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Opt’imal approximation of harmonic growth clusters by orthogonal polynomials

Ferenc Balogh? and Razvan Teodorescu®
Y Center for Nonlinear Studies, LANL and
Y Concordia University, Montréal
(Dated: July 3, 2008)

Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives
an accurate theoretical model for many physical processes, from the hydrodynamics of immiscible,
viscous flows (zero surface-tension limit of Hele-Shaw flows, [1]), to the granular dynamics of hard
spheres [2], and even diffusion-limited aggregation [3]. Although a complete solution for the con-
tinuum case exists [4, 5], efficient approximations of the boundary evolution are very useful due
to their practical applications [6]. In this article, the approximation scheme based on orthogonal
polynomials with a deformed Gaussian kernel [7] is discussed, as well as relations to potential theory.

PACS numbers: 05.70.-a, 02.10.Yn, 02.30.Tb, 05.30-d, 05.40.-a, 05.50.+q

Introduction — A large class of two-dimensional pro-
cesses, both deterministic and stochastic, have been
mapped to a powerful mathematical model known as
harmonic (or Laplacian) growth [8-16]. In this model,
a domain D, (ty) grows in time ¢, i.e. its area to =
7! [p, dxdy (areas are in units of 7 from now on) has
a linear dependence tg = Qt, with Q the pumping rate.

This prescription is obtained as a consequence of the
complete formulation as an ezterior problem: if I' rep-
resents the boundary of D and D_ its complement, we
seek the harmonic field p (which may represent pressure,
concentration, etc) and the velocity field ¥, such that:

Un = —0OnD, p:0 OHF,
7= —Vp, Ap=0 on D_, (1)
p~ —loglz|, z— o0,

with vy, O,p their normal components on I', respectively.

FIG. 1: Simply connected droplets and equipotential lines for
the interior and the exterior domains.

An equivalent formulation of the interior problem was
studied by S. Richardson [17], where the réle of exterior
and interior domains are interchanged: p is harmonic
inside up to a finite number of isolated logarithmic sin-
gularities (sources and sinks). Assume for simplicity a
single point source at the origin z = 0 with pumping rate
Q, or, in terms of the pressure p, Ap = 2% 62(z). Richard-
son proved that for any function h € L!'(D4) harmonic
in a neighborhood of D, we have

d{h)+

0] @

where (h), = fD+(t) h(z)dxzdy. Therefore, taking h(z) =
2% we have that the interior harmonic moments

vkz—/ zF dz dy, k=1,2,... (3)

T JD4(t)

are preserved while the area grows linearly with ¢.
Mapping the interior problem by means of a simple

coordinate change Z = 1/z and changing the source to a

sink (@ — —Q) implies that in the original exterior prob-

lem for D_ , 0 € D_, the exterior harmonic moments

1

—k
—— z " dx dy,
km D_(t)

ty = k=1,2,... (4)
(the interior moments of D_ now) are preserved by the
evolution and dto/dt = Q [18], where Q = 1.

For a simply connected droplet D, the solution of the
problem is easily expressed through the conformal map
taking the exterior of the unit disk |{| > 1 univalently

onto D_, and matching the points at infinity,

(e o]
2= Q) =r¢+) u, >0, (5)
k=0
with respect to which the pressure and normal compo-
nent of boundary velocity read

p(z) = ~log|f 7 (2)], wa=10:71(2).  (6)

As shown in [5], conservation of exterior harmonic
moments is equivalent to the statement that there is a
canonical transformation from the variables z, 24,

2= f(¢), #=F(), (7)

bz 82t 2 62

to the variables tg,log(, i.e. ( oo s | =L We

note the alternative formulation dz A dz! = dlog ¢ A dty.

In this paper, we describe an optimal approximation
procedure for the boundary I'(t), as well as for the
Cauchy transform of D,

dz'dy’

1
CD+(Z):;/I; m, Z’:$l+iy,, ZGD_ (8)
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An ezavlnple - A superficial analysis of the model de-
scribed here would lead to the conclusion that, given the
integrability of the system, specifying a set of exterior
harmonic moments {tx} at a given, initial area Tp, should
yield a solution for tg > T without major analytical dif-
ficulties. In reality, reconstructing the conformal map (5)
which corresponds to the data Tp, {tx} is typically a very
difficult problem. There are few known correpondences,
between classes of moments {tx} and classes of shapes (5)
(see [7] for examples). An illustrative case occurs when
the exterior harmonic moments form a simple sequence

Bk

tk = —=a

- (k=1,2,...), (9)

where 8 € Rt and a € C\ {0} are given parameters.

