
LA-UR- O~--<J(f;/g 
Approved for public release; 
distribution is unlimited. 

Title: 

Author(s): 

Intended for: 

Optimal approximation of harmonic growth clusters by 
orthogonal polynomials 

Razvan T eod u rescu/LAN LIT -13/202489 
Ferenc Balogh/Concordia University, Montreal 

Physical Review Letters 

fo~A'amos
NATIONAL LABORATORY 

--- EST.1943 --­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Optimal approximation of harmonic growth clusters by orthogonal polynomials 

Ferenc BaloghU and Razvan Teodorescu~ 

~ Center for Nonlinear Studies, LANL and 


t Concordia University, Montreal 

(Dated: July 3, 2008) 

Interface dynamics in two-dimensiona l systems with a maximal number of conservation laws gives 
an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, 
viscous flows (zero surface-tension limit of Hele-Shaw flows, [1]), to the granular dynamics of hard 
spheres [2], and even diffusion-limited aggregation [3] . Although a complete solution for the con­
tinuum case exists [4 , 5], efficient approximations of the boundary evolution are very useful due 
to their practical applications [6] . In this article, the approximation scheme based on orthogonal 
polynomials with a deformed Gaussian kernel [7] is discussed, as well as relations to potential theory. 

PACS numbers: 05.70.-a, 02.10 .Yn , 02.30.Tb, 05.30-d, 05.40.-a, 05.50 .+q 

Introduction - A large class of two-dimensional pro­
cesses, both deterministic and stochastic, have been 
mapped to a powerful mathematical model known as 
harmonic (or Laplacian) growth [8-16]. In this model, 
a domain D+(to) grows in time t, i.e. its area to = 
7T-

I JD+ dxdy (areas are in units of 7T from now on) has 
a linear dependence to = Qt, with Q the pumping rate. 

This prescription is obtained as a consequence of the 
complete formulation as an exterior problem: if r rep­
resents the boundary of D+ and D_ its complement, we 
seek the harmonic field p (which may represent pressure, 
concentration, etc) and the velocity field V, such that: 

~~= -_OnP, P =_0 on r, 

v - -\lp, 6..p - 0 on D_ , (1)


{ 
P ~ -log Izl, z ---> 00 , 

with Vn , onP their normal components on r, respectively. 

FIG. 1: Simply connected droplets and equipotential lines for 
the interior and the exterior domains. 

An equivalent formulation of the interior problem was 
studied by S. Richardson [17], where the role of exterior 
and interior domains are interchanged: p is harmonic 
inside up to a finite number of isolated logarithmic sin­

where (h)+ = j~+(t) h( z )dxdy. Therefore, taking h( z ) = 

z k we have that the interior harmonic moments 

Vk = ~ r zk dx dy, k = 1,2, . . . (3) 
7T JD+(t) 

are preserved while the area grows linearly with t. 
Mapping the interior problem by means of a simple 

coordinate change z= 1/z and changing the source to a 
sink (Q ---> -Q) implies that in the original exterior prob­
lem for D _ , 0 E D _, the exterior harmonic moments 

tk=--1 1 z'-k dxdy , k = 1,2, .. . (4)
k7T D _ (t) 

(the interior moments of D_ now) are preserved by the 
evolution and dto/dt = Q [18], where Q = 1. 

For a simply connected droplet D+, the solution of the 
problem is easily expressed through the conformal map 
taking the exterior of the unit disk 1(1 > 1 univalently 
onto D_, and matching the points at infinity, 

z = f(() = r( + L
00 

ukCk, r> 0, (5) 
k=O 

with respect to which the pressure and normal compo­
nent of boundary velocity read 

As shown in [5], conservation of exterior harmonic 
moments is equivalent to the statement that there is a 
canonical transformation from the variables z , z~ , 

z = f(() , z ~ = I(C I 
), (7) 

h . bl I (. ( [az aza za az]to t e varia es to, og , I.e. 8( ato - a( ato = 1. We 
gularities (sources and sinks). Assume for simplicity a 
single point source at the origin z = 0 with pumping rate 
Q, or, in terms of the pressure p, 6..p = S: 62 (z ). Richard­
son proved that for any function h EL I (D+) harmonic 
in a neighborhood of D+ we have 

d(:l+ = (2)Qh(O) , 

note the alternative formulation dz 1\ dzH = d log ( 1\ dto. 
In this paper, we describe an optimal approximation 

procedure for the boundary r(t), as well as for the 
Cauchy transform of D+ , 

CD (z) = ~1 dx'dy' z'=x'+iy', z ED_ . (8)
+ 7T z - z" D+ 
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I 
An example - A superficial analysis of the model de­

scribed he~e would lead to the conclusion that, given the 
integTability of the system, specifying a set of exterior 
harmonic moments {tk} at a: given, initial area To, should 
yield a solution for to > To without major analytical dif­
ficulties. In reality, reconstructing the conformal map (5) 
which corresponds to the data To, {tk} is typically a very 
difficult problem. There are few known correpondences, 
between classes of moments {tk} and classes of shapes (5) 
(see [7] for examples) . An illustrative case occurs when 
the exterior harmonic moments form a simple sequence 

