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CONVERGENCE ANALYSIS OF THE HIGH-ORDER MIMETIC 

FINITE DIFFERENCE METHOD 


L. BEIRAo DA VEIGA ., K. LIPNIKOV t, AND G. MANZINI :j: 

AMS subject classifications. 

Abstract. We prove second-order convergence of the conservative variable and its flux in the 
high-order MFD method. The convergence results are proved for unstructured polyhedral meshes 
and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new 
family of high-order MFD methods. Theoretical result are confirmed through numerical experiments. 

1. Introduction. High-order discretization methods are expected to be more 
efficient than low-order methods in modeling of miscaleneous physical processes. In 
this article we consider diffusion processes that are crucial for modeling heat trans­
fer, migration of electrons in semiconductor chips, contaminant transport, etc. We 
consider mixed formulation of the diffusion problem and analyze both theoretically 
and numerically new high-order mimetic methods [4,18] that provide second-order 
accurate numerical fluxes of the conservative variable (temperature, pressure, energy, 
etc.). 

Modeling with polygonal and polyhedral meshes provides enormous geometric 
flexibility in describing complex geometries. These meshes are used in Earth study, 
computational fluid dynamics [16], electromagnetics [15], biological modeling, etc. 
Polyhedral meshes result in a more optimal partition of the computational domain 
than simplicial meshes. Locally refined meshes with hanging nodes are examples of 
polyhedral partitions that are admissible for mimetic methods. Development of new 
high-order methods on polyhedral meshes is a step towards more efficient numerical 
simulations. 

The mimetic finite difference (MFD) method studied in this article belongs to 
a family of compatible discretization methods that includes finite element methods 
[22], spectral element methods, finite volume methods [17, 19,26], etc. The MFD 
method mimics essential properties of PDEs and the fundamental identities of the 
vector and tensor calculus. It has been successfully employed for solving problems of 
continuum mechanics [24], electromagnetics [20], gas dynamics [H], two-phase flows 
in porous media [23], and linear diffusion on polygonal [21], polyhedral [8,10,25] and 
generalized polyhedral meshes [9]. The MFD method for diffusion problem in the 
aforementioned papers is a low-order approximation based. on a piecewise constant 
representation of the scalar variable and its flux. It turns out that this method is 
second-order accurate for the approximation of cell-averages of the scalar variable 
due to a superconvergence effect, c.f. [8]. Nonetheless, it is only first-order accurate 
for the flux on families of general polyhedral meshes. In [4,18]' we developed a new 
high-order MFD method that is second order accurate for both primary variables. 
The method has been developed for piecewise constant diffusion coefficients only. It 
is based on different ideas than the high-order mimetic methods proposed in [13,14] 

• Dipartimento di Matematica "F. Enriques", Universita degli Studi di Milano, via Saldini 50, I 
- 20133 Milano, Italy, e-mail: beirao@mat.unimLit 

t Los Alamos National Laboratory, Theoretical Division, MS B284, Los Alamos, NM, 87545 
e-mail: lipnikov@lanl.gov 

:I: Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI) - CNR, via Ferrata 1, 1­
37100 Pavia, Italy e-mail: Marco.Manzini@imati.cnr.it 

mailto:Marco.Manzini@imati.cnr.it
mailto:lipnikov@lanl.gov
mailto:beirao@mat.unimLit


whose drawback is lose of accuracy on rough grids. 
In this article, we develop the convergence analysis of the high-order MFD method 

[4,18] under quite general assumptions on the mesh. For instance, the admissible 
mesh may include degenerate and non-convex polyhedral elements. \Ve also extend 
the high-order MFD method to the ca.se of non-constant tensor diffusion coefficients 
through the new local consistency condition (52). Using this condition, we develop a 
new family of MFD scalar products resulting in a family of finite difference methods 
with similar properties. The analysis of this family will be the topic of future research. 
Finally, we prove error estimates for a post-processed solution. The accurate post­
processed solution can be used in problems, such as the reactive transport in porous 
media, to evaluate solution inside mesh elements. 

The paper outline is as follows. In Section 2, we introduce the high-order MFD 
method. In Section 3, we prove the second-order convergence estimate for the flux 
variable. In Section ~1, we prove the second-order convergence estimates for the scalar 
variable and the post-processed solution. In Section 5, we develop methods for calcu­
lating the inner product matrices satisfying the theoretical assumptions. In Section 6, 
we present results of numerical experiments on polygonal meshes. Finally, in Section 7 
we discuss some final remarks and summarize the conclusions. 

2. High-order Formulation of the MFD Method. Let f! C lRd be an open 
bounded polyhedral domain for d 3 or a polygonal domain for d 2 with Lipschitz 
continuous boundary r. \Ve consider the diffusion equation in mixed form for the 
scalar solution field p and the vector flux field F defined by 

F+ K\7p 0 in f!, (2.1a) 

divF = I in f!, (2.1b) 

p 9 on r. (2.1c) 

In (2.1a), I is the forcing term of the divergence equation, 9 is a boundary function 
accounting for non-homogeneous Dirichlet condition on r, and K is a constant full 
symmetric tensor describing material properties. 

(Kl) K is strongly elliptic [1], i.e. there exist two constants K* and K* such that 

K* IiGII ::; II K1
/ 

2 GII ::; K* IIGII 'riG E lRd 
. (2.2) 

(K2) All the components of K and K-l are in W 2 '(X)(f!). 

In view of condition (2.2) the d x d symmetric matrix K is strictly positive definite, 
and thus non-singular. Its inverse matrix K- 1 is also symmetric and positive definite, 
Le. strongly elliptic, and satisfies analogous bounds from above an below involving, 
respectively, K; 1 and K* -1 . 

Under suitable assumptions on the regularity of f! and I, the well-posedness of 
problem (2.1) can be proved, thus implying existence and uniqueness of solution [1]. 

2.1. Notation and basic assumptions. For exposition's we find it con­
venient to adopt mesh notation and assumptions introduced in [7]. Let ~ be a con­
formal partition of f! into non-overlapping polyhedral elements (polygons in 2-D). For 
every element E we denote its d-dimensional Lebesgue measure by its barycenter 
by its diameter by hE, and the number of its faces by mE. The notation 8E may 
denote the boundary of the element E or the union of the element faces depending 
on the context. Similarly, for every face e we denote its (d-l)-dimensional Lebesgue 
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measure by lei, its barycenter by Xe, its unit normal vector by n e , its diameter by 
he, the number of its edges by me, and the (d - 2) measure of each face edge 1E oe 
by Ill. We assume that the orientation of each mesh face e is uniquely defined by the 
orientation of its unit normal vector ne. The mesh Th is sub-indexed by the mesh size 
parameter defined, as usual, by h = SUPE hE. "We indicate the set of mesh faces by 
[h, the subset of internal faces by [h and the subset of boundary faces by [p. The 
basic assumptions that follow are formulated for d = 3; the restriction to d 2 is 
straightforward. 

(HG) [Properties of the decomposition Th] There exist two positive real numbers N. 
and Ps such that every mesh Th admits a sub-partition Sh into shape-regular 
tetrahedra such that 

(HGl) every polyhedron E E Th admits a decomposition ShlE made of less than 
Ns tetrahedra; 

(HG2) the shape-regularity of the tetrahedra K E Sh is defined as follows: the 
ratio between the radius rK of the inscribed sphere and the diameter hK is 
bounded from below by the constant Ps: 

rK 

hK 2: Ps > 0; 


(ME) [Star-shaped elements] there exists a positive number T* such that each element 
E is star-shaped with respect to all points of a ball of radius T' hE and centered 
at an internal point of E. 

From the above assumptions several properties of the mesh, which are useful in the 
mimetic formulation, can be derived. We list them below for the sake of the reader's 
convenience and for future reference in the paper. 

(Ml) There exist two positive integers NE and Ne such that every element E has 
mE ~ N E faces, and every face e has me ~ Ne edges. 