Defining two radii
[1+2
R2 = _; ﬂ: (10)

RIZ\/B’

we have two completely different cases: if |a| + Ry <

Ry then we have a doubly connected domain bounded

by circles and for |a| + R; > R> the domain is simply

connected given by an exterior conformal map of the form
v

(- A

(see FIG. 2). The parameters of f(¢) are related to the
deformation parameters as follows: setting u = v/A,

f(Q)=r{+u+ r>0, |Al<1.  (11)

B =To-r"+5,
- T v ’U/i (12)
LI S S ey TR

where Ty = 72 — [v|2/(1 —| A|?)? is the area. If |a|+ Ry >
R then the above equations have a unique solution for
r,v and A in terms of § and a.

FIG. 2: Laplacian growth for the exterior moments (9).

Domain approzimation via orthogonal polynomials—
The fact that, even for a rather simple shape (11) the
correspondence (12) is quite intricate shows the need for,
and practical value of, efficient approximation methods.
To that end, we define the following family of orthog-
onal polynomials: consider the domain specified by the
exterior harmonic moments {tx} and ¢;. The function
defined in a neighborhood of the origin by

V(z) =) td¥, 20, (13)

k>1

is preserved by the harmonic growth. Now consider the
function W(z) = |z|? — 2RV (2), which we label confining
potential, and suppose that

/ |2Pe "W E 2 <00 (n=0,1,2,...)
C

for all for values of the scaling parameter N > 0. For
fixed N, the orthogonal polynomials {PTEN) (2)} of the
weight function e"VW(*) are defined by

/ P,(IN)(z)P,(nN)(z)e‘NW(Z)dzz = bpm- (14)
C

The approximation method presented in this work is
based on the following statement: as

n— o0, N — o0, %—*to, (15)

|26—NW(Z) (

the weighted polynomials |P,£N)(z) which we

denote by o) (2) in the following) converge to the con-

formal measure of the domain D, (t), with support I'(¢):

K0 =l @ 140 (5 )] v o0 a0)

The proof of this result appeared first in [7]. We do
not repeat the entire argument, as it would require too
much space, but recollect the main ideas: starting from
the differential equations satisfied by the weighted func-
tions 1, (z) = PN (2)e=NW(2)/2 with respect to vari-
ables n/N and z, we integrate perturbatively in powers
of N~!, and obtain the expression ([7], equation (76)):

6e) ~ V@ e [N (<EEwm [sc00ac) .

where the Schwarz function S(z) is defined by the iden-
tity S(z) = Z,z € I'. It is known to have the expansion

S(z) = V'(z) + = / A s (147

70
s D+Z_Z

Since the exponent in the asymptotic expression of 1(z)
vanishes on the boundary I' and gives a Gaussian de-
cay away from it, the weighted polynomials pglN)(z) are
described, in the n, N — oo limit, by the conformal mea-

sure (16). However, this asymptotic result says very little
about the behavior of pgN)(z) for finite values of n, N.
In the remainder of this paper, we present numerical
evidence for the convergence properties of p%N) (2) at fi-
nite values of their order. We show that the agreement
between pglN)(z) and |[f~*(2)]'| is excellent for values
of n as little as n = 20, and present potential appli-
cations of this property. One obvious consequence is
related to reconstruction algorithms of domains in this
class: assume that the Schwarz function of the domain
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D, hasa branch cut on v € D, with real, positive jump
function p,(z). Obviously, this may include the case of
meromorphic functions with poles in z, € D, for which
ps(z) = 3, apd(z —zp). Then from the asymptotic result

1 1
ﬁlog|p5\1,v)(z)| —5 W(z)+;/ log |z—2'|2dz’dy’, (18)

Dy

it follows immediately that the asymptotic distribution
of zeros of the orthogonal polynomials converges to ps(z):

N
. 1 2 ’ 1297
Nh—rgoN i2=110g|z zi| —Lps(z)log|z Z'|*dz". (19)

In a forthcoming publication [19], we will give detailed
proofs of (16, 19). In this Letter, we provide a thorough
numerical analysis supporting the asymptotic results.

FIG. 3: Localization for the density for n = 20 and the con-
formal measure.

Simulations and numerical study — Let ty and the ex-
terior harmonic moments be given through the potential
V(z). To fix the scaling limit, let N(n) = n/ty. For fixed
n, we have to calculate the entries of the Gram matrix

g§;>=/zizie—"/t°W<Z>,d2z i7=0,...,n. (20
C .

