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Second-order shaped pulses for solid-state quantum computation
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We present the construction and detailed analysis of highly-optimized self-refocusing pulse shapes
for several rotation angles. We characterize the constructed pulses by the coefficients appearing
in the Magnus expansion up to second order. This allows a semi-analytical analysis of the perfor-
mance of the constructed shapes in sequences and composite pulses by computing the corresponding
leading-order error operators. Higher orders can be analyzed with the numerical technique suggested
by us previously. We illustrate the technique by analyzing several composite pulses designed to pro-
tect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits

with on-site and nearest-neighbor couplings.

PACS numbers: PACS: 75.40.Gb, 75.40.Mg, 75.10.Jm, 75.30.Ds

I. INTRODUCTION

The implementation of quantum algorithms using
NMR on molecules in liquid?, solid?, and liquid crystals®
has demonstrated in principle that pulse-based con-
trol methods can be useful for quantum information
processing? (QIP). The technique has long been a sta-
ple in NMR spectroscopy, where complex molecules like
proteins are analyzed with the help of long sequences of
precisely designed radiofrequency pulses®. Related tech-
niques for coherent manipulation of many-body quantum
systems have emerged as an important tool in many areas
of science and technology.

A useful quantum computer should contain hundreds,
if not thousands of qubits. The only hope of scaling to
such system sizes is with the help of multiple levels of
quantum error correction (QEC). For this to work, the
benefits due to each additional level of encoding should
outweigh the corresponding overhead of additional errors.
This leads to various threshold theorems®?, estimating
the maximum error rate for which such concatenated
encoding can be beneficial. The corresponding thresh-
olds are rather stringent, meaning that for scalability one
needs very accurate elementary gates.

Even for relatively small n-body systems, the number
of states scales exponentially with n, and the accuracy
required for QIP is high. As demonstrated in several
recent experiments in NMR QIP, required accuracy can
be reached with the help of strongly-modulating pulses,
where entire single- or few-qubit gates are designed nu-
merically for a given molecule®® [also see 10,11,12,13].
While the technique indeed offers unprecedentedly accu-
rate, fast gates (which also helps to avoid relaxation), it
obviously cannot be generalized to larger systems.

In contrast, the traditional pulse and sequence design
rely on the Magnus (cumulant) expansion®. The expan-
sion is done around the evolution in the applied con-
trolling fields, while the chemical shifts!%%16 (resonant-
frequency offsets) and inter-qubit couplings are treated
perturbatively. The main advantage of the Magnus ex-
pansion is its locality. Namely, when local qubit cou-

plings are dominant, the control fields accurate to a given
order can be designed by analyzing relatively small clus-
ters. The results remain exact independent of the sys-
tem size, or even in the limit of infinite system. One
can thus characterize pulse-based method for designing
control fields as scalable to large system sizes.!”.

A scheme to systematically construct high-order self-
refocusing pulses and pulse sequences was developed by
the authors in Ref. 18. Specifically, we constructed “soft”
NMR-style**1 second-order self-refocusing inversion ()
pulses and several high-order sequences based on such
pulses for refocusing qubits arranged in spin chains with
on-site chemical shifts and XXZ nearest-neighbor cou-
pling. The main technical advance which enabled the
calculations'® was the efficient numerical algorithm for
computing high-order terms of the Magnus expansion.
The algorithm is based on the usual time-dependent per-
turbation theory; the direct computation of multiple in-
tegrals entering higher-order cumulants would be totally
impossible.

