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CONVERGENCE ANALYSIS OF THE HIGH-ORDER MIMETIC
FINITE DIFFERENCE METHOD

L. BEIRAO DA VEIGA *, K. LIPNIKOV ', AND G. MANZINI }
AMS subject classifications.

Abstract. We prove second-order convergence of the conservative variable and its flux in the
high-order MFD method. The convergence results are proved for unstructured polyhedral meshes
and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new
family of high-order MFD methods. Theoretical result are confirmed through numerical experiments.

1. Introduction. High-order discretization methods are expected to be more
efficient than low-order methods in modeling of miscaleneous physical processes. In
this article we consider diffusion processes that are crucial for modeling heat trans-
fer, migration of electrons in semiconductor chips, contaminant transport, etc. We
consider mixed formulation of the diffusion problem and analyze both theoretically
and numerically new high-order mimetic methods [4,18] that provide second-order
accurate numerical fluxes of the conservative variable (temperature, pressure, energy,
etc.).

Modeling with polygonal and polyhedral meshes provides enormous geometric
flexibility in describing complex geometries. These meshes are used in Earth study,
computational fluid dynamics [16], electromagnetics [15], biological modeling, etc.
Polyhedral meshes result in a more optimal partition of the computational domain
than simplicial meshes. Locally refined meshes with hanging nodes are examples of
polyhedral partitions that are admissible for mimetic methods. Development of new
high-order methods on polyhedral meshes is a step towards more efficient numerical
simulations.

The mimetic finite difference (MFD) method studied in this article belongs to
a family of compatible discretization methods that includes finite element methods
[22], spectral element methods, finite volume methods [17,19,26], etc. The MFD
method mimics essential properties of PDEs and the fundamental identities of the
vector and tensor calculus. It has been successfully employed for solving problems of
continuum mechanics [24], electromagnetics [20], gas dynamics [11], two-phase flows
in porous media [23], and linear diffusion on polygonal [21}, polyhedral [8, 10, 25] and
generalized polyhedral meshes [9]. The MFD method for diffusion problem in the
aforementioned papers is a low-order approximation based on a piecewise constant
representation of the scalar variable and its flux. It turns out that this method is
second-order accurate for the approximation of cell-averages of the scalar variable
due to a superconvergence effect, c.f. [8]. Nonetheless, it is only first-order accurate
for the flux on families of general polyhedral meshes. In [4, 18], we developed a new
high-order MFD method that is second order accurate for both primary variables.
The method has been developed for piecewise constant diffusion coefficients only. It
is based on different ideas than the high-order mimetic methods proposed in [13, 14]
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whose drawback is lose of accuracy on rough grids.

In this article, we develop the convergence analysis of the high-order MFD method
[4,18] under quite general assumptions on the mesh. For instance, the admissible
mesh may include degenerate and non-convex polyhedral elements. We also extend
the high-order MFD method to the case of non-constant tensor diffusion coeflicients
through the new local consistency condition (52). Using this condition, we develop a
new family of MFD scalar products resulting in a family of finite difference methods
with similar properties. The analysis of this family will be the topic of future research.
Finally, we prove error estimates for a post-processed solution. The accurate post-
processed solution can be used in problems, such as the reactive transport in porous
media, to evaluate solution inside mesh elements.

The paper outline is as follows. In Section 2, we introduce the high-order MFD
method. In Section 3, we prove the second-order convergence estimate for the flux
variable. In Section 4, we prove the second-order convergence estimates for the scalar
variable and the post-processed solution. In Section 5, we develop methods for calcu-
lating the inner product matrices satisfying the theoretical assumptions. In Section 6,
we present results of numerical experiments on polygonal meshes. Finally, in Section 7
we discuss some final remarks and summarize the conclusions.

2. High-order Formulation of the MFD Method. Let 2 ¢ R? be an open
bounded polyhedral domain for d = 3 or a polygonal domain for d = 2 with Lipschitz
continuous boundary I'. We consider the diffusion equation in mixed form for the
scalar solution field p and the vector flux field F defined by

F+KVp =90 in Q, {(2.1a)
divF=f inQ, (2.1b)
pP=g onT. (2.1¢)

In (2.1a), f is the forcing term of the divergence equation, ¢ is a boundary function
accounting for non-homogeneous Dirichlet condition on I', and K is a constant full
symmetric tensor describing material properties.

(K1) K is strongly elliptic [1], i.e. there exist two constants x. and x* such that
sGl < ||[K2G| < s*|IG]] VG e RY. (2.2)
(K2) All the components of K and K~! are in W2>((Q2).

In view of condition (2.2) the d x d symmetric matrix K is strictly positive definite,
and thus non-singular. Its inverse matrix K~1 is also symmetric and positive definite,
i.e. strongly elliptic, and satisfies analogous bounds from above an below involving,
respectively, 7! and x* L.

Under suitable assumptions on the regularity of €2 and f, the well-posedness of
problem (2.1) can be proved, thus implying existence and uniqueness of solution [1}.

2.1. Notation and basic assumptions. For exposition’s sake, we find it con-
venient to adopt mesh notation and assumptions introduced in [7]. Let 7 be a con-
formal partition of Q into non-overlapping polyhedral elements (polygons in 2-D). For
every element E we denote its d-dimensional Lebesgue measure by |E|, its barycenter
by E, its diameter by hg, and the number of its faces by mg. The notation 8F may
denote the boundary of the element F or the union of the element faces depending
on the context. Similarly, for every face e we denote its (d — 1)-dimensional Lebesgue
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measure by |ef, its barycenter by ., its unit normal vector by n®, its diameter by
he, the number of its edges by m,, and the (d — 2) measure of each face edge [ & Oe
by |I|. We assume that the orientation of each mesh face e i3 uniquely defined by the
orientation of its unit normal vector n. The mesh 7}, is sub-indexed by the mesh size
parameter defined, as usual, by A = supg hg. We indicate the set of mesh faces by
&n, the subset of internal faces by &} and the subset of boundary faces by 5}? . The
basic assumptions that follow are formulated for d = 3; the restriction to d = 2 is
straightforward.

(HG) [Properties of the decomposition Tj,] There exist two positive real numbers N,
and p, such that every mesh 73, admits a sub-partition 8 into shape-regular
tetrahedra such that

(HG1) every polyhedron E € 7}, admits a decomposition S|z made of less than
Ny tetrahedra;

{HG2) the shape-regularity of the tetrahedra K € S} is defined as follows: the
ratio between the radius rx of the inscribed sphere and the diameter hyg is
bounded from below by the constant p;:

Z_z 2 ps >0

(ME) | Star-shaped elements] there exists a positive number 7* such that each element
E is star-shaped with respect to all points of a ball of radius 7 h g and centered
at an internal point of E.

From the above assumptions several properties of the mesh, which are useful in the
mimetic formulation, can be derived. We list them below for the sake of the reader’s
convenience and for future reference in the paper.

{M1) There exist two positive integers Ng and N, such that every element E has
mg < Ng faces, and every face e has m, < N, edges.

(M2) For any mesh element E € 7;,, the quantities |El, |e| for e € AE, and |i] for
[ € F properly scale with respect to hg; in particular, there exists a positive
constant a* such that a*h'f;l < le} and a*hg < he < hg for all faces e of E.

