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Casimir Interactions for Anisotropic Magnetodielectric Metamaterials

F. 5. 8. Rosa,’ D. A R, Dalvit,! and P. W. Milonni?

! Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
{Dated: July 14, 2008}

We extend our previous work [Phys. Rev. Lett. 100, 183602 (2008)] on the generalization of the
Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between
metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by
measurements of these forces. We present results for metamaterials including structures with uniax-
ial electric and blaxial magnetodielectric anisotropies, as well as for structures with isolated metallic
or dieleciric properties that we describe in terms of filling factors and a Maxwell Garnett approxima-
tion. The elimination or reduction of Casimir “stiction” by appropriate engineering of metallic-based
metamaterials, or the indirect detection of magnetic contributions, appear from the examples con-
sidered to be very challenging, as small background Drude contributions to the permittivity act to
enhance attraction over repulsion, as does magnetic dissipation. In dielectric-based metamaterials
the magnetic properties of polaritonic crystals, for instance, appear to be too weak for repulsion
to overcome attraction. We also discuss Casimir-Polder experiments, that might provide another

possibility for the detection of magnetic effects.

PACS numbers: 42.50.Cr, 12.20.-1n, 78.20.C1

I. INTRODUCTION

The last decade has witnessed a huge activity in the
development of metamaterials (MMs) (1], boosted by the
possibility that such engineered media may give rise to
novel optical properties at selected frequency ranges, in-
cluding negative refraction {2, perfect lensing [3], and
cloaking 4 among others. Such striking phenomena,
inaceessible with natural materials, are all possible due
to the significant magnetic activity built into metamate-
rials; starting at microwave frequencies and going all the
way up to the optical range. Generally speaking, meta-
materials are made of micro- and nanostructures care-
fully designed to collectively endow them with a partic-
ular electromagnetic property. It is generally desirable
that these structures should be smaller than the wave-
length of the incident radiation, so that they are seen by
the incoming waves as artificial “atoms”. This fact of-
ten allows the use of an effective medium approximation
to describe metamaterials in terms of an effective elec-
tric permittivitiy tensor e{w} and an effective magnetic
permeability tensor p(w), which incorporate the typical
optical anisotropy of metamaterials.

Recent years have also witnessed an increased interest
in Casimir physics |5, 6] thanks to improved precision
measurements [7] of the force between material objects
separated by micron and sub-micron gaps. Quantum vac-
uum fluctuations are modified by the presence of mate-
rial boundaries, and this typically results in an attrac-
tive Casimir force that depends sensitively on the shape
and the optical properties of the boundaries. While the
Casimir force offers new possibilities for nanotechnology,
such as actuation mediated by the quantum vacuum, it
also presents some challenges, as micro- and nanoelec-
tromechanical systems (MEMS and NEMS) may stick
together and cease to work due to the attractive na-
ture of van der Waals and Casimir forces. A strongly

suppressed Casimir attraction, or even repulsive Casimir
forces, would provide an anti-“stiction” effect. Repulsive
Casimir forces between two objects 1 and 2, immersed
in a background medium 3, may come in a variety of
ways. One possibility involves non-magnetic media only,
for which repulsion happens when the electric permittiv-
ities evaluated at imaginary frequencies satisfy the re-
lation €1 (iw) < e3{dw) < ep(iw) 8. Another possibil-
ity, first predicted by Boyer [9], involves magnetodielec-
tric media: there is a repulsive force when a perfectly
conducting plate is placed near a perfectly permeable
one with vacuum in between. Some years later it was
shown that Casimir repulsion can also occur between
real {i.e., non-ideal) magnetodielectric media, as long one
medium is mainly electric and the other one is mainly
magnetic [10]. However, this possibility has been con-
sidered unphysical [11], as naturally oceurring materials,
even strong magnets at low frequencies [12], do not show
significant magnetic response at near-infrared and opti-
cal frequencies, which has been assumed as a prerequisite
for repulsion between Casimir plates separated by typical
experimentally relevant distances of d = 0.1 — lgm. On
the other hand, recent developmenis in nanofabrication
have resulted in metamaterials with magnetic response
in the visible range of the electromagnetic spectrum [13-
15], fueling the hope for Casimir repulsion [16~19]. The
expectation is that, by tuning this magnetic response to
the right frequency range and making it strong enough,
one could produce an experimentally measurable Casimir
repulsion between, say, a MM slab and a thin metallic
plate, or at least a significantly reduced attraction.

Unfortunately, this is easier said than done. The major
issue is that the Casimir force between real dispersive ma-
terials is a broadband frequency phenomenon, as shown
by the Lifshitz formula expressing the force between two
semispaces.as an integral over all (imaginary) frequencies
with an exponential cut-off ¢/d [20]. For Casimir repul-



slon purposes, this requires a magnetic response strong
enough to dominate the electric response of the material
in a broad range of frequencies, which typically is not
the case for the magnetic resonances present in metama-
terials. In addition, several metamaterials have metallic
inclusions that produce a low-frequency Drude-like be-
havior in e(w), whose contribution to the Liftshitz for-
mula dominates over any possible magnetic response that
the metamaterial may have, making attractive a Casimir
force that would otherwise be predicted to be repulsive.

We have recently addressed many of these issues in
the context of the Casimit-Lishitz theory and metamate-
rials (21]. The purpose of the present work is to further
investigate the physics of Casimir interactions between
metamaterials, focusing on effects not previously eonsid-
ered in depth in the Casimir literature, such as optical
anisotropy in magnetodielectrics and the feasibility of the
crossover from attractive to repulsive Casimir forces with
realistic metallic-based and dielectric-based metamateri-
als.

1I. CASIMIR-LIFSHITZ FORCE BETWEEN
ANISOTROPIC MAGNETODIELECTRIC
MATERIALS

A. The scattering approach

Techniques for the evaluation of the Casimir force have
evolved very quickly in the last few years, paving the
way for precise analytical [22] and numerical 23] cal-
culations in non-trivial geometries. A particularly ap-
pealing method is the so-called scattering approach, pi-
oneered in Casimir physics by Balian and Duplantier
to compute the free energy of the electromagnetic feld
in regions bounded by material boundaries of arbitrary
smooth shape [24]. The free energy is expressed as a
convergent multiple scattering expansion of ray trajecto-
ries propagating between the material boundaries. This
method, first used for perfect conductors, was extended
to real materials in recent works {25, 28, allowing in prin-
ciple the computation of the Casimir interaction between
arbitrarily shaped material scatterers.

