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Planar Elliptic Growth

Dmitry Khavinson, Mark Mineev-Weinstein and Mihai Putinar

To our friend Bjorn Gustafsson

Abstract., The planar elliptic extension of the Laplacian growth is, after a
proper parametrization, given in a form of a solution to the equation for area-
preserving diffeormorphisms. The infinite set of conservation laws associated
with such elliptic growth is interpreted in terms of potential theory, and the
relations between two major forms of the elliptic growth are analyzed. The
constants of integration for closed form solutions are identified as the singu-
larities of the Schwarz function, which are located both inside and outside the
moving contour. Well-posedness of the recovery of the elliptic operator gov-
erning the process from the continuum of interfaces parametrized by time is
addressed and two examples of exact solutions of elliptic growth are presented.

Mathematics Subject Classification (2000). Primary 76305 ; Secondary 76D27,
31A25, 30C20, 31B35, 35J10 .

Keywords. Moving boundaries, Elliptic growth, Laplacian growth, Schwarz
function, Beltrami equation, Schrédinger operator, Dirichlet problem, Carle-
man equation.

1. Introduction

Several moving boundary processes, such as solidification [1], electrodeposition [2],
viscous fingering [3], and bacterial growth [4], to name a few, can be reduced, after
some idealizations, to the Laplacian growth, which can be described as follows:

V(§> = anGD(t)(fv (Z). (]“1)
Here V' is the normal component of the velocity of the boundary 0D(t) of
the moving domain D(t) C RY, £ € 8D(t), t is time, 8, is the normal component

This work was supported by the 20070483ER project Minimal Description of Complex Interfaces
of the LDRD program at LANL. The first and third authors were also partially supported by
the NSF grants.
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of the gradient, and G p(y(£, a) is the Green function of the domain D(t) for the
Laplace operator with a unit source located at the point a € D(t).

In two dimensions this equation can be rewritten as the area-preserving dif-
feomorphism identity

S (Fezp) = 1, (1.2

where z(t, ¢) := 8D(t) is the moving boundary parameterized by ¢ € [0, 2] and
conformal when analytically extended in the region 3¢ < 0 [5, 6]. The equation
(1.2) possesses many remarkable properties, among which, the most noticeable
ones are the existence of an infinite set of conservation laws:

= / 2" dz dy, (1.3)
D(t)

where n runs over all non-negative [7] {non-positive (8]} integers in the case of a
finite (infinite) domain D(t), and an impressive list of exact time-dependent closed
form solutions [6]-[21]. For a beautiful interpretation of conserved quantities C,
as coefficients of the multi-pole expansion of the fictitious Newtonian potential
created by matter uniformly occupying the domain D(t) see, e.g., [21].

It was established in [22] that the interface dynamics described by (1.2) is
equivalent to the dispersionless integrable 2D Toda hierarchy [23], constrained by
the string equation. Remarkably, this hierarchy, being one of the richest existing
integrable structures, describes an existing theory of 2D quantum gravity (see
the comprehensive review [23] and references therein). The work [22] generated
a splash of activity in apparently different mathematical and physical directions
revealing profound connections between Laplacian growth and random matrices
[24], the Whitham theory [25], and quadrature domains [26].

In this paper we present a natural extension of the Laplacian growth, where
the Green function of D(t) for the Laplace operator V2 in the RHS of {1.1) is
replaced by the Green function of a linear elliptic operator,

L=V (AXV) —ux), AX) >0, xecR% (1.4)

Such a process, which is natural to be named an elliptic growth, is clearly much
more common in physics than the Laplacian growth.

Consider, for instance, viscous fingering between viscous and inviscid fluids
in the porous media governed by Darcy’s law

v =—AVp, (1.5)

where A is the filtration coefficient of the media and p is the pressure (equal to the
Green function, Gpys), defined in (1.1) in most of the cases of interest for us). One
can easily imagine a non-homogeneous media where the filtration coefficient A is
space-dependent. Such examples of elliptic growth, where the elliptic operator L
has the form of the Laplace-Beltrami operator, L = ¥V - AV, and X is a prescribed
function of x, will be called an elliptic growth of the Beltrami type. It is clear that all
moving boundary problems other than viscous fingering with a non-homogeneous
kinetic coeflicient A fall into this category.



Planar elliptic growth 3

From a mathematical point of view this process is the Laplacian growth oc-
curring on curved surfaces instead of the Euclidean plane. In this case the Laplace
equation is naturally replaced by the Laplace-Beltrami equation, and A (that can
be a matrix instead of a scalar as it is in our case) is related to the metric tensor.
There are several works addressing the Hele-Shaw problem on curved surfaces and
we will mention below those few related to the integrable mathematical structure
of elliptic growth.

Another major source of examples of elliptic growth is related to screening
effects, when u # 0, while X is constant in (1.4). The simplest example of this kind
is an electrodeposition, where the field p is the electrostatic potential of the elec-
trolyte. It is known that in reality electrolytes iong are always locally surrounded
by a cloud of oppositely charged ions. This screening modifies the Laplace equa-
tion for the electrostatic potential by adding to the Laplace operator the negative
screening term, ~u(x), which stands for the inverse square of the radius of the
Debye-Hukkel screening in the classical plasma [27]. For the homogeneous screen-
ing v is a (positive) constant, so the operator L becomes the Helmholtz operator,
while for the non-homogeneous case, when u is not a constant, L is a standard
Schridinger operator. Motivated by this example, we will call the moving boundary
problem for L = V? — u an elliptic growth of Schrédinger type.

