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Reconfigurable Supercomputer
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STEVE POOLE

Oak Ridge National Laboratory

The conjugate gradient is a prominent iterative method for solving systems of sparse linear equations. Large-scale scientific applications often utilize a
conjugate gradient solver at their computational core. In this paper we present a field programmable gate array (FPGA) based implementation of a double
precision, non-preconditioned, conjugate gradient solver for finite-clement or finite-difference methods. Our work utilizes the SRC Computers, Inc.
MAPStation hardware platform along with the “Carte” sofiware programming environment to ease the programming workload when working with the
hybrid (CPU/FPGA) environment. The implementation is designed to handle large sparse matrices of up to order N x N where N <= 116,394, with up to 7
non-zero, 64-bit elements per sparse row. This implementation utilizes an optimized sparse matrix-vector multiply operation which is critical for obtaining
high performance, Direct parallel implementations of loop unrolling and loop fusion are utilized to extract performance from the various vector/matrix
operations. Rather than utilize the FPGA devices as function off-load accelerators, our implementation uses the FPGAs to implement the core conjugate
gradient algorithm. Measured run-time performance data is presented comparing the FPGA implementation to a software-only version showing that the
FPGA can outperform processors running up to 30x the clock rate. In conclusion we take a look at the new SRC-7 system and estimate the performance of
this algorithm on that architecture.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]:Other Architecture Styles — Adaptable architectures, Heterogeneous (hybrid}
systems Miscellaneous — Hybrid systems; CA4 [Computer Systems Organization]: Performance of systems — Design Studies, Performance aitributes;
G.1.3 [Numerical Analysis]: Numerical Linear Algebra - Linear systems, Sparse, structured, and very large systems; G.1.5 [Numerical Analysis]: Roots of
Nonlinear Equations — Iterative methods; G.1.6 [Numerical Analysis]: Optimization — Gradient methods; G.1.8 [Numerical Analysis]: Partial Differential
Equations — Iterative solution techniques; G.1.0 [Numerical Analysis]: General — Computer arithmetic, Numerical algorithms, G.4 [Mathematics of
Cemputing]: Mathematical Software — Algorithm design and analysis;

General Terms: FPGA, Conjugate Gradient, Sparse Matrix-Vector Multiplication, Reconfigurable hardware, Iterative methods
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1 INTRODUCT!ON
The Conjugate Gradient Method (CG) is a member of a family of iterative solvers known as Krylov subspace methods used
primarily on large sparse linear systems arising from the discretization of partial differential equations (PDEs). CG is effective
for systems of the form:

A% =b,
where A is a square N x N sparse matrix [5].

CG uses successive approximations to obtain a more accurate solution at each step. It is considered a nonstationary
method generating a sequence of conjugate (or orthogonal) ~vectors. These vectors are the gradients of a quadratic function,
when minimized, is equivalent to solving the linear system [11.

To compress the sparse matrix A, the ELLPACK-ITPACK format was chosen [10]. This format is efficient for the matrix-
vector multiply operation and performs well on vector style architectures. The ELLPACK-ITPACK format is generated from
the original N x N matrix by doing a left shift of all the non-zero elements of the matrix. By compressing the matrix in this
fashion, we gain substantial space and computational savings.

Each successive iteration of the CG involves one Sparse Matrix-Vector Multiplication (SMVM), three vector updates, and
two inner products. The SMVM is the time dominant computationali portion executed per iteration of the CG [14]. For
general purpose processors, the SMVM performs poorly for three primary reasons [17]. First, the lack of data locality causes

large numbers of misses within the caches of the memory hierarchy. Second, the multiple load/store units on many processors




have a tendency to miss while trying to load the same cache line. Finally, SMVM codes execute a large number of loads
compared to the number of floating point operations they perform placing a heavy load on the load/store units, and on integer
ALUs that compute the addresses. For most current generation processors, these load/Store units are often the bottleneck in
SMVM leaving the floating-point units underutilized. '

A FPGA 1s a semiconductor device containing programmable logic elements and programmable interconnects [12]. Most,
if not all current generation FPGA devices include higher-level embedded functions (such as adders and multipliers) along
with embedded memories. These devices support full or partial in-system reconfiguration allowing them to be retargeted to
solve a variety of problems.

FPGAs have rapidly grown in logic density, capability, and performance. Double precision floating-point (DPFP) designs
implemented on current generaﬁon FPGA devices typically run at clock frequencies 10-30 times slower than typical
microprocessor-based systems. Even with this disparity in operational frequency, FPGA-based designs can now offer peak
floating point performance equaling or surpassing that offered by microprocessor-based systems [18].

