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Interactions for Anisotropic Magnetodielectric l\letamaterials 

F. S. S, 1 D. A. R 
1 Theoretical DivIsion, Los Alamos National 

July 

W, lVIilonni 1 

Alamos, NM 87545, USA 

We extend our previous work Rev, Lett, 100, 183602 on the generalization of the 
Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, on the forces between 

and magnetodielectric metamaterials on the possibility of by 
measurements of these We results for metamaterials including with uniax-
ial electric and magnetodielectric anisotropies. well for structures with isolated metallic 
or dielectric properties that we describe in terms of factors and a Maxwell Garnett 
tion. elimination or reduction of Casimir "stiction" by appropriate engineering of metaJlic-based 
metamaterials, or indirect detection of magnetic contributions, appear from the con-
sidered to be very challenging, as background Drude contributions to the permittivity act to 
enhance attraction over repulsion, does ma.gnetic dissipation, In dielectric-based metamaterials 
the magnetic properties of poiaritonic crystals, instance, appear be too weak for 
to overcome a.ttraction, We also discuss Casimir-Polder experiments, that might provide another 
possibility for the detection of magnetic 

PACS 42,50.Cc, 12.20,-m, 78.20.Ci 

1. INTRODUCTION 

length of the incident so that 
the waves as artificial "atoms", 

allows the use of effective medium 
describe metamaterials in terms of an 

and effective 

measurements 
micron and sub-micron 

uum fluctuations a.re modified 
and this 

also presents some 
tromechanical systems may stick 

and to to attractive na-
forces, A 

near a 
between. Some years later it was 

also occur between 

[12], do not show 
at near-infrared and opti­

which has been assumed as a prerequisite 
between Casimir 

response t,o 

it strong 
measurable 

reduced attraction, 



sion purposes, this response strong 
to dominate the electric respon"" of the material 

in a broad range of which 
for the 

in 
mula dominates over any 
the metamaterial 
force that would otherwise be 

We have many of these issues in 
the context of the theory and metamate-

The purpose of the present work is to further 
the of Casimir interactions between 

in m~,fJ'n:et()dl 
crossover from 

metallic-based 
als, 

II. CASIMIR-LIFSHITZ FORCE BETWEEN 
ANISOTROPIC MAGNETODIELECTRIC 

MATERIALS 

A. The scattering approach 

evolved very 

oneered in Casimir 
to compute the free energy of the electromagnetic field 

bounded material boundaries of 

Since a thorough discussion of the approach 
would take us too far we present the for-
mula for the zero-temperature Casimir per unit 
area A between two by a vac-
uum gap of width d: 

A 

where 
operator 
(j 1, 

(1) 

rep­
and 

of 
refiec~ion takes 

is also diagonal in the transverse momentum basis, 
means that 

where R j is the 2 x 2 reflection matrix on the 
Note that the reflection matrices here are evaluated at 

= [ 

of a reflected 
u",vu"u" field with p-

we get after 

the expression for the per unit area follows: 

(6) 

it may be ap­
and anisotropic media; all 

that is needed are the appropriate reflection matrices, 
Let us consider the setup 1, in which 

we have metallic semi-space the region z < 
-d a magnetodielectric > 0, The 
reflection matrix R] 
vacuum the standard 

k ll ) = ------'--;====== 

k ) _ TM,TE 
II - Tl 0, (7) 



Metal Vacuum 

1: Typical setup used 
the Casimir-Lifshitz force between 
rial. 

YI 
o 

this paper to compute 
metal and a metamate-

where E 1 (w) is the of the metal. The ele-
of R2 are Fresnel-like formulas if 

the MM is isotropic, in which 

)=."""""""'.-~ ............. '~========= 

'1'M,'1'M k ll ) = ----'-;=;:======== 

materials can be ,,,-o-U'''VCl 

tutive relations have the form 

D=E·E+K· 

B ,·E+J..i·H. 

0, 

(9) 
(10) 

3 

that the material tensors € and J..i are functions of 
neglecting any dispersion. 

