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Planar Elliptic Growth 

Dmitry Khavinson, Mark Mineev-Weinstein and Mihai Putinar 

To our friend Bjorn Gustafsson 

Abstract. The planar elliptic extension of the Laplacian growth is, after a 
proper parametrization, given in a form of a solution to the equation for area­
preserving diffeomorphisms. The infinite set of conservation laws associated 
with such elliptic growth is interpreted in terms of potential theory, and the 
relations between two major forms of the elliptic growth are analyzed. The 
constants of integration for closed form solutions are identified as the singu­
larities of the Schwarz function, which are located both inside and outside the 
moving contour. Well-posedness of the recovery of the elliptic operator gov­
erning the process from the continuum of interfaces parametrized by time is 
addressed and two examples of exact solutions of elliptic growth are presented. 

Mathematics Subject Classification (2000). Primary 76S05 ; Secondary 76D27, 
31A25, 30C20, 31B35, 35JlO . 
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1. Introduction 

Several moving boundary processes, such as solidification [1], electrodeposition [2], 
viscous fingering [3], and bacterial growth [4], to name a few, can be reduced, after 
some idealizations, to the Laplacian growth, which can be described as follows: 

V(~) onGD(t)(~, a). (1.1) 
Here V is the normal component of the velocity of the boundary oD(t) of 

the moving domain D(t) C ]Rd, ~ E oD(t), t is time, On is the normal component 

This work was supported by the 20070483ER project Minimal Description of Complex Interfaces 
of the LDRD program at LANL. The first and third authors were also partially supported by 
the "ISF grants. 
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of the gradient, and G O(t)(~! a) is the Green function of the domain D(t) for the 
Laplace operator with a unit source located at the point a D(t). 

In two dimensions this equation can be rewritten as the area-preserving dif­
feomorphism identity 

8' (Ztz.p) 1, (1.2) 

where z(t, ¢) aD(t) is the moving boundary parameterized by ¢ E [0, 21l"] and 
conformal when analytically extended in the region 8'¢ ~ °[5, 6]. The equation 
(1.2) possesses many remarkable properties, among which, the most noticeable 
ones are the existence of an infinite set of conservation laws: 

Cn = r zn dxdy, (1.3) 
} ott) 

where n runs over all non-negative [7] (non-positive [8]) integers in the case of a 
finite (infinite) domain D(t), and an impressive list of exact time-dependent closed 
form solutions [6]-[21]. For a beautiful interpretation of conserved quantities Cn 
as coefficients of the multi-pole expansion of the fictitious Newtonian potential 
created by matter uniformly occupying the domain D(t) see, e.g., [21]. 

It was established in [22] that the interface dynamics described by (1.2) is 
equivalent to the dispersionless integrable 2D Toda hierarchy [23], constrained by 
the string equation. Remarkably, this hierarchy, being one of the richest existing 
integrable structures, describes an existing theory of 2D quantum gravity (see 
the comprehensive review [23] and references therein). The work [22] generated 
a splash of activity in apparently different mathematical and physical directions 
revealing profound connections between Laplacian growth and random matrices 
[24], the Whitham theory [25], and quadrature domains [26]. 

In this paper we present a natural extension of the Laplacian growth, where 
the Green function of D(t) for the Laplace operator \72 in the RHS of (1.1) is 
replaced by the Green function of a linear elliptic operator, 

L \7. (A(X)\7) - u(x), A(X) > 0, x E JRd. (1.4) 

Such a process, which is natural to be named an elliptic growth, is clearly much 
more common in physics than the Laplacian growth. 

Consider, for instance, viscous fingering between viscous and inviscid fluids 
in the porous media governed by Darcy'S law 

v = -A\7p, (1.5) 

where A is the filtration coefficient of the media and p is the pressure (equal to the 
Green function, GO(t), defined in (1.1) in most of the cases of interest for us). One 
can easily imagine a non-homogeneous media where the filtration coefficient A is 
space-dependent. Such examples of elliptic growth, where the elliptic operator L 
has the form of the Laplace-Beltrami operator, L \7 . A \7, and A is a prescribed 
function of x, will be called an elliptic growth of the Beltrami type. It is clear that all 
moving boundary problems other than viscous fingering with a non-homogeneous 
kinetic coefficient A fall into this category. 
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From a mathematical point of view this process is the Laplacian growth oc­
curring on curved surfaces instead of the Euclidean plane. In this case the Laplace 
equation is naturally replaced by the Laplace-Beltrami equation, and>' (that can 
be a matrix instead of a scalar as it is in our case) is related to the metric tensor. 
There are several works addressing the Hele-Shaw problem on curved surfaces and 
we will mention below those few related to the integrable mathematical structure 
of elliptic growth. 

Another major source of examples of elliptic growth is related to screening 
effects, when u 1= 0, while>. is constant in (1.4). The simplest example of this kind 
is an eiectrodeposition, where the field p is the electrostatic potential of the elec­
trolyte. It is known that in reality electrolytes ions are always locally surrounded 
by a cloud of oppositely charged ions. This screening modifies the Laplace equa­
tion for the electrostatic potential by adding to the Laplace operator the negative 
screening term, -u(x), which stands for the inverse square of the radius of the 
Debye-Hukkel screening in the classical plasma [27]. For the homogeneous screen­
ing u is a (positive) constant, so the operator L becomes the Helmholtz operator, 
while for the non-homogeneous case, when u is not a constant, L is a standard 
Schr5dinger operator. Motivated by this example, we will call the moving boundary 
problem for L = 'V2 u an elliptic growth of Schriidinger type. 