In this paper we present highly-optimized self-
refocusing pulse shapes for rotation angles ¢g other than
180°. For such pulses, we extend the results of Ref. 20
and construct the analytical expansion of the evolution
operator for an arbitrary coupled qubit. While the ex-
pansion is more complicated than that for the inversion
pulses with ¢o = 180°, to second order, it is still charac-
terized by only three coefficients, two of which we sup-
press by pulse shaping. This allows us to compute the
error operators associated with a given control sequence
semi-analytically, by evaluating the leading order terms
in the corresponding products of the evolution operators.
We illustrate the technique on several newly-constructed
decoupling sequences for a chain of qubits with on-site
and nearest-neighbor couplings, as well as with the com-
posite pulses protecting against amplitude errors.
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II. PROBLEM SETUP
A. Dynamical Decoupling

In principle, the simplest type of control pulses consist
of short, intense bursts of coherent. resonant electromag-
netic radiation, popularly known as “hard” or “bang-
bang” pulses. In this limit, for the duration 7 of the
pulse one can totally ignore all other couplings of the
qubit(s). Then, a pulse sequence can be viewed as a
series of free evolution intervals [unitary evolution opera-
tors Uy (t) = exp(—itHs), where Hg is the system Hamil-
tonian| intercalated with pulse operators. For example,
with single-qubit control Hamiltonian,

SO )

where o#, u = x,y,z are the Pauli matrices for a-th
qubit and Va“(t) are the corresponding control fields (or,
more precisely, the envelopes of the control fields applied
at the resonant frequency of the corresponding qubit),
the pulse operator is the product of those for individual

qubits, P =], Fo( (m Ng),

P,(¢p.n) = cos % — 41 - 0y Sin %. (2)
Here n is the unit vector that determines the spin rota-
tion axis and ¢ is the corresponding angle,

do Bt = / AtV (t).
0

The corresponding pulse algebra is straightforward.
For example, for a single spin with the chemical shift
Hamiltonian,

A
HS = = UZ7 (3)
2
the sequence of two equally-spaced inversion pulses (¢g =
+7) in z-direction is equivalent to a unitary,

P(m, %) Uy(t) P(—m, %) Us(t)
= (—io") exp(—i%cﬁ)(iar) exp(—i%az)
= exp(fi%az) exp(—i%éaz> = (4)

which is, of course, the formal identity behind the well-
known spin-echo sequence?!

In reality, the pulse duration 7 is always finite. Thus,
during the pulse application, the rotation actually hap-
pens around the axis determined by the sum of the
system and control Hamiltonians; one gets finite-pulse-
duration errors. Generically, such errors scale linearly
with pulse duration. These errors are especially danger-
ous in systems where one cannot reduce the pulse du-
ration indefinitely, e.g., because of the need for spectral

addressing in homonuclear NMR, or in order to avoid ex-
citing levels outside the qubit state in Josephson phase
qubits?2. Yet, even in systems with optical qubit cou-
pling where 7 could be in the sub-picosecond range, the
finite-pulse-duration errors can be significant if one tar-
gets the accuracy necessary for achieving the scalability
thresholds??

The finite-pulse-duration errors can be significantly
reduced by suppressing the leading-order error opera-
tors. The errors would scale with a higher power of
the pulse duration, which makes them much more man-
ageable. This can be achieved either by designing spe-
cial sequences (which typically doubles or quadruples the
number of pulses), or by using specially designed self-
refocusing pulse shapes'd. Typically, the latter strategy
is more efficient!®; besides, the self-refocusing pulses can
often be used as drop-in replacements for corresponding
§-pulsest®20,

B. Model

We consider the following simplified Hamiltonian

H(t) = Hc(t) + Hs + Hy (t) + H, (5)

with the first (mmain) term due to individual control fields,
1
=52 o +viwdl], (6
n

where o}, u = z,y, z, are the usual Pauli matrices for
the n-th qubit (spin) of the 1D chain. The other terms
include the native Hamiltonian of the system

ZA“U”+ » Jekal ... (7)

n<m

describing the constant qubit couplings and the inter-
actions between the qubits, and the coupling with the
oscillator thermal bath,

= 5, ALV, Hy=1%,Biok. (8)
2

In Eq. (8), A% = A#(p;,q:) account for the possibility
of a direct coupling of the controlling fields V¥ with
the bath variables g¢;, p;, while B¥ = B¥*(p;,q;) describe
the usual coupling of the spins with the oscillator bath.
Already in the linear response approximation, the bath
couplings (8) produce a frequency-dependent renormal-
ization of the control Hamiltonian Hg(t) [Eq. (6)], as
well as the thermal bath heating via the dissipative part
of the corresponding response function. Both effects be-
come more of a problem with increased spectral width of
the controlling signals V. In this work we do not spec-
ify the explicit form of the coupling Hy (t). Instead, we
minimize the spectral width of the constructed pulses.