Modern high-density FPGAs allow the user to implement multiple copies of the same computation by unrolling or strip
mining loops [6]. With the ability to stream data to/from memory while utilizing fully pipelined functional units, FPGA based
systems attain high levels of performance relative to their clock speeds. The ability to configure the FPGA to implement only
the logic required for a given functionality, coupled with the much lower operational frequency, yields large power savings
when compared to general-purpose processors. Capitalizing on the potential of FPGAs, supercomputing vendors such as SRC
Computers [15], Cray [2] and SGI [13] offer high-performance computing systems combining standard CPUs with FPGAs.

Implementation of CG using FPGAs has been documented in recent papers. Morris and Prasanna [11] have presented an
FPGA-augmented implementation of the CG on an SRC-6. Their implementation presents a CPU/FPGA accelerated hybrid
approach. They offload the time consuming SMVM function to the FPGA while computing the remainder of the CG on a
traditional CPU. Problem size is quite constrained due to the dependency on BRAM for storage of several critical data
structures. They show a speedup of 1.3X over a 2.8 GHz Xeon processor for one case where the problem data did not fit
entirely in the processor’s cache. Maslennikow et al. {9] present an FPGA implementation of CG using fractional numbers
which is limited to small problem sizes with matrix rank up to 1024. Their imnplementation is targeted at the Xilinx Virtex2-
Pro XC2VP4 and calculate performance of 270 MFlops using a banded matrix of rank 1024 with 5 non-zero elements per
TOW. .

. In this work we present an optimized FPGA-based implementation of a DPFP, non-preconditioned, Conjugate Gradient
algorithm for finite element or finite difference methods. It accepts large sparse matrices represented in ELLPACK-ITPACK
format using up to seven sparse elements per row. This work was part of a technology assessment that was performed in the
summer of 2005.

The implementation was done using the SRC MAPStation utilizing Intel Xeon Processors, a MAP processor (containing
the FPGAs) and the SNAP interconnect {15]. The Carte sofiware tools were used for code development in conjunction with
the Intel C++ compiler [8]. Through careful placement of array data in the On-Board Memory (OBM) of the MAP processor,
optimal use of the aggregated memory bandwidth was achieved. Functional parallelism was exploited to overlap independent

computations and gain substantial speed-ups.



The remainder of this paper is organized as follows: In Sections 2 through 4, we discuss sparse matrices and Krylov
methods, introduce the SRC system hardware and software, outline the non-preconditioned CG algorithm, the SMVM, and
discuss performance issues with traditional microprocessors. In Section 5, we present our implementations of the CG using
the SRC Mapstation and software tools. In Section 6, we discuss our results and place these results in context via comparisons
to microprocessor implementations. In Section 7, we present potential future work and we conclude in Section 8.

2. BACKGROUND
Sparse matrices, derived from PDEs, occur in many scientific application areas, especially Physics and Mechanical
Engineering where a physical phenomenon needs to be mathematically described. PDEs are used to describe phenomena such

as fluid flow, the growth of crystals, gravitation, diffusion, and the behavior of electromagnetic fields.

-

The solution to a nonsingular lincar system AX =5 lies in a Krylov space whose dimension is the degree of the minimal
polynomial of A, If this minimal polynomial of A has a low degree, a Krylov method has the opportunity to converge rapidly
[7]. Also, iterative methods such as CG scale @ell to very large problem sizes, parallelize casily, and have a shorter time to
solution compared to direct methods (e.g., Gaussian elimination). These are the dominant reasons why Krylov methods are
selected for these types of problems and are particularly well suited for use on large-scale scientific simulation codes that in
turn are defined by sparse linear systems.

The ELLPACK-ITPACK storage format was chosen as it is the most efficient for the matrix-vector multiply operation
whose rows have a similar number of zeros. This format, due to its regular structure, allows a more optimal fit of the problem
to the FPGA. The format also allows compilers greater chances for high levels of optimization. Processing a known fixed
amount of data per cycle produces a more focused design. Our goal was to produce the best-case results on this problem
rather than producing a more general solution. A standard Compressed Row Storage (CRS) format could easily be converted
to run on this design.
3.8SRC SYSTEM
3.1. MAP Processor
The MAP processbr uses reconfigurable components to accomplish control, user-defined ’computation, data pre-fetch, and
data access functions, as shown in Fig 1. Each MAP processor contains both fixed and reconfigurable elements of hardware.