We show that these rather general types of elliptic growth still retain re­
markable mathematical properties, similar to those possessed by the Laplacian 
growth. A mixed case with a non-constant >. and non-zero u also shares similar 
properties but is less representative in physics and can always be reduced to one 
of the two former types of elliptic growth by a simple transformation described 
later on in the article. For completeness we shall indicate another class of elliptic 
growth when the fluid density p changes in space while it is constant in time. This 
happens for instance when porosity (fraction of porous media accessible for fluid) 
is space-dependent. In this case the continuity equation for incompressible fluid in 
porous media has the form 

'V(p(x)>.(x)'Vp) 0, (1.6) 

while (1.5) still holds. This case presents an additional extension of the elliptic 
growth related to potential theory with a non-uniform density, as will be shown 
below. 

In prior works on elliptic growth an infinite number of conservation laws, re­
garded as extensions of (1.3), were identified in [21, 28]. Also an integrable exam­
ple in 2D, which corresponds to a very special choice of the conductivity function, 
>'(x), was explicitly constructed in [29]-[31J. The elliptic growth in these works was 
reduced to the well-known Calogero-Moser integrable system. 

The present article contains several new results on elliptic growth and reviews 
the known conservation laws from a slightly novel perspective. It is organized as 
follows: 

In Section 2 we interpret (1.2) as the equation of the area-preserved diffeo­
morphism in 2D and analyze its connections with the Laplacian growth. 
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- Section 3 contains the definition of elliptic growth, the conservation laws for 
this process and recasts the latter in terms of the inverse non-Newtonian potential 
theory. 

In Section 4 we obtain the equation (1.2) for elliptic growth of the Beltrami 
type by introducing the function q, conjugate with respect to p defined in (1.4), 
which plays the role of a stream function for the incompressible fluid; furthermore, 
we obtain the Beltrami equation for the function p + iq. 

- Section 5 is devoted to analyzing connections between the elliptic growth of 
the Beltrami and Schrodinger types, elucidating the difficulties of parametrization 
of the interface for the Schrodinger type. 

- In Section 6 we reformulate the elliptic growth in terms of the Schwarz 
function of the moving interface. 

- Section 7 addresses a well-posedness of a recovery problem for the operator 
L from the continuum of moving interfaces parameterized by time. 

- In Section 8 we discuss Herglotz' theorem as the main device to generate 
exact solutions and present two examples of the exact closed form solutions of the 
elliptic growth. We also identify the constants of motion of these solutions as the 
singularities of the Schwarz function of the moving contour. 

- Section 9 contains brief conclusions. 
Due to the fact that one of us is labeled as a theoretical physicist (although 

in his heart he is a mathematician) and following the customs of the physics 
community the references do not appear in alphabetical order. 

Acknowledgement. This work took shape during a visit of the first and third 
author to the Los Alamos National Laboratory. They warmly thank this institu­
tion for an inspiring and stimulating atmosphere. 

1.1. List of notations and conventions 


We collect below a few basic definitions and notations used throughout the text. 


'\72 = 6., '\7 f grad f; 
'\7 (U) = '\7 . U = div U, where U is a vector field; 
CW denotes the class of real analytic functions; 
· - 8h.h - fJt' 
n stands for the outer unit normal to the moving boundary r ret}; 
£ denotes the arc on the boundary r; 
dA = l..dArea = 

Jr Jr 

an analytic Jordan curve means a smooth Jordan curve which admits a real 
analytic parametrization. 

2. Area preserving diffeomorphisms 

This section contains some immediate implications of the equation of area preserv­
ing diffeomorphisms related to the parametrization of an analytic Jordan curve. 
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Later on we shall see that this, apparently innocent, Jacobian identity plays an 
important role in the study of moving boundaries governed by elliptic growth. 

2.1. Fourier expansion 

Consider the equation 
(2.1) 

where t E [0, T] is a non-negative variable (usually identified with time), while 
q E [0,21l'] is the parameter along the Jordan analytic curve Ct. Equation (2.1) 
can be interpreted as an area preserving property: that is the Jacobian of the 
transformation 

(t,q) 1---+ (x,y), where z(t,q)=x iy, 

is equal to 1. 
To be more precise, for a fixed t, we assume that the 21l'-periodic real analytic 

map 
z(t,·) : [0,21l'; ---> C 

is an embedding, and its range is denoted by Ct. We denote by D(t) the interior 
of the Jordan curve Ct. 

In view of the smoothness hypothesis imposed on z(t, q) we can expand the 
function z( t, q) in a Fourier series 

00 

z(t,q) I>k(t)eikQ . (2.2) 
-00 

iqWe will assume that the dependence t 1---+ z(t, q) is C 1
• Also, we put w e , so 

that we can rewrite (2.2) as 
00 

z(t,w) 2:':>k(t)Wk. 
-00 

By the analyticity assumption, there exists E,O < E < 1, so that the above 
Laurent series is convergent in the annulus 1 ( <wi < 1 E. 

Due to the real analyticity of the map z, the Fourier series for z and its 
derivatives are absolutely and uniformly convergent, whence 

00 

q) = <L:::kak(t)eikq, 

and 

Zt (t, q) L
00 

an (t)e -inq. 
-00 

Thus, equation (2.1) becomes 

1,,­
~(ZtZq) "2 L.)ankak 

k,n 
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00 00 

'" [ 1 '" (()-;-- . -)1 imqL "2 L n + m anan+m + nan+man:e . 
m=-oo n=-oo 

By equating the coefficients we find 

1 ~ L
00 

(nanan + nanan ), 
n=-oo 

and 
1 

o 2 L00 

((n m)anan+m nan+man ), 

n=-oo 

whenever m =J. O. 
Since 

1idz - J -(-)oz(t,w) dw _121r 
-(-)oZ(t,q) dq

Area(D(t)) . - z t, q '" . - z t, q '" '). , 
C 2z :",[=1 uW 2z 0 uq ~zt 

we derive the following remarkable identity. 