Whiile the Hamiltonian (7] is 2 generig spin Hamilto-
nian, we will also consider specifically the Hamiltonian

of XX7 model with additional onssite fislds,
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€. Magnus expansion

In a qubit-only system with the Hamiltonian
H(t) = He(t) + Hs, (10)

the effect of the applied Helds'is fully. deseribed by the
evolution operator U{Z),

4
Ult) = Texp( ----- zf df’f{{‘i‘!})‘ (1)
o

where 7" is the Divson thme ordering operator.

For pulses with fnite width, any desired unitary trans-
formintion can ouly be Implemented approximately. A
widely used framework to desian pulses to effect a de-
sired - unltary transformation (or, equivalently, remove
the effect of uudesived terms in the Hamiltonien) s
the Magnus®t expansion and the averaze Hamiltonian
theory®*?%, The expansion is done with respect to the
evolution due to the control Helds alone,

s
Uty = Toxp(~i [ He).  (12)
¢}

by defining the systens Hamiltonian in the-interaction
representation (the “rotating-frame Hamiltonian™y,

Hs(t) = Ug(t)Hslo(?). (13)

For & periodic control field, Hy(t + 7.} = Hilt), such
that the zeroth-order driven evolutionls also periodie,
Ut + 7.) = Uslt), one has the following expansion in
powers of 7.

Ulnry) = exp(—~iH nr.), {14)
H = H® g% g% 4 (15)
where
-~ Te -
By s dt Hy, (16)
0
. i 7 ity i
H\l)’r = —‘—/ dfg {-’jlij_ E_H‘;,H'tj» (17)
0 9
o Te by )
HP 7, = / dtg/ ity dty (18)
0 o b

Generally, the term YD contains a k-fold integration
of the commutators of the rotating-frame Hamiltonian
H, &= Hglt:) at different time moments f, and scales as
H® i, o |17 HgllF. Note that for small enough 7., the
expansion parameter remains small even for long evola-
tlon time.

The Magnus gxpansion thus offers a basis for con.
structing suceessful approximations towards the desired
unitary evolution. With the shupler problem ol decou-
pling, the goal is to have no evolution. A K-th order
refocusing seguence can be defined as that where there is
no-evolution to K-th order, that is,

O g o o N g (20)

Respectively, at time w7y, the error in the undtary
evolution operator would scale as [Ulnre) — &l x
nllr.Hsl#*1, and the corresponding fidelity F{#) differs
from unity by

1 — Finr.) ox 0|z Hg |7 F (21)

A crucial advantage of the cumulant expansion is
that the cumulantg do not contain. the disconnested
terms arising from different parts of the system {(clus-
ter theorem®#). For an arbitrary lattice madel of the
form {9}, with bonds representing the qubit interactions,
the terms contributing to Ath opder can be tepresented
graphically as connected clusters involving up to & lat-
tice bonds; for a chain of qubit such clusters cannot have
more than no= & -+ 1 vertices. Thus, to obiain the exact
form of the expansion up te and ncluding Asth order,
oue neads to analvze all distinet chain clusters with up
tn K- L overtices.

D. Time dependent perturbation theory

While the Magnus expansion is conceptually stralght-
forward, it is cumbersome to lmplement and, most impor-
tantly, the repeated integrations are very expensive com-
putationally already at the seeond order, sen BEq (17).
An glternative strategy for evaluating high-order terms of
the Magnus expansion was suggested by the present au-
thors in Ref. 18, Instead of working with the cumulants,
the technigue I8 based on the Hme-dependent perturba-
thon theory (TDPTY. The expansion I8 done around the
non-perturbed evolution due to control felds alone, see
g, (12}, However, for actual computations, it is more
convenient to use the differential equation

Ug(t) = —iHe(8) Up(2),  Up(0) = 1. (22)
The slow evolution operator
R(t) = UL) U(8). (23)

obeys the squation

Rit) = —iHs(t)R(t), Hs(t) = U (t) Hs Uglt), (24)



which can be iterated to construct the standard expan-
siont R(#} = 1+ By{t) + Ra{t) + ... in powers of (£ Hg),

Ru(t) = —iHs(t) R (2),

.