We show that these rather general types of elliptic growth still retain re-
markable mathematical properties, similar to those possessed by the Laplacian
growth. A mixed case with a non-constant A and non-zero u also shares similar
properties but is less representative in physics and can always be reduced to one
of the two former types of elliptic growth by a simple transformation described
later on in the article. For completeness we shall indicate another class of elliptic
growth when the fluid density p changes in space while it is constant in time. This
happens for instance when porosity (fraction of porous media accessible for fluid)
is space-dependent. In this case the continuity equation for incompressible fluid in
porous media has the form

V{p(x)A(x)Vp) = 0, (1.6)

while (1.5) still holds. This case presents an additional extension of the elliptic
growth related to potential theory with a non-uniform density, as will be shown
below.

In prior works on elliptic growth an infinite number of conservation laws, re-
garded as extensions of (1.3), were identified in |21, 28]. Also an integrable exam-
ple in 2D, which corresponds to a very special choice of the conductivity function,
A(x), was explicitly constructed in [29]-[31]. The elliptic growth in these works was
reduced to the well-known Calogero-Moser integrable system.

The present article contains several new results on elliptic growth and reviews
the known conservation laws from a slightly novel perspective. It is organized as
follows:

- In Section 2 we interpret (1.2} as the equation of the area-preserved diffeo-
morphism in 2D and analyze its connections with the Laplacian growth.
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- Section 3 contains the definition of elliptic growth, the conservation laws for
this process and recasts the latter in terms of the inverse non-Newtonian potential
theory.

- In Section 4 we obtain the equation (1.2} for elliptic growth of the Beltrami
type by introducing the function g, conjugate with respect to p defined in (1.4),
which plays the role of a stream function for the incompressible fluid; furthermore,
we obtain the Beltrami equation for the function p + iq.

- Section 5 is devoted to analyzing connections between the elliptic growth of
the Beltrami and Schrédinger types, elucidating the difficulties of parametrization
of the interface for the Schrédinger type.

- In Section 6 we reformulate the elliptic growth in terms of the Schwarz
function of the moving interface.

- Section 7 addresses a well-posedness of a recovery problem for the operator
L from the continuum of moving interfaces parameterized by time.

- In Section 8 we discuss Herglotz’ theorem as the main device to generate
exact solutions and present two examples of the exact closed form solutions of the
elliptic growth. We also identify the constants of motion of these solutions as the
singularities of the Schwarz function of the moving contour.

- Section 9 contains brief conclusions.

Due to the fact that one of us is labeled as a theoretical physicist (although
in his heart he is a mathematician} and following the customs of the physics
community the references do not appear in alphabetical order.

Acknowledgement. This work took shape during a visit of the first and third
author to the Los Alamos National Laboratory. They warmly thank this institu-
tion for an inspiring and stimulating atmosphere.

1.1. List of notations and conventions
We collect below a few basic definitions and notations used throughout the text.

V= A, Vf=gradf;

V(U) = V- U = divU, where U is a vector field;

cv dggotes the class of real analytic functions;

h=%%;

n stands for the outer unit normal to the moving boundary I' = I'(¢);

¢ denotes the arc length on the boundary T;

dA = 1d Areqa = 0%,

an analytic Jordan curve means a smooth Jordan curve which admits a real
analytic parametrization.

2. Area preserving diffeomorphisms

This section contains some immediate implications of the equation of area preserv-
ing diffeomorphisms related to the parametrization of an analytic Jordan curve.
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Later on we shall see that this, apparently innocent, Jacobian identity plays an
important role in the study of moving boundaries governed by elliptic growth.

2.1. Fourier expansion
Consider the equation
S(zz) = 1, (2.1)
where ¢ € {0,7] is a non-negative variable (usually identified with time), while
g € [0,2n] is the parameter along the Jordan analytic curve ). Equation (2.1)
can be interpreted as an area preserving property: that is the Jacobian of the
transformation
(t,q) = (z,y), where z(t,q)=x+1y,

is equal to 1.

To be more precise, for a fixed ¢, we assume that the 2r-periodic real analytic
map

z(t,) 110,27, — C

is an embedding, and its range is denoted by ;. We denote by D(¢) the interior
of the Jordan curve (.

In view of the smoothness hypothesis imposed on 2(t,q) we can expand the
function z(#,q) in a Fourier series

2(tg) = ax(t)e . (2.2)

We will assume that the dependence t — 2(t,q) is C'. Also, we put w = €%, so
that we can rewrite (2.2) as

2(t, w) = i ar(t)wk.

By the analyticity assumption, there exists €,0 < ¢ < 1, so that the above
Laurent series is convergent in the annulus 1 — ¢ < w| < I +¢.

Due to the real analyticity of the map 2z, the Fourler series for z and its
derivatives are absolutely and uniformly convergent, whence

o0
zq(t, q) = 72 kay(t)et™,

and
o

Z(t,q) = ) an(t)e .

hade ]

Thus, equation (2.1} becomes

1 — )
1= G(Zzg) = 3 Z(énkak + a'knﬁ,;)ez(k”m‘? =

k.
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o0 1 X

D (5 D0 (0t m)antnim + nlnpmn) ™.

TR e O =00

By equating the coefficients we find

1 [o ]
1= 5 Z (na,an, + na,a,),

n=—0o0
and
1 & - . —
0 = 5 R;OO((H + M) anlntm + Nn 1 m8r),
whenever m #£ (.
Since
_ zdz ———0z(t,w) dw b dz{t,q) dg
Area(D(t)) = o E = [wl:l Z(t, q)—a&’— 5 == /0 ,Z(t, q) aq g;

we derive the following remarkable identity.

Propesition 2.1. Under the assumption (2.1), the family of domains bounded by
the curves z{(1,q), 0 < g < 2=, satisfy

dArea(D(t))

— 9.
di i

By regarding z now as a function of t and the complex variable w = 9, we
obtain, along the curve Cy, the following:

8z 0z 0w
dqg  Ow dg
Denote, for the sake of simplicity, ' = z,,. Then, the master equation {2.1)
becomes

R(w2'z) = 1.