(M3) there exists a constant C% independent of kg and such that [8]:

3 16le) < € (R5 81 32e) + helolE e (23)
eCOFE

for any function ¢ € HY(E), We will refer to (2.3) as the Agmon inequality;
(M4) for any function ¢ € H3(E) there exists a quadratic interpolant qg) and a

constant C independent of hg such that [6]:

llg — Q§)11L3{8}+h8t‘? - Qg)IH1(5)+h%‘Iq - qg)lmw) <Ch%lalna(py. (24)

The formulation of the mimetic finite difference method is based on the notion
of discrete fields, which are collections of real numbers representing the degrees of
freedom of the numerical scheme. From the notation standpoint, we will indicate
both continuous and discrete vector fields by bold letters and will use normal fonts
for scalar fields. Hence, we will not explicitly distinguish between continuous and
discrete fields, since the field’s nature can always be contextually derived without
ambiguity.

2.2. High-order formulation of the MFD method. We represent discrete
scalar and vector fields by the finite dimensional linear spaces @y, and Xj.



e (J;, provides the degrees-of-freedom of scalar fields associated to mesh cells; thus,
g € Qp means that g = {qE}EETh with gz € R.

The dimension of @, equals the number of mesh cells. The interpolation operator for
the scalar field g € L({2) reads as:

(qf)gzl_%/;qdv for all E € Ty

e X, provides the degrees-of-freedom of the vector fields associated to the elemental
faces of the mesh; thus,

G € X, means that G = {(G, G‘f)}eegh
with G§ € R, G5 € R4,

The dimension of X equals d times the number of mesh faces. By using the vector
degrees-of-freedom we obtain the linear representation of the discrete flux G € X, on
each mesh face given by
5 - 56
he '
where £ € R?"1 is the position vector of the face points with respect to a local
coordinate system chosen on e, &, € R%"! is the barycenter of e with respect to such
coordinate system, and we recall that h, is a characteristic length size of the face
e. We remark that the discrete flux continuity across inter-element faces is naturally
embodied into the definition of X}, because the vector degrees-of-freedom are uniquely

defined on each mesh face. The interpolation operator for the continuous vector field
G € (L*()? with s > 2 and divG € L*(Q) reads as

/ (GTYE) (v (€ — €)™ dS = / n®-G (v-(€ — £))" dS

G (&) =G5 + Gy -

forfee, (2.5)

(2.6)
for every v € R*! and m =0, 1.

For m = 0 we get the usual interpolation formula of the low-order MFD method:

(Gf)g-:i/ne.cds,
lel Je

while for m = 1 we get the condition defining the high-order discrete flux components:
Jen 5 (g - £0) ds = [n0G (-6 - €) a5

for every v € R%"1.

The mimetic discrete divergence operator divy, : X, — @y, is defined element-wise
as div,G = {divh,EG}Ee,& where

S o / G () dS = 1—5 S o5lelG

1
dth”EG = "}3—
|E| c€OE ¢ eCOE

for every G € Xy, E € Ty and setting 0%, = n® - n§,. This definition is consistent
with the Gauss divergence theorem, and a straightforward calculation shows that the
commuting property of the interpolation operators still holds:
(div@)! = divpGT. (2.7)
4



Let us now introduce the L?(E)-orthogonal projection from (H?(E))* onto the
space of linear vectors defined on F, for each element E € 7. The projection operator
is denoted by PE) (-) and formally defined for every u € (L?*(E))? by:

[ (PY(uw) —u) -vdV =0  foreveryv e [PI(E})d. (2.8)
This operator is clearly bounded, i.e. 1]7{2})(@13,—42(3) < |lull 2y and its approxima-
tion properties are characterized by the following lemma.

LemMMma 2.1, Under the regularity assumption (ME), the projection operator

’Pg)() provides a second-order accurate approzimation of vector fields of (H?(E))*:
lu — PG W)llz2m) + hslu = PE ()] (m) < Chylulnep)- (29)

Proof. Let Ig) () : (H*(E))* — (P(E))? be the nodal linear interpolation oper-
ator acting on the components of the vectors of (H*(E))?. Adding and substracting

I{ )(u) using the triangular inequality, noting that ?(1} oIm Ig), and using a
standard estimate on star-shaped domains [6] for the mterpolatlon error yield:

175 Iy (u Pg)(u) HL?(E)
< H” - IJ(EI)(U) HLE(E) + HP(I)(IS)(”) —u) S‘Im(z)

< 2f|u - Tg (

llu — 7’1(2)(“)HL2(E) [~ Im(“ HL?(@)"‘“

u) HL?(E)
Likewise, using the previous arguments and an inverse estimate in the third step yield:

lu_?}g}(u)lHl(E) S lu_zg)(u}lﬂl(g} 1 (1)Lu) (1)(u)’H1(E)

< ["’ _I(E})(“)‘Hl(E) + |P(l)(I(l)( ) - u)iﬁ’(ﬁ)

< |u _Ig)(“)\m(m +Chp! | PR (T (w) - w) 2
< Ch'Eiu|H2(E)- (211}

Inequality (2.9) follows from (2.10)-(2.11}. O

Now, we equip Qn and X, with the scalar products [-,-] a, @nd [] x,,» Which
assemble contributlons of each mesh element. The elemental terms are always denoted,
for simplicity, b} even if their definition is different for scalars and vectors. The
symbols [l lilg,. | t Hp;gh, and ||| -||lg are the norms induced by these scalar products.
The scalar product of @y, is given by

[ ,q}Qh = Z [ ,q]E where [ ,q]E = |E|ppqg for all p,g € Qn, (2.12)
EeTh

and corresponds to the L%-scalar product for piecewise constant functions. The scalar
product of Xp, is given by

[F.G|,, = > [F.G], foral F.G ¢ X,

EeT;,



where the local scalar product [-, ]
conditions:
(S1) spectral stability: there exist two constants o, o* > 0 independent of h such
that for all G € X}, and for every element E there holds

> / GCOOFdS <[G.Gly<ohs 3, [ IGI@FdS,

ecBE "V ecHEY €

where G(¢)(£) is the local affine function defined on e by (2.5);
(S2) local consistency: for every element E, every discrete vector field G € X}, and
every polynomial function ¢'?} € P,(E) there holds:

g In Xz|g is required to satisfy the two following

[(Pg)(KVQ(Q)))I,G]E +/ ¢P divy, G dV
E

= Y ot [ G@a @ as
ecdE €
where divy gG is the discrete divergence operator previously defined.
To ensure the symmetry of the resulting scalar product, condition ($2) considers
the projected field (P(El)(KVq(z)))I instead of (KV¢™)I as is done in the low-order
formulation. This fact is thoroughly discussed in sub-section 5.1.
REMARK 2.1. In the case of piece-wise constant diffusion tensor condition (52)
becomes

(KV¢N ', G, + [ ¢ (z)divy gGdV
\ E E !

- ¥ ot [6@ @ as.

ecHE e
which is the condition considered in [{]. Therefore, the analysis presented in this paper
includes the method of [4].
We terminate the presentation of the mimetic setting by introducing the following
bilinear form whose arguments are a function of L'(I'} and a vector of Xp:

(9.G)p = D [ GY®&9&)dS
ecEP Ve
(2.13)
-y |e;<;g/gds+(;i '/g(ﬁ)gﬁ—&eafS .
€ € h'e
ecEP
The dual mimetic formulation of problem (2.1) reads as:
Find (Fp,pp) € Xy x Qp such that:
[Fh, G| "~ [p&,diva}Qh = —{9,G),. for every G € X}, (2.14a)
[div&Fh,q] o = [fr,q]gh for every g € Qp,. (2.14b)

The dual mimetic formulation (2.14) does not require the introduction of a discrete fluz
{or gradient) operator. However, such operator can be defined, as usual in mimetic
discretizations, by duality with respect to the discrete divergence operator and the
scalar products of Qp and Xj,.