Since a thorough discussion of the scattering approach
would take us too far afield, we simply present the for-
mula for the zero-temperature Casimir energy per unit
area A between two parallel plates separated by a vac-
uum gap of width :

Ef) = 5/ ﬁlog det 1 - Rye™™Ree™ ™ (1)
40

where R; = ?Zj{k“,k&,ptpf,w = {£) is the reflection
operator associated with reflection on the j-th plate
{} = 1,2). Here ky and k‘z'] are the transverse wave vec-
tors (i.e, projected onto the planar interfaces) for inci-

dent and reflected waves, respectively, and p and p’ are
their respective polarizations (transverse electric (TE) or

transverse magnetic (TM})}. The operator exp{—Kd) rep-

resents one-way propagation between the two plates, and

has matrix elements

- /
(kyle k) = exp(— dy/kf + €2/ c?) 5@k — ki) (2)
When both plates present homogeneity in the plane of
the interface, only specular reflection takes place, and
R; is also diagonal in the transverse momentum basis.
This means that

(k’R,lkh) R, 5 ( ;|3 {3)

where R; is the 2 x 2 reflection matrix on the j-th plate.
Note that the reflection matrices here are evaluated at
imaginary frequencies w = ¢£, and this requires the well-
known analytic properties of the permittivities and per-
meabilities in the complex frequency plane. For general
anisotropic media these reflection matrices are defined as

o ;ETF{Zg k) 7§ETM(ZS k) »
j M.TE (e k”\ 7]1vITE\II<Z§ k)
where #7*" is the ratio of the amplitudes of a reflected

field with p'-polarization and an incoming field with p-
polarization.

Now, using Eqgs. (3} and {2) in Bq. (1}, we get after
some manipulations

E{d) ®de [ d?ky ; sk
A _ﬁfo 2ﬂ/{2w}i‘k’gdet=~“31‘ﬁ?€ 145)

and the expression for the force per unit area follows:
d VVVVV / d? k” R, R ¢ 2Kad
B (27)2 l ~~~~~~ R, - Ry e2Ksd’

where Ky = \t/kz +£2/c2. A positive (negative) value of

the force corresponds to attraction {repulsion). Despite
the fact that we have assumed homogeneity on each of
the planar interfaces {which is a reasonable assumption
when describing metamaterials with an effective medium
approach), Eq. (6} is still fairly general: it may be ap-
plied to dispersive, dissipative and anisotropic media; all
that is needed are the appropriate reflection matrices.
Let us consider the setup depicted in Fig. 1, in which
we have a metallic semi-space occupying the region z <
~d facing a magnetodielectric semi-space 2 > 0. The
reflection matrix Ry characterizing the interface metal-
vacuum is given by the standard Fresnel coefficients [27]

TETE e k) = K3 — [k +e1(i6)€%/c2

1 s
Ka+ \JkE + e(ig)e?/c?

e1{i6) K3 ~ \ fwﬁ + & (1€)E2 /2

&€ Ks + \[kF + er(i€)€2/c?

Ky = i TE(?QR;;) = 0, (7)

r Mg Xy =

TE,TM
(e
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FIG. 1: Typical setup used throughout this paper to compute
the Casimir-Lifshitz force between a metal and a metamate-
riad.

where €;(w) is the permittivity of the metal. The ele-
ments of Ry are only given by Fresnel-like formulas if
the MM is isotropic, in which case

Ha(i€)Ks = \JRE + o (i€)ea(i€)62/ 2
" ali©)Ks + B+ a8
e2(i€) Ky~ \[K7 + pa(i€)ea(1€)€%) 2
(i€)K + [k + uali€)eali€)/

TETM  TM,TE,, _
Tyt (i€ k) = g (1, Kyp) = 0, (8)

Ton (i€ ky)

TM,TM N
Tgiea (25’ k”" -

where €z, ug are respectively the permittivity and the per-
meability of the metamaterial.

However, as magnetodielectric Mis can generally be
optically anisotropic, the reflection matrix Ro for the
MM-vacuum interface is in general not given by the usual
Fresnel formulas (8). In their most general form meta-
materials can be bi-anisotropic, meaning that the consti-
tutive relations have the form [28

D=¢ E+x-H, (9)
B=¢ E+p -H (10)

Here & and ¢ are the magneto-optical permittivities, and
they describe magnetic-electric cross-coupling. There are
indeed some metamaterials in which the magneto-optical
tensors & and ¢ are not negligible {29, but since these
properties can be almost entirely suppressed by using a
sufficiently symmetric unit cell [30], we assume hence-

again that the material tensors € and p are functions of
frequency only, neglecting any possible spatial dispersion.

Even  without bi-anisotropy the physics of
{unijanisotropic materials is still very rich (81, 32L.
It is very common to describe them according to their
degree of symmetry; in crystallographic theory this leads
to Bravais lattices and their associated point groups
[33]. This classification is also very useful for the study
of metamaterials, since they may usually be described in
terms of unit cells (split-ring-resonators (34}, nanopillars
[13], nanorods [14], nanaspherss [35, 36], etc.) arranged
in a periodic lattice. The most extreme anisotropic
situation 18 when the the only symmetry of the unit
cell is inversion with respect to the origin. In this case,
known as the triclinic system, both the permittivity and
the permeability tensors have nine non-zero components
132] in a given orthogonal coordinate system, making the
mathematics very cumbersome. Although it is certainly
possible to diagonalize at least one of the tensors hy
choosing a suitable basis, the angles formed by the
eigenvertors depend upon frequency in the triclinic
system [27, 37]. Since the force (6) is an integral over all
frequencies, this frequency-dependent diagonalization is
of little help for Casimir purposes. Fortunately, it is still
possible to investigate anisotropic effects in the Casimir
force without ‘going into such an involved case, so we
restrict ourselves in the next two subsections to basically
two types of anisotropy.

B. Reflection matrices for uniaxial (out-of-plane)
planar metamaterials

In this subsection we calculate the reflection matrix
Ry for the case of a planar interface between vacuum
and a uniaxial magnetodielectric medium that is isotropic
on the interface plane, i.e., whose electric and magnetic
anisotropic directions coincide and are perpendicular to
the interface. In optical terminology, this is an example
of a uniaxial medium [27] with the optic axis coinciding
with the anisotropic direction. It is known that for uniax-
ial lattices, that is, the ones belonging either to the trig-
onal, tetragonal and hexagonal crystallographic systems
i33], the electromagnetic tensors are diagonal in the co-
ordinate system defined by any two orthogonal directions
in the symmetry plane and the optic axis [37]. Therefore,
choosing the interface as the zy plane and the anisotropic
medium to he the half-space defined by 2z > 0 (see Fig.
2), the permittivity and permeability tensors are given
by

€rzy O 0 Lhag 0 0
Eij = 0 eyr 0 v My = 0 e 0 ,(11)
0 0 €0 0 0 Hzz

where we have used €y, = €0 and jyy = ftz5, whose fre-
quency dependence is implicit. Although the calculation
of the reflection matrix for a metamaterial with a single
out-of-plane anisotropic direction is relatively simple and
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FIG. 2: An incident plane wave impinging on a uniaxial meta-
material with its optic axis perpendicular to the z = 0 plane.

akin to the isotropic case, for the sake of completeness
we briefly review this calculation, which is relevant to
several metainaterials having such anisotropy [38].