(M2) For any mesh element E E 7h, the quantities lEI, lei for e E oE, and III for 
I E oE properly scale with respect to he; in particular, there exists a positive 
constant a* such that a*h~-l ~ lei and a*hE ~ he ~ hE for all faces e of E. 

(M3) there exists a constant CAg independent of hE and such that [8]: 

L 1I¢1112 (e} ~ CAg (hE111¢111'(E) + hEI¢I~I' (E}) (2.3) 
eEoE 

for any function ¢ E HI(E). We will refer to (2.3) as the Agmon inequality; 

(M4) for any function q Jl3(E) there exists a quadratic interpolant qi;l and a 
constant C independent of hE such that [6]: 

Ilq qi;l qi;)IHl(E)+h~lq - qi;l IH2(E) ~ch1MIH3(E)' (2.4) 

The formulation of the mimetic finite difference method is based on the notion 
of discrete fields, which are collections of real numbers representing the degrees of 
freedom of the numerical scheme. From the notation standpoint, we will indicate 
both continuous and discrete vector fields by bold letters and will use normal fonts 
for scalar fields. Hence, we will not explicitly distinguish between continuous and 
discrete fields, since the field's nature can always be contextually derived without 
ambiguity. 

2.2. High-order formulation of the MFD method. We represent discrete 
scalar and vector fields by the finite dimensional linear spaces Qh and Xh. 
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• Qh provides the degrees-of-freedom of scalar fields associated to mesh cells; thus, 

q E Qh means that q {qE} EETh with qE E :JR. 

The dimension of Qh equals the number of mesh cells. The interpolation operator for 
the scalar field q E Ll(O) reads as: 

(qI)E 1 kqdV for all E E 7,. . 

• Xh provides the degrees-of-freedom of the vector fields associated to the elemental 
faces of the mesh; thus, 

G E X h means that G {(Gg, G1) rEEh 

with Gg E JR, G~ E JRd-l. 

The dimension of X h equals d times the number of mesh faces. By using the vector 
degrees-of-freedom we obtain the linear representation of the discrete flux G E Xh on 
each mesh face given by 

G(e)(I:) Ge +G e 
1 for eE e, (2.5)'" 0 . 

where e E JRd-l is the position vector of the face points with respect to a local 
coordinate system chosen on e, ee lRd - 1 is the barycenter of e with respect to such 
coordinate system, and we recall that he is a characteristic length size of the face 
e. We remark that the discrete flux continuity across inter-element faces is naturally 
embodied into the definition of Xh because the vector degrees-of-freedom are uniquely 
defined on each mesh face. The interpolation operator for the continuous vector field 
G E (L8(0))d with s > 2 and divG E L2(0) reads as 

l(G I )e(e) (1I·(e ee))m dS = 1ne·G (1I·(e - ee))m dS 
(2.6) 

for every II E lRd
-

1 and m = 0, 1. 

For m = 0 we get the usual interpolation formula of the low-order MFD method: 

(GI)~ line.GelS, 

while for m = 1 we get the condition defining the high-order discrete flux components: 

lfor every II E lRd - . 

The mimetic discrete divergence operator divh : Xh -> Qh is defined element-wise 
as divhG = {divh,EG} EET/. where 

L 
eE8E 

efor every G E Xh, E E 7,. and setting n . nE' This definition is consistent 
with the Gauss divergence theorem, and a straightforward calculation shows that the 
commuting property of the interpolation operators still holds: 

(divGl divhG I
. (2.7) 
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Let us now introduce the L2 (E)-orthogonal projection from (H2(E»d onto the 
space of linear vectors defined on E, for each element E E Th . The projection operator 
is denoted by p~)(.) and formally defined for every u E (L2(E»d by: 

r(P~)(u) - u). vdV 0 for every v E (P1(E»)d. (2.8)iE 
This operator is clearly bounded, i.e. IIP~)(U)lP(E) S; IluIIL2(E) and its approxima­
tion properties are characterized by the following lemma. 

LEMMA 2.1. Under the regular-ity assumption (ME), the projection operator 

pi) (-) provides a second-order accurate approximation of vector fields of (H2 (E))d: 

Ilu p~)(u)llp(E) + hElu p~)(U)IHl(El S; Ch~luIH2(E)' (2.9) 

Proof Let riJ)o :(H2(E»d -+ (P1(E»d be the nodal linear interpolation oper­
ator acting on the components of the vectors of (H2 (E»d. Adding and substracting 

rk1)(u), using the triangular inequality, noting that P~1 
0 rk1) = rk1), and using a 

standard estimate on star-shaped domains [6] for the interpolation error yield: 

Ilu P£l(u)II£2(E) S; Ilu - ril(u) 11£2(E) + Ilr£l(u) - p£l(u) IIp(E) 

S Ilu - rk1)(u) IIL2(E) + IIP£l(ril(u) - u) 

S; 211u Ti)(u)II£2(E) 

(2.10) 

Likewise, using the previous arguments and an inverse estimate in the third step yield: 

lu pil(u)IHl(E) S; lu - r£l(u)IH1(El + Ir£)(u) - pil(u) IHI(E) 

S lu ri l (u)IHI(E) + Ipil(r£l(u) U)IH1(El 

< lu r£l(u)IHI(El + ChE/ Ilpi)(r~l(u) - u) IIp(E} 

S; CheluIH2(E)' (2.11) 

Inequality (2.9) follows from (2.10)-(2.11).0 
:\ow, we equip Qh and Xh with the scalar products [.,.J Qh and ['j.J X ' which

h 
assemble contributions of each mesh element. The elemental terms are always denoted, 
for simplicity, by [ ..,.j fl' even if their definition is different for scalars and vectors. The 
symbols 111·IIIQh' III ·lllxh , and 111·IIIE are the norms induced by these scalar products. 
The scalar product of Qh is given by 

[p, qj Qh L [p, q] E where [p, qj E IElpEqE for all p, q E Qh, (2.12) 
EETh 

and corresponds to the L 2-scalar product for piecewise constant functions. The scalar 
product of Xh is given by 

[F,G]Xh = L [F,G]E for all F,G E Xh, 
EETh 



where the local scalar product [·,·lE in Xhl E is required to satisfy the two following 
conditions: 

(51) 	spectral stabUity: there exist two constants Cl*, Cl* > 0 independent of h such 
that for all G E Xh and for every element E there holds 

Cl*hE 	L /IG(e)(1;)12 dS '5: [G, Gl E '5: Cl*hE L /IG(e)(~w dS, 
eE8E e 	 eE8E e 

where G(e) (I;) is the local affine function defined on e by (2..5); 
(52) 	local consistency: for every element E, every discrete vector field G E Xh, and 

every polynomial function q(2) E P2(E) there holds: 

[(P~1)(K\7q(2)))I,GlE + kq(2) divh.EGdV 

L 	 1G(el(~)q(2)(~) dS, 
eE8E 

where divh,EG is the discrete divergence operator previously defined. 
To ensure the symmetry of the resulting scalar product, condition (52) considers 
the projected field (P~\K\7q(2)))I instead of (K\7q(2l)I as is done in the low-order 
formulation. This fact is thoroughly discussed in sub-section 5.1. 

REMARK 2.1. In the case of piece-wise constant diffllsion tensor condition (52) 
becomes 

[(K\7q(2))I,Gl E +kq(2) (x)divh,EGdV 

= 	 L ClE / G(e)(I;)q(2)(I;)dS, 
eE8E e 

which is the condition considered in f4f. Therefore, the analysis presented in this paper 
incllldes the method of f4J. 