3. Convergence of flux variable. The main result of this section is proved
in Theorem 3.4, which states the convergence of the flux approximation Fy to the
interpolant FZ of the exact lux F and provides an error estimate in the norm H| . [H X,
The theorem’s proof is based on some technical lemmas that are proved below.

LEMMA 3.1 (Agmon inequalities). Let E be a mesh element, e be a mesh face
that belongs to OF, and q a function in H3(E). Under Assumptions (HG)-(ME) it
follows that:

3 lla— a2 12a0e) < Chllalln g, (3.08)
eEOE
KVq - PTG 2, - < 200k |lgl12 3.0b
Z H q E ( g )“L?(e) = K EHQ“H3{8)~ (3.0b)

ecaE
where qg) is the quadratic interpolant of q in E satisfying (2.4), C depends only on
the constants appearing in (M1}-(M4), and Cx = HKH%‘,;,,,O(E).
Proof. We prove inequality (3.0a) by applying the Agmon inequality with ¢ =
q-— qg) and using a standard estimate for the interpolation error (with error constant
C'®). We have

2 - 2 2
3 lla - e gy < €% (h5'lla— o 3a(m) + hisla - 0 s )
ecdE

< oMo (hg‘(CIph%\qim(m)? + h,E(CIPh%]qlus(E))z)
< Chylalfin e G

where the constant C includes the Agmon and the interpolation constant.
To prove inequality (3.0b), we add and substract qu{gz} to its left-hand side and
use the triangle inequality to obtain:
1 238 112
[Kvg - pé?)(qu%)) Hp{e}
(3.2)
<2 (IK(g - a2y +IPE (KVaE) ~ KVq |2,y

The first term of the right-hand side of {3.2) is bounded through the Agmon inequality

by taking ¢ = KV{(g — q(E?) ) and then using the estimate for the interpolation error
(the error constant is still denoted by C™P):

37 KV (a - gD,
e€OF

< Chen*? (hEM V(g — a0 ) Ea ey + hslV (@ = 02 ) ey )
< CAng*g (?z};l (Clphzg[qlga(g))Q + h}g (ClphE]q|Ha(5))2)
S 5&*2h3£«:llq{lgm<5),

where the constant C still includes the Agmon and the interpolation constant. Sim-
ilarly, the second term of the right-hand side of (3.2) is bounded by taking ¢ =



U)(qu(?}) Kng} in (2.3), applying (2.9) with u = Kng), and using {2.4):

Z Hpg)(KVq(Q)) qu(Q)HL?(G)
cE€JE

< O (h5 | PR (KVaE) =KV |1y +helPH (KVaE) ~K V|

L2(E) Hliﬁ))

< Ch} |KVQE IHZ(E)
< ChE KRy () 105 s iy

< ChE|IK|[3». °°(E)HQ||H3(E)
The lemma follows by taking Ck = max(x*2, HK||%V2,,Q<E)) = “KH%V?’W(E)' 0

LEMMA 3.2. Let g € H3(S) and qg) the piecewise quadratic polynomial that in-
terpolates g\ g in the mesh element E. There exists a positive constant C independent
of q¢ and h such that for every G € X, there holds:

> 3 ok [ ©CI©dS - (a6 < el Gl (33)

EeT, ec8E €

Proof. Since the trace of ¢ in H3(Q2) is continuous at every internal face and
0%G(®) takes opposite values at the two sides of every internal face, we have that:

> 3 ok [d©6©d = (ah.6),. (3.0

EcTy ecOFE

By using (3.4) and the Cauchy-Schwarz inequality twice we get:

3 3 ok 060 - (i G,

EcTy, ecdF £
-3 Yo f (@) - 9(6)G) (&) dS
EcT, ecOF e
<3N 168 - alla G I
EcT, ec8E
1/2 1/2
< Z (Z gl — fliz(e)) (Z IIG‘e}Iliz(e;)
EeT, \ecOE ecOFE



Inequality (3.0a), Assumption (S1), and setting C; = C/a,}/? allow us to get the
final developments:

> % ob [ a2 @65 - (air Gy

EeTh ecdE €
< 3 Cn sy (o-he) G 16
EeTy
1/2 1/2
<o (z uqnzm) (z mamz)
EeTy, EeTy

= C1h* gl ||| G

X'
a

LEMMA 3.3. Let ¢ € H*(Q) and q?) the Ty, -piecewise polynomial such that qm
is the quadratic interpolant of q|p for every mesh element E. There exists a positive
constant Cy independent of q and h such that for every G € X}, there holds:

[(Kvg)T ~ (PR (KVa@)) ', G] . < Cab?|a] oy |G, (3.5)

Proof. To ease notation, let us introduce the symbol
G, = Kvg - P (Kvgd). (3.6)
Since ((G4)?)° is the L%(e)-orthogonal projection of n® - G, onto P;(e), we have that
}|(gf)e]|,;2(e) < IGqllz2(ey. Therefore, using spectral stability (S1), Agmon inequal-
ity (3.0b), and setting (C3)? = ¢*CCk yield:
NGEIE < ohe S G 2oy < o*he Y. 1Gal2are) < (Co)l*hlialE ).

ecdE ecdE

We estimate the global bound for HQI{

HGEII%, = 2 11685 < (€202 X bbllalin e = (C2)Phlal3s ). (3.7)

EcTy EeT,

X, B8 follows:

Finally, we apply the Cauchy-Schwarz inequality and use (3.7) to obtain
97 Glx, <194 1lx, I€GlIx, < Cab?ldllms@ |Gl

which is inequality (3.5) because of definition (3.6). O
THEOREM 3.4. Let (F,p) be the ezact solution of (2.1) with p € H3(Q), end
(Fr,pn) the mimetic solution in Xy, x Q. Then, it holds

[1FF = Fulllx, < CR|Ipllas@) (3.8)
where C = max(Cy,Cy) is independent of h and only depends on the constants ap-
pearing in (M1)-(M4) and (S1)-(52).

Proof. Let p? be the Th-piecewise polynomial such that p € P(FE) is the
quadratic interpolant of plg. Using equation (2.14a) with G = ( FI Fh) and g = plp,




equation {2.14b) with g = p,, and equation (2.7) with G = F yield
(B, F! = Fa]y = [pndiva(FT = F)], — (plr, FT — Fy)p

[ph»fI]Qh - [ph,fI]Qh ~ {plr, FT — Fy) .

= "<}7|I‘e FI - Fh>1’“ (39)

Note that the numerical error (FT — F},) is orthogonal to Fj, with respect to the scalar
product of X if g = 0.
We transform the expression of the flux error by using identity (3.9), substituting

I = (~=KVp)! and adding and substracting the term — (?(1) (KVp(z)))I to obtain

i

I|FE =Rl = [FF - B FP - R,
= [F1,FT - B, +{pl0.FI - Fu),
= [(_KVP}I$FI - Fh} X5 + <plr,FI - Fh)r
= Ay + A

where

A

i

[' (Pg)(KVpig)))vaI _Fh}xh + <p]F%FI - F&>F i
Ay = [ - (KVp)T + (P (KVpE N FT - By

The term |A4,] is bounded hy noting that

(PO KV FT - R, = S o / @) (6)(PT — Fy)(€) dS,

e€dE

Xn

which follows from local consistency assumption (S2) because divy(FI) = fI =
divy Fy, and then using inequality (3.3) with G = (FI — F,). The term |4y is
bounded by using inequality (3.5) with G = (FI — F). Finally, inequality (3.8)
follows by combining the bounds for |4, + |42} and taking C = max{C,Cs). O