Let us assume that a plane wave with wave vector
k and polarization p impinges upon the interface from
z < 0 (region 3, vacuum) towards the metamaterial (re-
gion 2). Given the rotational symmetry about z, without
loss of generality we can choose our coordinate system so
that the plane of incidence (defined by k and z) coincides
with the zz plane (see Fig. 2). In order to solve the
reflection-refraction problem we have to know how waves
propagate in the anisotropic medium. In this particular
case of uniaxial anisotropy orthogonal to the interface it
may be shown by direct substitution that TE waves

ETE - Eoyei(k11:+k:zz)e‘iwt’ (12)

are solutions to Maxwell’s equations provided that

k3. k3. w?
22 222 = 2 eyp [in the MM] (13)
Moz Hzx c
2 2 UJ2 "
kypthki,= = [in vacuum). (14)

In a similar fashion, TM waves
HTM H, yez(k z+k z) —Lcut (15)

are solutions to Maxwell’s equations provided that

kz k2 2
2wy 22 Y lin the MM] (16)
c
2
w
athi.= 5

GZZ GITE

[in vacuum]. (17)

Therefore there is no polarization-mixing, and conse-
quently the off-diagonal elements of the reflection matrix

4

vanish: r;rE‘TM(zg ky) = 72M TE (¢, ky) = 0. This al-
lows one to consider separately the reflection of TE and
TM waves.

Let By, = Egyeikreztkizz) he o TE field incident
from the vacuum side. Given the translational invari-
ance of the material properties along the planar in-
terface, only specular reflection occurs, which implies
that both z and y components of the wave vector k
are continuous. Therefore, the reflected TE field is
E.of = rpFoyettk122=%1:2) and the transmitted TE field
is By = tpEgyetkr=othes2) with k2 = (w?/c?)egatian —
k%)zum/u“. Imposing the boundary conditions on the
TE modes, we have

Ein,y + Ercf.y = Et,y = 1+7ry =1y,
k22

/~Lza;

Hin.:c + Href,x =Hyz = ( 1 +7’2)]v1 » = 1t

from which it follows that ro = (uzzk1,2—k2,2)/ (haaki, 2+
k2,2). Evaluating this expression along imaginary fre-
quencies w = i€, one obtains the TE-TE reflection am-
plitude on the vacuum-MM interface [39)]:

Mo K3 — “ﬂzkz £ .U'zasfza,g_

, (18
poaKs + /B2 + pppesn sy ue
zx i3 e | T Hzz€az 2

ry TR (ig ) =

where, we recall, K3 = ,/k? +£2/c? and kﬁ = k2 + /cg
Following similar steps, the TM reflection amplitude on

the vacuum-MM interface can also be derived:

)
€ K3 — J‘Lklz‘ + Gzz/izz%

€xe K3 + 1/ ‘LIICH + fzz/ia,ziz

C. Reflection matrices for biaxial, anisotropic
magnetodielectrics

#IM, T\/I(Zg’ k) =

2unn

(19)

In ascending order of symmetry, the crystals belonging
to the triclinic, monoclinic and orthorhombic crystallo-
graphic systems [33] are known as biaxial crystals, since
they are characterized by two optic axes. In this subsec-
tion we shall restrict ourselves to the orthorhombic case
[40], which allows simultaneous diagonalization of € and
p in an orthonormal basis. The calculation of the reflec-
tion matrices for the other two types of biaxial metama-
terials is conceptually equivalent but more cumbersome
since the material tensors cannot be brought to diagonal
form in a frequency-independent basis.

Let us then consider the system described in Fig. 3,
which is similar to Fig. 2 but with an orthorhombic meta-
material on the right side. Assuming it is possible to pre-
pare the MM in such a way that one of the eigenvectors
is perpendicular to the interface, then the diagonal basis
is just {X,y,z} and the electromagnetic tensors are given
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FIG. 3: An incident plane wave impinging on a biaxial meta-
material with orthorhorubic symmetry (see text).

by
€z 0 0 e 0 0
€53 = 0 Eyy 0 ;o Mg = 0 By 0 (20)
0 € 0 0 pa

Several metamaterials can be described by material ten-

}

b .3
Epg COS™ @ + €4y SIN 0

gy = | (€pg ~ 63;3:) §ing cos @
and
2. .2
gy COS™ 0 -+ Hoyy ST @
I /
Hirge = | Mgz —

gy SiN@cosy
0

The expressions for the incident fields are

By = { TES‘(’ + Eki}\q (5[\ K = by } ettt WA)“,
(21)
TH 8, & o ars il gt
Hi, = le ey — T (g K — 2y B s )
L w i
(22)
where ¢LF eIM are given amplitudes and we defined

ko = {w/c)sinfiy and ¢n = (w/c) cosfin. The reflected

fosy

sors like (20); a good example is the fishnet design used
n [15].

Metamaterials with two optic axes, even those with
the simplest orthorhombic symmetry, are much harder
to treat than those with an out-of-plane, uniaxial optic
axis described in the previous subsection. The reason
is that Maxwell’s equations do not support transverse
waves for biaxial materials: neither TE nor TM waves
are solutions inside the material, and the off-diagonal el
erments of the reflection matrix do not vanish, This-also
happens for uniaxial materials with in-plane optic axes,
whose reflection matrix can be obtained as a particu-
lar case of orthorhombic inaterials with ¢, = €., and
fyy = thaz. The Casimir interaction between two dielec-
tric semi-spaces with one in-plane optic axis was treéated
in [41] and used in' the experimental proposal to musasure
the Casimir torque between birefrigent plates 42,

The calculation of the plane-wave solutions to
Maxwell’s equations is simplified using a coordinsiie sys-
tem attached to an incident wave from the vacuwm side.
Let & plane-wave with Incident wave vector k impinge
on the interface forming an angle 8, with the normal
direction (see Fig. 3). Let (z/,¢,2") be the coordinase
system attached to the corresponding plane of incidence,
that forms an angle ¢ with the z axis. The optical tensors
in this new coordinate system are

(ewmfw}sm:pcosgp 0
Erasin® @t eyooste 0|5

€zz

{fgg — ,“*yg} sin WCOS @ 0
Y sin® i + Hyy cosy 0
bzz

wave has asimilar expression:

Brer = ( “"y (G’mX + & ) g1tk ~ginz ~w£\
(23)

Hier = [ b © (qinX' = oy )} b2 =g )
(24)

where we have used grot = —Gin. Our probiem —

sists in findiug the amplitudes efF eX}| so we can con-

struct the reflection matrix (4). In order to obtain the
reflection amplitudes, however, it is necessary find the



transmitted fields as well, which means that we have to
sotve Maxwell’s equations in the metamaterial.
Let us assume plane waves

it —ot)
E =e(2")e" 2

H= h(zi)eif%‘.yﬁ’“ui)

€= (@:':ey’»ez’%
) h = <h'x':hy’vh;"): (25>

as solutions to Maxwell’s equations in medium 2, where

we have already deduced the 2’ dependence from the

phase-matching condition on the interface (ke is con-

served across the interface), By substituting {25) into

the Faraday and Ampére-Maxwell laws
1B

__rve “1 R’y -
VxE= - , Vx (™ B)

18(e-E)
a0 %0

respectively, we sse that the 2” components can be elim-
inated as
g = —Chyrhy fwegy | hy = chyey fwpy o (27)

In order to determine the remaining z’-and 3’ components
of e and h it is convenlent to introduge a vector u with

With the ansatz u; = u;(0)e"* we obtain the following
linear system of equations:

¢ X
L-u=~——gu, (28}
w
where the non-zero elements of the matrix L are:

Lyg=—Log= —{(pgs — #fyg;} s5in @ cos @,

: 2 2
Lia = —2— = py €059 — fizz $in® @,
Wl oz
2 2
Loy = jlpg COS° @ 4 pryy 80 o,
Lys = —Lag = (€gn — tyy)sinp 005 @,
k2, c* .
at s i i 2
Lig = ———— 4 ¢, cos” @ + e40510° @,
Wlks
Lt = —€g5 CO8% @ ~ ¢y, 8in% . (29)

The condition for non-trivial solutions {(det(L #wqg/¢) =
0) gives us the equation that deterniiries the possible val-
ues of ¢, namely

&, &, .
S A G- B =0 (30)

A = Lyglay + Lalas,

where

B = LozLag + Laalas,
Cy = LizLlay + Liglag,
Cy = LoaLlay + Laalar,
C = C1Cy,

whose four sclutions g™ (m = 1,2,3,4) are

) % A e JIA-BE+4AC. (31
™ =+ o[+ = V/(A-D) (31)

These solutions may be conveniently split into two pairs,
according to the sign of Re g™ - solutions with Re
¢ > 0 (Re g™ < 0) define positive (negative) prop-
agating waves, If we denote the positive solutions by
m = 1,2, we may write the general solution for u as

{ae} ¢

ulz’) = Z ul™(Q) 2

me==],2
+ 3 umg e T (32
srreid 4
where we have used ¢ = —¢D) and ¢'9 = —¢@. It

is easy to see that the refraction of a wave coming from
7' < 0 can only give rise to positive propagating waves
{in the sense defined above), from which we conclude that
u(0) = u®(0) = 0. Therefore, the transmitted Held
into the anisotropic magnetodielectric medium is

{gt } - gi(kz’xl—"’t) Z u(m)m) eiq(m:’z" (33)
t

m=1,2

In order to find the amplitudes u(™ (0) we have to im-
pose the proper boundary conditions on the fields. In this
case they just require the continuity of By, By Hpr, Hy
across the interface: Using (21)-(24) and (33), one derives
the following boundary conditions:

i 1y {m)
an(eB — D) = £ 3 ),

el 2
. 3
elfp o = %™ 0),
el 2
TE _ TB w {
~Gin(€n” — €pef) = — Z h;n)m):
(s
m=1,2
T T (rt)
eMaely = > wr(0). (34)
m=1.2

This system of equations is unsolvable as it stands, giveu
the large number of unknowns. It is possible, however,
to use (28) to express all the transmitted amplitudes in

. {1
terms of just one, say e\

-t

Hlm) = € 0) _ (g™)? — (WP /eh)A
£ () Wjejc,
g 2 B0 w0 L w Lor o m
Moy cd™ cg™
= e (©) _ whn wila @
T ) cqtm ¢ glm

Using these definitions, we can rewrite (34) as




-1 0 ol a2
CGin f!\'x»' [ I ‘3&1) _{3(2)
0 CQin/f‘w 1 1

0 -1 4 @

In order to find the reflection coefficiensts, we must solve
(35} for the reflected amplitudes. For the sake of clarity,
let us do this separately for el™ = 0, eXF # 0 and for
efM £ 0, efF = 0. In the first case, Cramer’s rule
immediately yields

TE s, |
TE,TE \ Eiut det ¥ ,
T y {Zé k ) - rol .. ! 7 36)
2 s Ky TE — e > (36)
exn det ¥ ik;; _)&;i
TN ol
TM,TE & of d&ﬁ Wiz i
T'n (Z(Sa k}%) e rj.i’:— w _gtﬁ'" T (\37}
“in eV T

and in the second case we have

TETM B det iy )
Ty (3‘£sk”) = jﬁ - det 7l ‘;ukm:“ > {38}
i 4 i
T B
JIMTM & det I, )
Ty (k) = v (39

it

where M is the 4 x 4 matrix in (35) and

1 0l @]
Mo = | Clin/w O =3 —g®
o 0 cgnfw 1 1
o - 1 RV R &
~1 1 oW o]
S R R S
Me=1 0 1 1|
0 0 EAC )
F 0 0 o o]
L o 0 -y gl
F\ﬂg - CQin/w CQin/w 1 1 ’
1 ~1 At E ryC?)
I —1 ] {:f'::i;‘ &(2) 7
X Ay a2
A Cin/w O. - g
My 0 cginfw 1 1 (40)
0 1 3 A2

i, METALLIC-BASED METAMATERIALS
AND THE CASIMIR EFFECT

Metamaterials may be roughly divided into two classes.
The first class consists of MMs that are partially or to-
tally based on metallic structures. In this section we con-
centrate on these metallic-based MMs, which were pre-
viously considered by us in [21]. We study in detail the

:ggetfvh - €'Qinf;weglE (35)
)(0) cin/wed M | {
e2(0) e

effects of optical anisotropy on the Casimir-Lifshitz inter-
action with magnetodielectric media. The second class
consists of MMs based purely on dielectric materials that
we shall treat in the next section.

A. Isotropic metamaterials

Before going straight to the calculations, it is necessary
to point out that metallic MMs may be also divided into
two types, which we shall characterize as (i) connected
and (i) non-connected. As the name suggests, in the
connected MMs the metallic part is partially or totally
interconnected throughout the metamaterial {15], while
in the non-connected it is not {13, 14]. This distinction
is important because in connected MMs there is a net
conductivity contribution to the dielectric function due
to the metallic part, while in the non-connected MMs the
background is effectively non-condueting.

Let us begin with the simple example of a metallic
half-space 1 in front of an isotropic, connected metallic-
based metamaterial 2. For the metal we assume the usual
Drude model

, (41)

where {3y is its plasma frequency and ~; the dissipation
coefficient. For the second half-space we have to be more
specific about the MM we want to consider. In the sim-
plest description isotropic, connected metallic metamate-
rials may be described by a dielectric response accounting
for both a resonance and a Drude contribution:

02 Q2

e2(w)=1~(1— f} s , (42
2(“1) ( f}wg—wgmi%w f(/.)‘& e irfﬁ ( }

where €., w, and v, are respectively the effective electric
oscillating strength, the resonance frequency, and the ef-
fective dissipation parameter of the resonant part, and
Qp and vp are the Drude parameters of the metallic
background of the MM. The filling factor f roughly quan-
tifies the fraction of metallic structure present in the MM.
The magnetic permeability is given by a resonant part
alone:

Q2
polw) =1 — —- m

U {43‘
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where £, wn, and ~y,, are defined analogously to their
electric counterparts. In Fig. 4 we plot the Casimir-
Lifshitz force between a metallic halfspace and an



isotropic metallic-based planar metamaterial described
by (42) and (43) for different filling factors at zero tem-
perature. We see that without the Drude contribution
(f = 0) there is repulsion for a certain range of dis-
tances, as long as the half-space 2 is mainly magnetic
(e2(i€) < p2(i€)). However, as we “turn on” a metal-
lic background (f > 0), the permittivity grows stronger
and reverts the previous relation for a larger and larger
range of frequencies, up to the point where the magnetic
activity is no longer able to produce repulsion.

