—@b X (b- V)b -k is the curvature drift of thermal ions,
while wg 1k = g%zb x V Bk is the grad-B drift of thermal ions. This leads to a non-diffusive
radial flux of the parallel momentum, as long as electrostatic fluctuations are present. The
2nd term on the RHS has been identified as the “turbulent equi-partition (TEP) pinch”
in Ref. 24, based on its insensitivity to details such as the dispersion relation of ambient
fluctuations. This TEP part of the TurCo pinch is the main subject of this paper.

On the other hand, the 3rd term on the RHS is related to ion temperature fluctuations
whose magnitude and phase relationship with respect to d¢ depend on the nature of the
fluctuations (for instance, depending on whether it’s ITG or TEM dominated). We’ve
classified this part as the curvature driven thermoelectric (CTh) pinch in Ref. 24, since both
ion thermal effects and magnetic curvature are required for this term. Due to its mode-
dependency, we cannot make any further generic statement on this part of the TurCo pinch,
except that it’s expected to be smaller than the TEP pinch in the hot electron mode regime

(T, > T;) as expected in OH and electron heated plasmas.>® The expression multiplying
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§(nU|R)x on the LHS of Eq. (12) is the (k,w)-space version of the renormalized propagator,
in which Awy is the decorrelation rate which originates from the E x B nonlinear term in Eq.
(8). Here, Tax = [—iwk + Awk + 1(3wayk + wa Lk)]fl is the inverse of the propagator. Its real
part, which is positive definite and independent of mode propagation direction, corresponds
to the correlation time of the turbulence.

Now, we can explicitly evaluate the diffusive part and the TEP part of the TurCo pinch
of angular momentum flux and can calculate its divergence from Eq. (11). While one can
measure the angular momentum density flux directly from nonlinear turbulence simulations,
transport analysis®® of experimental data involves flux-surface-averaged quantities. We de-
note the flux-surface-average by (...). From the first term on the RHS of Eq. (12), we obtain
the usual diffusive part of the radial component of the parallel angular momentum density

flux:

i 0
< gnj;f V¢ ZReTck|5U1‘k| v(mznOUOR) V1/J> _XAng<(RB6)2_

o0 (minoRQwH)).

(13)
Here, the flux-surface-averaged “angular momentum density diffusivity” can be defined as
c
Xang = (Q_ Reruc|0vpk|*) = ((555)* D_ Retal?|0¢|*) (14)
” RBy" “

To obtain Eq. (14), we used the following identities: |Vi| = RBy, b x é,-k = {B/RBy,
and dv,x = —i(cl/RBy)d¢px with £ = toroidal mode number. From the second term on the
RHS of Eq. (12), we obtain the turbulent equipartition (TEP) part of the toroidal angular

momentum density TurCo pinch, i.e.,

)
(Hfigp Vi) = —2(2 ReTckdv,’fki(wd”k%)mmORQw”RB@ {mingR® Bg)wHVTEP. (15)
k

Here, the flux-surface-averaged “TEP angular momentum pinch” can be defined as

TEP _ ed Pk
Ving = Z iReTe1 0V Wk —— T )= RBg ;Renkﬁwd”k—wgbﬂ ) (16)
Using the identity wgx(0) = —(e;ﬂ;ﬂ )£ at the low-B side mid-plane (6 = 0), we can write:
1 Cc Wq k(g) wd”k(ﬁ)
VIEP = 2( (=) Y Reral? ~M20 |56y [?) = — Rer, 3o, 17
1 = 2 ) X e 2R a6 7) = 2 3 Rora 2 Ch ) (17)

Note that the details of the turbulence dynamics do not enter the expression for the TEP

pinch which is insensitive to the mode propagation direction etc., and it depends only upon
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the correlation time and the spectrum of radial E x B velocities. From Eqs. (14) and (17),

we obtain,

2Fa oon
V}nfyp == ble; XAng, (18)

with Fyuiioon = %. Note that, for the TEP pinch of the (linear) momentum density

nU), an additional contribution from wy i appears in the TEP pinch expression due to the

fact that R o< 1/B [see Eq. (14) and Eq. (37) of Ref. 24]. Therefore, we have

3Fa oon
VJ\EE/S = - bleé XMom- (19)