4. Convergence of scalar variable and post-processing. In this section,
we derive an a priori estimate for the approximation error of the scalar solution and
for the Tj-piecewise quadratic field built by the post-processing technique proposed
in [4]. Our post processing technique is based on an element-wise reconstruction of
a linear gradient field from the discrete flux solution, and generalizes the analogous
technique for the low-order mimetic scheme [3,12] to the high-order case. The post
processed scalar field p; is defined as the unique 7j-piecewise quadratic polynomial
satisfying

fpi dV=/m dv (4.1a)
E E

/ Vph - VgdV = —[F, (Vq)IJE for each g € P*(E)\R {4.1b)
E

forall E€ 7.
Since the present mimetic formulation approximates the scalar solution field by
a piecewise constant function, the convergence rate of p} to the exact solution field p

10



is expected to equal the convergence rate of the low-order scheme [12]. Therefore, we
have

Ips, — pllzzy < CR2,

in accordance with the behavior that has been experimentally observed in the exam-
ples of [4]. Nevertheless, we get a better approximation of the gradient of the solution
field within each mesh element by exploiting the more accurate representation of the
solution flux. Note that the computational cost of the post-processing procedure is
negligible since it is calculated element by element and, in addition, the related local
matrix to be inverted turns out to be diagonal. Details concerning implementation
can be found in [4].

4.1. Assumptions and preliminaries.

Let E € T,. There exist an elemental lifting operator Rg : Xp|g — H{div, E)
such that:

(L1}, for all G € X}, it holds
leRE(GE) = (diva)E in B (42b>
Re(GE)|e -n. = G% Ye € OF {4.2a)

(L2), for all vector fields whose components have a linear restriction on E, i.e. Gg =
G|g € (P(E))4, it holds

Rp(GL) =Gg
(L3), for all G € Xy, it holds

peh 3 / GRS < IRy < o'hs Y [ 16
eEBE e€OE
with the constant factors p. and p* independent of E.

Throughout the paper, we will refer to (L2) as the Pj-compatibility condition
and to the operators that verify this condition as Pl compalible operators. We also
define the global lifting operator B : Xy — (LQ(Q)) that combines all element-wise
contributions from the local lifting operators Rg.

‘We emphasize that we do not need to give the explicit form of the lifting operator
REg since the convergence analysis just requires its existence.

Note that the requirements of the lifting operator above are weaker than the ones
assumed in [8]. Indeed, our operator Rg only needs to be stable with respect to the
elemental norm, while it is not required to reproduce the scalar product exactly as
given by condition (5.7) of Reference [8]. More precisely, it is unlikely that an
operator Rp exists that satisfies Assumptions (L1) and (L2) and is also such that

[F.G], = /E Kz'Ro(F) - Rp(G)dV VF,G € X, (4.3)

for all elements E, where K is a constant approximation of K over the element E.
We can see that by simply taking F = (P(l)(KVQ))I, where ¢ is a second-order
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polynomial with zero average on E. Indeed, using definition (4.3) and (L2) we find:
F,G], = f Rz'Ru(F) - Rp(G)dv
E
o1 (1) I
= / Kz'Re(Py’ (KVq)" ) - Re(G)dV
E
= / Kz'PY) (KVq) - Re(G) dV.
E

On the other hand, the local consistency condition (L1) gives

F.G, = [(PE) (KVa))". G,

i

- ]3 qdivizGaV + 3 [ GU(€)q(€)dS

ecIEYE

- 0+/ ng - Rp(G)qdS
SE
- / div(gRe(G)) dV
E
- / V¢ Rp(G)dV + / qdivRE(G) dV
E E

- Vq-RE(G)dVerivh,E(G)/ qdV
E E

=qu-RE(G)dV+O,
£

where in the last step we also use that ¢ € Po{E)\R. The comparison of the two
above identities reveals that for every ¢ € Po{E)\R, there must hold

f K=1PL (KVq) - Rp(G)dV = / Vq-Rs(G)dV, YG € Xp.
E E

This condition is quite strong and may lead to a contradiction unless K is constant
on the element E.

Although, for simplicity, we prefer to keep (L1)-(L3) as assumptions, from {HG)-
(ME) it can be easily proved that such a lifting operator always exists. For example,
one could directly build Ry by solving an ad hoc discrete BDMy — Py problem in E
in accordance with the framework proposed in [2,18,22].

For each elemental lifting operator satisfying (L1)-(L3) we have the following
approximation result.

LEMMA 4.1. There exists a constant C independent of hg such that for any
G € (H*(E)? there holds:

IG - Re(GD)|| 25y < ChE\Glli2py VEET, . (4.4)

Proof. Let E € T,. We add and substract GV, a linear interpolant of G in E,
and we apply the triangle inequality and the estimate of the interpolation error to

12



obtain
|G = Re(Gh)llL25) < G - GW|p2igy + IGM — RE(G) || 12(my
< C'hENGuzpy + |GV = Re(GY)||pamy - (4.5)

We transform the second term of inequality (4.5) through properties (L2)-(L3) and
noting that [[(GV —G)]||p2(e) < |GY — G 2(e) since the component of the interpo-
lation vector (2.6) for any given face e is the orthogonal projection of n% - (G() - G)
onto Pj(e), the space of linear functions defined on that face. We have:

e — RE(GI)Hiz(E) = |Rg(G'Y — Gl)“%ﬁ(ﬁ)

IA

ihe 3 (16D - G)Eas
ecHE "V ® '

IA

pthe Y 1GY - Gl

eCOE
Now, we apply Agmon inequality (3.1) with ¢ = (G(Y) — @),, i.e. for each spatial
component labelled by i = 1,...,d, thus leading to

IGY) — Re(GT) |32y < hEC"CH|G 32y - (4.6)

where the constant C'A! is independent of hg. Inequality (4.4) eventually follows by
combining(4.5) and (4.6) and setting C' = 2max (¢, (C"CA)Y/2). O

The existence of a lifting operator satisfying conditions (L1)-(L3) makes it possi-
ble to reformulate the convergence result of the flux approximation stated in Theo-
rem (3.4) as follows.

PROPOSITION 4.2. Let (F,p) be the exact solution of (2.1) with p € H*(Q), and
(Fy.py) the mimetic solution in Xy X Qn. Under Assumptions (HG)-{ME) and (51)-
(52}, we have the error bound

| F — R(Fu)|lL2(e) < CR? |l sy (4.7)

where the constant C is independent of h.
Proof. Using (L3) and (51) we have that:

||R(FI - Fh)‘%z(g) <pt Z he Z |3FI _Fhll%ﬂ(e)

EeT, eeary

(4.8)

IA

S UIFT - Rl = ZIF - Rl

* EeT,

We add and substract R(FT) in the left-hand side of (4.7}, apply the triangle inequal-
ity and inequality (4.8), and obtain:

|F — R(Fy)|l 2o < IIF — R(F)|| 2y + [|R(FT — Fi)ll 2oy

< P~ B+ ZIFE ~ Bl (49)

The first term in the right-hand side of (4.9) is an interpolation error that is con-
trolled by decomposing the L? norm on the partition 7, and applying the estimate
provided by Lemma 4.1 with G = F|g for each element E € 7;,. The second term
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in the right-hand side of (4.9) is the flux error estimated in Theorem 3.4. Proposi-
tion inequality (4.7) follows by combining these two results and properly setting the
constant C. O

Let ¢ € Uger, H!(E). We denote the jump of g across the internal face e by
[g]e, and extend this definition to the boundary faces by taking [¢] = g|. fore CT.
A priori estimates will be given using the norm:

laltn =3 (IValae + > At ITale Fa)- (4.10)
EcTy, ecHE

When the trace of g is a continuous field at the internal faces of the mesh and ¢|r =0,
the norm ||g||1,» coincides with the H!-seminorm of g, which is also the norm of Hj ().
Thus, norm (4.10) can be interpreted as a discrete extension of the H! Sobolev norm to
the “broken” Sobolev space UgeT, H'(E). Note, indeed, that both numerical solutions
and their post-processed counterparts are 7p-piecewise discontinuous functions and
for this reason they do not belong to H(f).