We terminate the presentation of the mimetic setting by introducing the following 
bilinear form whose arguments are a function of L 1 (r) and a vector of X h: 

(g, Gl = L / c(el(l;)g(l;) dSr 
eE£f' 	 e 

(2.13) 

= L (leIGo/9dS+G~ '/9(1;) 
eEEf e e 

The dual mimetic formulation of problem (2.1) reads as: 

Find (Fh,Ph) E X h x Qh such that: 

-(g, Glr for every G E Xh, (2.14a) 

(2.14b) 

The dual mimetic formulation (2.14) does not require the introduction of a discrete flllx 
(or gradient) operator. However, such operator can be defined, as usual in mimetic 
discretizations, by duality with respect to the discrete divergence operator and the 
scalar products of Qh and X h. 
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3. Convergence of flux variable. The main result of this section is proved 
in Theorem 3.4, which states the convergence of the flux approximation Fh to the 
interpolant FI of the exact flux F and provides an error estimate in the norm 111·111 Xh . 

The theorem's proof is based on some technical lemmas that are proved below. 
LEMMA 3.1 (Agmon inequalities). Let E be a mesh element, e be a mesh face 

that belongs to DE, and q a function in H 3 (E). Under Assumptions (HG)-(ME)it 
follows that: 

(3.0a) 
eEBE 

(3.0b) 
eEBE 

where q~) is the quadratic interpolant of q in E satisfying (2.4), C depends only on 
the constants appearing in (Ml)-(M4), and CK = IIKII~2,oo(E" 

Proof. We prove inequality (3,Oa) by applying the Agmon inequality with ¢ = 
q q~) and using a standard estimate for the interpolation error (with error constant 
Clp). We have 

'" II (2)11 2 cAg( -111 (2)112 h I (2)12 )L- q - qE £2(e)::;· hE q - qE £2(E) + E q - qE H1(E) 

eEBE 


(3.1) 

where the constant C includes the Agmon and the interpolation constant. 
To prove inequality (3.0b), we add and substract K'Vq~) to its left-hand side and 

use the triangle inequality to obtain: 

II K'Vq - p~) (K'Vq~)) 11~2(e) 
(3.2) 

::; 2 (1IK'V(q q~))lli2(e) + IIP11)(K'Vq~)) - K'Vq~)lli2(e)) . 

The first term of the right-hand side of (3.2) is bounded through the Agmon inequality 

by taking ¢ = K'V(q - q~)) and then using the estimate for the interpolation error 
(the error constant is still denoted by Clp): 

L IIK'V(q - q~»)lli2(e) 
eEBE 

Ag::; C K*2 (hE? 11'V(q q~))lli2(E) + hEI'V(q q1;J) Il[l (B) ) 

::; cAgK*2 (hE;t(CIPh~lqIH3(E))2 +hs(C1PhElqIH3{E))2) 

- 2 3 2 
::; CK' hEllqIIH3{E)' 

where the constant Cstill includes the Agmon and the interpolation constant. Sim­
ilarly, the second term of the right-hand side of (3.2) is bounded by taking ¢ = 
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P~)(K'Vq~») - K'Vq~) in (2.3), applying (2.9) with u = K'Vq~l, and using (2.4): 

L IIP~)(K'Vq~») - K'Vq~) 1I~2(e) 
eE&E 

:s CAg 
( hE/ Ilp~)(K'Vq~»)-K'Vq~) 11~2(E) +hElp~)(K'Vq~») K'Vq~) l~l(El) 


:s Ch1IK'Vq~)1h-2(El 


:::; Ch11IKII~2'OO(E)llq~)11h-3(E) 

- 3 2 2:s ChEIIKllw2,oc(E)llqIIH3(E)' 

The lemma follows by taking CK max(II:*2, IIKII~2'=(E») = IIKII~2'OC(E)" 0 

LEMMA 3.2. Let q E H3(O) and q~) the piecewise quadratic polynomial that in­
terpolates qlE in the mesh element E. There exists a positive constant C) independent 
of q and h such that for every G E Xh there holds: 

L L a'E 1q~)(e)G(e)(eJdS - (qlr,G)r:::; C)h21IqIIH3(fl)IIIGlllxh' (3.3) 
EETh eE&E e 

Proof Since the trace of q in H3(O) is continuous at every internal face and 
a'EG(e) takes opposite values at the two sides of every internal face, we have that: 

(3.4) 

By using (3.4) and the Cauchy-Schwarz inequality twice we get: 

L L a'E 1q~)(e)G(e)(e) dS - (qlr, G)r 
EETh eE&E to 

= L L 1(q~)(t.) - q(e))G(e)(t.) dS 
EETh eE&E 

:::; L L Ilq}ffl qll£2{e)IIG(e)II£2(e) 
EETh eE&E 
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Inequality (3.0a), Assumption (51), and setting 0 1 = Cja,1/2 allow us to get the 
final developments: 

L L aE 1q~)(~)G(e)(~)dS - (qlr,G)r 
EETh eE&E e 

1/2 ( )1/2 
~ 01 h2 

( L Ilqllt3(E) ) L IIIGIII~ 
EETh EETh 

01 h2 1Iq IIH3(1l) III Glllxh' 
o 

LEMMA 3.3. Let q E ]{3(Q) and q(2) the 7h -piecewise polynomial such that q~) 
is the quadratic interpolant of qlE for every mesh element E. There exists a positive 
constant O2 independent of q and h such that for every G E X h there holds: 

[(K'\7q)I (P~)(K'\7q(2»))I,G]Xh ~ C2h21IqIH3(1l)IIIGlllxh' (3.5) 

Proof. To ease notation, let us introduce the symbol 

9 q K'\7q - P~)(K'\7q~»). (3.6) 

Since ((9q )I)e is the L2 (e)-orthogonal projection of ne. 9 q onto P1(e), we have that 
11(9~)eIIL'(e) ~ 119q ll£2(e)' Therefore, using spectral stability (51), Agmon inequal­
ity (3.0b), and setting (C2)2 a*CCK yield: 

1119: III~ ~ a·hE L 1I(9:rlli'(e) ~ a'hE L 119q lli'(e) ~ (02)2h~llqllt3(E)' 
eE&E eE&E 

We estimate the global bound for 119: Illxh as follows: 

1119: 111~h L 11'9: III~ ~ (02)2 L h~llqllt3(E) = (02)2h41Iqllt3(1l)' (3.7) 

Finally, we apply the Cauchy-Schwarz inequality and use (3.7) to obtain 

[9:,G]Xh ~ 1119: IllxJIGlllxh ~ C2h2 1IqIIH3(1l)IIIGlllxh' 
which is inequality (3.5) because of definition (3.6). 0 

THEOREM 3.4. Let (F,p) be the exact solution of (2.1) with p E ]{3(Q), and 
(Fh,Ph) the mimetic solution in Xh x Qh. Then, it holds 

IIIFI Fhlllxh ~ Ch21IpIIH3(1l) (3.8) 

where 0 = max(0 1,02) is independent of h and only depends on the constants ap­
pearing in (M1)-(M4) and (51)-(52). 

Proof. Let p(2) be the 7h-piecewise polynomial such that p~) E P2 (E) is the 
quadratic interpolant of piE' Using equation (2.14a) with G = (FI - Fh) and 9 = plr, 
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equation (2.14b) with q Ph, and equation (2.7) with G = P yield 

[Ph,p I Phl xh [Ph,divh(p I Ph)lQh (plr,p I - Ph)r 

[Ph, fI]Qh [Ph, fI]Qh - (plr, pI ­ Ph)r 

-(plr, pI Ph)r' (3.9) 

Note that the numerical error (pI Ph) is orthogonal to Ph with respect to the scalar 
product of Xh if 9 O. 
We transform the expression of the flux error by using identity (3.9), substituting 

pI (_K'Vp)I and adding and substracting the term - (P~) (K'Vp~»)) I to obtain 

IllpI - Ph [pI Ph, pI Phl xh 

[pI,pI Phl xh + (plr, pI - Ph>r 

[(_K'Vp)I,pI - Ph]Xh + (plr,pI - Ph)r 

= Al + .42 

where 

Al (P~)(K'Vp(2»))I,pI Ph]Xh + (plr,p I -Ph>r' 

A2 (K'Vp)I + (P~)(K'Vp~»))I,pI - Phl xh ' 