The fixed hardware elements include general control logic and a DMA engine in the Controller FPGA as well as discrete,
dual ported SRAM called On-Board Memory (OBM). The reconfigurable hardware elements consist of two Xilinx Virtex II
6000 FPGAs and are referred to as User Logic FPGAs (U LOGIC).The OBM consists of six banks of dual port 512k x 64-bit
SRAM providing a total of 24MB. The Controller FPGA communicates with the OBM via six, unshared ports. The
U _LOGIC devices share the remaining six ports. The seventh, discrete bank of dual ported SRAM is 512k x 64-bits. Unlike
the OBM, this memory has both ports connected to the bridge port cénnecﬁng the two U_LOGIC devices. This seventh bank
may be configured to look like two independent 2MB memory ports to the U_LOGIC devices.

The entire MAP processor runs at a fixed frequency of 100 MHz. At this frequency, each of the 64-bit OBM memories,
and the two ports of the seventh memory, can deliver a sustained maximum bandwidth of 800 MB/s per port. This yields an
aggregated memory bandwidth to each U_LOGIC of 6400 MB/s. It should be pointed out that simultaneous access of a
particular OBM, or the seventh memory, by both U_LOGIC devices is not permitted since they are shared.




The MAP processor has separate input and output ports with each sustaining a data payload bandwidth of 1400 MB/s.
There are also two General Purpose I/O (GPIO) ports providing an additional data payload of 4800 MB/s for direct MAP-to-
MAP communications or connections to external devices.

3.2. The SRC MAPStation and SNAP Interface

The SRC MAPStation utilizes a dual Intel Xeon mothérboard. Fach Xeon processor runs at 2.8 GHz, and has a 512 KB L2
cache. A single SNAP module is inserted into one of the DDR memory slots and is connected to a single MAP processor
module.

The SNAP module includes an intelligent DMA controller capable of performing complex DMA prefetch and data access
functions. These functions include, data packing, strided access and scatter/gather, to maximize the efficient use of the system

interconnect bandwidth.
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Fig 1. SRC MAP Diagram [15]
3.3. 64-bit Double Precision Floating Point Macros
Our code utilizes a common set of SRC supplied user macros. The MAP compiler translates the source code’s various basic
operations into macro instantiations [16].

There are two types of double precision floating point macros: Modified (M) and Smaller Area (SA). The M revision
macros closely implement the IEEE-754 standard except for handling of special number inputs such as Denorméls, NaNs and
Infinity. These macros implement the “round to the nearest” mode seemingly the most common rounding mode with Intel
Processors. The SA version macros are a subset of the M macros. The SA macros are not as accurate as the M macros but
require fewer logic recourses in the FPGA. |

TABLE | gives a breakdown of the area and latency of some of the M 64-bit floating-point macros. The latency figure
relates to the pipeline depth required when implementing the macro. Our implementation of the CG utilizeskthe M revision

macros exclusively.



Table I. SRC Macros {16]

Area and Latency values for 64-bit floating point SRC macros

FPod: Slices x*y  Latency
fp_divide_64m 44x96 59
fp_addsub_64m 24x64 13
fp_mult_64m 8x128 11
fp_accum_64m 24x64 101
fp_mac_64m 18x128 112

3.4. MAP Implementation Constraints

The MAP function contains both the computational portion of the code along with the data movement instructions to manage
the data movement to and from the MAP’s OBM. All array data must be transferred from SCM to OBM using DMA or
streaming calls. The compiler automatically moves scalar formal parameters to and from the MAP as needed. )

The user logic within the FPGA is clocked at 100 MHz, so achieving good performance relies on parallel execution of
functional units. Operations within loops that have no data dependencies can execute concurrently, There are four potential
sources of loop slowdown: loop-carried scalar dependencies, loop carried memory dependency, multiple accesses to a
memory unit (OBM or BRAM), and periodic input macro calls.

OBM is partitioned into six separately addressable memory banks. When a loop contains multiple references to the same
bank, even when there is no dependency among the references, the compiler may need to slow down the loop to allow each
reference to get its turn to access the bank.