The inf-sup condition proved in [8], that we state for the sake of reference in the
following lemma, still holds.

LEMMA 4.3. For any q € Qp, there exists a vector G € X}, such that:

[0.dvaGly, = llall3, and |IGllx, < Clips —p'llo,.  (411)

Furthermore, an inf-sup condition holds when using the norm || - |1 4.
LEMMA 4.4. There exists a positive constant C’ independent of h such that for
any q € Qp there exists a discrete vector G € X}, satisfying

[divaG.alg, = llallin  and  [[R(G)lL2() < Cllalln - (4.12)

Proof. Let q € Qp,. We define the discrete vector G € X}, through

1
G = ™ [g]e forevery e€é&. (4.13)

€

From to (2.12) and (4.2b), integrating by parts and summing over all elements and
edges, we get

[divaGqly, = 3. /E g dvRE(@)dv = 3 Y /E 45 Ru(G) - n% dS

EcT, ECT, ecOE

=Y [ R(@) n°[q].dS . (4.14)
e€Ep "~

Using (4.2a) and (4.13), identity (4.14) becomes

. 1
[diveGidlo, = 3 7o [Tal2dS = lulit s,
e€g, V¢

thus proving the identity on the left of (4.12).
Using Assumption (L3), definition (4.13) and noting that a*hg < h. from (M2)
allow us to obtain:

1
IRE@) ) < ke Y [ |69@ as =phe - 5 [ Ilal.[*ds
ecOE Y e€HE € V€
P 1 2
<Y i [lalPas. (415)
eCOE
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The right inequality in (4.12} is finally derived by summing inequality (4.15) over all
the elements E € 7y, setting C' = (p*/a*)l/2 and recalling the definition of ||g||; 4. O

4.2. Convergence of the scalar solution field.
The main result of the present subsection is given in Theorem 4.7, where we prove the
error estimates for the approximation of p through the norms ||- ||, » and m . Hth. The
theorem’s proof relies on the error formula for the constitutive equation discussed in
Lernma 4.5 and the inequality of Proposition 4.6. This latter, in particular, is stated
in a more general form than that required by Theorem 4.7. This generality will be
useful in the analysis of the post-processed numerical solution of the next sub-section.

LeMMA 4.5 (Constitutive error equation}. Let (F,p) be the ezact solution of (2.1),
and (Fy, pr) the mimetic solulion in Xp X Qr. Under Assumptions (L1)-(L3), for ev-
ery G € X}, there holds:

[ph - pI7 diva]Qh = [Fh’G]X;‘ + /Q VP . R(G) dV.

Proof. Using (?77?) we have:
[on — 9", divaGl,, = [Fr. Gy, +(9,G) — [p7,divsG] . - (4.16)

From (2.7}, noting that divR(G|g) is constant on each element E € 7}, integrating
by parts with plr = g and using the flux equation (2.1a) yield the developments:

o7 divaG],, = / p! divR(G)dV = / p divR(G) dV
“ “ : (4.17)

]

—/ Vp- R(G}dVﬁLfgn-R(G)dS .
Q r
Equation (4.2b) and {2.13) allow us to transform the last term in (4.17) as follows:

/P gn R@ds =Y / gn® R(G)dS =Y / ()G (&) dS = (5,G),.. (4.18)

eV E ecve

Substituting (4.17) into (4.16), using (4.18) to cancel the boundary term, and the
Cauchy-Schwarz inequality yield:

[ph _pzidiva}Qh = }:Fh’G])&.’h +]§;VP‘ R(G}d‘f’.

n]

ProroSITION 4.6. Let (F,p) be the exact solution of (2.1) with p € H3(Y), and
(Fy, pn) the mimetic solution in X, xQpn. Then, there exists a constant C independent
of b such that for every collection of vectors {Gg}r with every Gg being in the local
restriction Xy g there holds:

) ([FhvGE]EJrfEVpRE(GE)dv)

EcTy
(4.19)

1/2
< CR¥|Ipll s (Z 1183(65)11?,2(5)) :

EBEeTy,

Proof. Let us consider for every element F € T the quadratic interpolant of p
defined on E, which we denote by pg) € P(E}. We add and substract Vpg) to the
15



argument of the elemental integral of (4.19) to obtain:
f Vp-Re(Gg)dV = / vpi?) . RE(GE)dV + / V(p-p?) - Rp(Gg)dV(4.20)
E E E

Through the integration by parts, Assumptions(L1)-(L2) and local consistency (52),
the first term of the right-hand side of (4.20) becomes:

[ 92 ReGr)av = - [ sPaivire(Genav + [ oPns RelGr)as
E

/ ()dlthGEdV+Z/ 2 (e)(GE)°(€) dS

e€HE
(PR KYPDN G, - (4.21)

Adding and substracting F{ and using (4.20)-(4.21) makes it possible to reformulate
the left-hand side of (4.19) as follows:

Z (iFh,GE}E+LV}9~RE[G’E}dV} => ([Fh—FI,GE]E

EeT;, EeT,

H

H

+[(F+ PP V) G|+ f Vi -p%) - Re(Ge) dV)
E E

=Ty +To+Ts .

After using Cauchy-Schwarz inequality twice and by combining (51} and (L3), we
control Ty through the error estimate of Theorem 3.4:

T < > 1P - FTizllGEll e

EeTy
1/2 1/2
< ( > I, - FIIII%) ( > HlGEll'%)
Ec?y EcTy,

IA

. 1/2
|Fy — F ||z, (Z— > ||RE<GE)||%2(E)>

* EeTy

1/2
< C’hzllpllﬂs(g) (Z HRE(GE)H%Q(E)) y

EeT,

1/2

where C’ absorbs the constant factor (¢*/p.)
and is thus independent of h.

and the constant of inequality (3.8),

By applying the Cauchy-Schwarz inequality twice to T2 we obtain:
o< Y IF+Pe (k992 s | Galls

EeTy
/2 1/2
< (Z (F+?>“>(Kv;o<“‘>>)fn%) (Z mcgm%) . (422)
EeTy EeT,
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http:4.20)-(4.21

By using Assumption (S1), substituting F = —KVp, and using Agmon inequal-
ity (3.0b} we control the argument of the first summation in (4.22) as follows:

I(F + P KIS IE <othe Y I(F + PR KPEN) |2,

e€OE
<o'he Y [KVp— PR KV 2x )
ecdE
< a*CCxhplIpll3s i - (4.23)

Combining (4.22) and (4.23), using Assumptions {51) and {L3), and noting that
I1Gellle < (0*/p)'*|Re(GE)|lL2 (k) give the inequality:

2 , 1/2
< (Z 6*5(7&%“?“?{3(3)) (?p— > HRE(GE)H%%E))

EeTy * EeT,

1/2
< C"2pll ey (Z "RE(GE)”Q“(E))
BeTy

where C" = o* (5'CK/p*)l/2 is independent of A.