Ro(ty =1 (25)

The successive terms can be evaluated by solving, at each
step, a-set obcoupled first order ODE's simultaneously.
For a fintte systemy of moqubits and a given maximum or-
(Ivt }'{ Gf the expansion, one ne(,dq to solve Egs. {22} and
VVVVV K 1) coupled
‘ay%tenm of ﬁr‘at oréer ord l’l&l} dlffe,rf*ntlal equations for
the 27 x 2% matrices Up, Ry Ra, .., Hi. and can be
integrated eficiently. Computationslly, this is a nueh
less challenging job than that of evaluating repeated in-
tegrale (17), {18), and higher order terms. For a given
svstem, solving the full set of squations (24) is gimpler by
afactorof gt least (K -#1). However, It is the analysis of
the perturbative expansion that is the key for achieving
the scalability of the results.
Given the set of computed Ri(r.) & Hg, the standard
Mapnus expansion can be readily obtained by taking the
logarithm of the series,

—iH %y, = Ry, (26)
~iHWr, = Ry— %R%, (27)

s w0 1 3 1 o
m%ﬂ[“"’f‘c | e g{ﬂlfﬁz - RgR;j -+ ERE - £28)

Obviously, the order-K universal self-refocusing condi
tion (20} is formaldly equivalent to

R‘I(TC) fomweos er{’{f;} o RK(TC) fiies O (29}
The matrices Ay In the latter condition sre much easter to
evalnate numerically using Eqgs. {22), (25). Importantly,
the benetity of the duster theorem are retained: to K-th

order only clusters with up to K + 1 vertices need to be
analyzed.

i, PULSE DESIGN AND ANALYSIS
A, Pulse design using TDPT

The shapes of NMR-stvle one-dimensional pulses’®,
gelfarefocusing to a given srder, can be found by dns-
lyzing the single-spin dyaamies with the svatem Hamil-
tonian (3) and the control Hamiltonian

, 1
Ho(t) = 507V (1), (30)

Specifically, we encoded the trial pilse shapes in terms
of their Fourler coeflicients,

+Q§:A cos{mQt — 7/2)), (31}

where 7 1s. the pulse duration..Q = 27/ is the corre-
sponding angular frequency, and @o i3 the requested ro-
tation angle of the pulse. Note that the form (31) guar-
sntees the symetry of the pulse, Vir—1t) = V) In
sddition, 1n order to reduce the spectral width of the
control flelds, we also constrained » certain number of
derivatives of the function (31) to vanish at £ = 0 and
t=7, VO{0)=0,1=0,1,...,20— 1.

We implernented the computational algorithun de-
scribed tn the previeus section using the standard fourth-
order Runge-Kutta algorithm for solving coupled dif
ferential equations (22), (25), and the GSL library?®
for matrix operations. The coefficient optimization was
done using a combination of simulated anmealing and
the steepest. descent method. The target fmction for
single-pulse optimization included the sum of the mag-
nitudes squared of the matrix elerments of the matrices
Ry w2 Ry(r), ko= 1,00 K, as well as the welghed sum of
the squares of the coefficients A,

P 1/2
fi = (Z tr RLRJ + ¢ Z m2AZ. (32)

Frimm

The second sum serves to. provide some suppression of
the higher Fourier barmonics of the pulse. In oursimu-
lations, the miniinization was considered as having con-
verged only after the lirst tenin evaluated to zero with nu-
merieal precision (typleslly, eight digite-or bettery, For
such a minimmm to exist;, the coefficlent ¢ in Eq. {32)
should be sufficiently small (we used ¢ = 107%),

For given pulse order & and the given number of addi-
tional constraints L, there s o minimuwn nuwmber of har-
monics MoK, L) necessary for convergence. However,
we found that the shapes obtained with M = M, (K, L)
tendd be over constratwed and simply do not look nlee:
Our solution was to add one or two additional Fourier
harmontes by incressing M.