(k=1 ,2, . . . ), (9) 

where /3 E jR+ and a E C \ {OJ are given parameters. 
Defining two radii 

R2 =)1+2/3 , (10)
2 

we have two completely different cases: if lal + Rl :S 
R2 then we have a doubly connected domain bounded 
by circles and for lal + Rl > R2 the domain is simply 
connected given by an exterior conformal map of the form 

v 
f{() = r( + u + (_ A' r > 0, IAI < 1. (11) 

(see FIG. 2). The parameters of f(() are related to the 
deformation parameters as follows: setting u = viA, 

/3 = To - r2 + ~~ , _ 
(12)r v vA{ 

a = A + A + 1 - IAI2 ' 

where To = r2 -lvl 21{1-IAI2)2 is the area. If lal + Rl > 
R2 then the above equations have a unique solution for 
r , v and A in terms of /3 and a. 

FIG. 2: Laplacian growth for the exterior moments (9). 

Domain approximation via orthogonal polynomials­
The fact that, even for a rather simple shape (11) the 
correspondence (12) is quite intricate shows the need for, 
and practical value of, efficient approximation methods. 
To that end , we define the following family of orthog­
onal polynomials: consider the domain specified by the 
exterior harmonic moments {tk} and to. The function 
defined in a neighborhood of the origin by 

V{z) = I>k Zk, z ....... 0, (13) 
k?:l 

is preserved by the harmonic growth. Now consider the 
function W( z ) = Iz l2 - 2~V(z), which we label confining 
potential, and suppose that 

[lzlne-NW(Zld2 z < 00 (n = 0,1 , 2, .. . ) 

for all for values of the scaling parameter N > O. For 
fixed N, the orthogonal polynomials {p~Nl (z )} of the 
weight function e-NW(zl are defined by 

The approximation method presented in this work is 
based on the following statement: as 

n 
n ....... 00, N ....... 00, - ....... to (15)
N ' 

the weighted polynomials IPJNl{z)l2e- NW (zl (which we 

denote by pc,.['fJ (z) in the following) converge to the con­
formal measure of the domain D+{t), with support r(t): 

The proof of this result appeared first in [7]. We do 
not repeat the entire argument, as it would require too 
much space, but recollect the main ideas: starting from 
the differential equations satisfied by the weighted func­
tions 'l/Jn{Z) = p~Nl{z)e-NW(zl/2, with respect to vari­
ables nlN and z, we integrate perturbatively in powers 
of N-l, and obtain the expression ([7], equation (76)): 

'l/J{z) ,..., J[J-l{z)]' exp [N (_l z~2 + ~./z S{()d() ] , 

where the Schwarz function S{ z ) is defined by the iden­
tity S{z) = z, z E r . It is known to have the expansion 

S( z ) = V'(z) +.!. r dx'dy' z ....... 00 (17) 
7r JD+ z - z" 

Since the exponent in the asymptotic expression of'l/J(z ) 
vanishes on the boundary r and gives a Gaussian de­
cay away from it, the weighted polynomials p}.["l(z) are 
described, in the n, N ....... 00 limit, by the confonnal mea­
sure (16). However, this asymptotic result says very little 

about the behavior of p}.["l{ z ) for finite values of n , N . 
In the remainder of this paper, we present numerical 

evidence for the convergence properties of p}.["l (z) at fi­
nite values of their order. We show that the agreement 
between p}.["){z) and 1[J-l{z)]'1 is excellent for values 
of n as little as n = 20, and present potential appli­
cations of this property. One obvious consequence is 
related to reconstruction algorithms of domains in this 
class: assume that the Schwarz function of the domain 
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D+ has a branch cut on IE D+, with real, positive jump 
fuhction Ps(z). Obviously, this may include the case of 
meromorphic functions with poles in zp E D+, for which 
Ps(z) = Lp ap<l'(z - zp) . Then from the asymptotic result 

it follows immediately that the asymptotic distribution 
of zeros of the orthogonal polynomials converges to Ps (z): 

In a forthcoming publication [19], we will give detailed 
proofs of (16, 19). In this Letter, we provide a thorough 
numerical analysis supporting the asymptotic results. 

FIG. 3: Localization for the density for n = 20 and the con­
formal measure . 