Even without physics of 
still rich [31, 32] 

to their 
this leads 

to 

in 
situation is when the 
cell is inversion with respect to 
known as the triclinic system, both the 
the tensors have nine non-zero components 

the 

for Casimir purposes. 
to investigate 

force without going into such an involved case, so we 
restrict ourselves in the next two subsections to basically 
two types of anisotropy. 

B. Reflection matrices for uniaxial (out-of-plane) 
planar metamatel'iais 

In 

uniaxial is 
on the interface plane, i.e., whose electric and U"C'h"~V'~ 

Qf'\t,·",,,\(, directions coincide and are 
the interface. In optical 
of uniaxial medium 
with the anisotropic direction. 
jal lattices, that is, the ones 

and 

[T 
0 ,:,] E:£x /I'i) 
0 ["!" 

0 

"U Ilxx , (ll) 
0 



z=o 

Metamaterial 

E2. #-'2 

FIG. 2: An incident plane wave impinging on a uniaxial meta­
material with its optic axis perpendicula.r to the z = 0 plane. 

akin to the isotropic case, for the sake of completeness 
we briefly review this calculation, which is relevant to 
several metamaterials having such ani~otropy [38]. 

Let us assume that a plane wave with wave vector 
k and polarization p impinge~ upon the interface from 
z < 0 (region 3, vacuum) towards the metamaterial (re­
gion 2). Given the rotational symmetry about z, without 
loss of generality we can choose our coordinate system so 
that the plane of incidence (defined by k and z) coincides 
with the xz plane (see Fig. 2). In order to solve the 
reflection-refraction problem we have to know how waves 
propagate in the anisotropic medium. In this particular 
case of uniaxial anisotropy orthogonal to the interface it 
may be shown by direct substitution that TE waves 

(12) 

are solutions to Maxwell's equations provided that 

kL, kL w2 

-' + -' = z" ~x'" [in the MMJ (13) 
1hz /-Lxx C 

2 

k~,x + ki,z = ~2 [in vacuum]. (14) 

In a similar fashion, TM waves 

(15) 

are solutions to Maxwell's equations provided that 

kL kL w2 

-' + -' = Z"/-Lxx [in the MM] (16) 
Ezz Exx C 

2 2 w
2

. 
kl x + kl z = -2 [m vacuum]. (17) , , C 

Therefore there is no polarization-mixing, and conse­
quently the off-diagonal elements of the reflection matrix 

4 

. h TE,TM(.(: k ) TM,TE(.(: k) 0 Thl's al-vams : r 2 ~" , II = r 2 ~" , II = . 
lows one to consider separately the reflection of TE and 
TM waves. 

Let E in = Eoyei(kl. z x+kl.Zz) be a TE field incident 
from the vacuum side. Given the translational invari­
ance of the material properties along the planar in­
terface, only specular reflection occurs, which implies 
that both x and y components of the wave vector k 
are continuous. Therefore, the reflected TE field is 
Erer = T2Eoyei(k" Xx-kl.Zz), and the transmitted TE field 
is E t = t2EOyei(kl.xx+"2.zZ) , with k~,z = (w2 / C2)Exx/-Lxx -

kr ,x/-Lxx/ /-Lzz· Imposing the boundary conditions on the 
TE modes , we have 

Ein,y + Ercf ,y = Et,y =? 1 + r2 = t2, 

k2 z 
Hin,x + Href,x = H t •x =? (-1 + r2)k1,z = -t2 - '- , 

/-Lx>; 

from which it follows that T2 = (/-Lxxkl,z -k2,z) / (/-Lxxkl,z + 
k2 ,z). Evaluating this expression a long imaginary fre­
quencies w = i~, one obtains the TE-TE reflection am­
plitude on the vacuum-MM interface [39]: 

(18) 

where, we recall, K3 = Jk~ +e/c2 and k~ = k~ + k~. 
Following similar steps, the TM reflection amplitude on 
the vacuum-MM interface can also be derived: 

(19) 