B. Pulse shapes

Previously, in Ref. 18, we gave the coefficients of the
first-order self-refocusing (K s 1) Inversion {¢p = 7)
pulse shapes Sz, os well as the sccond-order (K = 2)
inversion shapes 7, L == 1,2 Here L is the parameter
that indicates the number of constraints at the ends of
the tntervals the velue of the function and ite derivatives
up to (2L « L)st vanish at the ends of the interval [note
that all odd derivatives are suppressed automatically due
to the symmetry of the function, see Eq. (31)]

In this work, we extend the list of constructed pulses
to rotation angles ¢ = 109, 20°, ..., 1807, In Table I,
we Het the coefficients . for the pulses used in the simuls:
tions. The coefliclents for all of the constricted pulses
are available upon request.



Ao A1 | Aa /13 A4 ‘ A,s
S1(27) 1.0 |-0.0237996956 |-0.6226198703 |-0.3535804341
Sa(2m) 1.0 [-0.0294359406 |-1.1741824154 |-0.2097531295 | 0.4133714855
Q1(27) 1.0 | 2.1406171699 |-2.3966480505 |-0.6474844418 |-0.0964846776
Q2(27) 1.0 | 1.4818894659 |-2.6971749102 |-0.4384679067 | 0.3434236044 | 0.3103297466
S: = S1(m) | 0.5 |-1.2053193822 | 0.4796467863 | 0.2256725959
Sa = Sa(m) | 0.5 [-1.1950692860 | 0.7841592117 | 0.0737326786 |-0.1628226043
Q1 = Qi(m)| 0.5 |-1.1374072085 | 1.5774920785 |-0.6825355002 |-0.2575493693
Q2 = Qa2(w)| 0.5 |-1.0964843348 | 1.5308987822 |-1.1472441408 | 0.0025173181 | 0.2103123753
S1(m/2) |0.25]-1.8963102551 | 1.1337663752 | 0.5125438801
Sa(m/2) 10.25/-1.9049987341 | 1.9858884053 | 0.1063314501 |-0.4372211211
Q1(m/2) 10.25]-1.8948543589 | 0.5873324062 | 0.5970352560 | 0.4604866969
Qa(7/2) 0.25[—2.1145695246 0.6415685732 | 1.6854185871 | 0.4511145740 |-0.9135322049

TABLE I: Fourier coefficients for the constructed pulses, see Eq. (31). Shapes Sr(¢o) and Qr(do) are the pulse shapes for
rotation angle ¢, respectively first (K = 1) and second (K = 2) order for the Hamiltonian (3). These shapes have 2L

derivatives vanishing at the ends of the interval.

C. Pulse shape analysis

The pulse shapes Qr(d0), Sr(¢o) are constructed as
first- or second-order self-refocusing pulses for the chem-
ical shift Hamiltonian, Eq. (3). We would like, however,
to have a universally good pulse shape that would work
in most settings. To analyze the performance of the con-
structed pulses in most general circumstances, we con-
struct the Magnus expansion of the evolution operator
for the most general system Hamiltonian,

Hgs = Ao+ Az0” + Ayo? + A, 0%, (33)
where A, are the operators responsible for coupling with
the outside worlds, and Ay is the external Hamiltonian.
The analysis of the inversion pulses with ¢g = 7w appeared
previously in Ref. 20; here we extend it to ¢g # .