The term IAll is bounded by noting that 

[(P~)(K'Vp~»))',pI -Phl E = L (JE lp~)(~)(PI _Ph)e(~)dS, 
eEoE e 

which follows from local consistency assumption (52) because divh (pI) = F 
divhPh, and then using inequality (3.3) with G = (pI - Ph)' The term IA21 is 
bounded by using inequality (3.5) with G = (pI - Ph). Finally, inequality (3.8) 
follows by combining the bounds for IAll + IA21 and taking C = max(Ct,C2 ). 0 

4. Convergence of scalar variable and post-processing. In this section, 
we derive an a priori estimate for the approximation error of the scalar solution and 
for the quadratic field built by the post-processing technique proposed 
in [4]. Our post processing technique is based on an element-wise reconstruction of 
a linear gradient field from the discrete flux solution, and generalizes the analogous 
technique for the low-order mimetic scheme [3,12] to the high-order case. The post 
processed scalar field Ph is defined as the unique 'Th-piecewise quadratic polynomial 
satisfying 

PhdV ( 4.1a) hPhdV h 

h'VPh ' 'VqdV -[Ph,('Vq)Il for each q E p 2 (E)\1R (4.1b)E 

for all E E 'Th. 
Since the present mimetic formulation approximates the scalar solution field by 

a piecewise constant function, the convergence rate of Ph to the exact solution field P 

to 



is expected to equal the convergence rate of the low-order scheme [12]. Therefore, we 
have 

Ilph - pll£2(fl) s: Ch2
, 

in accordance with the behavior that has been experimentally observed in the exam­
ples of [4]. Nevertheless, we get a better approximation of the gradient of the solution 
field within each mesh element by exploiting the more accurate representation of the 
solution flux. Note that the computational cost of the post-processing procedure is 
negligible since it is calculated element by element and, in addition, the related local 
matrix to be inverted turns out to be diagonal. Details concerning implementation 
can be found in 

4.1. Assumptions and preliminaries. 

Let E Th. There exist an elementallijting operator RE XhlE H(div, 
such that: 

(Ll), for all G Xh, it holds 

divRE(GE) = (divhG)E inE (4.2b) 

RE(GE)le . ne = G'E "Ie E BE (4.2a) 

(L2), for all vector fields whose components have a linear restriction on E, i.e. G E 
GIE (PI (E»d, it holds 

(L3), for all G Xh, it holds 

p*hE L lIG(e)(e)12 dS s: IIRE(G)lli2(E) s: p*hE L l IG(e)(e)1 2 dS , 
eE8E e eE8E e 

with the constant factors p* and p* independent of E. 
Throughout the paper, we will refer to (L2) as the Prcompatibility condition 

and to the operators that verify this condition as Prcompatible operators. We also 
define the globallijting operator R : Xh --+ (L2(n))3 that combines all element-wise 
contributions from the local lifting operators RE. 

We that we do not need to give the explicit form of the lijting operator 
RE since the convergence analysis just requires its existence. 

Note that the requirements of the lifting operator above are weaker than the ones 
assumed in [8j. Indeed, our operator RE only needs to be stable with respect to the 
elemental norm, while it is not required to reproduce the scalar product exactly as 
given by condition (5.7) of Reference [8]. More precisely, it is unlikely that an 
operator RE exists that satisfies Assumptions (Ll) and (L2) and is also such that 

(4.3) 

for all elements where KE is a constant approximation of K over the element E. 
We can see that by simply taking F (PgJ(K\7q))I, where q is a second-order 
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polynomial with zero average on E, Indeed, using definition (4,3) and (L2) we find: 

[F, Gl E l KIi/ RE(F), RE(G) dV 

l KIi/ RE(P2) (K\7q) I) , RE(G) dV 

1K-lp(l) (K\7q) , R (G) dV,E E E 
E 

On the other hand, the local consistency condition (Ll) gives 

[F,Gl E [(P~) (K\7q)) I, GJ E 

[ qdivh,EG dV + L 1G€(e)q(e) dS 
JE eEBE e 

0+ [JaE fiE'RE(G)qdS 

1; div(qRE(G)) dV 

l \7q, RE(G)dV + l qdivRE(G)dV 

[ \7q, RE(G) dV + divh,E(G) [ qdVJE JE 
1; \7q, RE(G) dV + 0, 

where in the last step we also use that q E P2 (E)\IR, The comparison of the two 
above identities reveals that for every q E P2 (E)\'lR, there must hold 

This condition is quite and may lead to a contradiction unless K is constant 
on the element E, 

Although, for simplicity, we prefer to keep (U)-(L3) as assumptions, from (HG)­
(ME) it can be easily proved that such a lifting operator always exists, For example, 
one could directly build RE by solving an ad hoc discrete HDMl Po problem in E 
in accordance with the framework proposed in [2,18,22]. 

For each elemental lifting operator satisfying (U)-(L3) we have the following 
approximation result. 

LEMMA 4. L There exists a constant C independent of hE such that for any 
G E (H2(E))d there holds: 

IIG RE (G1 )11L2(E)::; Ch~IIGIIH2(E) 'dE E Th . (4.4) 

Proof. Let E E 7,.. We add and substract G(l\ a linear interpolant of G in E, 
and we apply the triangle inequality and the estimate of the interpolation error to 
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obtain 

IIG RE(G1 )IIL2(E):::; IIG - G(1)IIL2(E) + IIG(I) RE(G)Illp(E) 

:::; c'h11I G IIH2(E) + IIG(!) RE(G1 )11£2(E)' (4.5) 

We transform the second term of inequality (4.5) through properties (L2)-(L3) and 
noting that II(G(1) G); IIL2(e) :::; IIG(l) - GIIL2(e) since the component of the interpo­
lation vector (2.6) for any given face e is the orthogonal projection of IIp;' (G(1) - G} 
onto PI (e), the space of linear functions defined on that face. We have: 

IIG(l) - RE(GI)II~2(E) = IIRE(G(1) GI}II~2(E) 

:::;P*hELjl(G(l) G);1 2 dS 
eE8E e 

:::; p*hE L IIG(1) Glli2(e)' 
eE&E 

);ow, we apply Agmon inequality (3.1) with 4> (G(1) G)i, i.e. for each spatial 
component labelled by i 1, ... ,d, thus leading to 

IIG(1) - RE(GI)iI~2(EJ :::; h~;C"CAIIIGlllf2(E) , (4.6) 

where the constant CAl is independent of hE. Inequality (4.4) eventually follows by 
combining(4.5) and (4.6) and setting C = 2 max (C', (C"CAI)1/2). 0 

The existence of a lifting operator satisfying conditions (U)-(L3) makes it possi­
ble to reformulate the convergence result of the flux approximation stated in Theo­
rem (3.4) as follows. 

PROPOSITION 4.2. Let (F,p) be the exact solution of (2.1) with p E H3(!l), and 
(Fh,Ph) the mimetic solution in Xh x Qh. Under Assumptions (HG)-(ME) and (51)­
(52), we have the error bound 

liF - R(Fh)II£2(fl) :::; Ch21IpillJ3(fl), (4.7) 

where the constant C is independent of h. 
Proof. Using (L3) and (51) we have that: 

IIR(FI Fh)lli2(fl):::; p* L hE L IFI Fhlli2(e) 
EET" eEaE 

(4.8) 

We add and substract R(FI) in the left-hand side of (4.7), apply the triangle inequal­
ity and inequality (4.8), and obtain: 

IIF R(Fh)II£2(Il):::; IIF - R(F1 )IIL2(1l) + IIR(FI Fh)IIL2(1l) 

:::; IIF - R(F1 )IIL2(1l) + iP*1!lF1 Fhlllx". (4.9)v-;;: 
The first term in the right-hand side of (4.9) is an interpolation error that is con­
trolled by decomposing the L2 norm on the partition Th and applying the estimate 
provided by Lemma 4.1 with G = FIE for each element E E Ttt. The second term 
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in the right-hand side of (4.9) is the flux error estimated in Theorem 3.4. Proposi­
tion inequality (4.7) follows by combining these two results and properly setting the 
constant C. 0 

Let q E UEEThHI(E). We denote the jump of q across the internal face e by 
[q lie, and extend this definition to the boundary faces by taking [q lie = qle for e cr. 
A priori estimates will be given using the norm: 

Ilqlli,h = L (11V'qlli2(E) + L h;11l [qlle Ili2(e))' (4.10) 
EETh eE8E 

When the trace of q is a continuous field at the internal faces of the mesh and qlr = 0, 
the norm Ilqlh,h coincides with the HI-seminorm of q, which is also the norm of HJ(O). 
Thus, norm (4.10) can be interpreted as a discrete extension of the HI Sobolev norm to 
the "broken" Sobolev space UEET"HI(E). Note, indeed, that both numerical solutions 
and their post-processed counterparts are 'Jh-piecewise discontinuous functions and 
for this reason they do not belong to HI(O). 