Since z{t,-) is analytic in the annulus 0 < 1 — € < jw| < 1 + ¢, the following result
follows.

Proposition 2.2. Under the above assumptions
w6 w2t 1 fw) + -i—)z’t(t, %)z(w} —9 l-e<|u/<l+e
{As usual, for a complex analytic function h{w), we denote by
h¥(w) = h(w),

obtained from h by conjugating its Taylor coefficients.)
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2.2. Analytic parametrization.
The most studied case of the Laplacian growth process requires an additional

analyticity assumption. We devote the present subsection to this scenario. Assume
that for all ¢ € [0,77] the negative Fourier coeflicients vanish, i.e.,

ax(t) =0, k<0 (2.3)

It is not difficult to see that this will hold the whole evolution, ¢ € [0,T]. The
equation (2.3) simply means that for a fixed ¢ the function z{f, w) extends analyt-
ically to the unit disk w € D. Since z{¢, -} is a homeomorphism from the boundary
T = 8D to the curve 3D(t), the argument principle implies that

z(t, ) : D — D(¥)

is a conformal mapping. Let w = ¥(t,z) denote the inverse conformal mapping.
Since a linear transformation 2 ~ az + 3,la| = 1, leaves the equation (2.1)
invariant, we can assume without loss of generality that z(¢,0) = 0 and that
p(t) = 2/{t,0) > 0. To distinguish this case from the general case considered in
the previous subsection we shall denote 8D(¢) by I'(¢). The function p{t, 2} =
log |¥(¢, 2)| is, up to a constant factor, the Green function of the domain D(t),
with the source at z = (. This means that p(¢,.} is the unique harmonic function
in the punctured domain D(¢}\ {0} having zero boundary values on I'{¢) and such
that p(t, z) — log |2] is harmonic at z = 0.

Moreover, the harmonic conjugate function arg W(¢, z) is, up to an additive
constant, equal to ¢{z), z € T'(2).

In other words, for a fixed value of the parameter ¢, we have:

Vip(t,-) = 2m8(-), in D(t),

p(t,)lr@y =0,
and
(qy(t,-), =gz (t,-)) = (pa(t, ), py(t, )
Consequently, the normal velocity of the boundary equals
oalt,) _ onit,)
ot on

So, by the area conservation property, we have

Vo=

VdzAdl=dz ndg.

These equations define a specific dynamics of planar boundaries known as
Laplacian growth. For recent guides to the mathematics and physics behind Lapla-
clan growth we refer to the volume [32] and the survey [26]. We will return to this
case after discussing the geometry of the moving boundaries.
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2.3. The Schwarz function

An important tool for studying the changing geometry of the moving boundaries
is the Schwarz function [33], [45]. Up to the complex conjugation it is simply the
(local) Schwarz reflection with respect to an analytic curve.

On the real analytic smooth boundary I'(¢) of D(¢} we introduce the Schwarz
function

z = 5(t,2),

where § is analytic in the variable z. The domain of definition for S{¢,.) is at
least a tubular neighborhood of I'(¢), although the function may possess analytic
extensions to much larger sets. For instance, the Schwarz function of a disk centered

at z == ¢ and of radius 7 is the rational function

2
_ T
S =a+——.

If a polynomial P(z,%) vanishes on I'(¢), then, necessarily, the associated Schwarz
function satisfies the algebraic equation

P(z,5(t,2)) =0, zeD(t).

Proposition 2.3. [34] The normal velocity of the boundary satisfies
S
2i/5,’
with the proper choice of the branch of the square root, so that 1/\/S, = dz/d¢
along I'(t).

Proof. By taking derivatives with respect to ¢ we have
Et' = Sg -+ S 22t
When restricted to the boundary curve,

dz
S TIID e————
P dz

is a complex number of modulus one.

Fix a single-valued branch of /5, along 8D(t). This is always possible since
1/V/5, equals to the unit tangent vector to 8D(t) and, hence, is single valued near
OD(t). Then the above equation becomes

~ 5y \/“‘ Z
= A B2 —
VS, "VEL

or, equivalently,

St i~ Zt
T— 2’&% .
V'S; VS,
Since
1 dz
N AT
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is the unit tangent vector, then

Theorem 2.4. There exists a multivalued analytic function W(t, z), defined in a
neighborhood of dD(t), with the property

St = 8zW
and such that RW is constant along OD(t).

Proof. From the above computations we find

— —2
Sp = 21/ 85,V = —V,
’ Ve
whence the vector S; is collinear with the complex conjugate of the normal to T'{¢}.
Moreover, rewriting the last equation in the form

S = oW

we infer

Ss|n = 8¢ = OW = V(RW),
where n is the normal to 8D(t). Hence, it follows that the boundary, 8D(¢) is a
level set of RW. N

2.4. Laplacian growth

In this subsection we merely illustrate few classical observations related to the con-
sequences of the dynamics (2.1) under the analyticity assumption ar(t) =0, k <
0, ¢t € [0, 7). That is, we assume again that the parametrization 2(¢,-) of the curve
I'(t) analytically extends to the interior of the unit disk I and will use intensively
the Schwarz function techniques.

By returning to the notations introduced in Section 2.2 we can identify the
complex potential W with the multivalued function {(¢,2) = p{(t, z) +ig(t,2) =
log ¥(¢, z) and then study the analytic extension of the Schwarz function S(¢, z).