An idealization carried throughout the paper is that
both the metal and the metamaterial are infinitely long
in the z-direction. When we have slabs of finite thickness
instead of half-spaces, the reflection coefficients change to
[16]

1 — e—2K;3d;

L= 1P (ig)em2sts”

22 (i6) = 127 6) )

where K; = \/kﬁ + 15 (i€)e; (4€)€2/ c?, d; is the thickness
of the j-th slab, and we are assuming that both slabs are
surrounded by vacuum. From the previous expression
we see that corrections to the half-space reflection coeffi-
cients (at imaginary frequencies) are exponentially small
when both products K3 d; and K»dy are sufficiently large.
This basically tells us that estimates on lower bounds for
d1 and dy are actually model dependent (given that K;
depends on the properties of medium 7), so in order to
discuss those estimates we have to be more specific. For
a metal described by (41) and a wave arriving at normal
incidence, we have

A A
Kidy > 1=d; > 2—’7
m \/Ag F A2/ (Ag + )

. (45)

where A\, = 2m¢/Q1, A\g = 2m¢/v and A = 27¢/€. For
high frequencies, we have A\ < A4 and then (45) becomes

=d>» 2. (46)

For typical metals A\, /27 is around 10—-20nm, so, at least
for high frequencies, the contribution to the Casimir force
of a slab some tens of nanometers wide approaches the
contribution of a half-space. However, in the opposite
limit (A > Aq), we have

A ..’T _ c _
= Vou = Voot V25(¢) (47)

where oq = Q%/ is the static conductivity and 6(¢) is
the skin depth of the metal at imaginary frequencies.
Thus, for long wavelengths we see that d scales with VX,
leading to the conclusion that the half-space approxima-
tion is not good for sufficiently low frequencies. Fortu-
nately, for typical materials this is no source of concern,
since the integration range where A > A4 holds is very

di >

FIG. 4: The ratio F/Fc for a gold half-space facing an
isotropic, interconnected and silver-based metamaterial. F/A
is the Casimir force per unit area in this setup, and Fe/A =
hem?/240a* is the Casimir force per unit area between two
perfect plane conductors. The frequency scale 2 = 2m¢/A
is chosen as the silver plasma frequency Qp = 1.43 x 10'°
rad/sec. Parameters are: for the metal, Q,/2 = 0.96,
v1/€ = 0.004, and for the metamaterial, Qp/Q =1, 7o/ =
0.006, 2/ = 0.04, U/ = 0.1, we/Q = wm/Q = 0.1,
Y/ = vm/ = 0.005. The inset shows the magnetic perme-
ability u2(i€) and the electric permittivity e2(i€) of the MM
for the different filling factors.

small compared to the effective integration range, allow-
ing us to push the slab approximation up to very small
frequencies with almost no effect in the final result. One
might wonder what happens for oblique incidence, but it
is easy to see that the more oblique the incident angle is
the better the estimate for d; holds, since K gets larger
and larger (this only means that reflection gets easier as
the incidence angle gets larger, as physically expected).
The effect of finite thickness in the Casimir effect was the
object of several papers [43], notably in [44] where a sys-
tematic procedure was developed to deal with any given
number of arbitrary slabs. The effect of finite thickness
was also studied in the specific context of Casimir force
and metamaterials [16, 18, 45], where it was found that
having a layer of a MM instead of a half-space reduces
the intensity of the repulsion force and also the range of
distances where it occurs.

B. Uniaxial Metamaterials

Electric anisotropic effects in the Casimir interaction
have been thoroughly studied in the literature [41, 42, 47—
49], but until recently there was no compelling reason
to study the consequences of magnetic anisotropy. This
changed with the advent of metamaterials, and an in-
vestigation of magnetic anisotropy is now in order. The
best place to start is to consider uniaxial out-of plane



metamaterials, since they constifute the simplest depar-
ture from the isotropic case. This type of anisotropy is
quite common since it arises naturally when & raterial
is built as a stack of different layers, as is the case for
several kinds of MMs [15, 38, 50, 51.. We are particu-
farly interested in the case where the resulting medium is
characterized by different degrees of conductivity in the
plane of symmetry and in the perpendicular direction to
it.

Let us bepin by characterizing the electric and mag-
netic-properties of cur uniaxial metamaterial:
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where the different flling factors fp and f. account for
possible anisotropy in the metallic character of the MM,
As we have seen in subsection I1-B, the reflection matrix
for such a metamaterial is diagonal and given by (18]
and (19). For metallic-based metamaterials with large
in-plane electric response €,,(i£) 2 1 at low frequencies,
it is-clear from Eqgs. (18, 19) that anisotropy plays a
negligible role in the determination of the reflection coef-
ficients when there is a dominant Drude background. In
order to better appreciate the effects of anisotropy we as-
sume henceforth a small or vanishing Drude contribution.
In Fig. 5 we show the Casimir force for a rigiamaterial
that has only electric anisotropy {iys = ..}, Which iz
completely coded in different filling factors {fy & f,, all
other parameters being the same). We see that a re-
pulsive force arises only for considerably small values of
both f.. and f,, from which we conclude that killing the
Drude background in the z-direction alone is not enough
to produce Casimir repulsion.

C. Biaxial metamaterials

Continuing our track towards more complicated re-
dia, we now tackle the biaxial orthorhombic case. Let us
consider a metarmaterial characterized by the following
dielectric and magnetic functions in the basis defined by

FIG. 5: The effects of uniaxial anisotropy in the Casimir force
between o gold semi-space and a metallic-bagsed connectnd
MM with wesk Drude background. The distance s fixed to
d = A, All parameters are the same as.in Fig. 4 except for
the filling factors fr and f., which are the variables in this
plot

its eigenvectors {see subsection 1I-C):
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We are particularly interested in the case where ¢, is
close to €4, but in general significantly different from
€.». 'This‘means basically that the MM is only slightly
anisotropic in the plane of incidence. QOur motivation
in studying this particular limiting case is that it is a
good approximation for certain typés of melamaterials,
such as those based on fishnet designs [15]. Note thal we
are already assurning magnetic in-plane isotropy, which
is consistent with a small electric in-plane anisotropy. We



may then rewrite the material tensors as

€xz 0 0
€35 = 0 6'3;,”;(1 + 5) 0 s
0 0 €y
tez 0 0
Mg = O phgy O (50)
0 0 1

where §{w) = (g {w) — epa{w))/epelw) € 1, and perform
the caleulations only up tofirst orderin &, The evaluation
of the determinantsin (36)-(39) requires the knowledge of
matrix elements of L defined by equation (29) and also of
the solutions of equation (30}). Thislast step is simplified
at first order in § because C/€2 nv {tuy €42 /€2, ~ 52
Therefore

d0=2VE L o =YVE

(51)

and then the o™ cocficients reduce to ol = § and
% = (B — A)/C;. Performing now some straightfor-
ward calculamons we get, up to O(6%),
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where TI%_TE, Et‘ﬂ” are given respectively by (18},

{19), and we have also defined
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Now let us return to the general structure of the Lif-
shitz formula. Since Ry is not diagonal we should expect
contributions coming from the non-diagonal terms in (5},
but it can be shown x‘ha,t they are all O(6%), and therefore
can be dropped. Aftéra few rearra ngements we arrive at
our final expression for the Casimir pressure:
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FIG. 6: The Casimir force between a gold half-space and an
orthorhombic, slightly in-plane anisotropic MM for different
values of the filling factors fi and £y Note the different nor-
malization used in this plot. The bands are characterized by
a certain value of fo, 8¢ shown in the legend, and a contin-
vum of values of fy, from fi; = 0.8f; to fi, = L.2f,. All the
other parameters involved are exactly the same as those used
in Fig4.

where
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An easy consistency check of this result is to take the
zero-anisotropy limit, which reduces immediately to the
uniaxial result, as it should. A less trivial result is to
obtain the non-retarded limit of expression (83), which
can be shown to be congistent at first order with other
results in the literature 41, 47].