We control Ty as follows by applying the Cauchy-Schwarz inequality twice and usiﬁg
an estimate for the interpolation error (with constant C'):

T < Z V(0 — )12y || RE(GE)| 12y

EeTy
1/2 1/2
< (Z NV(P—P;?))HZL?(EJ (Z ”RE(GE)H%Z(E))
E€T, E€T,
1/2 1/2
< (Z Clh‘élpi%aw)) ( >, liRz(Gs)ilZL?w))
EecT, EeT,
1/2
< C"lpllas @ (Z HRE(GE)H%Q(E})
EeT;,
and C* = C1,
The proposition eventually follows by taking € = max (C’ ,C",C"). 0
Note that the convergence proof in the norm m . |H on’ which is given in the

following theorem, is somewhat more general than the similar approximation result
considered in [8]. More precisely, the proof discussed below does not require additional
regularity assumptions on the shape of €1, e.g. 1 is convex, neither that the flux
inner product is defined through a lifting operator nor that the source term of the
divergence equation belongs to H'(f2). Nonetheless, the higher-order approximation
of the Auxes imposes the H3(Q2) regularity to the exact scalar solution field in order
to achieve optimal convergence rate. This requirement holds for the evaluation of the
error in both || - ||y 5 and || - |]|Qn nOTm.
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THEOREM 4.7. Let p € H3(QQ) be the eract solution of (2.1) and p, € Qp
its mimetic approzimation. Under Assumptions (K1)-(K2), (HG)-(ME), (L1)-(L3),
(51)-(52), there exists a constant C independent of h such that:

(i) |lpr — pTllin < CR3||p|l g3
(1) ||| pn —PIH|Qh < CR?|lpllgao

The constant C' only depends on the various constant factors introduced in (K1)-(K2),
(M1)-(M4), (L1)-(L3), (51)-(52).

Proof. Both relations (¢) and (4¢) are proved through the same argument. The
proof starts from the error equation provided by Lemma 4.5, then we apply the
corresponding inf-sup condition, c.f. Lemmas 4.3-4.4, and finally we bound the flux
error through the estimate given by the inequality of Proposition 4.6.

(i). Let G € X, be the vector associated to ¢ = py, — p’ by the discrete inf-sup
condition of Lemma 4.4. Lemma 4.5 and Proposition 4.6 imply:

lon = P11 5 = [pn — pT,divaG] , < CR?|Ipllms(e) IR(G)|L2(e)
and item (4) follows by using the inequality given in (4.12).

(i1). Let G € X be the vector associated to ¢ = p, — p! by the discrete inf-sup
condition of Lemma 4.3. Lemma 4.5 and Proposition 4.6 imply:

lllpn —PI|||2Q,. = [pr — ', div;G] o, S Ch|Ipll g3 (o) I1R(G) |20
and item (47) follows by using the inequality given in (4.11) and Assumption (L3). O

4.3. Convergence of the post-processed solution.

Let us first define the scalar field p* as the unique 7;-piecewise quadratic poly-
nomial satisfying

/p* dV=/pdV (4.24a)
E E

/ Vp* - VqdV = / Vp-VqdV for each ¢ € P*(E)\R (4.24b)
E E

for all E € T},. From the interpolation theory on star-shaped domains [6] the following
estimate holds:

hgtllp — p*ll2e) + IV — p*)llr2ce) < ChEIplHs(5).- (4.25)

LEMMA 4.8. Let T)f = {E € Tj, such that e € dE}. Then, there exists a constant
C independent of h such that for every e € &, there holds

he_lH [p—p"]e Hiz(e) <C Z h%|p|i13(E)- (4.26)
EeTg

Proof. Let us derive (4.26) for the case an internal mesh face e, 1.e. T,f = {E1, Ea},
and note that the case of a boundary mesh face, i.e. 7¢ = {E}, can be treated by
simply adapting the same argument. Separating the contributions from E; and E;
into the jump term and using the triangular inequality give:

R —p D Bagey <2 3 I - p7)lEl2ace.
EeTy
18



By using Agmon inequality (2.3) from (M4) with ¢ = (p — p*)|r and recalling that
Rl < h;(a*)-h’? from (M2), we have

- * «»—1/2 - * *
ho = p)ellia) < () (h52||(P—P ellism +ip—p )|E|?‘{1(E;))s

and (4.26) follows from interpolation estimate (4.25), [0
THEOREM 4.9.

llp = pillin < CRAlpllgaay

Proof. The approximation error for the post-processed solution field is split into
two terms as follows:

lo-rildn = 3. (I9G=plem + X At o= pi ke 320 )
EeT, ecHE
=T +T». (4.27)

Let us add and substract p* to the argument of T} and use the triangle inequality
to obtain

T < Z IV —p*)Z2 (i) + Z V(" — pi)l22 (i)
EeTy, EeT,
=Tai+Ti2.

We bound 77, through (4.25). To bound T 2, we first observe that from (4.1b) with
Vg =V(p*—p}) and (4.24b) it follows that

fia= 3 ([ 9 vt -mav - [ Vi v0 - syav)

EeT),

) ( [ V6 - s av + (B (V0 —p;))I]E)

EcTy,

S Vo Vet —ph)dV + [Fu (VT o) ] ). (428)
E

EETh

We control the right-hand side of (4.28) through Proposition 4.6, i.e. inequality {4.19)
with G|g = V(p* — p;)E. Assumption (L2) implies that

Re(V(* ~ph)E) =V —ph)le

because the restriction of V{p*—p;) to E is a linear vector field. Therefore, we obtain
that

i

Ti2 < CRApllas) IR(V® — ) )ll2e)
= Ch*|Ipllas ) IV (@* = ph)ll2ce)

< ChIpll 3y IV (p = pi)ll2c)s (4.29)

where the last step follows from (4.24b) since p}lg € P?(E)\R. Combining (4.29)
and the bound of T3 3, it follows:

Ty < CR*lpllaaqen IV (2 — P Il2gey < CRA|pl 2y (lp — Phlls -
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To bound the term T3 in (4.27) we introduce the splitting
Ph=pn+Pn and p*=p’ +p with Bn,pe€PHE\R, (4.30)
from which it readily follows that
[p* —phle=[p" —pnle + 10— Ph]e.

Then, we control 75 by the chain of inequalities:

T, <2 b Ip—phle ll3aqe

e€ly
< SR (I =2 Le Wage + 11 0 = piJe 12
e€ly
< 3 B (1P = 2" Le oo + 21 197 = Pl [Bae) + 20 [P — Ble 2oy )
e€ly

=Ton+ T2+ To3.
To bound T3 1, we use (4.26) and obtain:

I3, = Z o p—p e lfeey <C Z WPty < ChHIpli%s o)

e€lp EeTy,
To bound T3 3, we first note that
- I I
Tra= Y hI[PT —prle 320y < IIPT = Pull3 s
ecfp

and then we use the result of Theorem 4.7.

To bound 75 3, we start separating the side contributions to the jump argument as in
the proof of Lemma 4.8 and applying the Agmon inequality to each side term. Hence,
by summing over all mesh faces we get:

> h B - B113aey < CYNg S (A2l = Blides) + o — e )- (431)
e€Ey, EcT,

By definition pj = pL = 0; thus, using a standard interpolation estimate makes it
possible to develop the first summation argument as follows:

hz?1Ph — Pll32 () = hE°l(Br — B) — Pr — B) 132y < ClPh — Plagi (g (4.32)

Using bound (4.32) into (4.31) and noting that V((p» — P)lg) = V((p} — P)lE),
c.f. (4.30), yield:

Th3<C Z IV (Pn —@||2LZ(E) =C Z IV(ph —p*)
EeTy, EcT,

%Z(E) = CT1‘2.