The inf-sup condition proved in [8], that we state for the sake of reference in the 
following lemma, still holds. 

LEMMA 4.3. For any q E Qh there exists a vector G E Xh such that; 

[q,divhG]Qh = Illqlll~h and IIIGlllxh:::; Ciliph - pIIIIQh' (4.11) 

Furthermore, an inf-sup condition holds when using the norm II . Ih,h' 
LEMMA 4.4. There exists a positive constant C' independent of h such that for 

any q E Qh there exists a discrete vector G E Xh satisfying 

[divhG,q]Qh = Ilqlli,h and IIR(G)II£2(rl):::; C'llqlh,h . (4.12) 

Proof. Let q E Qh. We define the discrete vector G E X h through 

G(e) = he 
1 

[q lie for every e E £h. (4.13) 

From to (2.12) and (4.2b), integrating by parts and summing over all elements and 
edges, we get 

[divhG,q]Qh = L 1qEdivRE(G)dV= L L 1qERE(G)'n'EdS 
EETh E EETh eE8E E 

= L JR(G)·ne[q]e dS . (4.14)
eEe,. e 

Using (4.2a) and (4.13), identity (4.14) becomes 

[divhG,q]Qh = L: j[q]~dS= Ilqlli,h'
eEe" e e 

thus proving the identity on the left of (4.12). 
Using Assumption (L3), definition (4.13) and noting that a*hE :::; he from (M2) 

allow us to obtain: 
2IIRE(G)lli2(E):::; p*hE L jIG(e)(f.)1 dS=P*hE L :2jl[q]eI 2dS 

eE8E e eE8E e e 

p* 1 2j
< a* L h I[q]el dS. (4.15)

eE8E e e 
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The right inequality in (4.12) is finally derived by summing inequality (4.15) over all 

the elements E E Th , G' (p* /a*) 1/2 and recalling the definition of Ilqlh,h. 0 

4.2. Convergence of the scalar solution field. 
The main result of the present subsection is given in Theorem 4.7, where we prove the 
error estimates for the approximation of p through the norms 11'lh,h and 111·III Qh . The 
theorem's proof relies on the error formula for the constitutive equation discussed in 
Lemma 4.5 and the inequality of Proposition 4.6. This latter, in particular, is stated 
in a more general form than that required by Theorem 4.7. This generality will be 
useful in the analysis of the post-processed numerical solution of the next sub-section. 

LEMMA 4.5 (Constitutive error equation). Let (F,p) be the exact solution of(2.1), 
and (Fh,Ph) the mimetic solution in Xh x Qh. Under Assumptions (Ll)-(L3), for ev­
ery G E Xh there holds: 

[Ph-pI,divhG]Q = [Fh,G]X +l'ilp·R(G)dV. 
h h n 

Proof. Using (71) we have: 

[Ph-pI,divhG]Qh = [Fh,G]Xh +(g,G)r- [pI,divhG]Qh' (4.16) 

From (2.7), noting that divR(GIE) is constant on each element E E ~, integrating 
by parts with plr = 9 and using the flux equation (2.1a) yield the developments: 

[pI, divh G]Qh 10 pI divR(G) dV 10 P divR(G) dV 

(4.17)

-10 'ilp. R(G) dV + 1r 9 n· R(G) dB . 

Equation (4.2b) and (2.13) allow us to transform the last term in (4.17) as follows: 

19 n· R(G) dB = L 1gn"· R(G) dB = L 1g(~)G(e)(~) dB = (g, G)r' (4.18) 
I' ecr e ecr e 

Substituting (4.17) into (4.16), using (4.18) to cancel the boundary term, and the 
Cauchy-Schwarz inequality yield: 

[Ph - pI, divhG]Q = [Fh' G] X +1'ilp. R(G) dV. 
h h nJ 

o 
PROPOSITION 4.6. Let (F,p) be the exact solution of (2.1) with p E H 3 (O), and 

(Fh, Ph) the mimetic solution in X h x Qh. Then, there exists a constant G independent 
of h such that for evertJ collection of vectors {GE} E with every G E being in the local 
restriction Xh,E there holds: 

L ([Fh, G E] E + r'ilp. RE(GE) dV) 
EETh iE 

(4.19) 

Proof. Let us consider for every element E E ~ the quadratic interpolant of p 

defined on E, which we denote by p~) E P2 (E). We add and substract 'ilp~) to the 
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argument of the elemental integral of (4.19) to obtain: 

l 	'Vp. RE(GE)dV l 'VP~) . RE(GE) dV + l 'V(p - p~»). RE(GE) dV(4.20) 

Through the integration by parts, Assumptions(U)-(L2) and local consistency (52), 
the first term of the right-hand side of (4.20) becomes: 

( 	 'Vp~) . RE(GE) dV rp~)div(RE(GE)) dV + ( p~)nE' RE(GE) dB 
JE 	 J E JoE 

1p~)divh,EGEdV + L 1p~)(e)(GE)e(e) dB 
E eEoE e 

r(p{I)(K" (2»))I G ] (4.21)l 	 E vPE ' E E' 

Adding and substracting FI and using (4.20)-(4.21) makes it possible to reformulate 
the left-hand side of (4.19) as follows: 

L ([Fh,GE]E+ 1'VP.RE(GE)dV) = L ([Fh-FI,GE]E 
EETh E EETh 

+[(F+P~)(K'VP~»))I,GE]E+ l 'V(P-P~»)'RE(GE)dV) 
TI +T2 +T3. 

After using Cauchy-Schwarz inequality twice and by combining (51) and (L3), we 
control Tl through the error estimate of Theorem 3.4: 

Tl ::; 	 L IllFh - FI II EillGElllE 

EETh 


where G' absorbs the constant factor (CT* Ip.) 1/2 and the constant of inequality (3.8), 
and is thus independent of h. 

By applying the Cauchy-Schwarz inequality twice to T2 we obtain: 

::; 	 L III(F + p~)(K'Vp~»))I IIIE IIGEIlIE 

EETh 


< 	(L III(F + p~)(K\7p~»))I III~) 1/2 (L IIIGEIII~) 1/2 (4.22) 
~~ 	 ~~ 
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By using Assumption (51), substituting F -K\7p, and using Agmon inequal­
ity (3.0b) we control the argument of the first summation in (4.22) as follows: 

III(F + p~)(K\7p~»))IIII~ <!:: cr*hE 2: II(F + P~)(K\7p~»)) I 111.2(e) 
eEi)E 

<!:: cr*hE 2: IIK\7p - p~)(K\7p~))111.2(e) 
eE8E 

-	 4 2
<!:: cr*GGKhEllpIIH3(E) . 	 ( 4.23) 

Combining (4.22) and (4.23), using Assumptions (51) and (L3), and noting that 
IIIGEIIIE <!:: (cr* !p*)1/21IRE(GE)IIU(E) give the inequality: 

- 1/2where Gil cr* (GGK! P.) is independent of h. 