Let us now assume that all the in-plane anisotropy
iz coded in the Alling factors, just like the out-of-plane
anisotropy was in the uniaxial case. In Fig. 6 we ghow
the effects of a slight in-plane anisotropy on the Cagimir
force. Each band in the plot corresponds to a different
value of f,, and its width Is given by a £20% variation
of f, around f;. We see that the anisotropy effect is
more pronounced af gmall distances, because in the non-
retarded limit the contribution of the electric response to
the Casimir force is maximized.

D. Dissipation effects

Let us now turn from considerations of anisotropy to
other practical issues for MMs and Casimir interactions.
It is known that dissipation plays an important role in
metallic-based metamaterials, especially those operating
at high frequencies. In Fig. 7 we show the effect of a
simultaneous modification in the electric and magnetic
dissipation coefficients; it may be clearly seen that an
equal change in the rates v./Q, and v, /O, favors at-
traction. In the insets {a) and (b} we show respectively
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FIG. 7: The ratic F/Fc between a gold halfspace and an
isotropic silver-based metamaterial for different values of the
dissipation parameters. The main plot shows the effect of the
simultaneous modification of electric and magnetic dissipa~
tion. Inset {a) shows the effect of electric dissipation alone for
different values of the ratio v./Q.= 0.1 (solid}, 0.5 {dashed},
2.5 {dotted). Inset (b) shows the effect of magnetic dissipa~
tion alone for different values of the ratio vm /2w 0.1 (s0lid),
0.5 (dashed), 2.5 (dotted). The filling factor is f = 107 in all
three plots, and all other parameters except the dissipation
coeflicients are the same as in Fig. 4.

the effects of changing only the electric and magnetic
dissipation, that may be straightforwardly interpreted in
light of the discussion presented in 10]. From {42} we
see that an increase in -y, makes ¢ smaller, pushing the
metamaterial slightly closer to the Boyer limit (that Is,
€y =¥ 00, 1 = 1, €g = 1, uy — o). We should thus ex-
pect an increase in the Casimir repulsion as we make v
larger, and that is exactly what is observed in the inset
(a). A similar reasoning may be applied to inset (b}, but
since this time we are going away from the Boyer limit,
repulsion diminishes as we increase vp,.

E. Temperature effects

The effects of temperature in the Casimir force be-
tween metamaterials and dielectrics were thoroughly dis-
cussed in [16], where the authors show that in this case
temperature works against repulsion, or in other words,
that for sufficiently high temperatures repulsion is com-
pletely overturned into attraction. In this section, we
wish to extend that discussion for a metallic plate fac-
ing a MM and compare the situations where the metal is
modeled by either Drude or plasma permittivities.

In Fig. 8a we show the Casimir force for different tem-
peratures between a Drude metal and an isotropic MM
with no Drude background. In this case we see that tem-
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perature also works against repulsion, but in such & way
that keeps the repulsion window quite open for tempera-
tures as high as T = 600K, allowing for repulsion at room
temperature, at least in principle. Something even more
interesting happens when we change the Drude metal
by a plasma metal (i.e., vanishing relaxation parameter

see that not only a temperature increase does not switch
back the force into atiraction for large distances, but it
actually increases repulsion in that regime. It is possible
to explain this phenomenon in simple terms using the
Lifshitz formula. Let us consider the force between two
isotropic materials at a finite temperature T

I -
Fld,B) A 5 / Pk
T =5 s Ky
A ’gnz_o p=teon! 7V
« TP (En) 157 (Er) e 2150
L r‘{fr’({f,‘} ?ﬂgsp(gn) g’

(89)

where the prime in the summation means that the
n = { term is multiplied by 1/2, 8 = 1/kgl, K3 =
v;’kf—%gﬁ Jet, &, = 2xn/Rg, and the reflection coeffi-
clents are given by (7) and (8} with &, instead of £
From (55) we see that for large distances (provided that
kpTd/kc > 1) the n = 0 dominates all the others, and
we may approximate the Casimir force by

F(d.6) _

(0, k)P0, k) e

12 -
T e dk i* 7
A 4rf3 p:TZE,TM‘/ 1 7{’;:(0,&} TS‘ZF(O’ ke
(56)

where £ = k;: and the reflection coefficients are evalu-
ated at the zeroth Matsubara frequency & = 0. The key
difference from the setups using dieletrics or Drude met-
als to the one with plasina metals is that in the former
cases we have limg_.g ¢(£)€%/c? = 0, leading to

TR0k = (57)
while in the latter we have
TETE h— k2 4+ OF
Ty (@,%} R — T < 0. (58}
k4 k2 + 0

This means that for dielectrics or Drude metals facing
a MM, the only contribution to (56) comes from the
TM zero mode, which is always positive {given that
fr?“’i"r‘\’i(o,/c)rgM’TM(O,/c) > Q). Since this term domi-
nates for large distances, we conclude then that the force
is attractive in this regime. However, for plasma metals
facing a MM we see that both TE and TM zero modes
contribute, and while # "> TM(0, kyry M (0, k) is posi-
tive the product ?’?E’TE(O,&}%E’TE(O,&} is not, due to

FTETE( ) — p2(0) — 1 50

p2{0) +1 ' (59)

~2Kzd?



e

DN

- oo

i

Fd Al &

s

e

'ﬂﬁ‘({li"i':l ()QI - 0.1 : i s i }I!ﬁ

DA~

FdAlrca

- T T T T

FIG. 8 Temperature dependence of the Casimir force be-
tween a metallic plate and a metamaterial.  We plot the
Casimir force between a metamaterial and a Drude metal (a}
or a plasma metal (b) for different temperatures. All param-
eters are the same as the ones used in the f =0 curve of Fig.
4.

We see then that the sign of the force depends on a deli-
cate balance between the TE and TM contributions, and
it so happens that for our chosen parameters the TE term
overwhelms the TM term and repulsion is sustained for
all distances above the crossover from attraction. The
fact that repulsion is enhanced is also engily explained,
since a simple analysis shows that for large distances (56)
may be put in the form €/ 3d°, where C is & constant de-
pending on the materials used. It is clear then that if Cy
is negative, a temperature increase can only enhance re-
pulsion. Our findings for temperature effects using Drude
or plasma model for the metallic plate are consistent with
the conclusions of {52] .