The estimate of T 3 terminates by using (4.29) to control T 5. O
The convergence result for the numerical approximation to the scalar solution p
is completed by the following result that is an obvious corollary of the above theorem.
COROLLARY 4.10. Under the same assumptions of Theorems 4.7 and 4.9 there
holds:

Ip = Phllzzc) + lp = Phllin < CR2|Ipllasa).
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The constant C only depends on the various constant factors introduced in (K1}-(K2),
(M1)-(M4), (L1)-(L3), (51)-(52).

Proof. This corollary is an immediate consequence of the superconvergence result
in Qp-norm given by the second item of Theorem 4.7 and the convergence of the
gradient approximation given in Theorem 4.9. O

5. Scalar product implementation. Without loss of generality, we reformu-
late Assumption ($2) on P3(E)\R, which is the linear space of polynomials up to
degree 2 having zero average on E. The dimension of Po(E)\R equals mp, = mp,—1,
where mp, = (d + 1){d + 2)/2 is the dimension of P(E). Since divy gG is constant
on E and the elemental integral of ¢‘?) is zero, we obtain

(PR (<va®))". 65 = ¥ ot [ 690 @) s,

e€dE €

which holds for every G € X}, and ¢ € P(E)\R, and is equivalent to (52).

To ease notation, we introduce the vector G g representing the degrees-of-freedom
of G € X, of the faces ¢ € E. Low-order components are taken in G g before the
high-order components and all entries follow the local numbering of the element faces,
eg e € OF fori=1,...,mp. The structure of this vector is given by

GL=(G3,...,Gy"e, 6T, Gime ), (5.1)

and its size is equal to d x mpg. Consistently with this notation, the restriction of
G € X}, to the faces of OF is given by the vector GE having the structure of (5.1).

Now, the scalar product between the vectors F and G of X}, is locally imple-
mented by means of the symmetric positive definite matrix Mg acting on their ele-
mental restrictions Fp and Gg:

[P.G],, = > [F.G], with [F,G], =GEMgFg. (5.2)
EeT),

The elemental matrix Mg is built as follows by Assumption {52).

Let {g;} be some set of polynomials that form a basis for P,{E)\R. The set
of linearly independent vectors {Vg;} generates a subspace of (P(F))?* formed by
constant and linear vector fields on E. Following [4], we require that {Vg;} is an
orthogonal set:

/ ti-qufiif:iE]éij, for i,j,= 1...,TT’LP2. (53)
E

Exploiting (5.3), it is possible to show that there exists a positive constant C; inde-
pendent of Ag such that
lgllooeey < Cohe and  ||Vqillpee(my < Cy (5.4)

foreveryi=1,...,mp,. The construction of a set of polynomials {g;} satisfying (5.3),
and, consequently, having properties (5.4) is detailed in [4].
From Assumption (52) on ¢'® € Po(E)\R yields:

(PR (KVe®)) 6], = 3 [ 9@ ds

ecOEY "
(5.5)
- Gg/q<2>ds+ 3 G -/5—;29@}@5.
cCIE ¢ ecIE € €
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We rewrite the right-hand side of (5.5} after introducing the j-th basis function ¢; of
PQ(E)\R as

> GS/de5+ > G?'/'E;ﬁe%dszG}gle» (5.6)
€ €

e€OE € ecOE

where R|; is the j-th column of the matrix

R:( E‘: ) (5.7)

The decomposition of R in {5.7) is induced by the structure of the elemental vectors
in (5.1): the two submatrices Rg and Ry act, respectively, on the low- and high-order
components of such vectors. Their j-th columns are written as:

/ g;dS / —‘5;‘5‘“ g;dS
ey €y {31
R0|j = and Rl‘j =
/ g; dS W% ds
Cmg Emg hgmg

We now introduce the matrix N, whose j-th column is given by the degrees-of-freedom
of (Pg) (Kqu))I on the faces of GE:

[ PR (kve));
W= ( (P2 (kvq))T ) o

and reformulate (5.2) as follows:
I
(P! (KV4,))". G 5 = GEMEN;.
Comparing (5.8) and (5.6) and using equality (5.5) vields the matrix relation:
MgN =R. {(5.9)

Let us now consider the vector Glg = (KVg )T = Nj; in (5.5). Note that (('Pg) (Kqu))I)e
is the L%-projection of n¢ - g}(Kqu) onto the linear polynomials defined ou e. As
any linear combination of the components of Vg, is a linear function, these two terms
coincide. Let

Kij = L/‘ Kqu' -ti av (510)
IE| /B

for i,j = 1,....,Mp,. The matrix K = (Ky;) is clearly symmetric. From the assump-
tions of strong ellipticity and orthogonality, Le. (2.2) and (5.3), it follows that K is
positive definite and that its spectrum is included in the range [k.,s*], c.f. [4]. As
??g) (KVg;) is a linear vector field, its divergence is constant on E. Using (S2), noting
that the elemental average of the polynomial field g; is zero, substituting (2.8) with
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v = Vg, and, using definition (5.10) in the last step we obtain:

(PR (kvg;)T, (PR (KVa) 1= > [ (PY (KVg)T)pa: dS
eE&E €
Z /or n® ’Pi) KVqJ)qzdS
el

/P“) (KVg;) - vq@dv+/ div(PY) (KVg;)) g: 4V

= / quJ' -ti dV = |E|RU (5.]])
E
Noting that
. I
[(PY (Kvg)) T, (PP (KVa)) 1, = NITMeN]; = NITR]j, (5.12)
and comparing (5.11) and (5.12} for all columns of N and R yields the matrix relation:
NTR = |EIK. (5.13)
A simple calculation shows that
7!
NT (RWR?) =RT = NTMp (5.14)

because Mg = MZ. By comparison with (5.9), we find that a possible choice of Mg
satisfying the local consistency (52) is given by:

—

K -
Mg = R—RT + Mg, (5.15)
|E]
where Mg can be any real symmetric matrix of size m p, XM p, whose columns belong
to the null space of N, i.e. NTMg = 0. We take

Mg = CucT, (5.16)

where the columns of C form a basis set for ker(N) and U is any symmetric positive
definite matrix (with product compatible size). The matrix U plays the role of a
free coefficient matrix, and its optimal design is still an open issue even for the low
order scheme. The size of the columns of N is given by mg x d because it equals
the total number of flux degrees-of-freedom of the elemental faces forming 9F and
the high-order flux approximation requires to specify d unknowns per elemental face.
Recalling that N has mp, columns, we have

dim{ker(N)) =mp x d ~ fip, = rank(Mg).

The major properties of this construction are stated in the following theorem. The
proof follows by repeating the stability analysis presented in [4] for the case of piece-
wise constant K, and, particularly, of Theorems 3.3 and 4.3 given therein. For this
reason, it is omitted.

THEOREM 5.1.
(i) Let Mg be the matriz given by (5.16). Then, Mg defined by (5.15) is a symmetric
positive definite matriz.
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(11) Furthermore, assume that there exists two positive constants sy and Sy indepen-
dent of E such that

sulE]|Jv]? < [JUY2CT||®  for every v € img(C),
and
|]U1/2CT’UH2 < Sy|E|l|vi? for every v € RI™E"ry,

Then, there exist lwo positive constants o, and o* independent of h and U
such that the matrizx Mg satisfies Assumption (S1), and there holds

Bfmin { Sou.00 ol < [MY20 | < B max {350,0° Jo?

for every v € R4™=,
A precise expression for o, and o* in terms of the constants appearing in (M1)-
{M4) can be derived by repeating the proof given in [4].