III. TURBULENT EQUIPARTITION PINCH OF PARALLEL ANGULAR MO-
MENTUM

After the quasilinear derivation from the gyrokinetic equation and the turbulent equiparti-
tion (TEP) interpretation of the mode-independent part of the turbulent convective (TurCo)
pinch of angular momentum density was published in Ref. 24, we presented a simpler and
more intuitive derivation of the TEP pinch based on an ansatz of local angular momentum
conservation and homogenization.?” In this section, we recapitulate the essence of the two
different approaches and clarify the relation between them, and thereby put the TEP inter-
pretation of the mode-independent part of the TurCo pinch, which was originally derived
from the gyrokinetic equation, on a firmer theoretical ground.

As discussed in relation to Eq. (9) in Sec. II, if we ignore the parallel dynamics and the
flux of momentum due to the thermal (velocity-dependent) magnetic drift, we can write the
evolution of the angular momentum density as

0
E(mmUHR) + V- (minUjRug) =0, (20)

noting that B o< 1/R in tokamaks. Here, the unique role played by the angular momen-
tum density in toroidal geometry should be appreciated. For instance, it’s not possible to
construct a simple continuity equation for the linear momentum density m;nUj in toroidal
geometry, as is obvious from Eq. (7), even in the absence of ion thermal effects.

4 and of a simple

Indeed, Eq. (20) is the starting point of our TEP interpretation,?
physical derivation thereof, as presented in Ref. 29. As is familiar from the TEP theory

of the particle pinch3*~37 and of the angular momentum pinch,?*?° the quantity which gets



homogenized (mixed) by turbulence is the one which is locally conserved i.e., a scalar field

A, which satisfies the relation,

d 0
dt (815 u-v) g ’ (21)

where vV?A is the diffusive dissipation on small scales. In toroidal geometry, the E x B
flow is compressible due to the inhomogeneous magnetic field, and as a consequence, the
angular momentum density m;nlUj R cannot satisfy a relation such as Eq. (21). For a low-3
tokamak equilibrium, we have shown that V-(ugB?) < B2V - ug. Therefore, considering
upB? as incompressible, we can write,

4

(minU”R) 0 minlU)
dt B2

(5 +up-V)—p =0, (22)

up to the diffusive dissipation on small scales. This is the local conservation of the mag-
netically weighted angular momentum (MWA) density?* which is the central element of the
TEP TurCo pinch of angular momentum. This relation can be also obtained from Eq. (8),
by ignoring the ion thermal effects which eventually lead to the CTh part of the TurCo
pinch.

According to the homogenization theory,®® a scalar field which is locally advected by a

mmU”R

shearing flow, within a closed streamline in the presence of diffusion (i.e., the MWA, —%;

in this case) will eventually be mixed or homogenized. It is expected that turbulence driven

39,40

sheared E x B zonal flows co-exist with the ambient turbulence in OH and L-mode

plasmas. This will tend to speed up the process of homogenization within the same flux
surface via the random shearing.*!*?

Note that we can rewrite Eq. (22) as

minU| R

2mmU”R + B?ugp - V( 5

- ) =0, (23)

and regard B%uy as an incompressible flow. This homogenization by turbulent incompress-
ible flow occurs via diffusion of a locally conserved quantity, MWA density. For the transport
of angular momentum in which we are interested, in the context of magnetic confinement
physics, this diffusion of MWA density manifests itself as a combination of the TEP pinch
and the diffusion of the angular momentum density. Thus, the homogenization tends towards

m;nU R
)

a state where V( — 0, linking VU to VB. This is equivalent to an off-diagonal,

inward pinch.
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Indeed, the physical origin of the V B-driven piece of the TurCo momentum pinch is easily
revealed by considering the radial quasilinear turbulent flux of the ‘magnetically weighted
angular momentum’ (MWA) density. While the detailed derivation can be found in Ref. 24,
it’s crucial to note that the total flux of the parallel angular momentum density nU;R
consists of: i) a diffusive piece, driven by V(nUR), and ii) an off-diagonal, or convective
piece, driven by V(1/B?). Since V(1/B?)-Vi > 0, on the low B-side where the fluctuation
amplitude peaks, this piece is indeed a pinch, and produces an inward flux of parallel angular
momentum density. The pinch term described above corresponds to the VB-driven TEP
component of the TurCo flux of angular momentum, since it’s not driven by a thermodynamic
force, such as VT; or Vn.