C, ReAection matrices for biaxial, anisotropic 
magnetodielectrics 

In ascending order of symmetry, the crystals belonging 
to the triclinic, monoclinic and orthorhombic crystallo­
graphic systems [33] are known as biaxial crystals, since 
they are characterized by two optic axes. In this subsec­
tion we shall restrict ourselves to the orthorhombic case 
[40], which allows simultaneous diagonalization of € and 
J.L in an orthonormal basis. The calculation of the reflec­
tion matrices for the other two types of biaxial metama­
terials is conceptually equivalent but more cumbersome 
since the material tensors cannot be brought to diagonal 
form in a frequency-independent basis. 

Let us then consider the system described in Fig. 3, 
which is similar to Fig. 2 but with an orthorhombic meta­
material on the right side. Assuming it is possible to pre­
pare the MM in such a way that one of the eigenvectors 
is perpendicular to the interface, then the diagonal basis 
is just {x, y, z} and the electromagnetic tensors are given 

. " 
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FIG. :3: incident plane wave on 11 meta-
mntHiai with orthorhombic symmetry (see 

o 

Several metamaterials can be described material ten-

[ 
and 

/l.yy 

<p 

<p 

/.til j' sin <p cos <p 

The for 

c 

w 

where 

incident fields are 

and we defined 
The reflected 

sors like 
in [15]. 

;a is the fishnet 
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used 

with two axes, even those with 
orthorhombic symmetry, are much harder 

to treat than with an uniaxial 
axis described in the previous subsection. The 
is that Maxwell's do not :;upport 
waves for biaxial materials: neither TE nor TM 

solutions inside the material, and 
ements of the matrix do not vanish. 

for uniaxial materials in-plane 
w hose reflection matrix can be obtained as 
lar of orthorhombic materials with Eyy 

The Casimir interaction between two dielec-

The 

direction (see 
system attached to the 
that forms an <p with the 
in this coordinate system are 

0 

1 
0 

0 

sin <peas <p 

"~J + /l'yy <p 
0 

wave a similar expression: 

-wt) 

nr()hLpm now con-

reflection 



which 
solve Ma.,<well's in the 

Let us assume 

E= e ,e2 , ), 

H= , h (25) 

solutions to Maxwell's equations in medium 2, where 
we have deduced the x' from the 
pna3()-Il13xcn.lng condition on the con-

1 BB 
\1xE=---, \1x 

c at 

inated as 

In order to determine the 

components Uj = . Uz 

With the ansatz Uj = uJ 

linear system of equations: 

L·u 

non-zero elements of the 

The condition for non-trivial 
0) gives UH the equation that 

of q, 

A + 
B L23L~2 T 

C1 L13L32 -t-

Cz L23 L31 + 
C C1C2 , 

into 

iDe,nents can be elim-

(27) 

and yl components 
a vector u with 

and 

L are: 

(29) 

whose four solutions q(m) =1,2. 4) are 

agating waves, 
m = 1, 2, we may write the 

U(ZI) (0) 

(0) 

split into two 
solutions with Re 

prop­
solutions by 

(33) 

(0) we have to im­
the fields. In this 

~V'''''''U'0.J of 1 HX" 
one derives 

m=1.2 

as 



and in the second we 

where M is the 4 x 4 matrix in 

1 0 

o 
o 

and 

1 1 

(37) 

(40) 

III. METALLIC-BASED METAMATERIALS 
AND THE CASIMIR EFFECT 

Metamaterials be divided into two classes. 
The first class conslsts of NEVIs that are or to-

based on metallic structures, In this section we con-
centrate on these metallic-based iVIMs, were pre-

considered in [21], We in detail 

7 

effects 
The second class 

materials that 

A. Isotropic metamaterials 

the it necessary 
to out that metallic MMs may also divided into 

which we shall characterize (i) connected 
non-connected, As the name suggests, the 

connected MMs the metallic part is 
jm,erconnected the metamaterial while 

not This distinction 
because in connected there is a net 
contribution to the dielectric function due 

to the metallic part, while in the non-connected MMs the 

of a metallic 
1 in front of connected metallic-

based metamaterial 2, For the metal we assume the usual 
Drude model 

I, ( 41) 

connected metallic metamate­

alone: 

a dielectric response 
resonance and Drude contribution: 