Simulations and numerical study - Let to and the ex­
terior harmonic moments be given through the potential 
V(z). To fix the scaling limit, let N(n) = nlto . For fixed 
n, we have to calculate the entries of the Gram matrix 

g~;)= lzizje-n/toW(Z),d2z i,j=O, ... ,n. (20) 

For potentials W(z) that are converging rapidly enough 
to infinity as Izl -' 00, the exponentially decaying weight 
makes the planar numerical integration a feasible task. 
The stabilized Gram-Schmidt Algorithm provides the or­
thogonal polynomials Pn,N(Z), which is known to be very 
sensitive to the accuracy of the Gram matrix and thus 
requires very precise computation of {gi;)} . Then the 

density p~:I)(z) is obtained from the polynomial p~N)(z). 
Of course, the usefulness of this approximation scheme 

relies on the rapidity of the convergence in (16), which 
may not seem to be very promising. However, our nu­
merical experiment (FIG. 3) shows that in the example 
(9) above the 'shape' of the conformal measure (the blue 
curve) is recovered very accurately by the weighted poly­
nomial density of a degree as low as n = 20. 

The asymptotic behaviour of the zeroes of orthogonal 
polynomials in the scaling limit (15) was also investigated 
in the particular case (9) . Since f(() is a rational function 

FIG. 4: Density plot and contour plot of the localized density 

of order two, the Cauchy transform CD + (z) (8) in the 
exterior domain D_ satisfies a quadratic equation 

A(Z)y2 + B(z)y + C(z) = 0, 

with rational coefficients in z depending on the param­
eters of f((). Being an algebraic function, CD + (z) can 
be analytically continued on a plane with a branch cut 
connecting up the branchpoints 

ZI 2 = -
V + Ar ± 2y'rV (21), A 

of the inverse mapping f- 1 (z). This 'conjugate elec­
tric field' created by the uniformly charged domain D+ 
is mimicked by the field generated by the normalized 
counting measure of the zeroes. However, these points 
seem to accumulate along some curve (as opposed to the 
'ground state' configuration in the presence of the back­
ground potential W(z) - the so-called Fekete points ­
which are distributed asymptotically uniformly). Since 
the asymptotic zero distribution must be real and pos­
itive, the natural choice is dictated by the Sokhotski­
Plemelj formula: the critical trajectory I is selected by 
the condition that the jump between the two solutions 
y± = (-B ± J B2 - 4AC)12A satisfies 

(22) 

The critical trajectory can be found by calculating 

<1>(z) := ~ (1: (y+(w) - y_(W))dW) (23) 

and then plotting the contour <1>( z ) = O. Three trajecto­
ries are emanating from each branchpoint: there are two 
trajectories that connect Z I and Z2: the one inside the 
domain attracts the roots. 

Applications - The method presented in this Letter 
allows to construct optimal approximations with high 
convergence rates for either the boundary or the branch 
cuts characterizing domains from the harmonic growth 
class. This may be used in a number of different situa­
tions; here we discuss two relevant examples: 

(i) an outstanding problem in viscous two-dimensional 
flows is formation of boundary singularities (cusps) . 
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FIG. 5: The critical trajectory and the zeroes for n = 50 

FIG. 6: Singular shape as a result of Laplacian growth 

They are known to occur for finite values of the normal­
ized area to, and for many initial conditions [20]. For a 
particular class of such cusps, with local geometry given 
by the scaling x 2 ,...., y2k+l , k = 1,2, ... , it is not possi­
ble to continue the evolution of the boundary beyond the 
cusp formation, and a weaker type of solution is required. 

The weak solution we propose here is based on the 
equivalence between the distribution of zeros of the or­
thogonal polynomials and the branch cut of the Schwarz 
function, (19). These two distributions generate the same 
Newtonian potential in D_ as the uniform distribution 
on D+ (physical droplet), so they may be considered as 
equivalent solutions before singularity formation, FIG. 6. 
However, after a cusp is formed, smooth (uniform) solu­
tions are not possible anymore, while the distribution of 
zeros of the polynomials remains well-defined. A work­
ing conjecture states that such a weak formulation will 
produce solutions which explain the famous fingering pat­
terns observed in physical realizations of this model [21] . 
This will be substantiated in a forthcoming publication. 

In particular, the approximation algorithm can be used 
to construct numerical solutions according to this pre­
scription, and compare with real, physical patterns [22]. 

(ii) another practical application of the results pre­
sented in this Letter is an efficient algorithm for shape 

(boundary) reconstruction when the domain D+ is given 
through the reduced data to , {td. For example, such 
(reduced) representations arise in satellite imaging data 
compression [6]. Shape reconstruction algorithms are 
then needed to find the boundary r, given the set of 
moments to, {td, with particular emphasis of good con­
vergence rates. Since the data to, {td is sufficient for 
constructing the family of orthogonal polynomials p~N) 
introduced here, we have a boundary approximation al­
gorithm which gives excellent results already at n = 20. 
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