Some comments comparing the TEP theories for angular momentum and density are
appropriate here. Pinches in both quantities originate from the local advection and homog-
enization (mixing) of the locally conserved quantities. These quantities are magnetically
weighted, due to the fact that the E x B flow in an inhomogeneous B field is no longer in-
compressible. These are nUR/B? in the case of angular momentum transport, and n/B in
the case of a simple density transport model.?® On the surface, a relation such as %(n /B)=0
reminds one of the “frozen-in law.” Indeed, one can interpret the TEP theory of angular
momentum density as a consequence of the “frozen-in law” (linking n and B), and the fact
that angular momentum density and density obey the same continuity equation involving
the E x B flow, approximately (linking nUyR and n).?® This interpretation illustrates the
similarity between the particle pinch and the angular momentum density pinch explicitly.

However, great care should be exercised in using the ion density continuity equation
alone (without considering the electron dynamics and quasi-neutrality), in studying particle
transport and its effect on momentum transport. Actually, other magnetic fusion relevant

34,3537 The dynamics for

TEP theories for density involve magnetically trapped electrons.
these is governed by bounce-kinetics in which parallel streaming averages out, and so is
constrained by conservation of {wo adiabatic invariants, namely the magnetic moment pu,
and the second invariant J, the bounce action. In contrast, our momentum pinch theory
does not require the conservation of J. While their explicit formulas are different, due
to the trapped particle effects for instance, both these theories yield pinches with roughly

comparable magnitudes when normalized to the corresponding diffusivities (X ny and Dyy)

respectively. The TEP theories for angular momentum and density are summarized in Table

11



TABLE I: Turbulent Equipartition Pinches of Particles and Angular Momentum

Quantity of interest Density n3437 Angular momentum density nUR
in transport problem or Parallel momentum density nU|
Locally conserved quantity n/B in 2D slab3 magnetically weighted momentum density
which gets homogenized: nUHR/B2 in torus®*
Inward pinch velocity Vpinen/ D =~ V}%P /XAng =~ —2/ Ry
of transported quantity: —(3 +%)/R*
V]\q/;grS/XMom ~ -3/ Ry
Possible relevance to L-mode plasmas in Comparisons in progress
experiments various tokamaks** 46 NSTX,!5 JET,*"...
L

As stated in Ref. 24, we have chosen to formulate the problem in terms of the angular
momenum density, rather than the flow U, because it is the most natural quantity for a
theoretical formulation which identifies some generic features from the thermodynamic point
of view, but does not explicitly specify the density dynamics. Indeed, neoclassical theories of
momentum transport are also formulated in terms of the angular momentum.3%4849 We also
note that this is the quantity which gets perturbed directly in transient momentum transport
analysis using NBL* Of course, it’s the flow which gets measured in experiments, and the
effects of particle transport should be taken into account in theory-experiment comparisons,
unless the particle transport is negligible, as is often claimed to be the case in the core of
tokamaks. A careful treatment of particle transport for the non-adiabatic electron response,
and of its coupling to momentum transport, is one of the outstanding issues which should

be addressed in the future.
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IV. GYROKINETIC FORMULATION IN THE ROTATING FRAME