Proposition 2.1. Under the assumption (2.1), the family of domains bounded by 
the curves z( t, q), 0:::: q :::: 2r., satisfy 

--..::.-...:.....:.~ = 271". 

iqBy regarding z now as a function of t and the complex variable w e , we 
obtain, along the curve Ct , the following: 

OZ OZ ow . 
oq ow oq = Zwzw. 

Denote, for the sake of simplicity, z' Zw' Then, the master equation (2.1) 
becomes 

3(( wz'~) l. 

Since z(t,·) is analytic in the annulus 0 < 1 f. < Iwl < 1 + E, the following result 
follows. 

Proposition 2.2. Under' the above assumptions 

wz'(t, w)i~(t, l/w) ~z'~(t, ~ )i(t, w) = 2, 1 - f < Iwl < 1 -+- f. 
W W 

(As usual, for a complex analytic function h( w), we denote by 

obtained from h by conjugating its Taylor coefficients.) 
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2.2. Analytic parametrization. 

The most studied case of the Laplacian growth process requires an additional 
analyticity assumption. We devote the present subsection to this scenario. Assume 
that for all t E [0, T] the negative Fourier coefficients vanish, i.e., 

adt) = 0, k < O. (2.3) 

It is not difficult to see that this will hold the whole evolution, t E [0, T]. The 
equation (2.3) simply means that for a fixed t the function z(t, w) extends analyt­
ically to the unit disk wE lIJl. Since z(t,·) is a homeomorphism from the boundary 
l' = allJl to the curve aD(t), the argument principle implies that 

z(t,·):lIJl D(t} 

is a conformal mapping. Let w = wet, z) denote the inverse conformal mapping. 
Since a linear transformation z I--> az + /3, lal 1, leaves the equation (2.1) 
invariant, we can assume without loss of generality that z(t,O) 0 and that 
pet) = Zl (t, 0) > O. To distinguish this case from the case considered in 
the previous subsection we shall denote aD(t) by f(t). The function pet, z) 
log Iw(t, z)1 is, up to a constant factor, the Green function of the domain D(t), 
with the source at z = O. This means that pet, .) is the unique harmonic function 
in the punctured domain D(t) \ {O} having zero boundary values on r(t) and such 
that pet, z) log Izi is harmonic at z O. 

Moreover, the harmonic conjugate function arg W(t, z) is, up to ah additive 
constant, equal to q(z), z E f(t). 

In other words, for a fixed value of the parameter t, we have: 

\72p(t,·)=2m5(-), in D(t), 

pet, ')Ir(t) = 0, 

and 

Consequently, the normal velocity of the boundary equals 

aq(t, .) ap(t,·)v ae an 
So, by the area conservation property, we have 

V dz /\ de dz /\ dq. 

These equations define a specific dynamics of planar boundaries known as 
Laplacian growth. For recent guides to the mathematics and physics behind Lapla­
cian growth we refer to the volume [32] and the survey [26]. We will return to this 
case after discussing the geometry of the moving boundaries. 



8 Khavinson, Mineev and Putinar 

2.3. The Schwarz function 

An important tool for studying the changing geometry of the moving boundaries 
is the Schwarz function [33], [45]. Up to the complex conjugation it is simply the 
(local) Schwarz reflection with respect to an analytic curve. 

On the real analytic smooth boundary ret) of D(t) we introduce the Schwarz 
function 

z = Set, z), 

where S is analytic in the variable z. The domain of definition for S(t,.) is at 
least a tubular neighborhood of ret), although the function may possess analytic 
extensions to much larger sets. For instance, the Schwarz function of a disk centered 
at z a and of radius r is the rational function 

r2 
S(z)=a+--.

z-a 
If a polynomial P(z, z) vanishes on f(t), then, necessarily, the associated Schwarz 
function satisfies the algebraic equation 

P(z,S(t,z)) 0, ZEr(t). 

Proposition 2.3. [34] The normal velocity of the boundary satisfies 

V= 

with the proper choice of the branch of the square Toot, so that l/JS; = dz/df 
along f(t). 

Proof. By taking derh-atives with respect to t we have 

Zt = St + SzZt. 

When restricted to the boundary curve, 

dZ 
dz 

is a complex number of modulus one. 
Fix a single-valued branch of JS; along 8D(t). This is always possible since 

1/JS; equals to the unit tangent vector to 8D(t) and, hence, is single valued near 
8D(t). Then the above equation becomes 

or, equivalently, 

Since 
1 dz 

=-de 
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is the unit tangent vector, then 

2iV 

Theorem 2.4. There exist.s a multivalued analytic function Wet, z), defined in a 
neighborhood of oD(t), with the pmperty 

St ozW, 

and such that RW is constant along oD(t). 

Proof. From the above computations we find 

-2i 
St = VS;V. 

whence the vector St is collinear with the complex conjugate of the normal to ret). 
Moreover, rewriting the last equation in the form 

we infer 
V(RW), 

where n is the normal to oD(t). Hence, it follows that the boundary. oD(t) is a 
level set of RW. 0 

2.4. Laplacian growth 

In this subsection we merely illustrate few classical observations related to the con­
sequences of the dynamics (2.1) under the analyticity assumption ak(t) 0, k < 
0, t E [0, T]. That is, we assume again that the parametrization z(t, .) of the curve 
r(t) analytically extends to the interior of the unit disk lDl and will use intensively 
the Schwarz function techniques. 

By returning to the notations introduced in Section 2.2 we can identify the 
complex potential W with the multivaluiC'<f function (t, z) = pet, z) + iq(t, z) 
log I}! (t, z) and then study the analytic extension of the Schwarz function S(t, 

Theorem 2.5. [34] For every t, there exists a tubular neighborhood U ofr(t), such 
that 

Stet, z) 2(z(t, z), z E U. (2.4) 

Note that the function ( is multivalued and analytic in the punctured domain 
D(t) \ {o}. Its derivative (z is therefore meromorphic there with a simple pole at 
z 0 and the residue equal to 1. 