1 (1 - 1) ,-~--"',""'-

=1 

where Wm and 1m are defined 
electric counterparts. In Fig, 4 we 
Lifshitz force between a metallic 

their 



isotropic metallic-based planar metamaterial described 
by (42) and (43) for different filling factors at zero tem­
perature. We see that without the Drude contribution 
(f = 0) there is repulsion for a certain range of dis­
tances, as long as the half-space 2 is mainly magnetic 
(E2(i~) < /.L2(iO). However, as we "turn on" a metal­
lic background (f > 0), the permittivity grows stronger 
and reverts the previous relation for a larger and larger 
range of frequencies, up to the point where the magnetic 
activity is no longer able to produce repulsion. 

An idealization carried throughout t he paper is that 
both the metal and the metamaterial are infinitely long 
in the z-direction. \"-'hen we have slabs of finite thickness 
instead of half-spaces, the reflection coefficients change to 
[16] 

where K j = JkIT -L /.Lj(iOEj(iOe/C2 , dj is the thickness 

of the j-th slab, and we are assuming that both slabs are 
surrounded by vacuum. From the previous expression 
we see that corrections to the half-space reflection coeffi­
cients (at imaginary frequencies) are exponentially small 
when both products K1d1 and K 2d2 are sufficiently large. 
This basically tells us that estimates on lower bounds for 
d1 and d2 are actually model dependent (given that K j 

depends on the properties of medium j), so in order to 
discuss those estimates we have to be more specific. For 
a metal described by (41) and a wave arriving at normal 
incidence, we have 

where Ap = 27[c/n1 , Ad = 27[chl and A = 27[c/ ( For 
high frequencies, we have A « Ad and then (45) becomes 

(46) 

For typical metals ,\p/27[ is around 10 - 20nm, so, at least 
for high frequencies, the contribution to the Casimir force 
of a slab some tens of nanometers wide approaches the 
contribution of a half-space. However, in the opposite 
limit (A » Ad), we have 

(47) 

where (fa = nih is the static conductivity and b(O is 
the skin depth of the metal at imaginary frequencies. 
Thus, for long wavelengths we see that d scales with -1>-, 
leading to the conclusion that the half-space approxima­
tion is not good for sufficiently low frequencies. Fortu­
nately, for typical materials this is no source of concern, 
since the integration range where A » Ad holds is very 

u 
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FIG. 4: The ratio F / Fe for a gold half-space facing an 
isotropic, interconnected and silver-based metamaterial. F / A 
is the Casimir force per unit area in this setup, and Fc/A = 
ncn2 /240a4 is the Casimir force per unit area between two 
perfect plane conductors. The frequency scale D = 27[c/ I\. 
is chosen as the silver plasma frequency DD = 1.4:3 x 10 16 

rad/sec. Parameters are: for the metal, DJ/D = 0.96, 
,1/D = 0.004, and for the metamaterial, DD/D = 1, ,D/D = 
0.006, De/D = 0.04, Dm/D = 0.1, welD = Wm/D = 0.1, 
I'e/D = I'm/D = 0.005. The inset shows the magnetic perme­
ability /.L2(iO and the electric permittivity E2(iO of the MM 
for the different filling factors. 

small compared to the effective integration range, allow­
ing us to push the slab approximation up to very small 
frequencies with almost no effect in the final result. One 
might wonder what happens for oblique incidence, but it 
is easy to see that the more oblique the incident angle is 
the better the estimate for d1 holds, since Kl gets larger 
and larger (this only means that reflection gets easier as 
the incidence angle gets larger, as physically expected). 
The effect of finite thickness in the Casimir effect was the 
object of several papers [43], notably in [44] where a sys­
tematic procedure was developed to deal with any given 
number of arbitrary slabs. The effect of finite thickness 
was also studied in the specific context of Casimir force 
and metamaterials [16, 18, 45], where it was found that 
having a layer of a M'M instead of a half-space reduces 
the intensity of the repulsion force and also the range of 
distances where it occurs. 