Theorem 2.5. [34] For every t, there exists a tubular neighborhood U of T'(t), such
that
Si(t, z) = 2¢,(t,z), zeU. (2.4)

Note that the function { is multivalued and analytic in the punctured domain
D(t) \ {0}. Its derivative ¢, is therefore meromorphic there with a simple pole at
z == 0 and the residue equal to 1.

Proof. Indeed, according to Proposition 2.3, we have along T'(¢):
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> o _ % Op _ 2Bp/om)dt _
Ut dzjdlAn dz -

(i0g/08)dl _D(p+ig)/ot)dl B¢

2 =2 pay

dz dz dz

o

As simple as it looks, equation (2.4) has surprising consequences. In order to
unveil them, we start with the known Plemelj-Privalov-Sckhotsky formula applied
for a fixed t to the function S(¢,-). Let

2mi Jpuy o — 2

Si(t, z) = L/ gdo , 2 € D(t), respectively ze C\ D(t).
I{
Then
S(t,2) =8.(t,2) - S.(t,2), z2€U, (2.5)

where U denotes, as before, a neighborhood of I'(¢). Similarly we decompose the
function ,(¢, 2z} and find

(G)-(62) = =

From the uniqueness of the above decompositions and (2.4), we infer

-2
-t R
S (73)"& > 3
or, for z ¢ D{t),
41 [ oo -2
dt 2w p(t)o-z“ z’

that is

i/ dA(o) -2
dt D(t)O'-Z_ Zi

By integrating against a polvnomial f along the circle |2| = R, with R suffi-
ciently large, we find the following general identity.

Proposition 2.6. If the parametrization z(t,w) of the boundary of the domain D(t)
extends anolytically to the interior of the unit disk D := {w : {w| < 1}, then for
every polynomzal f(2) the following identity holds:

|  J(£184() = 25(0).

Equivalently, S_(t, z) = =2 + h(z), where h(2) is an analytic function in the
neighborhood of C \ D(t), vanishing at infinity, and independent of £. A simple
application of Cauchy’s formula now yields that there exists a complex valued
measure y supported on a compact set K < D(t}, independent of ¢ {as proved
above) and such that

s_(t,w)z'%”'—%/K‘;“—f‘;, 2 eC\ D@
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By repeating the above calculations we find
[ dale) a1 duo)
D

) o -z z Tilg 02
and, consequently, the following quadrature identity follows.

Corollary 2.7. Under the same hypotheses as in Proposition 2.6, for every polyno-
mial f we have

F)AAG) = 20f0) + = [ (o) (26)
D(t) T JK

Simple examples show that the measure u is not unique. If one insists that
the supporting set K is "minimal”, and the representing measure p is positive,
then one can prove in most interesting cases the uniqueness of u. The case of
quadrature domains (¢}, corresponding by definition to a positive finite atomic
measure 4, is by far the best understood from the constructive point of view.
In this case the conformal mappings z(¢,w) are rational. Examples, a discussion
of the alluded uniqueness and further details and references can be found in the
collection of articles [35], cf. also [42), citeShapiro.

3. Elliptic growth

Guided by Laplacian growth as a prototype, we introduce in this section the elliptic
growth phenomenon mentioned in the Introduction. It is surprising to see that
many features of Laplacian growth persist and yet sharp differences occur. Let us
start the formulation in arbitrary dimension d for a possibly multiply connected
domain D(¢t) in R? with many sources, but later on we will focus on a homotopically
trivial 2D case with a single source at the origin in more detail.

Consider a family D(¢) of bounded domains in R? with smooth analytic
boundaries. Moreover, dependence of D(¢} on ¢ is assumed 16 be real analytic {in
the sense of a chosen parametrization) as well.

Let G be an open set containing as relative compact subsets all D(¢), -1 <
t < 1,and let A : G —> (0, 00} be a real analytic function. We consider the elliptic
(non-positive) differential operator

L =V - AV = div(Agrad).

As we noted in Section 1.1, when there is no danger for confusion we shall omit
the dot in the notation, and write, for example, A = V2,

The moving boundary problem with N sources sg at x¢ € D{(t) is the follow-
ing:

Given D(0), find domains D(t} satisfying the system of equations:

N
Lp:Zské(x—xk) in D(4),
k=1
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Pap =0,

V= A0.p on 9D(¢).
Note that the first two conditions simply assert that p is the linear combina-
tion of the Green functions for the operator L of the domain D{(t}, with singularities
at xj, while the third condition determines the dynamics of the moving boundary.

Theorem 3.1. For every function ¢ € C*(G) satisfying Iy = 0, we have

N
d
— pdVol = > spt(xi).
dt Jpw —

Here, dVol stands for Lebesgue measure on D(t).

Since the constant function ¢ = 1 is annihilated by the operator L, the above
formula implies

N
d
— Vol D(t) = , i< L
7Vl D0 = 3 s 1
Thus, in this moving boundary process, the volume is still proportional to time.

Proof. Let dI' denote the surface element on each connected component of the
boundary of D(t). Then, we have:

A yivol = / pVdl = / ($A0p — PAInp)dT =
dt Jpy aD(t) an(t)

f (YAVD — pAVY) - ndl = V- ($AVp — pAVy)dVol =
D) D(t)

N
[ ko~ pLilavol = 3" s
D(t) k=1
G

Corollary 3.2. In the case when the domains D(t) are all homeomorphic to a ball
and contain a single source 8y > 0, the moments

() = /1/; dvol, Lt =0,
determine the domains D(t) (locally in t).