In this design, we utilize both U_LOGIC devices available on the MAP processor. In order to do this we partitioned the
CG function into two separate routines. The two routines have different capabilities and responsibilities as listed below in
TABLETL

Table II. U_LOGIC capabilities & responsibilities

Primary Routine Secondary Routine
Issues all DMAs Has no access to MAP calling
parameters
Initially controls access to Cannot issue DMAs
OBM
Issues ONLY send_perms Issues ONLY recv_perms

4. THE CONJUGANT GRADIENT

4.1. CG Pseudo code

The non-preconditioned CcG impleméntation we present in this work is shown in the pseudo code of Fig 2. Our approach was
to provide an implementation of the CG that fits on the FPGA rather than perhaps the most accurate or fastest converging
algorithm. In particular we chose not to implement a preconditioned CG algorithm. Also, we did not attempt to periodically
correct for accumulated error on the residual vector. This operation would require an extra SMVM operation along with a
vector-vector subtraction. There are several vector-vector/vector-matrix operations executed during the computation:

¢ DPFP Dot Product (DDOT): 2,4, 7

e DPFP constant times a vector plus a vector (DAXPY): 5,6, 8



¢ DPFP SMVM: 1, 3

Of primary concern are the computations taking place within the “while loop”. These operations take the majority of the

overall processing time and it is within this loop where the majority of our optimization work is focused.
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end while
Fig 2. CG Pseudo Code

4.2. C code
Within the C code the following vectors and matrices are used when computing the CG:
e 1 - Residual vector
¢ b — Known vector
e d - Search direction vector
e x — starting/current step/result vector
¢ q - Known vector
o A - Known, symmetric, positive-definite matrix.
® ja —index array
Our implementation utilizes arrays stored in SRAM to hold the various vectors and matrices required for computing the
CG. These arrays are N elements in size with the exception of A which is 7N in size.
Of these arrays, r, A, x must be transferred to the FPGA accelerator prior to executing the CG algorithm. The arrays, q and
d are computed and modified on the FPGA accelerator itself. With the exception of the index array (ja), all values are 64bit
IEEE Floating Point values.
The values of the error tolerance g, and the maximum iterations iy,, are scalar values passed to the FPGA. These values

are used to control and limit the number of iterations the CG performs.



If we evaluate the inner loop operations (3) — (8) of the CG pseudo code, assuming that they are fully pipelined vector
operations, we can estimate the run-time of a single iteration of the CG algorithm. In TABLE III we show the approximate
number of clock cycles and floating-point operations (FLOPS) per execution of the inner CG loop.

Using the information from this table we can calculate the estimated best-case sustained performance of this code, if fully
pipelined would be ~191 MFLOPs (using a clock cycle of 10ns).

Table III. Clocks and FLOPs

Function Clock Cycles | DP FLOPs
(3) SMVM N 13N
(4) DDOT N 2N
(5) DAXPY N 2N
(6) DAXPY N 2N
(7) DDOT N 2N
(8) DAXPY N 2N
Total 12N 23N

4.3. Sparse Matrix Vector Multiply (SMVM)
When computing the CG, the SMVM computation is the time dominant operation. Current microprocessor-based systems
exhibit low computational efficiency when computing the SMVM [17]. The SMVM C-code fragment shown in Fig 3

illustrates why this occurs.

for (n=0; n<nrows; n++) {
*Y = A[01*X[jalO]] +
A[1]1*X[jall]l] + A[2]*X[jal2]] +
A[3]*X[jal3]1] + A[4]1*X[jal4]] +
A[5]*X[jal[5]] + A[6]*X[jal6]];
A+=T7; Ja+=7;
Y++;
}

Fig 3. SMVM C-code

Each Y requires thirteen DPFP operations: seven multiplies and six additions. For a single value of Y we need to read a
total of 21 operands and write a single operand. Fifteen of these operands are 64-bit, DPFP values (A, X and Y). Seven of
these values are 32-bit, integer values (ja[n]) used as the indirect index into the X array. The retrieval of a large number of
operands coupled with a reasonably small amount of computation performed on each operand, places an enormous burden on
the memory hierarchy and bandwidth of any computational system.

Compounding the memory bandwidth problem are the indirect memory references of the X vector. While there is some
available data reuse, it is in general, too small to yield high-percentages of the available peak floating point réte offered by the
CPU.

On general-purpose processors, as the problem size increases, the required data moves out of caches and into main
memory. As the data propagates further out in the memory hierarchy, the performance drops off substantially. On the MAP
processor, our implementation of SMVM uses OBM exclusively for all of its data, and has constant performance up to the

maximum problem size that can fit in the OBM [4].




4.4. Motivation

Our prior work on SMVM on the SRC MAPStation [4] provided insights for the work presented in this paper. The first
insight was that there is more than ample logic space available in a single user logic device of the MAP to implement a fully
pipelined implementation of the SMVM. The second insight was that unless we can reduce the amount of time consumed
transferring data to and from the MAP, there is little to no gain in performance using the FPGA based solution.