For potentials W (z) that are converging rapidly enough
to infinity as |z| — oo, the exponentially decaying weight
makes the planar numerical integration a feasible task.
The stabilized Gram-Schmidt Algorithm provides the or-
thogonal polynomials P, n(z), which is known to be very
sensitive to the accuracy of the Gram matrix and thus
requires very precise computation of {gg')} . Then the

density pg,N)(z) is obtained from the polynomial P (2).

Of course, the usefulness of this approximation scheme
relies on the rapidity of the convergence in (16), which
may not seem to be very promising. However, our nu-
merical experiment (FIG. 3) shows that in the example
(9) above the ’shape’ of the conformal measure (the blue
curve) is recovered very accurately by the weighted poly-
nomial density of a degree as low as n = 20.

The asymptotic behaviour of the zeroes of orthogonal
polynomials in the scaling limit (15) was also investigated
in the particular case (9). Since f(¢) is a rational function

FIG. 4: Density plot and contour plot of the localized density

of order two, the Cauchy transform Cp, (z) (8) in the
exterior domain D_ satisfies a quadratic equation

A(z)y* + B(2)y + C(z) = 0,

with rational coefficients in z depending on the param-
eters of f(¢). Being an algebraic function, Cp,(z) can
be analytically continued on a plane with a branch cut
connecting up the branchpoints

B = % + Ar £ 2V (21)

of the inverse mapping f~!(z). This 'conjugate elec-
tric field’ created by the uniformly charged domain D,
is mimicked by the field generated by the normalized
counting measure of the zeroes. However, these points
seem to accumulate along some curve (as opposed to the
‘ground state’ configuration in the presence of the back-
ground potential W(z) — the so-called Fekete points —
which are distributed asymptotically uniformly). Since
the asymptotic zero distribution must be real and pos-
itive, the natural choice is dictated by the Sokhotski-
Plemelj formula: the critical trajectory «y is selected by
the condition that the jump between the two solutions

y+ = (=B £ VB? — 4AC)/2A satisfies
R ((y+(2) - y-(2))dz) = 0. (22)

The critical trajectory can be found by calculating

z

2) =% ( [ etw) - y-whaw) @)
21

and then plotting the contour <i>(z) = 0. Three trajecto-

ries are emanating from each branchpoint: there are two

trajectories that connect z; and zo: the one inside the

domain attracts the roots.

Applications ~ The method presented in this Letter
allows to construct optimal approximations with high
convergence rates for either the boundary or the branch
cuts characterizing domains from the harmonic growth
class. This may be used in a number of different situa-
tions; here we discuss two relevant examples:

() an outstanding problem in viscous two-dimensional
flows is formation of boundary singularities (cusps).



FIG. 5: The critical trajectory and the zeroes for n = 50

FIG. 6: Singular shape as a result of Laplacian growth

They are known to occur for finite values of the normal-
ized area tp, and for many initial conditions [20]. For a
particular class of such cusps, with local geometry given
by the scaling z? ~ y?*+1 k = 1,2,..., it is not possi-
ble to continue the evolution of the boundary beyond the
cusp formation, and a weaker type of solution is required.

The weak solution we propose here is based on the
equivalence between the distribution of zeros of the or-
thogonal polynomials and the branch cut of the Schwarz
function, (19). These two distributions generate the same
Newtonian potential in D_ as the uniform distribution
on D, (physical droplet), so they may be considered as
equivalent solutions before singularity formation, FIG. 6.
However, after a cusp is formed, smooth (uniform) solu-
tions are not possible anymore, while the distribution of
zeros of the polynomials remains well-defined. A work-
ing conjecture states that such a weak formulation will
produce solutions which explain the famous fingering pat-
terns observed in physical realizations of this model [21].
This will be substantiated in a forthcoming publication.

In particular, the approximation algorithm can be used
to construct numerical solutions according to this pre-
scription, and compare with real, physical patterns [22].

(#1) another practical application of the results pre-
sented in this Letter is an efficient algorithm for shape

(boundary) reconstruction when the domain D, is given
through the reduced data to, {tx}. For example, such
(reduced) representations arise in satellite imaging data
compression [6]. Shape reconstruction algorithms are
then needed to find the boundary I", given the set of
moments ty, {¢x}, with particular emphasis of good con-
vergence rates. Since the data i, {tx} is sufficient for

constructing the family of orthogonal polynomials P,(,N)
introduced here, we have a boundary approximation al-
gorithm which gives excellent results already at n = 20.
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