We control T3 as follows by applying the Cauchy-Schwarz inequality twice and using 
an estimate for the interpolation error (with constant GI): 

T3 <!:: 	 2: 11\7(p - p~»IIU(E) IIRE(GE)II£2(E) 

EETh 


< (2: Glh~IPI1-3(E») 1/2 (2: IIRE(GE) H12(E») 1/2 
EETh EETh 

<!:: GlIIllpIIH3(!1) (2: IIRE(GE)1112(E») 1/2 

EETh 


and Gill GI . 

The proposition eventually follows by taking G max (GI 
, Gil, Gill). 0 

Note that the convergence proof in the norm III . III Qh , which is given in the 
following theorem, is somewhat more general than the similar approximation result 
considered in [8]. More precisely, the proof discussed below does not require additional 
regularity assumptions on the shape of Sl, e.g. Sl is convex, neither that the flux 
inner product is defined through a lifting operator nor that the source term of the 
divergence equation belongs to H1(Sl). Nonetheless, the higher-order approximation 
of the fluxes imposes the H3 (fl) regularity to the exact scalar solution field in order 
to achieve optimal convergence rate. This requirement holds for the evaluation of the 
error in both II . Ih,h and III . IllQh norm. 

17 



THEOREM 4.7. Let P E H3(0.) be the exact solution of (2.1) and Ph E Qh 
its mimetic approximation. Under Assumptions (K1)-(K2), (HG)-(ME), (Ll)-(U), 
(51)-(52), there exists a constant C independent of h such that: 

(i) Ilph - pIlll,h :<::: Ch21IpIIH3(!1) 

(ii) Illph - pIIIIQh :<::: Ch21IpIIH3(!1) 

The constant C only depends on the various constant factors introduced in (K1)-(K2), 
(M1)-(M4), (L1)-(L3), (51)-(52). 

Proof. Both relations (i) and (ii) are proved through the same argument. The 
proof starts from the error equation provided by Lemma 4.5, then we apply the 
corresponding inf-sup condition, c.f. Lemmas 4.3-4.4, and finally we bound the flux 
error through the estimate given by the inequality of Proposition 4.6. 

(i). Let G E Xh be the vector associated to q = Ph - pI by the discrete inf-sup 
condition of Lemma 4.4. Lemma 4.5 and Proposition 4.6 imply: 

Ilph - pI 11th = [Ph - pI, divhG] Qh :<::: Ch21IpIIH3(!1) IIR(G)II£2(!1) 

and item (i) follows by using the inequality given in (4.12). 

(ii). Let G E Xh be the vector associated to q = Ph - pI by the discrete inf-sup 
condition of Lemma 4.3. Lemma 4.5 and Proposition 4.6 imply: 

Illph - pIIII~h = [Ph - pI,divhG]Qh :<::: Ch21IpIIH3(!1) IIR(G)II£2(!1) 

and item (ii) follows by using the inequality given in (4.11) and Assumption (L3). 0 

4.3. Convergence of the post-processed solution. 

Let us first define the scalar field p* as the unique T,,-piecewise quadratic poly­
nomial satisfying 

PdV (4.24a)hP*dV= h 

hVp*·VqdV= hVp·VqdV for each q E p2 (E) \.R (4.24b) 

for all E E T". From the interpolation theory on star-shaped domains [6] the following 
estimate holds: 

hE/lip - p*II£2(E) + 11V'(p - p*)II£2(E) :<::: ChklpIH3(E). ( 4.25) 

LEMMA 4.8. Let TI: = {E E Th such that e E BE}. Then, there exists a constant 
C independent of h such that for every e E £h there holds 

h;lll [p - p* lle 1112(e) :<::: C L h~lpl~3(E). ( 4.26) 
EET/: 

Proof. Let us derive (4.26) for the case an internal mesh face e, i.e. TI: = {El' Ed, 
and note that the case of a boundary mesh face, i.e. TI: = {E}, can be treated by 
simply adapting the same argument. Separating the contributions from El and E2 
into the jump term and using the triangular inequality give: 
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By using Agmon inequality (2.3) from (M4) with ¢ (p - P*)IE and recalling that 
l 2 

:::; h';;/(a*r / from (M2), we have 

h;lll(p - P*)IElli2(e) :::; (a*) -1/2 (he211(p P*)IElli2(E) + I(p - P*)IEI1fl(E») , 

and (4.26) follows from interpolation estimate (4.25).0 
THEOREM 4.9. 

Proof. The approximation error for the post-processed solution field is split into 
two terms as follows: 

lip - Phhi,h 	 L (11V'(p - pi.)lli2(E) + L h;;111 [p - Pi.]e Ili2(e»)
EETh eE8E 

(4.27) 

Let us add and substract p' to the argument of TI and use the triangle inequality 
to obtain 

TI :::; L 11V'(p p*)lli2(E) + 

EETh 


TI,l +TI,2 . 

We bound TI,l through (4.25). To bound T 1,2, we first observe that from (4.1b) with 
V'q V'(p* - pi,) and (4.24b) it follows that 

Tl,2 = E~h (Ie V'p* . V'(p* - Ph) dV Ie V'Ph . V'(p* - Pi.) dV) 

= 	L ([ V'p* . V'(p* - Ph) dV + [Fh, (V'(p* - Ph))1] E) 
EETh JE 

We control the right-hand side of (4.28) through Proposition 4.6, i.e. inequality (4.19) 
with GIE = V'(p* - Ph)£' Assumption (L2) implies that 

RE(V'(P* - Ph)£) = V'(p* Ph)IE 

because the restriction of V'(p' -Ph) to E is a linear vector field. Therefore, we obtain 
that 

Tl ,2 Ch2IpIIH3(0) IIR(V'(p* Ph)1)IIL2(0) 

Ch2 1IpIIH3(0) 11V'(p* - Pi.) 11£2(0) 

Ch2 1IpIIH3(0) 11V'(p ­ pi.)II£2(O), (4.29) 

where the last step follows from (4.24b) since Phl E E p2(E)\1R.. Combining (4.29) 
and the bound of Tl,l, it follows: 

Tl :::; Ch21IpIIH3(0) 11V'(p - p;;JII£2(o) :::; Ch21Ip!.H3(0) lip - pi.lll,h . 
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To bound the term T2 in (4.27) we introduce the splitting 

Ph=Ph+Ph and p*=pI+p with Ph,pEP2(E)\!lR, (4.30) 

from which it readily follows that 

[p* - Ph]e = [pI - Ph lle + [p - Ph lJe. 
Then, we control T2 by the chain of inequalities: 

T2 :::; 2L h;lll [p - Ph]e 1112(e) 
eEEh 

:::; L h;l (II [p - P*]e 1112(e) + II [p* - Ph lie 1112(e») 
eEEh 

:::; L h;l (II [p - P*]e 1112(e) + 211 [pI - Ph]e 1112(e) + 211 [Ph - P]e 1112(e») 
eEEh 

To bound T2,1, we use (4.26) and obtain: 

T2,1 = L h;lll [p - p* lie 1112(e) :::; C L h~lpI13(E) :::; Ch41IpI113(O)' 

To bound T2 ,2, we first note that 

T2.2 = L h;lll [pI - phlje 1112(e) :::; IlpI - Phlli,h' 
eEEh 

and then we use the result of Theorem 4.7. 

To bound T2 ,3, we start separating the side contributions to the jump argument as in 
the proof of Lemma 4.8 and applying the Agmon inequality to each side term. Hence, 
by summing over all mesh faces we get: 

L h;lll[ph - p]11112(e) :::; CAgNE L (hE/llph - pII12(E) + IPh - P11'(E»)' (4.31) 
eEEh EETh 

By definition pi = pI = 0; thus, using a standard interpolation estimate makes it 
possible to develop the first summation argument as follows: 

hE/llph - P1112(E) = hE/II(Ph - fiJ - (Ph - p)III12(E) :::; ClPh - P11'(E)' (4.32) 

Using bound (4.32) into (4.31) and noting that 'V((ph - p)IE) = 'V((Ph - p*)IE), 
c.f. (4.30), yield: 

T2,3 :::; C L 11'V(ph - fiJII12(E) = C L 11'V(Ph - p*)lli2(E) = CT1 ,2. 