1. Driven evolution

The control Hamiltonian (30) alone [to zeroth order

in Hg| produces the following unitary evolution operator
[cf. Eq. (12)]

t
Us(t) = e=i7" 4012 44) = / @VE).  (34)
0

When acting on the spin operators, this is just a rotation,
Ug(t)a-‘/Uo(t) = oY cos p(t) — 0% sin d(t). Consequently,
the system Hamiltonian in the interaction representation
has the form

Hs(t) = Ao+ 0%Ar +0Y(Aycosp+ A, sin¢)

+a7(A; cosd — Aysin ). (35)

2.  Leading-order average Hamiltonian

The zeroth order average Hamiltonian (17) is just the
average of Eq. (35) over the pulse duration. We assume
V(t) represents a symmetric pulse, V (7, — t) = V,(¢).
Then, ¢(t) is antisymmetric, ¢(7, —t) = ¢o — @(t), where
¢o = ¢(7p) is the overall notation angle. It is convenient
to introduce the symmetrized rotation angle,

P(t) = 6(t) — bo/2, (36)

such that (7, —t) = —p(7,). Then, the average of the
sine over the pulse duration vanishes, (sinp) = 0. This
implies that the averages of the cosine and sine of the
original rotation angle are

S = (cosg) = cos(do/2){cos ), (37)
§ = (sin¢) = sin(¢o/2){cos ¢), (38)
where
ten=r [aseo, (39)
If we denote
v = {cosp) = /Tp @ cos (t), (40)
o Tp

then the zeroth order average Hamiltonian for a one-
dimensional pulse becomes

HO = Aj+0*A, +v [ay (Ay cos % + A, sin ?)

+o* (Az cos ? —

. Po
Ays —)}
ySin 3
For the special case of the chemical-shift Hamiltonian (3),
we have 4y = A, = Ay, =0, A, = A/2, and Eq. (41)
gives

(41)

_— A p ¢
g0 = = (az Cos % + oY sin %) ; (42)
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FIG. 1: A single-spin second-order inversion () pulse Q1(7).
(a) Pulse profile over a complete period, (b) Evolution of the
spin beginning with s. = 1. (¢) The power spectrum of the
pulse. The vertical lines denote the location of the harmonics.
As seen, the spectral weight is almost entirely confined to
w < Swo.

Clearly, the 1st-order self-refocusing condition corre-
sponds to v = 0. For such pulses the full zeroth-order
average Hamiltonian is given just by the two first terms
in Eq. (42).

3. 1st-order average Hamiltonian

The 1st-order average Hamiltonian (17) is given by a
double integral of the commutator of the system Hamil-
tonian in the interaction representation (35) evaluated
at two different times. We note that every term in
Eq. (35) can be classified as either time-independent [pro-
portional to e(t) = 1], proportional to ¢(t) = cos ¢(t), or
to s(t) = sino(t). Therefore, most generally, the second-
order terms in the evolution operator can contain the
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FIG. 2: Asin Fig. 1, but for the single-spin second-order 7 /2
pulse Q1(7/2).

FIG. 3: (color online) Pulse shapes for ¢o = m/2. Solid
lines represent Qr,(m/2), dashed lines correspond to S (m/2).
Pulse shapes with L = 1 are drawn with thin blue lines, while
those with L = 2 are drawn with thick red lines. The black
doted line shows the Gaussian shape Goio(7/2).



FIG. 4: (color online) As in Fig. 3 but for the inversion pulses,
¢o = 7. Note that the st order pulses (S (), dashed lines)
actually have a smaller power than the Gaussian pulse.

FIG. 5: (color online) As in Fig. 3 but for the pulses with
¢o = 2m. The pulse shapes appear to resemble those of a pair
of consecutive 7 pulses. Second-order pulses happen to have
the smallest power.

following nine integrals,

ge=(1'1) = | =

o

HY = ary(i[A., Ay) — 0"(A2 + A2))

cc = {cos @' cos ), T8 = (cos ' sing),
5C = (sin¢’ cos¢), 8 = (sin¢’sin ), (43)

where we used the notation

G@en =% [ a o) [ datew). @)

and 1 = e(t) or 1’ = e(t') indicate an identity factor at
the corresponding position of the average. However, be-
cause of the commutator structure in Eq. (17), only the
following antisymmetric combinatious appear in the ex-
pression for the corresponding term in the average Hamil-
tonian theory, H(,

« C—CS c—C €s — se
s =T CCIT’ <S:T’ (45)
where
1 Tp ot’
o= — / dt’/ dt sin(g(t') — o(t))  (46)
2r4 0

0
In fact, the coef%cieuts (¢ and (g can be reduced further,

@0

bo=tin®S, o= ~Coos 22, (47)

where [see Eq. (36) for the definition of ¢(¢)]

(= /O‘Tp i ( L_ %) sin (1), (48)

Tp \NTp 2

Thus, to second order, the average Hamiltonian of a sym-
metric angle-¢g one-dimensional pulse is determined by
only three dimensionless coefficients, v, «, and (, see
Eqgs. (40), (46), and (48). These coefficients contain all
the relevant information about the shape of the pulse.