Proof. Indeed, it is sufficient to consider a single moment C(1). As remarked
earlier,

dVol(D(b)) =/ Vdl = s; >0
dt aD(t)

and the corollary follows, after observing that the family D{#) is increasing with
respect to the ordering by inclusion. O
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Remark. Theorem 3.1 and the Corollary extend word for word to more general

elliptic operators
L = div (A grad) — u{x),

where the matrix A = (A ;(%); j=1,2) is uniformly elliptic on the domain G and
all the coefficients A; ;, u(x) are assumed to be real analytic in G and u > 0. The
only modification needed is that in the last boundary condition in (1.1} where
one ought to require V = A(Vp) - n. The existence of the Green function p for
such operators is well known [36, 37]. The fact that V' > 0 on 8D(¢) then follows
from the maximum principle and Hopf’s lemma which hold for such operators cf.
[36, 37, 43].

Assuming that the sources strengths s (t) depend on time we then obtain
another notable corollary of Theorem 3.1. The functionals || D) 1dy do not depend

on s;(t), but only on the value of the integral fg s(t) dt 138, 21, 42].

The functionals |, D) dVol have a remarkable potential theoretic interpre-
tation {21, 28]. Indeed, imagine that a domain D(¢} is occupied by matter with a
unit density, which creates the potential ®, governed by the Poisson’s equation

L® = xpw),

where xp Is the characteristic function of the domain D. A solution of the last
equation is

B(x) = /D ., Colxy) dVol),

where Go(x,y) is the fundamental solution for the operator L. In important par-
ticular cases which are relevant for physical applications (for instance, for the
Helmholtz operator A — 1} it is possible to expand Gy(x,¥) into the series

Go(x,y) =Y In(x)¥nly), = ¢ D(t),y € D(1),

where {1, } and {¢,,} are bases of the null space of L in D(t) and its complement
in RY respectively. Then, assuming comrmutativity of summation and integration,
we obtain

2 = Y dnlo) [ | Ea)avely)

Therefore, we have obtained the functionals introduced in the Theorem 3.1 as
the coeflicients of the multi-pole expansion of the non-Newtonian potential given
in a far field. We would like to add that the gradient of ¢ is a generalization of
the Cauchy transform for the domain D(t) - the notion that was so useful in the
Laplacian growth and the related field of quadrature domains.

In the case of elliptic growth with nonhomogeneous density mentioned in the
Introduction, one should modify the formulation given in the beginning of this
section by adding a positive space-dependent factor, g, namely,

A= pA;
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under these assumptions we still encounter an infinite set of conservation laws
similar t0 the previous case, when p = 1, namely:

d . N
— =dVol = L (X))

& Joe 7 ;q (%)

The elementary proof is not included here. From the point of view of potential
theory this corresponds to the case of occupation of the domain D(¢) by non-
uniform matter with density 1/p(x). Some aspects of this case in 2I3 were discussed
in [39], also cf. [43]. It is clear that the inverse potential problem of recovery of
D(t) is considerably more difficult in this situation.

4. The conjugate function

From now on we return to a planar case with a single source of strength s; = 2n
and assume that all domains D{t), 0 < ¢t < T, are simply connected. Define,
using the notations from the previous section, a (multivalued) conjugate function
g € C¥(D(t)) by

@y = Ape (4.1)
gz = —ADy. (4.2)
Accordingly,
1
A
In most computations below ¢ is fixed. However, we stress that by its very defini-
tion, the function g depends on ¢ also: ¢(2,Z) = g(¢; 2, ). We hope that omitting
t in the notations of ¢ will not confuse the reader.
We have

V.<Vg=0, in D(t).

V =2X0p=0deg.

Let z(¢t, ) be the parametrization of the contour I'{(#) = JD{(¢) by an arc-
length £. Then a right angle rotation of the unit tangent vector gives

n = —izg,

hence the normal component of the boundary velocity is

where, as before, subscripts stand for partial derivatives.

Since A is positive, then d; ¢ > 0 along I'(¢), therefore ¢(¢,.) can equally well
parameterize the boundary 8D(¢) = I'(¢), in which case we can rewrite the above
equation as

J(Fzg) =1, on ID().

Lemma 4.1. The variation of g along the curve T{t) is equal to 2x.
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Proof. Indeed
Jq Adp
var g = f —dé = f —dl =
|F(t) T(t) 8£ T(t) 8’)’&

/ AVp-ndl = / V(A\Vp)dArea = 27.
T(t) D(t)

O
Introducing the multivalued function
((2,%7) = p+ig,
we have
iXOp = Og,
or, still,
—_ 14X
=" 4,
8 = 750, (43)
which is a form of the Beltrami equation [44]. In terms of a new variable
. q
w=VIp+i—=,
T
the equation (4.3) takes the canonical Carleman form
dw = (Blog VA @. (4.4)

An implicit solution of this equation is found from

N Blog(vACT) 200 ,,
oo, = Flrjexp [ FEMERE) S aac)
where F'(2) is analytic in D(¢) (cf. [44] for more details).

Thus the moving boundary problem of finding D(¢) can be reformulated as
a Dirichlet boundary value problem:

Given the weight A, find a function {(z, z) (or, w(z, £)) satisfying the Beltrami
{or, Carleman) equation above and subject to the boundary condition RC = 0 {or,
Rw = 0.

5. Elliptic growth of Schrodinger type

The previous section was devoted to the elliptic growth of the Beltrami type. In
this section, we will consider the elliptic growth of Schrodinger type, which, as
already mentioned in the introduction, is related to the theory of the Schrédinger
operator. To be specific, we consider the problem:
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Given a domain D(0) find domains D(t) , satisfying the system of equations:

N
(Vg —u}P = qué(x —xx) o D),
k=0
P = 0 on 8D(1),

V = 0,P ondD(t).