Proof. Indeed, according to Proposition 2.3, we have along ret): 

St 	 op 
on' 
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so 
2i op 

on 
2 (iOqjof)df 

dz 
o 

As simple as it looks, equation (2.4) has surprising consequences. In order to 
unveil them, we start with the known Plemelj-Privalov-Sokhotsky formula applied 
for a fixed t to the function S(t, .). Let 

1 1 (jeWS±(t, z) = -2. z E D(t), respectively z E C \ D(t). 
7rZ r(t) a - z 

Then 
Set, z) = S+(t, z) S~(t, z), z E U, (2.5) 

where U denotes, as before, a neighborhood of ret). Similarly we decompose the 
function (z(t,z) and find 

1 

z 
From the uniqueness of the above decompositions and (2.4), we infer 

-2 
z 

or, for z 1:. D(t), 
d 1 f (jda -2 

dt 27ri Jr(t) a z = ~' 
that is 

-2 
z 

By integrating against a polynomial f along the circle izl = R, with R suffi­
ciently large, we find the following general identity. 

Proposition 2.6. If the parametrization z(t, w) of the boundary of the domain D(t) 
extends analytically to the interior of the unit disk D := {w : Iwi < I}, then for 
every polynomial f (z) the following identity holds: 

d f f(z)dA(z) = 2f(0).
dt JD(t) 

Equivalently, S_ (t, z) = -;t +h(z), where h(z) is an analytic function in the 
neighborhood of C \ D(t), vanishing at infinity, and independent of t. A 
application of Cauchy's formula now yields that there exists a complex valued 
measure I.l supported on a compact set K C D(t), independent of t (as proved 
above) and such that 

-2t 
z E C \ D(t).

z z 
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By repeating the above calculations we find 

r -2t 1 r 
JD(t) (J' Z Z 1r JK (J' Z 

and, consequently, the following quadrature identity follows. 

Corollary 2.7. Under the same hypotheses as in Proposition 2.6, for every polyno­
mial f we have 

r f(z)dA(z) 2tf(0) + ~ r f(z)d/-1(z). (2.6) 
JD(t) 1r JK 

Simple examples show that the measure /-1 is not unique. If one insists that 
the supporting set K is "minimal", and the representing measure /-1 is positive, 
then one can prove in most interesting cases the uniqueness of /-1. The case of 
quadrature domains D(t), corresponding by definition to a positive finite atomic 
measure /-1, is by far the best understood from the constructive point of view. 
In this case the conformal mappings z(t, w) are rationaL Examples, a discussion 
of the alluded uniqueness and further details and references can be found in the 
collection of articles [35], cf. also [42J' citeShapiro. 

3. Elliptic growth 

Guided by Laplacian growth as a prototype, we introduce in this section the elliptic 
growth phenomenon mentioned in the Introduction. It is surprising to see that 
many features of Laplacian growth persist and yet sharp differences occur. Let us 
start the formulation in arbitrary dimension d for a possibly multiply connected 
domain D(t) in IRd with many sources, but later on we will focus on a homotopically 
trivial 2D case with a single source at the origin in more detail. 

Consider a family D(t) of bounded domains in IRd with smooth analytic 
boundaries. Moreover, dependence of D(t) on t is assumed to be real analytic (in 
the sense of a chosen parametrization) as welL 

Let G be an open set containing as relative compact subsets all D(t), -1 < 
t < 1, and let>. : G -_., (0,00) be a real analytic function. We consider the elliptic 
(non-positive) differential operator 

L \7. X~7 = div(>.grad). 

As we noted in Section 1.1, when there is no danger for confusion we shall omit 
the dot in the notation, and write, for example, Ll \72 • 

The moving boundary problem with N sources Sk at Xk E D(t) is the follow­
ing: 

Given D(O), find domains D(t) satisfying the system of equations: 

N 

L p 	 2: Sk 8(X - Xk) in D(t), 
k""l 
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PaD(t) = 0, 

V AGnP on GD(t). 
Note that the first two conditions simply assert that P is the linear combina­

tion of the Green functions for the operator L of the domain D(t), with singularities 
at Xk, while the third condition determines the dynamics of the moving boundary. 

Theorem 3.1. For every function 't/J E C 2 (G) satisfying L'I}J 0, we have 

dJ Nd 't/J dVol = 2:: 8k't/J(Xk). 
t D(t) k=1 

Here, dVol stands for Lebesgue measure on D(t). 
Since the constant function 't/J I is annihilated by the operator L, the above 

formula implies 
N

d 
D(t) 2:: 8k, ItI < 1. 

k=1 

Thus, in this moving boundary process, the volume is still proportional to time. 

Pr·oof. Let dr denote the surface element on each connected component of the 
boundary of D(t). Then, we have: 

d
d r 't/JdVol = r 't/JVdr = r ('t/JAGnP - pAGn't/J)dr 
t J D(tl J aD(t) J aD(tl 

r ('t/JA'VP - PA'V'I/) . ndr r 'V. ('t/JA'VP - pA'V't/J)dVol 
J aD(t) J D(t) 

NJ ['t/JLp pL't/J]dVol = 2:: 8/;;'t/J(Xk). 
D(t) k=1 

[j 

Corollary 3.2. In the case when the domains D(t) are all homeomorphic to a ball 
and contain a single source 81 > 0, the moments 

C('I/) J'I/!dVOl, L't/J = 0, 

determine the domains D(t) (locally in t). 