In this section, we discuss theoretical issues which arise when one calculates the turbulence
driven radial flux of parallel flow in the rotating frame. In particular, we identify terms in the
gyrokinetic equation which lead to the diffusive flux and the momentum pinch, respectively.
In the laboratory frame, the advection of the mean parallel flow via the fluctuating E x B
drift, which will eventually lead to the diffusive flux of parallel flow, is described by a
term £b x V{(0¢)) - VFy, where F; contains the radially dependent mean flow Uy explicitly.
In most cases, it’s taken as a shifted Maxwellian distribution function Fy o exp[—(v) —
Us)?/2v%,], where v)| is one of the independent variables. On the other hand, in the rotating
frame of reference, ¢| = v| — U, rather than v, is an independent variable. Therefore, with
Fy x exp[—cﬁ/?vgpi], the £b x V{(d¢)) - VF, term contains only the advection of the mean
temperature gradient and the mean density gradient, but not the parallel low gradient. We
note that the V B-driven term is also contained in this term if y rather than v, is used as an
independent variable. It is not widely known which term is responsible for the diffusive flux
of parallel flow in a formulation in the rotating frame. We demonstrate that the magnetic
curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in
the laboratory frame,?® which was shown to be responsible for the TEP part of the TurCo
pinch of angular momentum density in our previous work,?* is closely related not only to
the term responsible for the diffusive flux in the rotating frame, but also to the Coriolis
drift coupling to the perturbed electric field. The Coriolis force, which is familiar in the
geophysical fluid dynamics context for instance,®® also appears in the drift kinetic*® and
gyrokinetic3! formulations in the rotating frame, as it should. In Ref. 23, it was shown that
the Coriolis drift can lead to a momentum pinch in toroidal plasmas. By illustrating this
intriguing manifestation of physics related to momentum transport in the rotating reference
frame, we elucidate some crucial points which were not presented in Ref. 23.

The nonlinear toroidal gyrokinetic equation with proper conservation laws?® is presented
in Egs. (3),(4), and (5). In the reference frame moving with Uy, it can be written in terms
of (11, ¢, R), where ¢ is the parallel component of the relative velocity?3!:

oF iR

or dey OF _
ot dt

VF =
+ dt aCH

0, (24)
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with

dR b v vU
a = U +Cllb+e.c— g % [6V{09) +mipV B +miUs- VU, (25)
and
dey _ B’ eV {38Y + mipV B + miUs- VU] (26)
at = mBr mipt m;Ug-VUg.

Here, the gyrokinetic Vlasov equation, Eq. (24), is written in terms of the guiding center

distribution function F(R, p, ¢, t), with p = v? /2B. B* is defined by

m;cC

B*=B+ VX(CHb-i-Uo).

€;

The § f version of the gyrokinetic equation is:

(1)
a6f dR de 00 f dR™ dej” OF,
9oy, et noger _ _ VEFy — —L 270 P
o Tar YV T a dey i VT de) 27)
with "
dRU cb
()]
and W
dc . B*
I _ _ & .
=),
Here, Uj = Uj + ¢b, and we take Uy = R?w4(1))V( = Rwy()ec. Therefore,
V x U = ¢V X b+ 2Rws()) VRXV( + R*Vw,(¢) x V(. (28)

While wg, rather than Uy = Rwy, is a flux function in most cases, it’s more customary to
use Uy and VUj as the main variables in momentum transport analysis.?® For this purpose,

one can write Eq. (28) as

VxUj = ¢V xb+ U VRxV(+ RVUyx V(. (29)

Then, the acceleration due to the perturbed electric field in the rotating frame can be written

as

e |
2 _ —mfjg*B V{58 — é{cnv x b+ UyVRXV( + RVU xV(} - V{(34).  (30)
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Now, after making the approximation Uy ~ Uyb, it’s clear that the E x B advection of the
mean parallel flow can be described by the contribution of the last term in Eq. (30) to the
last term of Eq. (27), i.e