Our implementation of the SMVM on the MAP produced a design balancing the amount of logic instantiated to the
amount of usable OBM bandwidth. By approaching the problem in this manner, a substantial amount of logic space remained
on the user logic device for further use. This space coupled with the entire second user logic FPGA meant that we had plenty
of space available for implementing the CG. . ‘

The data transfer time to and from the MAP consumed almost 25% of the overall processing time when computing the
SMVM. By computing the entire CG on the MAP we eliminate almost this entire transfer penalty. Additionally, we can take
advantage of other optimizations to improve the overall performance of the CG on the FPGA system.

5. CONJUGATE GRADIENT IMPLEMENTATION

In the CG pseudo code shown in Fig 2, all operations shown are implemented on the MAP with the exception of the initial
computation of the residual vector (1). This computation requires both a SMVM operation along with a vector-vector
subtraction. Substantial amounts of FPGA logic and routing resources are required to implement the SMVM. Since this
operation is only performed once during the computation of the CG, we assigned it to the CPU with the resulting residual
vector (“r”) being transferred to the MAP during the CG function call.

The vector update functions (DAXPY 5, 6, and 8) will generate OBM conflicts when attempting to pipeline these
functions. The conflicts are due to the required read/write operations to the same array. To avoid this conflict we introduce an
extra set of arrays (odd, even), placed in separate OBMs, and ping-pong between them during computation.

Since the SMVM (3) is the time dominant kernel executed during each iteration of the CG it is important to maximize its
performance. The SMVM code shown in Fig 3 computes the result by forming 7 partial products and accumulating them.

There is sufficient logic within a single U LOGIC device to compute a single SMVM result per clock. Unfortunately,
there is not enough aggregated memory bandwidth available on the MAP to support this. _

A naive implementation would simply place A, d, and ja in three separate OBM banks and then utilize a single SRC 64-bit
multiply accumulate macro to generate the result. This approach would require a nested set of loops similar to what is shown
in Fig 4. Since the ‘SRC compiler only pipelines inner loops, inner loops with small numbers of iterations lead to poor
performance. This performance degradation is due to the pipeline being stopped and started for each iteration of the outer

loop.



for (n=0; n<nrows; n++) {
offset = n*7;
accum = 0;
for (j=0; j< 7; j++) {
accum += Aloffset+jl*d[jaloffset+i]]:
}
gln] = accum;

Fig 4. MAC Implementation
Our improved SMVM design computes two partial products in parallel, accumulating the result as required. In this design

we stripe the A array across two consecutive OBM banks (ALO and AL1), replicate d in two OBM banks ({dodd0, dodd1} or
{deven0, devenl}), store ja array in another OBM bank (jaL), with the result, q, being stored in a separate OBM bank (g).
The reason for replicating the d array is to allow for two indirect accesses (based on the jal. values) to the d array without
contention. With this array placement we can access two A, d, and ja values per clock. These values are then used to form the
partial products that are accumulated to form the result.

The design utilizes a special “user” macro that was specifically designed by SRC for us for this problem. This macro
implements a dual Accumulator configuration producing results every 3™ and 6™ clock cycle using the higher accuracy M
version macros. \

Rather than utilize a nested loop structure, which would prevent the SRC compiler from pipelining the SMVM operation,
we utilize the SRC cg_count_ceil 32 counter macro to handle the inner loops sequencing. An outer for loop simply ensures
that we compute for the proper number of results. The actual sequencing is handled by the SRC cg_count_ceil 32 counter
macros. These macros are used to flatten nested loops. k

The optimizations described above yield an improvement in run-time from the 7N to 3.5N clock cycles. This solution
produces 2 results evéry 7 clock cycles (70 nsec) for a sustained performance of 371 MFLOPs.

Using our improved SMVM as our starting poiﬂt we now analyze the operations listed in Fig 2 to identify which
operations can be computed concurrently. Once these operaﬁons are identified we then group the computations if we can
place the required operands and results in separate OBM:s so there are no conflicts when pipelining the operations.

The first grouping we implement is the computation of the SMVM (3), and the vector DDOT (4). The computation of the
DDOT (4) requires that we have access to the g, and d arrays. Since both arrays must be accessed when computing the
SMVM, we combined these operations into a single loop reducing the overall run-time another N clock cycles. Therefore, by
optimizing the SMVM (3) and fusing the DDOT (4) within the SMVM loop, we have reduced the run time from 8N to 3.5N
clock cycles.

The second grouping we implement is the computation of the vector updates (DAXPYS) (5), (6) and the DDOT in (7). By
combining these separate operations into a single loop with parallel functional units, we are able to reduce the run-time for
these computations from 3N to N clock cycles.

The final vector update (DAXPY) (8) cannot be grouped with any other operations since it is dependent on the scalar
value B and the updated r array. This loop adds another N clock cycles to the overall run-time of the CG.