The estimate of T2,3 terminates by using (4.29) to control T1,2. 0 
The convergence result for the numerical approximation to the scalar solution P 

is completed by the following result that is an obvious corollary of the above theorem. 
COROLLARY 4.10. Under the same assumptions of Theorems 4.7 and 4.9 there 

holds: 

lip - Phll£2(O) + lip - Phlll,h :::; Ch21IpIIH3(O)' 
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The constant C only depends on the various constant factors introduced in (K1)-(K2), 
(M1)-(M4), (U)-(L3), (51)-(52). 

Proof This corollary is an immediate consequence of the superconvergence result 
in Qh-norm given by the second item of Theorem 4.7 and the convergence of the 
gradient approximation given in Theorem 4.9. 0 

5. Scalar product implementation., Without loss of generality, we reformu­
late Assumption (52) on P2(E)\IIR, which is the linear space of polynomials up to 
degree 2 having zero average on E. The dimension of P2(E)\iIR equals mp2 mp2-1, 

where mp2 (d + 1)(d + 2)/2 is the dimension of P2(E). Since divh,EG is constant 
on E and the elemental integral of q(2) is zero, we obtain 

[(Pi,1)(KV'q(2»)/,G]E = L O'£! c(e)(f.)q(2) (f.) dB, 
eEoE e 

which holds for every G Xh and q(2) E P2(E)\iIR, and is equivalent to (52). 
To ease notation, we introduce the vector G E representing the degrees-of-freedom 

of G E Xh of the faces e 8E. Low-order components are taken in G E before the 
high-order components and all entries follow the local numbering of the element faces, 
e.g. ei E 8E for i 1, ... ,mE. The structure of this vector is given by 

G'f (5.1 ) 

and its size is equal to d x mE. Consistently with this notation, the restriction of 
G I E Xh to the faces of 8E is given by the vector Gf having the structure of (5.1). 

Now, the scalar product between the vectors F and G of Xh is locally imple­
mented by means of the symmetric positive definite matrix ME acting on their ele­
mental restrictions FE and G E: 

[F,G]Xh L [F,GJE with [F,G]E = G'fMEFE. (5.2) 
EETh 

The elemental matrix ME is built as follows by Assumption (52). 
Let {q;} be some set of polynomials that form a basis for P2 (E) \iIR. The set 

of linearly independent vectors {V'q;} generates a subspace of (H(E))d formed by 
constant and linear vector fields on E. Following [4], we require that {V'qi} is an 
orthogonal set: 

(5.3) 

Exploiting (5.3), it is possible to show that there exists a positive constant Cq inde­
pendent of hE such that 

(5.4) 

for every i = 1, ... , mp2' The construction of a set of polynomials {qi} satisfying (5.3), 
and, consequently, having properties (5.4) is detailed in [4]. 

From Assumption (52) on q(2) P2(E)\iIR yields: 

[(P)J)(KV'q(2»)/,G]E c(e)q(2)dBL 1 
eEoE e 

(5.5)

L Co ! q(2) dB + L G~ . ! f. ~ f.e q(2) dB. 
eEoE e eEoE e e 
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We rewrite the right-hand side of (5.5) after introducing the j-th basis function qj of 
Pz(E)\lR as 

(5.6) 

where Rlj is the j-th column of the matrix 

(5.7)R=(~~). 
The decomposition of R in (5.7) is induced by the structure of the elemental vectors 
in (5.1): the two submatrices Ro and Rl act, respectively, on the low- and high-order 
components of such vectors. Their j-th columns are written as: 

dS 

We now introduce the matrix N, whose j-th column is given by the degrees-of-freedom 
of (p~l(KY'qj))I on the faces of DE: 

(P~)(KY'qj))~ )
Nlj = 

( (P~) (KY'qj)) ~ , 
(5.8) 

and reformulate (5.2) as follows: 

[(p~)(KY'qj))I, G]E = G'kMENiJ. 

Comparing (5.8) and (5.6) and using equality (5.5) yields the matrix relation: 

MEN = R. (5.9) 

Let us now consider the vector GIE = (KY'qi)I = Nli in (5.5). Note that ((p1;l (KY'qj)I)" 
is the L2-projection of n e . Pg) (KY'qj) onto the linear polynomials defined on e. As 
any linear combination of the components of Y'qi is a linear function, these two terms 
coincide. Let 

- 1 (
Kij = iEf JE KY'qj' Y'qi dV (5.10) 

for i,j 1, ... ,fiipz • The matrix K = (K;j) is clearly symmetric. From the assump­
tions of strong ellipticity and orthogonality, Le. (2.2) and (5.3), it follows that K is 
positive definite and that its spectrum is included in the range [K,., K,'], c.r. [4]. As 

P~\KY'qj) is a linear vector field, its divergence is constant on E. Using (52), noting 
that the elemental average of the polynomial field qi is zero, SUbstituting (2.8) with 
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v = 'lq;, and, using definition (5.10) in the last step we obtain: 

[(P~)(K'lqj)I, (P~)(K'lqi)I]E = L J(P;P(K'lqj))I)~qi dS 
eEaE e 

= L JaEne.p~J)(K'lqj)qidS 
eEaE e 

= kp~) (K'lqj) . 'lqi dV + kdiv(P~) (K'lqj)) qi dV 

= kK'lqj . 'lqi dV IEIKj . 	 (5.11) 

Noting that 

(5.12) 

and comparing (5.11) and (5.12) for all columns of Nand R yields the matrix relation: 

NTR 	 IEIK. (5.13) 

(5.14) 

because ME = M'k. By comparison with (5.9), we find that a possible choice of ME 
satisfying the local consistency (52) is given by: 

--1 
K T ­

ME R + ME, 	 (5.15) 

where ME can be any real symmetric matrix of size rnp2 x mp, whose columns belong 

to the null space of N, Le. NT ME O. We take 

(5.16) 

where the columns of C form a basis set for ker(N) and U is any symmetric positive 
definite matrix (with product compatible size). The matrix U plays the role of a 
free coefficient matrix, and its optimal design is still an open issue even for the low 
order scheme. The size of the columns of N is given by mE x d because it equals 
the total number of flux degrees-of-freedom of the elemental faces forming 8E and 
the high-order flux approximation requires to specify d unknowns per elemental face. 
Recalling that N has iii P2 columns, we have 

dim(ker(N» mE x d mp, rank(M E ). 

The major properties of this construction are stated in the following theorem. The 
proof follows by repeating the stability analysis presented in [4] for the case of piece­
wise constant K, and, particularly, of Theorems 3.3 and 4.3 given therein. For this 
reason, it is omitted. 

THEOREM 5.1. 
(i) 	Let ME be the matrix given by (5.16). Then, ME defined by (5.15) is a symmetric 

positive definite matrix. 
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(ii) Furthermore, assume that there exists two positive constants Su and Su indepen­
dent of E such that 

2CTsulElllvl12 :s; II UI
/ v 112 for every v E img(C), 

and 

Then, there exist two positive constants er* and er* independent of hand U 
such that the matrix ME satisfies Assumption (51), and there holds 

min {~su, er* }llvl12 :s; II M~rv 112 :s; lEI max {~Su, er* } IIvll2 

for every v mE 

A precise expression for er* and er* in terms of the constants appearing in (Ml)­
(M4) can be derived by repeating the proof given in [4]. 