£ VUpxb. v<<6¢>>?5—17‘|’~—b v{(66) - VU 2L

0Ky

aC” (31)

with the approximation B* ~ B which should be safe, away from the separatrix where
the magnetic shear diverges.’! Indeed, this expression is identical to a part coming from
the radial gradient of the mean parallel flow in £b x V{(d¢)) - VF), from the formulation
in the laboratory frame with Fy o exp[— (v — Up)?/2v%;].** Accordingly, this term will
eventually lead to the diffusive flux of the parallel flow if one performs a standard quasilinear
calculation?® consistently. We also note that this term is responsible for destabilization of

the parallel shear flow instability,??3

as noted in the context of the gyrokinetic formulation
in slab geometry in the moving frame, i.e., Eq. (2) of Ref. 52. The third term on the right
hand side (RHS) of Eq. (30) is the Coriolis drift coupling to the perturbed electric field
which leads to a part of the inward pinch of parallel flow discussed in Ref. 23. It’s useful
to note from Eq. (2) of Ref. 52 that the parallel flow gradient term (the last on the RHS)
remains, while other toroidal geometry-related terms (the 2nd term on the RHS related to
the magnetic curvature, and the 3rd term related to the Coriolis drift) in Eq. (30) of the
present paper disappear in slab or cylinder geometry.

The derivation in Ref. 23 contains some ambiguities. The term proportional to Vwy
(the last term of Eq. (28)) is absent in the gyrokinetic equation and the associated guiding
center equations of motion in Ref. 23. Probably this is what is meant by the assumption of
a constant rigid body toroidal rotation. However, the parallel flow gradient term appears in
the fluid moment equation without an explanation of its origin in the gyrokinetic equation
from which the fluid moments are taken. It appears in a form equivalent to the last term
of Eq. (29), rather than in the form of the last term of Eq. (28), which has been dropped
originally. As a consequence, the second term of Eq. (29) has been double-counted. We
believe that this leads to an overestimation of the Coriolis drift induced inward pinch of
parallel flow in Ref. 23. The remaining part of the parallel flow pinch in toroidal geometry

can originate from the second term on the left hand side of Eq. (27).
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V. SCALING OF MOMENTUM PINCH

The scaling and magnitude of Vjinen/x4 are of great practical interest since this deter-
mines the overall peakedness of rotation profiles in the region where external torque input
and residual stress driven by the E x B shear are absent. Therefore, careful theoretical
underpinning of scalings indicated by various theories is necessary to make comparisons to
experiments and simulations more meaningful. Furthermore, any extrapolation to larger fu-
ture machines, such as ITER, can be considered credible only after a proper understanding
of the theory and its validity regimes.

The TEP part of the TurCo pinch?* is a common element of the turbulence driven inward
pinch in toroidal geometry, which is independent of the details of the ambient turbulence
as long as it has a significant electrostatic component, and its perpendicular correlation
length is larger than, or comparable to ion gyroradii. In the absence of particle flux, the
predicted TEP pinch velocity satisfies V""" /Xang ~ —2/Ro for angular momentum U} R,
and Vii»F /X vom =~ —3/ Ry for parallel flow Uj. Its origin is the magnetic curvature V x b
which exists in toroidal experiments. Since this makes the E x B flow compressible, the mag-
netically weighted angular momentum density nlUjR/B? (a locally conserved quantity, ap-
proximately), rather than the angular momentum density nUj R, gets homogenized (mixed)
by turbulence. The inward pinch of the “observed” quantity nU) R is a manifestation of this
tendency towards homogenization or equipartition in the space of motion invariants. The
scaling with respect to R, i.e., Vpinen/Xs — 0 as 1/R — 0, is consistent with this physical
interpretation based on the geometric effect B o< 1/R.

While this TEP part of the TurCo pinch is the common element of the turbulence driven
inward pinch, there exist other physical mechanisms which can possibly lead to a stronger
inward pinch depending on plasma parameters and the nature of the ambient turbulence.
The CTh (curvature driven thermoelectric) part of the TurCo pinch depends on §7; and its
phase relationship with respect to d¢. While we did not pursue a detailed analytic prediction
in our previous paper?* due to its algebraic complexity, this CTh part of the TurCo pinch
should also have the property that Viinen/x¢ — 0 as 1/R — 0, since it’s also related
to the magnetic curvature. Note that due to the hybrid nature of toroidal instabilities®
yielding w o< (wypwpi)'/?, a scaling such as V.S /xs o« —1/(RL,)"/? is not impossible.