As has already been demonstrated, this problem has an infinite set of conservation
laws which are time derivatives of integrals of null vectors of the operator L. These
integrals have the potential-theoretic interpretation discussed in Section 3. Let us
pose the following question. Does there exist in this case a function @ “conjugate”
w.r.t. to P in the sense that P and ¢J are connected via some generalized Cauchy-
Riemann equations? And, if such @) exists, can it be used as a parametrization of
the moving contour 8D (t) similarly to how it was used in the case of the elliptic
growth of the Beltrami type in the previous section?

The answer to the first question is ‘yes’, and to the second one - ‘no’. One
can see this from the generalized Cauchy-Riemann conditions which connect p and
g in the Beltrami case. Namely,

LP

‘\ali‘p = ayq’
Adyp = —0iq.
These formulae suggest the substitution
_ P
»= ﬁa

q=VAQ.
Thus, the new functions P and @ are connected via the system of linear
equations:
8: P — P, (log VA) = 8,Q + 3, (log V),
AP — POy, (log VA) = —0,Q — 8, (log V).
Differentiating the first equation w.r.t. to x, the second one w.r.t. to v, and
then adding them, one obtains

(V2—u)P =0,
(V2-v)Q =0,
where

v?(/\l;’?)
Tz o

2iy—1/2
yo VO

A—1/2

This simple transformation known as the “removal of the first derivative from
linear differential equations of the second order” and, also, closely related to su-
persymmetry in physics, joints together the two major types of elliptic growth.
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Now let us show that the function @, unlike the function ¢ cannot, in general,
provide a parametrization of the contour. Indeed, it was shown in the previous
section that ¢ can serve as a parametrization since it is a monotonically increasing
function of the arc-length along the contour. Since ¢ = v/AQ, it is now clear that
@, generally speaking, is not monotone along the interface because of the space
dependent factor A~1/2,

As one can easily see, v/X solves the same Schrédinger equation as P, namely

(V2 —u)VA=0,

while the function 1/ VX solves the same Schrodinger equation as Q, namely

(V% — @)% = {,

6. An inverse problem

We address below the following natural question:

Is it possible to have the same “mouvie” (¢,1(t)), ¢ € [0,7] governed by the
elliptic growth dynamics with different weights A%

By studying a particular example we shall demonstrate that, indeed, such
non-uniqueness may take place. To fix the ideas, assume that the elliptic growth
dynamics, as specified above has the property that the conformal map z(¢,-) onto
a neighborhood U of I'(1):

2t ) {wyl—e < lw| < 1+e} — U

extends analytically to the unit disk |w| < 1. Then, as we saw earlier, the equation
(2.1} once again governs the whole evolution of I'(¢} but this time the evolution
of T'(¢} is the Laplacian growth. In particular, the parameter along each boundary
satisfies q(t,2) = Slogw(t, 2), that is V3¢ = 0 at all points except the isolated
singularity. On the other hand we have started with the assumption VA~1Vgq = 0.
Hence

ATIVEg— AT3H(VA) - (Vg) = 0,

80
(V) - (Vg) = 0.

The function p(t, z} also, by its very definition, satisfies
(Vp) - (Vg) =0.

Since Vp never vanishes, at least in a neighborhood of ['(2), a functional depen-
dence

A(z) = f(t,p(t, z))

must occur. This simple computation gives rise to the following counterexample.
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Let us consider the simplest Laplacian growth process of expanding concentric
discs

D(t) = D(0,V2t), t>0,
with associated functions

p(t z) = log \%'—t q(t,z) = arg z.

Let r = |z| and choose any positive, smooth radial function A(r), e.g., A(r} = expr.
Then, everywhere in C\ {0}, we find

VAr) 'Vg = Ar)"tAg - A"2VA- Vg =0.
Now we can solve the problem with a rotationally symmetric function p(t, r):
VA(r)Vp = 276(0),  p(t, v2t) =0,

so that p,q are L-conjugate, where L = VAV. In particular, the normal velocity
of the boundary is given by

dq dp

ot on’

thus it is independent of the choice of A. That is, the same movie can be described
as the Laplacian growth with A = 1 and as elliptic growth with any other positive
weight which is rotationally invariant.

Note that a point on the boundary I'(t) = D(0,/t) is parametrized as

z(t, q) = V2te',
so that the associated conformal map is
2(t,w) = V2tw, |w|=1.

On the other side, if we choose an initial contour to be different from the level set of
the function A, the inverse problem may have a unique solution modulo an arbitrary
function of A. Obviously, the simplest way to verify if the “movie” in the previous
example is the Laplacian growth, is to run the “movie” again but with a non-
circular initial configuration. Then the ambiguity of the previous example should
disappear. But this way of removing non-uniqueness will require two “movies”.
Thus, it is probably correct to say that there a continuum of A’s, which correspond
to the same “movie”, and that there are two sources of non-uniqueness: (i) any
smooth function of A can replace the original function A(x) and (ii) any smooth
function of p can be multiplied by the original A(x) without a change of the
“movie”. This is an interesting feature that merits further investigation. Here,
we have simply pointed out (by constructing an example) the non-uniqueness of
elliptic operators L providing the same evolution (i.e., a “movie”).
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7. Schwarz function in elliptic growth

It is instructive to state the moving boundary problem in terms of the Schwarz
function S(z}. Start with the equation for the velocity of the moving boundary
V = &¢q. By Proposition 2.3 its left hand side equals S;/(2i+/5,), while the right
hand side can be written as 8;( — p)/i = 8¢ (/i since Ggp = 0. (Here, as before
{ = p+1iq.) Then,

Cefi = (200,C + 205C) /i = (8:€ + 5,0:C)/iVS..
Hence, in virtue of the Beltrami equation (4.3) and the identity
S
22\/?; - 2(@7

we obtain the following evolution law for the Schwarz function.

Proposition 7.1. Under the above assumptions,
1— A
St(t, Z) - 2((:2 -+ H_AC;:SZ) = zazg(zr S{t? Z)) (71)

for all z in a neighborhood U of U'{t}).