5.1. Further remarks on the scalar product formulation. From (5.13)­
(5.14) it follows immediately that 

NTMEN = NTR, 

which is also in accordance with [4, 10]. Consequently, if ME is a symmetric matrix, 
NTR must be a symmetric matrix. Note that NTR is independent of the particular 
choice of the inner product [.,.J E' Therefore, the condition that NTR be a symmet­
ric matrix is a necessary condition for the symmetry of ME that should come from 
the consistency condition. Let us consider the consistency condition of the original 
formulation [8, 10] 

[(K\7q(2»)I, G] E +Lq(2) divh,EG dV 

(5.17) 
= L erE 1G(e) (e)q(2) (e) dS, 

eE8E e 

which is stated without the projection operator 1'2)( .). We emphasize that tak­
ing (5.17) instead of (52) is equivalent to defining the columns of the matrix N as 

(K\7qj)~ ) 
( (K\7QjL 

instead of (5.8). The variation of K inside E can be taken into account through a 
high-order quadrature rule of Gaussian type. After this choice, the symmetry of NTR 
can be simply checked by hand calculation for some given element E and linear non­
constant tensors K and ... it is generally false! So the point here is that whenever K 
is non constant the usual consistency condition (5.17) of the low order formulation is 
incompatible with the symmetry requirement of the scalar product matrix. Moreover, 
condition (5.17) is not satisfied by the classical BDMI finite element on triangles­
tetrahedra when K is non constant. 

It is worth noting that an alternative choice for the projection operator is given 
by: 

l (1'~)(u) u)· K-1vdV 0 for every v E PI (E). 
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(a) A-h: randomly per- (b) }v12: randomly per­ (e) /v13: smooth mesh with 
turbed mesh with convex turbed mesh with possibly mostly hexagonal elements 
elements non-convex elements 

FIG. 5.1. The base mesh of the mesh families A1 1 • }vt2. and lvt3. 

with CK ",* /"'.' Indeed, 

IIPi!J(u)lli2(E) 'S ",* L Pi!)(u)K-1Pi!)(u) dV 

= ",* L p11)(u)K- 1udV 

'S "'*IIK-1
/ 

2Pi!)(u)IIU(E} IIK-1
/ 

2 uIIU(E} 

'S ("'*/"'.) IIPi!}(u}IIL2 (E) Ilullu(E}' 

The approximation properties of Lemma 2.1 still hold but in this case the constant 
C in (2.9) depends on CK. 

This second option offers the advantage that the scalar product [" ']Xh provides 
an exact formula for the K-l-weighted scalar product of linear vectors. Therefore, it 
exactly holds: 

[vI,wIl E = Lv, K-1wdV for every v,w E (P1(E)t 

On the other hand, it requires the numerical integration of rational functions due 
to the expression of K- 1

. From a rather extensive suite of experiments, we can 
reasonably claim that this latter formulation seems to perform as well as the former 
based on (2.8). 

6. Numerical Experiments. The numerical experiments presented in this sec­
tion are aimed to confirm the optimal behavior of the flux approximation provided 
by the current high-order mimetic formulation. We also characterize the convergence 
behavior of the post-processed solution Ph to the exact solution p. To this purpose, we 
solve (2.1) on the domain n =]0, l[x]O, 1[ by applying the present high-order formu­
lation and the low-order MFD method [10] to the benchmark problem having exact 
solution 

p(x, y) = sin(27rx) sin(27rY) + x3 + x2Y + xy2 + y3, 
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i #E #e #v h 

Ml 

1 
2 
3 
4 
5 

100 
400 
1600 
6400 
25600 

220 
840 

3280 
12960 
51520 

121 
441 
1681 
6561 
25921 

1.35010 1 

6.96910- 2 

3.57210-2 

1.77210-2 

8.90110-3 

M2 

1 
2 
3 
4 
5 

100 
400 
1600 
6400 
25600 

440 
1680 
6560 
25920 
103040 

341 
1281 
4961 
19521 
77441 

7.969 10 -~ 
3.96810-2 

2.06910-2 

1.04010-2 

5.25310-3 

M3 

1 
2 
3 
4 
5 

121 
441 
1681 
6561 

25921 

400 
1400 
5200 
20000 
78400 

280 
960 

3520 
13440 
52480 

9.65510 -~ 
4.94110-2 

2.49610-2 

1.25110-2 

6.26010- 3 

TABLE 6.1 
Run parameters for the mesh suites MI, M2, M3 

and smoothly variable diffusion tensor 

(x + I? + y2 -xy )
K(x,y) = -xy( (x + 1)2 . 

These examples are solved by a C++ program based on a variant of P2MESH [5], 
a public domain library designed to manage data structures of two-dimensional un­
structured meshes. 

Table 6.2 report the approximation errors and convergence rates obtained by 
solving the model equation on three different sets of successively refined meshes. The 
mesh construction is detailed in [4,8,18]. Mesh details about number of elements, 
edges, vertices and mesh size parameters are reported for each mesh considered in 
these experiments in Table 6.1. The first mesh of each mesh family is also shown in 
Figure 5.1. Approximation errors are measured by the following quantities: 

and 

where III· IllQh and III· Illxh are the norms induced by the scalar products in Qh and 
Xh, c.f. Section (2). For the post-processed solution, we consider the relative errors 
given by 

£ (*) _ lip - Phlll,h 
l,h Ph - II II ' P l,ho 

where 11·lll,h is the norm defined in (4.10), and the denominator in the second formula 
is calculated by using the coarsest mesh. The convergence rate is evaluated from the 
relative errors with respect to the mesh size parameter h. Quadratic convergence rate 
is clearly seen in the flux approximation and for the post-processed solution gradient. 

7. Conclusion. We considered a stationary diffusion problem with a full tensor 
coefficient discretized through the MFD method from [4,18]. Under quite general 
assumptions on polygonal and polyhedral meshes, we proved second-order convergence 
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i h CQh (Ph) Rate cx,,(Fh) Rate CI,h(Pi,) Rate 
1 1.35010 -1 2.16110 -;& 6.35810 .:,: 7.85810 .:,: -­

2 6.96910-2 6.43710-3 1.832 1.11510-2 2.634 1.85010-2 2.188 
3 3.57210-2 1.67110-3 2.017 2.29310- 3 2.365 4.40910-3 2.145 
4 1.77210-2 4.24110- 4 1.956 5.46310-4 2.046 1.08810-3 1.996 
5 8.90110-3 1.06410-4 2.008 1.34010-4 2.041 2.70810-4 2.020 

(a) Approximation errors obtained using MI 

i h CQh(Ph) Rate I £x" (Fh) Rate £I,h(P;J Rate 
1 7.96910 -;& 2.27410 -;& 5.91010 -;& 6.69210 .:& -­
2 3.96810-2 6.46210- 3 1.804 1.16710-2 2.327 1.67010-2 1.990 
3 2.06910-2 1.65910-3 2.087 2.70210-3 2.245 4.10410-3 2.154 
4 1.04010-2 4.18710-4 2.001 6.59410-4 2.051 1.02310-3 2.020 
5 5.25310- 3 1.04910-4 2.026 1.63510-4 2.041 2.55510-4 2.031 

(b) Approximation errors obtained using M2 

i h CQ" (Ph) Rate £Xh (Fh) Rate £1 ,h (pi,) Rate 
1 9.65510 ." 2.32710 .;t. 5.24710 -" - 6.53210 -;& -­

2 4.94110- 2 7.28410-3 1.734 1.21410-2 2.185 1.83310-2 1.896 
3 2.49610- 2 1.99010-3 1.899 2.94210-3 2.075 4.78510-3 1.966 
4 1.25110-2 5.15510-4 1.955 7.32710-4 2.012 1.21710-3 1.983 
5 6.26010- 3 1.30910-4 1.979 1.83710-4 1.998 3.06310-4 1.991 

(c) Approximation errors obtained using M3 

TABLE 6.2 
Relative approximation errors for the conservative variable Ph. the numerical flux Fh, and the 

post-processed numerical solution Pi. obtained by applying the high-order lvfFD method to the meshes 
of (a) ;\t-lt. (b) M2. and (c) Ms. 

of the conservative variable and its flux. The admissible polyhedral meshes can have 
degenerate and non-convex elements. We also developed a new family of high-order 
MFD methods for the case of non-constant coefficients. The theoretical results were 
confirmed by numerical experiments. 
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