5.1. Further remarks on the scalar product formulation. From (5.13)-
(5.14) it follows immediately that

NTMEgN = NTR,

which is also in accordance with [4, 10]. Consequently, if Mg is a symmetric matrix,
NTR must be a symmetric matrix. Note that NTR is independent of the particular
choice of the inner product [+, g+ Therefore, the condition that N7R be a symmet-
ric matrix is a necessary condition for the symmetry of Mg that should come from
the consistency condition. Let us consider the consistency condition of the original
formulation [8, 10]

[(K94®)".G] + [ o divipG v
E

(5.17)
= 3 ot [ 6@ @ s,

ecOE

which is stated without the projection operator ?Pg)( - ) We emphasize that tak-
ing (5.17) instead of (52} is equivalent to defining the columns of the matrix N as

I
(qu}')a

I
(quj)l
instead of (5.8). The variation of K inside FE can be taken into account through a
high-order quadrature rule of Gaussian type. After this choice, the symmetry of NTR
can be simply checked by hand calculation for some given element F and linear non-
constant tensors K and ...it is generally false! So the point here is that whenever K
is non constant the usual consistency condition (5.17) of the low order formulation is
incompatible with the symmetry requirement of the scalar product matrix. Moreover,
condition {5.17) is not satisfied by the classical BDM, finite element on triangles-

tetrahedra when K is non constant,
It is worth noting that an alternative choice for the projection operator is given

N|; =

by:
/ (PP (u) —u) K™ lwdV =0  for every v € Py(E).
E
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{a} Mjy: randomly per- (b} Mgy randomly per- (c) Mjz: smooth mesh with
turbed mesh with conver turbed mesh with possibly mostly hexagonal elements
elements non-convex elements

F1G. 5.1. The base mesh of the mesh families My, Ma, and Mg,

ilpg’(u)luew) < Ckllullrz(ry

with Ok = k*/x.. Indeed,

1L () By < 7 /E P ()K" Y () dV

A

n*f PO (WK ' dV
E

IA

& IKV2PD (W) g2y K™Y 20| 2y

IA

(" /5 ) IPE @)llzacey el 2.
The approximation properties of Lemma 2.1 still hold but in this case the constant
C in (2.9) depends on Ck.

This second option offers the advantage that the scalar product [ ] X provides
an exact formula for the K™ l-weighted scalar product of linear vectors. Therefore, it
exactly holds:

[UI,wI]E = f v-KlwdV  forevery v,we¢ (Pl(E))d.
E

On the other hand, it requires the numerical integration of rational functions due
to the expression of K=!. From a rather extensive suite of experiments, we can
reasonably claim that this latter formulation seems to perform as well as the former
based on (2.8).

6. Numerical Experiments. The numerical experiments presented in this sec-
tion are aimed to confirm the optimal behavior of the flux approximation provided
by the current high-order mimetic formulation. We also characterize the convergence
behavior of the post-processed solution pj; to the exact solution p. To this purpose, we
. solve {2.1) on the domain =0, 1{x]0, 1] by applying the present high-order formu-
lation and the low-order MFD method [10] to the benchmark problem having exact
solution

p(x,y) = sin(2r ) sin(2ry) + & + 2%y + 2 y® + 4%,
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i #E #e #v h
1 100 220 121 1.35010°°T
2 400 840 441  6.9691072
M; 3 1600 3280 1681 3.5721072
4 6400 12960 6561 1.7721072
5 25600 51520 25921 8.90110°3
1 100 440 341 7.96910°2
2 400 1680 1281  3.9681072
M, 3 1600 6560 4961  2.069 102
4 6400 25920 19521 1.0401072
5 25600 103040 77441 5.2531073
1 121 400 280 9.65510°2
2 441 1400 960  4.9411072
Ms 3 1681 5200 3520 2.496 102
4 6561 20000 13440 1.25110°2
5 25921 78400 52480 6.2601073

TABLE 6.1
Run parameters for the mesh suites My, Mo, M3

and smoothly variable diffusion tensor

(x+1)% +4° -z
K(w,y)z( —zy Y (1‘4—?{)2 )

These examples are solved by a C** program based on a variant of P2MESH [5],
a public domain library designed to manage data structures of two-dimensional un-
structured meshes.

Table 6.2 report the approximation errors and convergence rates obtained by
solving the model equation on three different sets of successively refined meshes. The
mesh construction is detailed in [4,8,18]. Mesh details about number of elements,
edges, vertices and mesh size parameters are reported for each mesh considered in
these experiments in Table 6.1. The first mesh of each mesh family is also shown in
Figure 5.1. Approximation errors are measured by the following quantities:

[lp* — palll@n, |FF — Fulllx
Eg.lpp) = ——7—22 and Ex, (Fy) = —m—=5—"2,
o 2% llox " 1L,
where ||| - ||lg, and ||| - ||| x, are the norms induced by the scalar products in Qp and

Xp, c.f. Section (2). For the post-processed solution, we consider the relative errors
given by

Sl,h(p;;) - ||p — ph”l,h ,
P11,
where ||-||1,» is the norm defined in (4.10), and the denominator in the second formula
is calculated by using the coarsest mesh. The convergence rate is evaluated from the
relative errors with respect to the mesh size parameter h. Quadratic convergence rate
is clearly seen in the flux approximation and for the post-processed solution gradient.

7. Conclusion. We considered a stationary diffusion problem with a full tensor
coefficient discretized through the MFD method from [4,18]. Under quite general
assumptions on polygonal and polyhedral meshes, we proved second-order convergence
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cd h £q. (o) Rate Ex, (Fr) Rate Enink) Rate
1 1.35010°1 | 21611072 —— | 6.35810~% —— | 7.858107% ——
2 6969102 | 6.43710™% 1.832 | 1.115107% 2634 | 1.8501072 2.188
3 35721072 | 1.67110~% 2.017 | 2.29310~% 2365 | 4.409107% 2.145
4 1.772107% | 4.241107* 1.956 | 5.46310™% 2.046 | 1.08810™% 1.996
5 89011073 | 1.06410~% 2.008 | 1.34010~* 2.041 | 2.70810~% 2.020

{a) Approzimation errors obtained using M,
i h Eo.(pn) Rate | Ex,(Fy) Rate | & n(p;) Rate
1 79691072 | 227410~2 —— | 58101072 —— |6.692107% ——
2 3.9681072 | 6.46210°3 1.804 | 1.16710"2 2.327 | 1.67010~2 1.990
3 2.0601072 | 1.659107% 2.087 | 2.70210% 2245 | 4.104107% 2.154
4 1.0401072 | 418710~ 2.001 | 6.59410~% 2.051 | 1.023107% 2.020
5 52531073 ] 1.04910~% 2026 | 1.63510™% 2.041 | 2.55510™* 2.031
(b) Approximation errors obtained using My

i h Ea, (pr) Rate | £x,(Fr) Rate Evnlny) Rate
1 06551077 | 23271077 —— | 52471072 —— |6532107%2 ——
2 49411072 | 7.28410% 1.734 | 1.2141072 2.185 | 1.83310"% 1.896
3 24961077 | 1.990107% 1.899 | 2.942103 2.075 | 4.78510~% 1.966
4 12511072 | 5155107% 1.955 | 7.32710"% 2012 | 1.21710~% 1.983
5 6.260107% | 1.30910™* 1.979 | 1.837107% 1.998 | 3.06310™* 1.991

(¢} Approzimation errors obtained using M3y

TABLE 6.2
Relative approzimation errors for the conservative variable py, the numerical fluz Fy, and the
post-processed numerical solution pj, obtained by applying the high-order MFD method to the meshes

of {a) My, (b} Mz, and (c] Mas.

of the conservative variable and its flux. The admissible polyhedral meshes can have
degenerate and non-convex elements. We also developed a new family of high-order
MFD methods for the case of non-constant coeflicients. The theoretical results were
confirmed by numerical experiments.
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