Proof. Indeed, it is sufficient to consider a single moment C(I). As remarked 
earlier, 

dVol(D(t» r Vdr = 81 > 0 
dt JaD(t) 

and the corollary follows, after observing that the family D(t) is increasing with 
respect to the ordering by inclusion. 0 
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Remark. Theorem 3.1 and the Corollary extend word for word to more general 
elliptic operators 

L div (A grad) -u(x), 

where the matrix A (Ai,j(X)i,j=1,2) is uniformly elliptic on the domain G and 
all the coefficients Ai,j' u(x) are assumed to be real analytic in G and u 2: O. The 
only modification needed is that in the last boundary condition in (1.1) where 
one ought to require V A(\7p) . n. The existence of the Green function p for 
such operators is well known [36, 37]. The fact that V > 0 on 8D(t) then follows 
from the maximum principle and Hopf's lemma which hold for such operators d. 
[36,37,43]. 

Assuming that the sources strengths Sk(t) depend on time we then obtain 
another notable corollary of Theorem 3.1. The functionals JD(t) 1/;dJi do not depend 

on sdt), but only on the value of the integral J~ s(t) dt [38, 21, 42]. 
The functionals 1/;dVol have a remarkable potential theoretic interpre­

tation [21, 28]. Indeed, imagine that a domain D(t) is occupied by matter with a 
unit density, which creates the potential <P, governed by the Poisson's equation 

L<p = XD(t), 

where XD is the characteristic function of the domain D. A solution of the last 
equation is 

<f>(x) r Go(x,y) dVol(y), 
JD(t) 

where Go(x,y) is the fundamental solution for the operator L. In important par­
ticular cases which are relevant for physical applications (for instance, for the 
Helmholtz operator.6. 1) it is possible to expand Go(x,y) into the series 

Go(x,y) L~n(X)1/in(Y)' x ¢ D(t),y E D(t), 
n 

where {1/;n} and Nn} are bases of the null space of Lin D(t) and its complement 
in Rd respectively. Then, assuming commutativity of summation and integration, 
we obtain 

<l>(x) L ~n(x) r 1/in(Y) dVol(y). 
n JD(t) 

Therefore, we have obtained the functionals introduced in the Theorem 3.1 as 
the coefficients of the multi-pole expansion of the non-.:\'ewtonian potential given 
in a far field. We would like to add that the gradient of <f> is a generalization of 
the Cauchy transform for the domain D(t) - the notion that was so useful in the 
Laplacian growth and the related field of quadrature domains. 

In the case of elliptic growth with nonhomogeneous mentioned in the 
Introduction, one should modify the formulation given in the beginning of this 
section by adding a positive space-dependent factor, p, namely, 

A -+ pA; 
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under these assumptions we still encounter an infinite set of conservation laws 
similar to the previous case, when p = 1, namely: 

I 1V 
'IjJ 

-
d J -dVol = 2: qkW(Xk). 
dt D(t) p k=1 

The elementary proof is not included here. From the point of view of potential 
theory this corresponds to the case of occupation of the domain D(t) by non­
uniform matter with density 1/p(x). Some aspects of this case in 2D were discussed 
in [39], also cf. [43]. It is clear that the inverse potential problem of recovery of 
D(t) is considerably more difficult in this situation. 

4. The conjugate function 

From now on we return to a planar case with a single source of S1 = 271 
and assume that all domains D(t), 0 :s; t:S; are simply connected. Define, 
using the notations from the previous section, a (multivalued) conjugate function 
q E CW(D(t)) by 

qy >'Px (4.1) 

qx ->'Py. (4.2) 

Accordingly, 
1

\7·_\7q=O in D(t).
>. ' 

In most computations below t is fixed. However, we stress that by its very defini­
tion, the function q depends on t also: q(z, z) = q(t; z, We hope that omitting 
t in the notations of q will not confuse the reader. 

We have 

v = >.anP = aiq. 

Let z(t, fl.) be the parametrization of the contour ret) aD(t) by an arc-
length £. Then a right angle rotation of the unit tangent vector gives 

n = -ize, 

hence the normal component of the boundary velocity is 

V Zt . (-ize) = iR(Zt( -ize)) = ~(ZtZe) 8e q, 

where, as before, subscripts stand for partial derivatives. 
Since>. is positive, then ae q > 0 along r( t), therefore q(t, .) can equally well 

parameterize the boundary aD(t) = ret), in which case we can rewrite the above 
equation as 

<:S(ZtZq) = 1, on aD(t). 

Lemma 4.1. The variation of q along the curve ret) is equal to 271. 
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Proof. Indeed 

{ 8q de = ( )"8p de = var qlr(t) 
JrCt) 8e Jr(t) 8n 

( )..V'p' nd£ ( V'()..V'p)dATea 27r. 
Jr(t) JD(t) 

o 

Introducing the multivalued function 

((z, z) = p + iq, 

we have 
i)"8p = 8q, 

or, still, 

= 1 +).. 8;­ (4.3)1 -).. ,"" 

which is a form of the Beltrami equation [44]. In terms of a new variable 

w V>:p + i .5>., 
the equation (4.3) takes the canonical Carleman form 

8w (810g v>:) w. ( 4.4) 

An implicit solution of this equation is found from 

w(z, i) = F(z) exp (
JD(t) 

where F(z) is analytic in D(t) (cf. ~44] for more details). 
Thus the moving boundary problem of finding D(t) can be reformulated as 

a Dirichlet boundary value problem: 

Given the weight A, find a function ((z, i) (OT, w(z, i)) satisfying the Beltmmi 
(OT, CaTleman) equation above and subject to the boundaTY condition 3t( 0 (OT, 
3tw = 0). 

5. Elliptic growth of Schrodinger type 

The previous section was devoted to the elliptic growth of the Beltrami type. In 
this section, we will consider the elliptic growth of Schrodinger type, which, as 
already mentioned in the introduction, is related to the theory of the SchrOdinger 
operator. To be specific, we consider the problem: 

_[)--=.o....!-""';'::";-:;':":'" dA((), 
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Given a domain D(O) find domains D(t) , satisfying the system of equations: 

IV 

L P (\72 u)P = 2:: qk 8(x Xk) in D(t), 
k=O 

P ° on oD(t), 

v onP on oD(t). 