An explicit calculation of the 1st-order average Hamil-
tonian gives

+ Crpcos %2 (o¥(ilAs, Aol + {As, Ay}) + 0% (iAo, )] + {As.A.)))

— (rysin % (UV(ztgAy, Ao] — {Ag, A }) + 07 (3] Az, Ao] + {A., Ay})).

For the Hamiltonian (3), the terms with ¢ disappear, and

we have, simply

A1,
7

HY = —ag, (49)

Thus, the second-order self-refocusing pulses have both
v =0and o = 0.

The actual parameters for the pulses with ¢y = 7/2,
7, and 27 are listed in TAB. II.



pulse } o |v = (cos ) o ¢
$00(t — 1p/2)| do | cos % S—IZ—OO %sin “70
S0t —n/2)|m/2| V22 1/4 v2/8
Go.05[90] |7/2| 0.730111 0.398519 | 0.175999
Go.1(90) [#x/2] 0.753116 0.420275 | 0.173665
$1(90)  |x/2 0 —0.013067 | 0.198719
S2(00)  |m/2 0 —0.0294665| 0.182109
Q1(90)  |m/2 0 0 0.202067
Q2(90) |=/2 0 0 0.161658
w(t—1/2) | 7 0 0 1/4
G.05(180) 7 | 0.0744894 | 0.0377451 | 0.249476
Go.1(180) 7 | 0.148979 | 0.0764911 | 0.247905
S1(180) s 0 0.0332661 | 0.238227
S2(180) | 0 0.0250318 | 0.241378
Q1(180) | 0 0 0.230888
Q2(180) | 0 0 0.242209
27(t — 1 /2) | 27 -1 0 0
Go.05(360) | 27 | —0.896959 | 0.402852 |0.00291436
Go.1(360) | 27 | —0.793918 | 0.317488 | 0.0116577
S51(360) 27 0 0.0739621 | 0.113233
$2(360) | 27 0 0.0612747 | 0.0811486
Q1(360) | 27 0 0 0.00403872
Q2(360) | 27 0 0 0.00734526

TABLE II: Parameters of several common pulse shapes. The
first line represents the “hard™ d-function pulse applied at the
center of the interval of duration 7, Gpo1 denotes the Gaussian
pulse with the width 0.017,, while S, and @, denote the 1st
and 2nd-order self-refocusing pulses from Tab. I.

IV. OPEN SYSTEMS

In this work we concentrate on the performance of
high-order pulses and pulse sequences in closed quantum
systems. However, it turns out that such sequences also
remain efficient in open systems, in the presence of low-
frequency bath modes?®0,

The analysis is done in general form with the help of
an assumption that the bath couplings have the same
form as the existing terms in the system Hamiltonian (7),
which are assumed to be suppressed to order K = 1
or K = 2. The bath modes are assumed to be low-
frequency; in addition to the expansion in powers of the
corresponding couplings, one needs a low frequency ex-
pansion in powers of the adiabaticity parameter 7./7o,
where 7. is the decoupling cycle duration and 7y is the
bath correlation time.