To ensure that there were no OBM conflicts causing slowdowns within the inner loops, we distributed the arrays as shown
in Table IV. The arrays with the odd/even designations are the ping-pong arrays described above.
Table IV. OBM Array Placement

A B C D E ¥ G H
ALO | ALL dodd0 | devenl | jaL q deven( | doddl
xodd | reven xeven rodd

In this design we stripe the A matrix across two consecutive OBM banks. Since our memory layout requires that a second
array of order N reside in the same OBM banks, we can calculate the maximurm problem size (based upon N) as follows (SRC

reserves 512 locations of OBM for system purposes):

MAX OBM SIZE =512*(1024)-512=1523,776

-%v—-+N =523,776

N _ 523,776
2 B
N =116,394

The U _LOGIC Xilinx XC2V6000 devices contain 144 Block RAM (BRAM) units, with each unit holding 2048 bytes.
This yields an internal high-speed memory capacity of 294912 bytes. While in many cases this amount of BRAM would be
usefil, for our problem space it was not large enough. For example, storing just the vector x in BRAM would require 8*4 8=
884736 bytes. Problems small enough to utilize BRAM for storage also must compete against microprocessor based systems
operating entirely out of L1/L.2 cache where any benefits from utilizing the FPGA approach are greatly reduced or completely
negated.

Striping A has the advantage of placing consecutive values in separate independent memories. By striping A in this
fashion we are also able to exploit the full DMA bandwidth of the SRC systém (1400MB/s) when transferring the A array
from the PC to the MAP OBM thereby reducing our transfer overhead.

There are other ways we could accelerate the computation of the various vector functions (DDOT, DAXPY) such as loop
bisection or loop wunrolling but these methods would require that the arrays be stored in non-optimal ways for future
computation. Our design leverages the accelerated SMVM and then extracts a large amount of functional parallelism. The
requirements of the vector updates force us to replicate arrays and eat up storage but this would be a problem even if
alternative approaches were undertaken.

In this design we utilize both user logic FPGA devices on the MAP. This is required since the amount of logic required to
implement the complete CG exceeds that available within a single device.

The partitioning of the pseudo code in Fig 2 was chosen to enable the concurrent computations and optimizations we
identified. The pseudo code for the devices can be found in Fig 5 (Primary Device) and Fig 6 (Secdndaxy Device).

The primary device is responsible for issuing all DMAs, and controls all access to OBM. Prior to executing the CG on the
MAP the arrays A, r, ja, and x must be transferred to the MAP OBM. Our design makes use of both the DMA macros and the
Streams feature of the SRC system. The A, ja, and x arrays are all transferred using the DMA macros directly into OBM. We
utilize the DMA striping feature to distribute A across two consecutive OBM banks.

10




The streams functionality of the SRC system is used to transfer the r array to the MAP. By utilizing streams we are able to
accomplish several operations in parallel (1). Our implementation of the SMVM requires that we have two, independent,
copies of the d array. Since d is a copy of the r array we are able to stream in a value of r, and then place it into the three
separate OBM banks simultaneously (r and two copies of d). In effect we get two free copies of the array d. The initial vector
norm is also easily calculated in the streaming loop since we have access to the r values as they are streamed. This is simply
done using an SRC MAC macro.

The secondary device has no DMA capabilities and can only access OBM when granted permission from the primary
device. The pseudo code shown in Fig 6 describes the operations performed by the secondary device.

The primary device passes the maximum iteration limit and convergence value to the secondary device prior to entering
the main CG loop. The secondary device will then enter its main CG loop and wait on the primary device to signal it to
proceed with its calculations. The primary device controls access to the OBM via the send |_perms macros. The handshaking

between the devices is done using the send _to_bridge/recv_from_bridge macros,

DMA stripe A => ALQ,AL1
DMA ja= jal
DMA x = xeven

reven

deven(
STREAM DMA r= {9V M
. Fnew &= ?‘TI"
0o ¢ Onew
ie 0

max _iter < max _ iteration
converge _value = €8s
send _to _bridge(max _iter,
converge _value,
nrows) )
recv _ from _bridge()// handshake .
Whilei < max _iter and Snew > convergence _value
q & Adeuen_mz‘d
{a accum < deveu_addrq (2)
o=
"send _ perms(ALL _OBM )
send _to _bridge(a, & new)
recv _ from _bridge(S ew)
send _ perms(Q)
ie i+l
end while
DMA x & xeven or xodd
DMAr < reven or rodd