As has already been demonstrated, this problem has an infinite set of conservation 
laws which are time derivatives of integrals of null vectors of the operator L. These 
integrals have the potential-theoretic interpretation discussed in Section 3. Let us 
pose the following question. Does there exist in this case a function Q "conjugate" 
w.r.t. to P in the sense that P and Q are connected via some generalized Cauchy­
Riemann equations? And, if such Q can it be used as a parametrization of 
the moving contour oD(t) similarly to how it was used in the case of the elliptic 
growth of the Beltrami type in the previous section? 

The answer to the first question is 'yes', and to the second one - 'no'. One 
can see this from the generalized Cauchy-Riemann conditions which connect p and 
q in the Beltrami case. Namely, 

)"oxP Oyq, 

).,OyP -oxq· 

These formulae suggest the substitution 

P 
P = J):' 

q v0.Q. 
Thus, the new functions P and Q are connected via the system of linear 

equations: 
oxP - POx (log v0.) = OyQ + oy(log v0.), 

OyP - POy(log v0.) = -oxQ ax (log v0.). 
Differentiating the first equation w.r.t. to x, the second one w.r.t. to y, and 

then adding them, one obtains 

(\72 
- u)P 0, 

(\72 
- v)Q 0, 

where 
\72().,1/2) . 

u 
),1/2 ' 

This simple transformation known &'> the "removal of the first derivative from 
linear differential equations of the second order" and, also, closely related to su­
persymmetry in physics, joints together the two major types of elliptic growth. 
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Now let us show that the function Q, unlike the function q cannot, in general, 
provide a parametrization of the contour. Indeed, it was shown in the previous 
section that q can serve as a parametrization since it is a monotonically increasing 
function of the arc-length along the contour. Since q = VXQ, it is now clear that 
Q, generally speaking, is not monotone along the interface because of the space 
dependent factor ,X -1/2. 

As one can easily see, VX solves the same Schrodinger equation as P, namely 

(V'2 u)VX = 0, 

while the function l/VX solves the same Schrodinger equation as Q, namely 

1
(V'2 v) O. 

6. An inverse problem 

We address below the following natural question: 

Is it possible to have the same "movie" (t,r(t)), t E [0, governed by the 
elliptic growth dynamics with different weights ,X? 

By studying a particular example we shall demonstrate that, indeed, such 
non-uniqueness may take place. To fix the ideas, assume that the elliptic growth 
dynamics, as specified above has the property that the conformal map z(t,') onto 
a neighborhood U of ret): 

z(t,·): {w;l c < !wl < 1 +c} U 

extends analytically to the unit disk Iwl < 1. Then, as we saw earlier, the equation 
(2.1) once again governs the whole evolution of ret) but this time the evolution 
of ret) is the Laplacian growth. In particular, the parameter along each boundary 
satisfies q(t,z) 8' w(t,z), that is V'2q 0 at all points except the isolated 
singularity. On the other hand we have started with the assumption V',X-IV'q O. 
Hence 

so 
(VA) . (vq) O. 

The function pet, z) also, by its very definition, satisfies 

(vp) . (V'q) = O. 

Since V'p never vanishes, at least in a neighborhood of ret), a functional depen­
dence 

'x(z) = f(t,p(t, z)) 

must occur. This simple computation rise to the following counterexample. 
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Let us consider the simplest Laplacian growth process of expanding concentric 
discs 

D(t) = D(O, hi), t> 0, 

with associated functions 

Izl
p(t,z)=log M;.' q(t,z)=argz.

v2t 

Let r = Izl and choose any positive, smooth radial function A(r), e.g., A(r) = expr. 
Then, everywhere in C \ {O}, we find 

Now we can solve the problem with a rotationally symmetric function p(t, r): 

'VA(r)'Vp = 27l"5(0), p(t, hi) = 0, 

so that p, q are L-conjugate, where L = 'VA'V. In particular, the normal velocity 
of the boundary is given by 

8q = A8p 
8C 8n' 

thus it is independent of the choice of A. That is, the same movie can be described 
as the Laplacian growth with A = 1 and as elliptic growth with any other positive 
weight which is rotationally invariant. 

Note that a point on the boundary r(t) = 8D(0, Vi) is parametrized as 

so that the associated conformal map is 

z(t, w) = hiw, Iwl = 1. 

On the other side, if we choose an initial contour to be different from the level set of 
the function A, the inverse problem may have a unique solution modulo an arbitrary 
function of A. Obviously, the simplest way to verify if the "movie" in the previous 
example is the Laplacian growth, is to run the "movie" again but with a non­
circular initial configuration. Then the ambiguity of the previous example should 
disappear. But this way of removing non-uniqueness will require two "movies". 
Thus, it is probably correct to say that there a continuum of A'S, which correspond 
to the same "movie", and that there are two sources of non-uniqueness: (i) any 
smooth function of A can replace the original function A(X) and (ii) any smooth 
function of p can be multiplied by the original A(X) without a change of the 
"movie". This is an interesting feature that merits further investigation. Here, 
we have simply pointed out (by constructing an example) the non-uniqueness of 
elliptic operators L providing the same evolution (Le., a "movie"). 
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7. Schwarz function in elliptic growth 

It is instructive to state the moving boundary problem in terms of the Schwarz 
function S(z). Start with the equation for the velocity of the moving boundary 
V = Otq. By Proposition 2.3 its left hand side equals St/(2iVB;), while the right 
hand side can be written as Ot(( - p)/i = ot(/i since OtP O. (Here, as before 
( = P -t- iq.) Then, 

(di (ZtOz( + Ztoz(,)/i (oz( + Szoz()/iVsz. 

Hence, in virtue of the Beltrami equation (4.3) and the identity 

St 
= -iCe, 

we obtain the following evolution law for the Schwarz function. 