Another mechanism which is not captured by the TEP theory of the momentum pinch is
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the wave particle resonant interaction. The importance of this mechanism in momentum
transport has been recognized with varying degrees of theoretical generality.!”'%20:2% Since
this mechanism must exist in simple geometry (in the absence of magnetic curvature and
toroidicity), a “scaling” such as Vpinen/xp o —1/L, is possible, with L, from the radial
gradient in either temperature or density, while toroidal effects can modify the coefficient in
front.

Ref. 23 presents a simple analytic formula for the inward pinch of parallel flow, for pure
ITG instability based on fluid moment equations. It has been attributed to the Coriolis drift
effect. Its scaling with respect to the density gradient length, i.e., Vyinen/Xo = —1/L, —4/R,
is puzzling from a theoretical point of view. As Eq. (2) of Ref. 52 suggests, any toroidal effect
(including that of the Coriolis drift) should vanish in simple (slab or cylinder) geometry, i.e.,
in the limit R — oco. However, the density gradient driven inward pinch persists in this limit

according to Ref. 23. If such a linear dependence on L ! is real, it should come from a physics

mechanism which exists in simple geometry, such as a wave-particle resonant interaction.2

VI. CONCLUSIONS

In this paper, we put the TEP interpretation of the mode-independent part of the TurCo
pinch,?* which was originally derived from the gyrokinetic equation, on a firmer and more
transparent theoretical ground. The principal results of this paper are:

(i) The essence of a quasilinear derivation from the gyrokinetic equation has been reca-
pitulated, and its relation to a simpler and more intuitive derivation based on an ansatz of
local angular momentum conservation and homogenization?® has been elucidated.

(ii) Our quantitative predictions on the pinch velocities are: ViEF ~

2
Ang X —Fo XAng for the

angular momentum density nUjR, and V5 ED ~ —RioxMom, for the parallel momentum
density nUj.

(iii) We have demonstrated that the magnetic curvature modification of the parallel
acceleration in the nonlinear gyrokinetic equation in the laboratory frame,?® which was shown
to be responsible for the TEP part of the TurCo pinch of angular momentum density in our
previous work,?* is closely related not only to the previously little known term responsible

for the diffusive flux in the rotating frame, but also to the Coriolis drift coupling to the

perturbed electric field.??
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(iv) The basic implications of scalings of the pinch velocities in relation to their underlying
physics mechanisms have been discussed. In particular, we have observed that some proposed
scalings must come from physics mechanisms which exist in a simpler geometry, rather than
the toroidal geometric effect which is the focal point of this paper.

Several other comments are in order here. First, this work is in the spirit of identifying
the most common elements from a quasilinear theory in toroidal geometry, and focuses
on evaluating the momentum pinch given an absolutely minimal characterization of the
turbulence. In particular, the effects of magnetic curvature coupling to ion temperature

4

fluctuations,?* nonlinear wave-particle interaction,?® the residual stress from the E x B

2 55-64

shear,?2, and turbulence spreading, are not addressed here. All of these effects may
contribute to non-diffusive momentum transport. Indeed, depending on plasma parameters
and configurations, a specific mechanism can be more relevant than others, and sometimes
a combination of two or more mechanisms would be necessary to reproduce basic features of
experiments. For instance, for spontaneous core rotation of NBI-free plasmas with H-mode
edge, it seems both the residual stress and an inward pinch are needed. From the V P;-driven
E x B shear in the pedestal, one can get an enhancement of edge toroidal rotation via the
residual stress, while an inward pinch is needed to form a rotation profile which peaks at the
axis. It’s crucial to note the dual role played by the mean E x B shear, i.e, the reduction of

65,66

turbulence and transport due to shearing, and the production of the residual stress via

symmetry breaking.?? Of course, details depend on the edge boundary conditions and flows
in the scrape off layer.67:68

Outstanding issues for future theoretical research include the role of perpendicular flows
in toroidal momentum transport and the dynamics of poloidal momentum transport. Both
of these can be quite important, since experimental measurements of poloidal flows exhibit
significant deviations from the neoclassical theory predictions.?>”® We note that a proper

gyrokinetic treatment of this problem requires not only a lengthy calculation along the lines

of Ref. 71, but also a deeper understanding of the wave particle resonance.?
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