Fig 5. Primary FPGA
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recv _ from _bridge(max_ iter,converge value,nrows)
send _fo _bridge()// send ACK
ie=0
Snew <= 1.0 // initial value ,
Whilei < max_iter and Jnew > converge _valuedo
recv _ perms() // memory access
recv_ from _bridge(ar, Onev) 1/ memory access
Xodd _even €= Xeven _odd + (deven _odd
¥odd _even & Feven _odd — g (3)
Faceun <= Feven _ uddT Feven _ odd
o1t &= Onew
& new €= Facoum

Snew
‘8 & Fold

dodd _even &= Feven _odd + ﬁdeven _odd (4)
send _to_bridge(dnew)
recv _ perms()
[e=i+1
end while

Fig 6. Secondary FPGA

For both devices, operations on arrays defined with the underscore “even_odd” indicate we are working with ping-pong
arrays. The inner-loop function being computed will utilize the outer CG iteration count “i” to determine whether to obtain
source operands from the “even/odd” array, then write the result to the “odd/even” array.

The results of our optimizations are summarized in Table V. This CG implementation reduées the overall run-time from
the original 12N clock cycles to only 5N clock cycles. Through careful array placement in the OBM and the implementation
of multiple concurrent operations, this implementation supports a sustained rate of 418MFLOPs for the computation of the
CG. This rate includes the required transfers and computations required to execute the entire CG problem entirely on the
MAP.

Table V. Optimized CG

Function Clock Cycles | DP OPs
(3) SMVM+(4) DDOT 3.5N 15N
(5.6) DAXPYsH(7)DDOT | N 6N

(8) DAXPY N ZN
Total 5.5N 23N

Constraints due to locked I/O, limited internal routing, and required operational frequency (100 MHz) come into play as
FPGA designs become larger and more complex. These constraints impact the place and route software, making this phase of
the design flow slow down considerably. In our case the run-time for the compilation of the two user devices is on the order of
hours. '

Relaxation of these constraints, suéh as compiling the devices without locked /O, allows theVplace and route software
much more flexibility when dealing with macro placement and routing. This can yield better operational frequencies for many
operations but is unrealistic for a real, physical design where the OBM, FPGA placement, and I/0 connections are fixed and
static. ,

The place and route results for the two user logic FPGA devices are displayed below in Table VI and Table VIL In both
cases the user logic devices successfully pass place and route, meeting all constraints. For both devices the clock period
constraint was set at 10 ns, and the final place and route result was 9.9995 ns, meeting the requirements. The number of slices

utilized in the primary device is 91% which is very high and contributes to long place and route times,




Table VI. Primary FPGA

Devxce Utilization Summ ry:

" Numbér of BUFGMUXs: ] Tout of 16 T
Number of External 10Bs 819 out of 1104

__Number of LOCed IOBs <} 819 outof 819 1 1

" Number of MULTISX18s R Y
Number of RAMBI&S 9 out of 144

. Nnmber of SLICEs 31055 out'of 33792

Table VII. Secondary FPGA

Device Utilization Summary: |

" Numbhér of BUFGMUXs ',

Number of External 10

_-Number of LOCed 10Bs

.Number of MULT18X18;

Number of RAMBI6s Goutof 144 4%

 Number of SLICEs

6. RESULTS

Every MAP function has a free-running 64-bit counter which increments on each clock tick. This counter begins running
as soon as the FPGA has been configured. All timing measurements utilize this counter. All measurements include both the
data transfer DMA timings for all required data along with the actual processing times.

For our measurements we have set the error tolerance to an extremely low value keeping the CG MAP function from
converging early, forcing it to run the full 5000 maximum iterations. To generate the results we executed 10 runs for each
problem size of N, and then averaged the resuits. The results are shown in Fig 7 below.

For comparative numbers, we generated a version of the non-preconditioned CG code to run on various general purpose
machines. The following lists the specifics of the systems:

» Xeon 2,.8GHz (SRC). SRC MAPStation with 2GB system memory. Linux Fedora Core 4, Intel C/C++ compiler.

» Opteron 2.6GHz (Asus). ASUS K8N-DL server motherboard with 4GB system memory. Windows XP Pro, Microsoft
Visual Studio 2005. '

» Opteron 2.6GHz (Tyan). Tyan S2895 server motherboard with 4GB system memory. Linux Fedora Core 4, gee compiler.

s EMT64. HP xw8200 dual Intel 3.6 GHz EMT-64 Workstation with 2GB system memory. Linux SUSE 9.2, gce compiler.
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Fig 7. Performance comparison (FPGA vs. general purpose processors) as a function of problem size

For the FPGA based CG implementation we can see that for smaller problem sizes, the effects of the processing pipelines
(fill and empty) have an effect on its processing rate. The Transfer Rate numbers are also lower than expected for the smaller
problem sizes. This may be due to the overhead associated with setting up the DMA operations vs. the small transfer size.