F. Metamaterials based on isolated metallic
structures

There are several examples of metamaterials where the
metallic part is distributed in a non-connected way. In
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[13], for instance, the authors put forward a MM consist-
ing of pairs of metallic nanopillars, regularly distributed
on top of a dielectric substrate. The pairing of pillars
is necessary to create an antisymmetric resonance {when
the currents in each pillar are running in opposite direc-
tions) at a certain frequency, where the electric dipole
contributions of both pillars are nearly canceled out and
the effective current loops produced by the pairs give
rise to magnetic dipole contributions, resulting in & non-
trivial magnetic activity.

Unfortunately, a detailed treatment of the metama-
terial previously described is beyond the scope of the
present paper. It is still possible, however, to capture
some effects of metallic non-connectedness and geomet-
rically built-in resonances through the use of an appro-
priate toy model. In order to address the first issue, we
consider a simple MM model consisting of identical, small
metallic spheres of radius a regularly distributed in a
host dielectric {non-magnetic) medium. Assuming that
the metal and the dielectric are characterized respectively
by the permittivities

2
. N Q2,meﬁ
€2,met(w} = 1— NG ETEO
W - 1Y2 merw
N Qz
2.7 .

ealw)=1- § Ty (60}
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and that the metallic spheres can be considered in a first
approximation as electric dipoles, one can connect the
medium effective permittivity € no{w) to the electric po-
larizability a{w) of a given sphere through the Clausius-
Mossotti formula [46]

f o €ane—€aq (61)

o ,
a3 €2,nc + 262,

where f is the metallic filling factor and we have sup-
pressed the w-dependence for simplicity. It is also pos-
sible to show that when (w/c)a <« 1 (the spheres are
much smaller than the radiation wavelength), the elec-
tric polarizability may be given in terms of the dielectric
function of the metal by the similar relation

24 €2 ey — €2.d
s T e . 62
a3 €2mer+ 2624 (62)
and by eliminating « in (61) we get
1+ 2f e +2(1 — flesq
52@(:(“} = ‘521':1( f Hmet ( } . {63)

{1- f}ekme& + {2+ f}éz}d

This result is known as the Maxwell Garnett approxima-
tion for the permittivity |35, 46, after the physicist who
derived it in the early 1900s [53]. A brief analysis shows
the main effect of having isolated metallic pileces: the pre-
vious formula tends to a finite value in the zero frequency
limit, unlike (42), which describes a connected metallic

MM, The effective permeability can be dealt in a similar



way, and it is possible to show that in this approximation
we have simply psnelw) = L

As noted earlier, formula (63) accounts only for effects
of metallic non-connectedness. In order to include the
built-in electric and magnetic resonances 54}, we sim-
ply-agsume their existence in an ed hoc manner and add
their contribution to €z ne(w) and po ne{w), respectively.
Assuming those resonances can be modeled by Drude-
Lorentz formulas, we have, finally,

(1 + Ef)fz\mez’ + 2(1 - f)é‘z,d

(1 - f}fzmc»t = {9 + f>52,d
o

rd 52 L
W Wl Ve

(64)
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The results for the Casimir force are shown in Fig. 9. The
parameters for the resonant parts e yelw ) and pg res{w)
are roughly based on the experimenial results given in
18] for a MM consisting of metallic nanopillars covered
with a thin layer of glycerine. As indicated earlier, our
intention here is not to provide a precise description of
such experiments, but only to estimate how this type of
méetaniaterial affects the Casimir force. The emnbedding
dielectric, glass BK7, is quite well described by (60) with
the parameters N = 3, Qz‘l/Q = 1.84, L:Jg‘l_/Q = 1.81,
Qg‘g/}Q e 047, &)2,_2;}9 = 028, 9233/9 = Wngg';Q = 0»014,
o ey 0/ = v,/ = 0. Tt is clearly seen that no
repulsion is achieved, and the reason is that the magnetic
resonance created by the MM geometry is too weak to
overwhelm the electric background. In other words, the
MM is mainly dielectric, leading to an attractive force.

Iv. DIELECTRIC-BASED METAMATERIALS
AND THE CASIMIR EFFECT

Metamaterials based exclusively on dielectrics 38, 55,
36 are an interesting alternative to metallic MMs. For
one thing, they provide new possibilities for the construc-
tion of negative index materials 57, since they allow for
both the permittivity and the permeability to assume
negative values in bandwidths that may be out of reach
with metallic-based MMs. In addition, dielectricshased
MMs might be interesting for Casimir-force studies for
the same reason that non-connected metallic MMs might
be: they do not present a Drude background at low fre-
quencies, and this is advantageous for the observation of
magnetic effects in the Casimir force.

The dielectrics most commonly used in the construc-
tion of MMs are “polaritonic” erystals 538 characterized
by the dielectric function

2 2
T Whal
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FIG. 9 The ratioc F/Fg for a gold halfspace facing a
isotropic, non-connected and gold-based metamaterial. The
parameters for the metal are Qo me/Q = 0.96, v2,me/0 =
0.004, and for the metamaterial we have (./0 = (.34,
Qun /= 0.064, we/Q = 0.2, wa/Q = 0.16, 7/Q = 0.04,
m/§l = 0.02, f = 0.1. The inset shows the permittivity and
permeability inside the MM, as given by (64}, but as functions
of imaginary frequencies £.

where wpel Is a characteristic resonance of the system,
€. 15 the permittivity at very high frequencies, and
Qoo = wWpaiV€(0}/ex. In order to fix ideas, let us
consider a MM made of a regular array of polaritonic
nanospheres of radius o embedded in an isotropic dielec-
tric and non-magnetic host characterized by a dielectric
function . For sufficiently long wavelengths and sparse
arrays, meaning & = wR/c <« 1, it is possible to use the
so-called extended Maxwell-Garnett theory [35] to eval-
uate the dielectric and magnetic properties of the meta-
material, giving {35, 36]

o s 3,8
comglil) = e oS0 (= T 28 b
TR ey P T ST
ET 5 1 g 1

(66)

where f is the array filling factor and aq, b, are respec-
tively the electric and magnetic dipole coefficients of the
scatiering matrix of a single sphere, given by [27, 53]
71 (3’;;02 ) {3331 ix)geipal - 71 (3‘3} [33;9&5}.1 {37?90{)}15’1
(3, 4 y R e
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where 7,(hT) is the spherical Bessel function (Hankel

iy ==

function of the first kind) of order one and zge = NS
The important thing to notice here is the fact that
Hemy May present several resonances even when the
nanospheres are purely dielectrie, from which we-con-
clude that in this framework we do not have to assiime
an ad hoc resonant behavior; it is already built into the
theory.
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FIG. 10: The permittivit\ éxrpc(ig) and permeability grrue{7€):
The PArameters are toe = 2, ot/ = 0.4, wpat /0 =0.15;
oot /2 = 0.001.