Notice that the above formula is surprisingly similar to the evolution law of
S(t, z} in the Laplacian growth process - ¢f. Theorem 2.5.

7.1. Dynamics of singularities of the Schwarz function

The above proposition has interesting consequences. We consider first the dynamics
of the singularities of the Schwarz function and associated universal quadrature
formulas that are preserved during the elliptic growth. We have seen in the section
devoted to the Laplacian growth that the poles, or more generally, the Cauchy
integral density of the Schwarz functions of the moving boundaries are unchanged
with the exception of the residue of the pole at z = 0 which depends linearly on
time t. Naturally, we expect that the relations in the elliptic growth process are
more complicated. The present subsection collects some observations along these
lines.

Theorem 7.2. Let f{z) be a real analytic function defined in a neighborhood of the

closed domains D(t) which are moving according to the elliptic growth law with an
associated operator L. Then,

d

% - fdArea = 27 f(), (7.2)

where | solves the elliptic Dirichlet problem:

Lu=0 in D(t), u}p(t) = f.
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Proof. Using the notations introduced in the earlier sections and previous compu-
tations, we infer

4 fdAreq = fvde = FAO,pdt = 27 f(0).
dt Jpe) o(t) r(t)

O

If the boundaries I'(t) remain real analytic during the time of growth as is
tacitly assumed throughout this note we can, as before, decompose the Schwarz
function as follows:

S{t,z) =58.(t,z) = S_{t,z), =zel(t)
where

du(t, o}
_ = - —r z¢ K.
S-he)=- [ LD sg
Here, K is a compact subset of D(¢) independent of ¢ and g is a complex valued
measure smoothly depending on ¢. Then, assuming in addition that f is {complex)
analytic in a neighborhood of D(t), we find

d
a—t Do) fdA?*ea == Z_E—t/ f(Z)S 2, t)dz =
14d B f(z)dz _
i ” F(2)S (2, )dz = r— / 5 o 7o i ldu(t, z) = 7r/ f(of}—{du(t o)}

This representation of the derivative of the average of an analytic function
becomes interesting in several particular cases. In particular, as in the conservation
law obtained by taking f = 1, ¢f. Corollary 2.7 and Corollary 3.2, it follows that

d

— = 2.

S ldut, o)}
Anocther application is given by the following.
Proposition 7.3. Assume that for all times t the singularities of the Schwarz func-
tion contained in D(t) are simple poles; i.e., we have in D(t):

_{t,z) = Z bl aJ (analytic remainder),

with b;(t) € D(t) for all j and t. Then,

N
105 () £ (b5 () + az (4B (6) £ (b; ()] = 2F(0) (7.3)

i=1

for every analytic function f.



Planar elliptic growth 21

Proof. According to the computations in the proof of Theorem 7.2, we have

plt o) = / A5 aj(t)(sm{:)}(a)}

z—-0
hence
N
d / 7 i
& Jo, fdArea =) [af(t)F(b;(8)) + a; (£)b} (1) F'(b;(2))]
=1
and the statement follows from (7.2). O

Now, by choosing 2N linearly independent analytic functions fi we can, based
on (7.3), form a linear system of equations that at least in principle determines
the dynamics of the poles &; and residues a;.

8. Herglotz theorem and generating closed-form solutions

The Herglotz theorem [40)] establishes a fascinating one-to-one correspondence be-
tween the singularities of the Schwarz function of the contour and the singularities
of conformal maps from a vicinity of the unit circle to a vicinity of the contour un-
der consideration. Basically, it states that if a is a singular point of a conformal map
fw) from the unit disk D to the domain D such that 8D = {f(e%);q € 0,27]},
then the Schwarz function of the curve 3D has the singularity of the same kind at
the point

b= f(1/a). (8.1)
Moreover, if an isolated singularity (i.e,, a pole, an algebraic singularity, or a
logarithmic singularity) at a appears in the function f{w) with a coefficient A,
then the corresponding singularity & is present in the Schwarz function with the
coefficient B determined from

B=A(-a*f'(1/a)™, (8.2)

where m is the multiplicity of a pole if ¢ is a pole; is a rational number if ¢ is a
an algebraic branch point; or, if ¢ is a logarithmic singularity, m is equal to zero.
Actually, the last two equations, which we call Herglotz’ theorem, follow easily
from the representation of the Schwarz function S{z) in terms of the conformal
map f [33],
S(z) = fo(1/f7")(2).

There is some evidence that Herglotz’ theorem should be helpful in solving the
elliptic growth problem in terms of z = f{#,w) and generating exact solutions in
the closed form. Here, we present a naive sketch of how we might expect generating
of exact solutions for the elliptic growth should work.

First, find ¢ = p-+iq as a function of z = x-+iy and = x—1y, either by solving
the Beltrami equations {4.3) or (4.4} for a given A and a given initial domain D(0),
or by solving the Dirichlet problem in D(0), thus finding the Green function p and
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consequently calculating the conjugate function ¢ from the generalized Cauchy-
Riemann equations (4.1), (4.2). Then, the equation p(z, Z) = 0 implicitly defines
the Schwarz function of the moving boundary.

Second, either substitute {(z, S(z)) into the equation (7.1) for the dynamics
of the Schwarz function S(z) (scenario A), or, “if one gets lucky”, try to invert the
solution ¢(2, ), thus obtaining the function 2({,¢) (scenario B).

Scenario A: As the third step, identify singularities of S(z) (and their dy-
namics) that are already built in (7.1) through the function ((z, S(z)) found at
the previous step and, also, identify the singularities of S(z) which are not the
singularities of the RHS of (7.1). The latter are time-independent as one can see
from (7.1) and represent constants of motion associated with the dynamics of the
growth.