For problem sizes where N =8,000and greater, we see that the MAP will attain close to its maximum sustained
processing rate of 418 MFlops for the CG. All the CPU based systems perform reasonably well for small problems sizes since
the requisite data structures can fully reside in cache. The FPGA based implementation outperforms all of the CPU based
systems for problem sizes larger than N = 46,656 and offers deterministic performance.

The performance of our FPGA implementation is restricted by the size of the OBM which limits the maximum problem
size our implementation can handle (i.e., a maximum matrix rank of 110,592). The other limiting factors are the amount of
usable memory bandwidth, the amount of available logic in the U LOGIC devices, and the clock speed of the MAP
processor. We would see nearly a 2X performance increase if enough logic were available to generate an SMVM result each

cycle instead of every 3.5 cycles. Unfortunately, it would also require a 3.5X increase in memory bandwidth to achieve this.
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7. FUTURE WORK

SRC Computers has recently announced their next generation Reconfigurable Computing System the SRC 7. It introduces the
H series MAP which utilizes FPGAs from Altera (EP2S180). The OBM SRAM (QDR) has been redesigned to support up to
16 simultaneous references (reads or writes) and the nominal User Logic speed is expected to increase to 150 MHz. The
System Interconnect bandwidth has been increased from 2.8 GB/s to 14.4 GB/s. Two simultaneously accessible banks of
DDR2 SDRAM (up to 1GB) have been added which allow for much larger local high speed storage. The maximum rated

power consumption for the H series MAP is 80 watts. A diagram of the SRC-7 H series MAP is shown in Fig 8.
14.4 GB/s

Sustained payload
(7.2 GB/s per pair)

L]

Controlier -

14.4 GB/s

"19.2 GB/s
(2.4 x 8)

GPIO
12 BG/s

Fig 8. SRC-7 H Series MAP

We are looking at porting our work directly to the SRC-7 where we should see an immediate processing speed up of 50%
due to the increase in operating frequency. The ~5X increase in the System Interconnect bandwidth should yield a substantial
reduction in the DMA transfer time penalty. In Fig 9 we show projected results for a direct port of the CG code to the SRC-7
based upon the projected improvements in clock rate and bandwidth.

With restructuring of the code we should be able to improve on the performance of the SMVM by computing 4 product
terms per clock thereby doubling the performance of the SMVM. This alone would have significant positive impacts when
computing the CG. With the additional aggregate OBM bandwidth (SDRAM and SRAM) we anticipate that the CG

performance could be accelerated at least 2X compared to the SRC-6 version without much difficulty.

15




SRC-7 CG Flop Rate

—e— Opteron 2.6GHz (ASUS)
— % Opteron 2,6GHz (Tyan)
—a&--Xeon 2.8GHz (SRC)
—e— EMT64.HP

~—&—FPGA 100MHz %
—~i-~SRC-7 Predicted

MFLOPS

100000 1000000

Fig 9. SRC-7 Projected CG Flop Rate with direct porting of code

8. CONCLUSION

We have presented a design that implements an efficient CG algorithm on the SRC MAPStation. We have demonstrated that
an FPGA based system can outperform general purpose processors while running over 30 times slower (i.e.- 100 MHz vs. 3.4
GHz). This is possible because an FPGA-based system can be designed to more optimally match the computational units to
available memory bandwidth providing a more balanced system. It also provides parallelism not available in any standard
microprocessor design and allows unique functionality such as vector replication in a éingle clock cycle.

FPGAs and CPUs both suffer from the basic physical constraints of limited I/O and limited memory bandwidth for this
and other memory bandwidth intensive classes of problems. To efficiently utilize the peak computational capability of FPGA
or CPU based systems for this class of problems requires tremendous amounts of memory bandwidth.

Since any useful problem implemented on an FPGA based system will need to transfer data from the SCM to the FPGA’s
OBM, and since this transfer time impacts overall performance, we have exploited a simple memory copy DMA mechanism
SRC provides to minimize this data transfer time.

The results we have presented are deterministic and will scale directly with any improvements in the system user logic
frequency, memory bandwidth and/or memory depth. The recently release SRC-7 should directly be able to increase the
performance of the CG algorithm presented in this work. With modifications to our code, it is not unreasonable to expect

performance increases on this platform to reach 2X those of the SRC-6.
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