The usual procedure at this point would be to rotate
expressions (66) to the imaginary frequency axis and sub-
stitute them into the appropriate reflections coefficients,
but in this case things are not so straightforward. Im-
plicitin the Lifshitz formula for imaginary frequencies it
is the assumption of analyticity of e(w) and p(w) in the
upper half-plane, a condition that gmg{w) and pomg(w)
do not satisfy. In order to overcome this obstacle we have
to remind ourselves that expressions (66) were derived as
approxitnations to the true permittivity e(w) and perme-
ability u(w) only for a given range of real frequencies,
namely, for w such as wR/¢ <« 1. This means that while
e(w) and p{w) must be analytic in the upper half-plane
due to cansality requirements, fou(w) and femg(w) are
not necessarily bound to causal belisvior. In other words,
it means that the analytical continuations of €amg(w) and
Homg ] Into the complex plane are not necessarily close
to the continuations of e{w) and p{w), and in this case
they happen to be quite different.

A possible way to proceed is to rely on the analytic
pmpemes of e{w) and write the Kramers-Kronig relation
(37}

o) = 1+ P / aff@*’ , (68)

where P stands for the Cauchy principal value, and con-
sider also the analogous relation for w(w). Taking the
real part and evaluating it at an imoeginary frequency £,
we obtain

Ime(y)
errueli€) = 14+ = / W (69)
and, using the fact that e{w) & €imelw) 160}, we have
2 [ T oY)
(i) ~ 1+ — / dyy _52—:;—’
In}#un&,(é’)

aeiel a2

........ . (70)
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FIG. 11: The plot of AP = P2 pUY for different tempera-
tures and models. The parameters of P1 are the same used
in Fig. 8 in dimensional units they are Qp = 1.32- 10" rad/s,
yo = BAR . 10%md/s {yp = 0 for the plasma curve),
Qg = A7 10" rad/s, s 8710 vad /8, we = 2.7-10* rad/s,
W = 2- 10" rad /s, vo/ e 55 10 rad /s, ym = 2.7- 10 rad/s,
(s = 2,52 10 rad /s, way = 2.48 - 10'%rad/s, Qoo = 6.4+
Or'r"xd/s waz = 38 lomrad/s Qog = g 1,90 ]OMY&d/S,

are exacmy the same except for Qe = 0. The inset shows the
same plot on a different scale, since in the larger one it is not
possible to see AP for large distances.

In Pig. 10 we plot ey (18) and py.(88) using approx-
imate values for TIC! polaritonic spheres [55] embedded
in vacuum. We see that €qu.(1£) Is overwhelmingly dom-
inant over peue(2€), which in fact is hardly different from
unity. As the insets show, this is basically due to a sin-

gle strong resonance that appears in €umglw) bub not in

pmgfwﬁ From these results we conclude that, despite
the fact that some magnetic activity is created by an ar-
ray of polaritonic spheres, the Casimir force in this case
is dictated by the electric part alone and therefore no
repulsion seems possible.

V. DISCUSSION

A striking confirmation of the magnetic influence on
the Casimir force would be a measureiment of repulsion
between a metallic plate and a magnetodielectric one.
This seems unlikely in light of the éxamples presented
here, but a measured reduction in the attractive force
might nevertheless be traced back to the magnetic prop-
erties of a metamaterial.

Let P be the Casimir pressure between a gold half-
space and a given metamaterial. If the magnetic prop-
erties of the MM are “turned off”, keeping all other
parameters the same, the pressure will change to some
new value P, In order to check whether the differ-
ence AP = P« P& should be observable, we plot its
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FIG. 120 The difference in frequency shifts caused by the
presence or absence of magnetic activity in the metamaterial.
Everything is assumed to be at zero temperature. The MM
is the same used in Fig. 11, and the parameters for the Rb
atom are-m = 1.45 x 1072 Kg, o = 4.74 x 107 Bem? and
wo = 2.54 % 10*° rad/s, with an unperturbed trap frequency
of w, = 27 x 229 Hz.

computed value in Fig. 11 for zero and room tempera-
tures, using both Drude and plasma models for the metal.
The sensitivity of current experiments lies around 1 mPa,
from which we conclude that detection of magnetic effects
in our setup is currently possible up to d ~ 0.4pm. While
this suggests a considerably large window for measure-
ment, given that many experiments probe the 150 ~ 350
jm range quite accurately, several things must be dealt
with. First and foremost, we see that the difference be-
tween the Drude and Plasma predictions are consider-
ably large (as compared to the magnetic effect] above
0.6um. This means that in order to ascribe changes in
the Casimir force ambiguously to magnetic effects one
has to know how to model metallic materials properly. In
addition, at close distances like d < 0.4um, the effective
medium approximation probably no longer holds, since
the very structures that produce magnetic activity {the
metallic spheres in this example) are built on the scale
of hundreds of nanometers or larger. These finite-size ef-
fects should bring significant correciions to the Casimir
force, and must be considered in 2 more sophisticated
analysis. Finally, there are the imperfections of the ma-
terials themselves, like roughness, that at those distances
play a non-negligible role. So, we conclude that despite
the fact that current experiments have in principle the
sensitivity necessary to detect magnetic effects, an actual
measurement of such effects is still a challenging task.

Casimir-Polder experiments [61, 62 also provide pos-
sibilities for the detection of magnetic effects. These ex-
perirents are able to probe larger distances than the
typical bulk-bulk measurements, which is desirable from
the point of view of an effective medium approximation.
The zero temperature Casimir-Polder potential between
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a ground state atom and a material half-space is [63],
=] —22K3

0 V3

-

I RN o . |
% E?"lh'rsiif,k) o <1 + | ?"TM’TM{?{J"C)E .
» J j
(71

where z is the distance between the atom and the half-
space, K3 is defined just below (8), and »757F and
pIMTIM are given by (7). «(i€) is the dynamic atomic
polarizability, which we assume is described reasonably
well by the single-resonance expression

. &g P
QUQ— 1+(§2/UJ0" (‘2)
where oy is the static polarizability and wp is the dom-
inant atomic transition. In one type of experiment [52]
the directly measured quantity is the {requency shift in
the center of mass oscillation of a Bose-Einstein conden-
sate

Y(z) = s Do Uep(2'),__, (73)

) =z

where m is the atomic mass and w, is the unper-
turbed {i.e., without Casimir-Polder forces) oscillation
frequency. The reported sensitivity for «v lies between
107% and 1074, setting the lower bound for the detec-
tion of magnetic effects in the Casimir force. Let us then
consider a Rb atom in front of the same MM used in
the previous example, and compare the frequency shifts
when its magnetic part is “turned on” and “off”. In Fig.

Y (2) and ynm(2) are respectively the frequency shifts
when the magnetic activity is present and absent. We
see ‘that in the best case scenario (sensitivity equal to
1079} the magnetic influence would be detectable up to
around 2.5 um; for larger distances the force is just too
weak.

As our final words, we would like to say that although
Casimir repulsion seems to be extremely hard with the
use of existing metamaterials, the detection of magnetic
effects in Casimir interaction through a slight reduction
in the Casimir attraction is definitely possible. There are
still some issues 1o be dealt with, like the assurance that
magnetic activity is the main cause of force reduction,
rather than some frivial effect like a reduced filling factor.
With the consistent development of both Casimir mea-
surements and MMs manufactured in the recent years, it
is very reasonable to expect that a Casimir measurement
of magnetic effects will be feasible in the near future.
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