Scenario A. Fourth step. Using the formulae (8.1),(8.2) provided by the Her-
glotz theorem recover an ezplicit form for the moving boundary, 2 = f(t, €%), with
the time dynamics of all parameters of f given implicitly by (8.1), (8.2).

Scenario B. Third step. Restrict z(¢ ,f) to the imaginary axis of {, that is
the axis p = 0, thus defining the function f(e'?) = ((iq, —tg), which, as was shown
above, satisfies the equation (1.2) for area preserving diffeomorphisms.

Scenario B. Fourth step. Substitute f(e*?) into (1.2) as an initial condition
with time-dependent parameters and solve it. (The technique of integration is the
same as that for the Laplacian growth [41], but the singularities of f are now lie
both inside and outside the unit circle.) Alternatively, find the singularities of S(2)
that correspond to the singularities of f(z) through (8.1),(8.2) and calculate their
time dynamics using (7.1). In either case the Herglotz theorem plays the central
role in finding exact solutions for elliptic growth.

While a more complete theory for solving (1.2) for the elliptic growth exactly
will be published elsewhere, we will present below two examples of exact solutions
in the case when the singularities of f(w) are poles, both inside and outside the
unit circle.

8.1. Example: two simple moving poles
Let us take

Ay Ay

z(e")y =re' + — + —
e —ay e — ao

(8.3)

as an initial condition for the equation (1.2), assuming |a;| < 1 and |ag| > 1.
One can verify by a direct substitution that (8.3) is a solution of (1.2) with time
dependent poles ay, as, residues A;, A and the conformal radius r. The time
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dependence of these parameters is given by the equations

bio = z(1/ad12), (8.4)
Bip = —A128],7(1/a12), (8.5)

2 Ay | A1l | A ?

S R (N o
where by 2, By 2, and C are constants of integration. Actually, the RIS of the last
equation is the area of the domain D(t) enclosed by the contour z(t,e'). When
Ag == 0 this is a standard Laplacian growth with a simple pole at a4(t). In this
case, the contour is known to develop a finite time singularity by forming a cusp.
When A; = 0, the process becomes a so-called inverse Laplacian growth, when a
more viscous fluid displaces a less viscous one oppositely to a standard situation
in which it is the other way around. The inverse Laplacian growth is stable and
the shape rounds off during the evolution forming as a rule a circle as a long time
limit. The case when both A; and A are not equal to zero is a general case with a
nontrivial dynamics caused by an interlay between the stabilization of a contour,
due to the term in (8.3) with the pole ay that lies outside the unit circle, and
destabilization, due to the term in (8.3) with the pole a inside the unit circle.

It is interesting to note that the constants of integration in the LHS of (8.4)-
(8.6) describe singularities of the Schwarz function of the moving contour, namely
by 2 and Bj g are the simple poles and residues of S(z) respectively. Note that
by ¢ D(t) while by € D{(t). Finally, 2t + C is the residue of the Schwarz function
at the simple pole at the origin, which represents the area of D{¢). It only remains
now to find the explicit expression of the function A{x} for this process described
by (8.3).

(8.6)

8.2. Example: two multiple stationary poles
For the second example let us take, as the initial condition for the (2.1}, a function

2(€) = re’? + aetl=M9 4 pei(ltna, (8.7)

that describes a contour with n-fold symmetry which represents a circle of radius
r modulated by a monochromatic wave in such a way that exactly n waves of an
amplitude 1/2(la|? + |b]?) fit the circumference (at least when |a| and |b| are both
small with respect to 7).

One can substitute (8.7) into (2.1} and verify that (8.7) is a solution of the
area preserving diffeomorphism (2.1} if the time dependent parameters a, b, and
r obey the following algebraic equations:

A= al/{l—n) bl;‘(l-}-n}: (8.8)
? = (1 + 7)Y 4 (1~ n)AdH/ (=™, (8.9)
%A+C=r—(n—1)a+ (n+1)b? (8.10)

where A, B, and C are constants of integration.
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The comments that can be made here about the dynamics of the contour
described by {8.7) are very similar to those made above for the first example.
When b = (, the moving curve blows up in a finite time by forming cusps and thus
ceases to exist after that. When a = 0 the process is the inverse {stable) Laplacian
growth, it smoothes the curve to a circle in a long term asymptotics, When both
a # 0 and b # 0, this is an intermediate case which can, for instance, stabilize
the dynamics and prevent the finite time blow up with a proper choice of initial
parameters.

Just as in the previous example, the constants of integration deseribe singu-
larities of the Schwarz function, namely A and B are the (1 — n)™* and (1 + n)**
coefficients of the formal Laurent expansion of S{z), while 2t + C is the area of
D(t) enclosed by z(t, €*¢). Unfortunately, again, it is not clear at the moment what
elliptic parameter X is associated with this process. This question requires further
investigation.

9. Conclusions

In this work we have shown that the elliptic growth processes, which present a
natural generalization of the Laplacian growth, possess some remarkable mathe-
matical properties strongly resembling those pertinent to the Laplacian growth.
Specifically, there is an infinite set of conservation laws; these conservation laws
can be interpreted in terms of potential theory; there exists a parametrization of
the moving interface by the stream function of an associated fluid velocity vector
field and, last but not least, there are several interesting accompanying features
related to the singularities of the Schwarz functions of the moving boundaries. We
expect the latter to be especially helpful in generating and illuminating particular
closed form solutions of elliptic growth problems. We think that the next step
in this direction should be a search for a class of multipliers A, which will allow
explicit solutions of the Beltrami equations and, therefore, will offer new closed
form solutions of the elliptic growth phenomenon.
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