B. Uniaxial Metamaterials 

Electric anisotropic effects in the Casimir interaction 
have been thoroughly studied in the literature [41, 42, 47-
49], but until recently there was no compelling reason 
to study the consequences of magnetic anisotropy. This 
changed with the advent of metamaterials, and an in­
vestigation of magnetic anisotropy is now in order. The 
best place to start is to consider uniaxial out-of plane 



it. 

= 1 (1-

1 - (1 

account for 
m11">1(,Il'r of the MM. 

C. Biaxial metamaterials 

our track towards 
dia, now tackle the orthorhombic 
consider metarnaterial characterized the 
dielectric and 

10-1 

FIG. 5: The effects of uniaxial anisotropy in the Casimir 
between semi-space and 

with Drude background. The 
d A. All parameters are t.he same 
the filling factors and It, which 
plot 

subsection 

1 



may then rewrite the material tenoors as 

[ '!' 0 a 
tij = +0) 0 

a tz.y 

[1' a :] /-kij fJ·xx 
a 

coefficients fed uce to 
. PC'rforminp; now some 

ward calculations we .i!/'T, up to 0(02
), 

Now let us return to the general structure of t.he Lif­
shitz formula. Since R2 is not diagonal we should expect 
contributions from the terms in 
but it can be shown , and therefore 

be After a few rearrangements we arrive 
our for the Casimir pres;-;ure: 

F 
A 

10 

<t 
u 
.c: 

IJ.. 

100 

diA 

in 

where 

An easy consistency check of this result 
zero-anisotropy which reduces jrnrn,,,i,C) 

uniaxial it should. A 
obtain the non-retarded limit of c>vnr,""" 

shown to be at 

at 
limit the contribution of the electric response to 

the Casimir force is maximized. 

D. Dissipation effects 



FIG, 7: The ratio 

dissipation parameters, 
simultaneous modification 
tion. Inset (a) shows the 
different values of the 

d//\ 

2,5 (dotted), Inset shows the effect of magnetic 
cion alone for different values of the ratio 
0,5 (dashed), 2,5 The factor is ! 
three plots, and all other parameters except the dissipation 
coefficients are the same in 4, 

00,0:=1,<'2 1,02 
pect an increase in the Casimir repulsion as we make 

and that is what is observed in the inset 
be to inset (bl, but 

the 

E. Temperature effects 

The effects of temperature in the Casimir force be­
tween metamaterials and dielectrics were 
cussed in where the authors show that in 

situations where the 
modeled either Drude or 

In Sa we show tem-
peratures between a Drude metal and an MiVI 
with no Drude In this case we see that tem-

perature also works 
thai; the window quite open for 
tures as high as T 
temperature, at least in 

for repulsion at room 
Something even more 

change the Drude metal when 

isotropic materials at finite temperature T 

F(d,{3) 
A 

cases we have 

while in the 

This means 

Casimir force by 

have 

metals is that in the former 
= 0, leading to 

k k 

k+k 
0, 

for dielectrics or Drude 
contribution to (56) 
which is 

k) > 0). Since this term domi­
"">L<>"~0~, we cone! ude then that the force 

However, for metals 
that both TE and TM zero modes 

k) 

02(0) - 1 
( , > 0, 

02 0) + 1 
k) 



d(y,m) 