Proposition 7.1. Under the above assumptions, 

20z((z, S(t, z)) (7.1) 

jor all z in a neighborhood U ojr(t). 

Notice that the above formula is surprisingly similar to the evolution law of 
S(t, z) in the Laplacian growth process - cf. Theorem 2.5. 

7.1. Dynamics of singularities of the Schwarz function 

The above proposition has interesting consequences. We consider first the dynamics 
of the singularities of the Schwarz function and associated universal quadrature 
formulas that are preserved during the elliptic growth. We have seen in the section 
devoted to the Laplacian growth that the poles, or more generally, the Cauchy 
integral density of the Schwarz functions of the moving boundaries are unchanged 
with the exception of the residue of the pole at z 0 which depends linearly on 
time t. Naturally, we expect that the relations in the elliptic growth process are 
more complicated. The present subsection collects some observations along these 
lines. 

Theorem 7.2. Let j(z) be a real analytic junct'ion defined in a neighborhood oj the 
closed domains D(t) which are moving according to the elliptic growth law with an 
associated operator L. Then, 

d j ­-d jdArea = 21rj(O), (7.2) 
t D(t) 

where j solves the elliptic Dirichlet problem: 

LlI 0 in D(t), =j. 
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Proof. Using the notations introduced in the earlier sections and previous compu­
tations, we infer 

d ( fdArea ( fVd£ 
dt JD(t) Jr(t) 

D 

If the boundaries r(t) remain real analytic during the time of growth as is 
tacitly assumed throughout this note we can, as before, decompose the Schwarz 
function as follows: 

S(t, z) = S+(t, z) ­ S_(t, z), z E f(t), 

where 

(K d/1(t,a)
JF a - z 

z¢::K. 

Here, K is a compact subset of D(t) independent of t and /1 is a complex valued 
measure smoothly depending on t. Then, assuming in addition that f is (complex) 
analytic in a neighborhood of D(t), we find 

d { fdArea ,1. dd ( f(z)S(z, t)dz = 
dt JD(t) 22 t Jr(t) 

This representation of the derivative of the average of an analytic function 
becomes interesting in several particular cases. In particular, as in the conservation 
law obtained by taking f = 1, d. Corollary 2.7 and Corollary 3.2, it follows that 

i :t {d/1(t,a)} 2. 

Another application is given by the following. 

Proposition 7.3. Assume that for all times t the singularities of the Schwarz func­
tion contained in D(t) are simple poles; i.e., we have in D(t): 

IV aj(t) + 
~ (analytic remainder), f=: bj(t) z 

with bj(t) E D(t) for all j and t. Then, 

IV 

L)aj(t)f(bj(t» + aj (t)bj (t)J'(bj(t»] 2}(0) (7.3) 
j=1 

for every analytic function f. 
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Proof. According to the computations in the proof of Theorem 7.2, we have 

p,(t, u) Jd[Ej:l aj(t)obj{t)](U), 
z U 

hence 
N 

~ ( fdArea = r. 2:)ajU)f(bj(t» + aj(t)bj(t)f'(bj(t»] 
JD(t) j=1 

and the statement follows from (7.2). o 

Now, by choosing 2N linearly independent analytic functions h we can, based 
on (7.3), form a linear system of equations that at least in principle determines 
the dynamics of the poles bj and residues aj. 

8. Herglotz theorem and generating closed-form solutions 

The Herglotz theorem [40] establishes a fascinating one-to-one correspondence be­
tween the singularities of the Schwarz function of the contour and the singularities 
of conformal maps from a vicinity of the unit circle to a vicinity of the contour un­
der consideration. Basically, it states that if a is a singular point of a conformal map 
few) from the unit disk [)) to the domain D such that aD = {f(e iq ); q E :0,2r.]}, 
then the Schwarz function of the curve aD has the singularity of the same kind at 
the point 

b f(l/a). (8.1) 

Moreover, if an isolated singularity (Le., a pole, an algebraic singularity, or a 
logarithmic singularity) at a appears in the function few) with a coefficient A, 
then the corresponding singularity b is present in the Schwarz function with the 
coefficientB determined from 

(8.2) 

where m is the muWplicity of a pole if a is a pole; is a rational number if a is a 
an algebraic branch point; or, if a is a logarithmic singularity, m is equal to zero. 
Actually, the last two equations, which we call Herglotz' theorem, follow easily 
from the representation of the Schwarz function S(z) in terms of the conformal 
map f [33], 

S(z) = 10 (1/r 1 )(z). 

There is some evidence that Herglotz' theorem should be helpful in solving the 
elliptic growth problem in terms of z f(t, w) and generating exact solutions in 
the closed form. Here, we present a naive sketch of how we might expect generating 
of exact solutions for the elliptic growth should work. 

First, find ( = p+iq as a function of z = x+iy and z = x-iV, either by solving 
the Beltrami equations (4.3) or (4.4) for a given A and a given initial domain D(O), 
or by solving the Dirichlet problem in D(O), thus finding the Green function p and 
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consequently calculating the conjugate function q from the generalized Cauchy­
Riemann equations (4.1), (4.2). Then, the equation p(z, z) = 0 implicitly defines 
the Schwarz function of the moving boundary. 

Second, either substitute ((z, S(z)) into the equation (7.1) for the dynamics 
of the Schwarz function S(z) (scenario A), or, "if one gets lucky", try to invert the 
solution ((z, z), thus obtaining the function z((, () (scenario B). 

Scenario A: As the third step, identify singularities of S(z) (and their dy­
namics) that are already built in (7.1) through the function ((z, S(z)) found at 
the previous step and, also, identify the singularities of S(z) which are not the 
singularities of the RHS of (7.1). The latter are time-independent as one can see 
from (7.1) and represent constants of motion associated with the dynamics of the 
growth. 

Scenario A. Fourth step. Using the formulae (8.1),(8.2) provided by the Her­
glotz theorem recover an explicit form for the moving boundary, z = J(t, eiq ), with 
the time dynamics of all parameters of J given implicitly by (8.1), (8.2). 

Scenario B. Third step. Restrict z((, () to the imaginary axis of (, that is 
the axis p = 0, thus defining the function J(eiq ) = ((iq, -iq), which, as was shown 
above, satisfies the equation (l.2) for area preserving diffeomorphisms. 

Scenario B. Fourth step. Substitute J(eiq ) into (l.2) as an initial condition 
with time-dependent parameters and solve it. (The technique of integration is the 
same as that for the Laplacian growth [41 J, but the singularities of J are now lie 
both inside and outside the unit circle.) Alternatively, find the singularities of S(z) 
that correspond to the singularities of J(z) through (8.1),(8.2) and calculate their 
time dynamics using (7.1). In either case the Herglotz theorem plays the central 
role in finding exact solutions for elliptic growth. 

While a more complete theory for solving (l.2) for the elliptic growth exactly 
will be published elsewhere, we will present below two examples of exact solutions 
in the case when the singularities of J(w) are poles, both inside and outside the 
unit circle. 

8.1. Example: two simple moving poles 

Let us take 

(8.3) 

as an initial condition for the equation (l.2), assuming lall < 1 and la21 > l. 
One can verify by a direct substitution that (8.3) is a solution of (1.2) with time 
dependent poles aI, a2, residues AI, A2 and the conformal radius r. The time 
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dependence of these parameters is given by the equations 

z(l/a1.2), (8.4) 

-.41•2ai,2 Z'(1/al,2), (8.5) 

r2 _ 2rlR_A_2 __-'-;-"-'-:-~ IA2122t+C (8.6)a~ -;- + (1 la212)2' 

where b1,2, B1 ,2, and C are constants of integration. Actually, the RHS of the last 
iqequation is the area of the domain D(t) enclosed by the contour z(t, e ). When 

A2 0 this is a standard Laplacian growth with a simple pole at al(t). In this 
case, the contour is known to develop a finite time singularity by forming a cusp. 
\Vhen Al = 0, the process becomes a so-called inverse Laplacian growth, when a 
more viscous fluid displaces a less viscous one oppositely to a standard situation 
in which it is the other way around. The inverse Laplacian growth is stable and 
the shape rounds off during the evolution forming as a rule a circle as a long time 
limit. The case when both Al and A2 are not equal to zero is a general case with a 
nontrivial dynamics caused by an interlay between the stabilization of a contour, 
due to the term in (8.3) with the pole a2 that lies outside the unit circle, and 
destabilization, due to the term in (8.3) with the pole al inside the unit circle. 

It is interesting to note that the constants of integration in the LHS of (8.4)­
(8.6) describe singularities of the Schwarz function of the moving contour, namely 

and B1,2 are the simple poles and residues of S(z) respectively. Note that 
b1 ¢:. D(t) while b2 E D(t). Finally, 2t + C is the residue of the Schwarz function 
at the simple pole at the origin, which represents the area of D(t). It only remains 
now to find the explicit expression of the function >.(x) for this process described 
by (S.3). 

8.2. Example: two multiple stationary poles 

For the second example let us take, as the initial condition for the (2.1), a function 

z( eiq ) = reiq + ae i (l-n)q + be i (1+n)q, (S.7) 

that describes a contour with n-fold symmetry which represents a circle of radius 
r modulated by a monochromatic wave in such a way that exactly n waves of an 
amplitude j2(!a!2 + Ib1 2) fit the circumference (at least when lal and Ibl are both 
small with respect to r). 

One can substitute (S.7) into (2.1) and that (S.7) is a solution of the 
area preserving diffeomorphism (2.1) if the time dependent parameters a, b, and 
r obey the following algebraic equations: 

A a1!(1-n) (8.8) 

B = (1 + n)a1/(n-l) + (1 n)Aa1/(I-n), (8.9)
r 
2t + C = r2 - (n -1) la!2 + (n + 1) Ibl 2

, (S.10) 

where A, B, and C are constants of integration. 
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The comments that can be made here about the dynamics of the contour 
described by (8.7) are very similar to those made above for the first example. 
\Vhen b 0, the moving curve blows up in a finite time by forming cusps and thus 
ceases to exist after that. When a = 0 the process is the inverse (stable) Laplacian 
growth, it smoothes the curve to a circle in a long term asymptotics. When both 
a#-O and b #- 0, this is an intermediate case which can, for instance, stabilize 
the dynamics and prevent the finite time blow up with a proper choice of initial 
parameters. 

Just as in the previous example, the constants of integration describe singu­
larities of the Schwarz function, namely A and B are the (1 - n)th and (1 + n)th 
coefficients of the formal Laurent expansion of S(z), while 2t + C is the area of 
D(t) enclosed by eiq ). l"nfortunately, again, it is not clear at the moment what 
elliptic parameter A is associated with this process. This question requires further 
investigation. 

9. Conclusions 

In this work we have shown that the elliptic growth processes, which present a 
natural generalization of the Laplacian growth, possess some remarkable mathe­
matical properties strongly resembling those pertinent to the Laplacian growth. 
Specifically, there is an infinite set of conservation laws; these conservation laws 
can be interpreted in terms of potential theory; there exists a parametrization of 
the moving interface by the stream function of an associated fluid velocity vector 
field and, last but not least, there are several interesting accompanying features 
related to the singularities of the Schwarz functions of the moving boundaries. We 
expect the latter to be especially helpful in generating and illuminating particular 
closed form solutions of elliptic growth problems. We think that the next step 
in this direction should be a search for a class of multipliers A, which will allow 
explicit solutions of the Beltrami equations and, therefore, will offer new closed 
form solutions of the elliptic growth phenomenon. 
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