FIG. Temperature of the force be­
tween a metallic plate and a metamaterial. We plot the 
Casimir force between a metamaterial and a Drude metal 
or a plasma for different temperatures. All 

are the the OIles used f 0 curve of 

We see that the the force 
balance between the TE and TM and 

) where C is a constant de­
It is clear then that if 

temperature increase enhance 
Our 

model for 
the conclusions of 

for temperature effects using Drude 
metallic consistent with 

F. Metarnaterials based on isolated metallic 
structures 

There metamaterials where the 
metallic non-connected way. In 

12 

for instance, the authors put forward a MM consist-
of pairs of metallic distributed 

on top dielectric substrate. 
is necessary create an 
the currents in each pillar are in 

where the electric at a certain 
contributions of both canceled out and 

effective 

treatment of the 
the scope of the 

to capture 
non-connectedness and geomet­

built-in resonances through the use of an appro­
priate toy model. In order to address the 
consider MM model of 
metallic 
host dielectric 

=1 

(w) = 1 -

(61) 

sible 
much smaller than the radiation 

be in terms of the dielectric 
similar relation 

(62) 

and by 

This result is known as the Maxwell Garnett 
tion for the after the 

A brief analysis 
WVWl,<:;U metallic pieces: the pre-

vious formula tends to a in the zero 
unlike (42), which describes a connected metallic 

1f1vi. effecti ve can be dealt similar 



way, and it is 
we have 

As noted for effects 
of metallic non-connectedness, include the 
built-in electric and resonances we sim-

their existence in an ad hoc manner and add 
and 

be modeled 

IV. DIELECTRIC-BASED META MATERIALS 
AND THE CASIMIR EFFECT 

on dielectrics 
metalllc 

for the construc-

1::\ 

FIG, 9: The ratio for a gold half-space facing a 
isotropic, non-connected and gold-b~"ed metamateriaJ. 
parameters metal !',h,met/D 0,96, 
0,00'4, for the metamaterial we have 

= 0,064, wolD = 0,2, wm/D = 0,15, 0,04, 
0,02, f The inset shows the permittivity and 

permeability inside MM, as given by but functions 
of imaginary frequencies 1;, 

a characteristic resonance 
at very high 

In order to fix 

allow for Ul 

Bessel function (Hankel 
and 

for the observation of 

dielectrics most C.VJ'U1UVU1Y are 
of MMs are elude that in this framework we do not have to assume 

the dielectric function an ad hoc it is built into 



,we have 

(70) 

14 

d().4m) 

FIG, 

02,3 

72,) 72,2 72,3 0, f 0.1, and the parameters of 
are exactly the same except for O. O. The inset shows the 
same plot on a different scale, since in the one it not 
possible to see t;,p for large distances, 

repulsion seems 

V. DISCUSSION 

A confirmation of the HH'''''''''"'''' 
the Casimir would be a 
between a metallic and a 
This seems of the ,;:,v,oom,,,,,,,, 

in the attractive force 
nevertheless be traced back to the prop-

erties of a metamaterial. 

Let be the Casimir pressure between a half-
space and a metarnaterial. If the prop-
erties of the MM are "turned off", other 
parameters the same, the pressure \'vill to some 
new value In order to check whether the differ-
ence 6P = p(2) should be we plot its 



= 2rr x 229 Hz. 

d (~m) 

frequency shifts caused by the 
activity in the metamaterial. 
zerO temperature. The MM 

parameters for 
= 4.74 X 1O-23cm3 

11 for zero and room tempera-
tures, uSing both and models for the metaL 
The of current lies around 1 
from which we conclude that detection of magnetic effects 
in our setup is up to d ~ While 
this suggests a window for measure-

that many the 150 350 

the 

have in nrmc'ml? 

necessary to detect effects, an actual 
measurement of such effects is still a challenging task. 

which is desirable from 
of view of effective medium C."""J,'l' 

The zero temperature Casimir-Polder potential between 

state atom and is 

is the static 

center of mass oscillation 
sate 

where 
shifts 

present and absent. V.,Te 
in the best case scenario to 

the magnetic influence would be detectable up to 
around 2.5 /hm; for distances the force is just too 
weak. 

As our final 

like the Ck'iSUrance 
activity is the cause of force reduction, 

'" than some trivial effect like a reduced filling factor. 
\\11th the consistent of both Casimir mea­
surements and MMs manufactured in the recent years, it 
is very reasonable to expect that a Casimir measurement 
of effects will be feasible in the near future. 
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