With K = 1 decoupling, the effect in the open sys-
tem is a suppression of direct decay (7}) processes, as
well as the reduction of the dephasing rate (73) by the
factor of order of the adiabaticity parameter 7./75. The
former result can be understood by analyzing the spec-

tral properties of the driven system®'%2, while the latter
can be viewed as due to a reduction of the time step for
phase diffusion. With second-order decoupling, K = 2,
the decoherence rate is additionally suppressed, and with
time-reversal invariant bath coupling all orders of the ex-
pansion in powers of adiabaticity parameter may vanish,
in which case the leading-order dephasing term becomes
exponentially small and dephasing would likely be deter-
mined by terms of higher order in bath coupling. Along
with the decoherence rates characterizing the exponen-
tial decay of quantum correlations with time, the corre-
sponding prefactor, which determines the “visibility” (or
“initial decoherence”??), was also analyzed®. While for
generic refocusing sequences with K > 1 the initial de-
coherence is quadratic in 7, and does not scale with the
thermal bath correlation time 79, for symmetric pulse se-
quences it is reduced by an additional power of the adia-
baticity parameter (7/79). These results were originally
derived for a generic featureless bath, but they also hold
in a vicinity of a sharp resonance as long as the effective
(i.e., renormalized as in the average Hamiltonian) cou-
pling to the corresponding mode is small compared to its
width?0.

V. APPLICATION EXAMPLES.

A. Decoupling sequences for a chain of qubits

Decoupling sequences are designed to prevent quantum
evolution from happening. Thus, we want to construct a
sequence such that the resulting evolution operator over
the period 7. is identity, U(7.) = L. We illustrate the
scalability of dynamical decoupling to large system sizes
by considering linear chains of qubits with either Ising or
XXZ n.n. random-valued couplings [only .J; ,,.; or both
iy and JE o = JY, ., in Eq. (7)], plus the local
fields either along z axis or in arbitrary direction [AZ # 0
or A¥ #0 for u = z,y,2 in Eq. (7)].

With such a system Hamiltonian, zeroth-order average
Hamiltonian (16) contains only individual qubits or pairs
of neighboring qubits, the largest clusters contributing
to the lst-order average Hamiltonian (17) originate from
two bonds sharing a site (three qubits), and in general
H™) contains terms spanning contiguous clusters of up
to n + 1 bonds, that is, n + 2 qubits. Thus, to design
a K-th order decoupling sequence, one needs to consider
individual clusters of up to K -+ 1 qubits.

With nearest-neighbor and local couplings only, the de-
coupling can be implemented by simultaneously applying
pulses on either odd or even sublattice. We note that in
our setup there is no gap between subsequent pulses, the
pulses follow back to back with the repetition period 7.
The system is “focused” at the end of each cycle consist-
ing of several pulses of length 7. Such a scheme with a
common “clock” time 7 is convenient, e.g., for parallel
execution of quantum gates in different parts of the sys-
tem. For each qubit, various pulses (or intervals of no
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signal) can be executed in sequence.

In this work we consider the following two sequences
from Ref. 18, 4 = X;Y2X;Y, and its symmetrized ver-
sion 8 = X;Y2X;Y2Y2X,Y2X,, which provide universal
refocusing of the couplings between the sublattices, and
also suppress the on-site chemical shifts A},. Here, X;
is a m, pulse simultancously applied on all odd sites, Yo
is a (—m)y, = m_y, pulse applied on all even sites, etc.
These sequences are “best” sequences at given length for
all pulse shapes found by exhaustive search (high-order
sequences®43° equivalent for hard pulses do not necessar-
ily have equal orders here). The fact that such a brute-
force optimization approach works is entirely due to the
efficiency of the numerical method.

In addition, we constructed two longer sequences,
16 = X1Y2Y10X1X2Y10X1Y2Y10X1X2Y10, and its Sym-
metrized version 32, constructed by running the sequence
16 first directly and then in reverse order. Here 0 denotes
zero pulse, an empty interval of duration 7. These two
sequences provide universal decoupling both for any cou-
plings between the sublattices and for arbitrary on-site
fields (A% # 0).

In addition to the system Hamiltonian, the effective-
ness of a sequence application depends on the quality of
the pulses. In Table III, we list orders of the sequences
when applied with different pulse shapes, computed us-
ing the numerical time-dependent perturbation theory as
described in sec. IID. The term Ry(7.) was considered
to be zero if its norm vanished with numerical precision,
typically 10™® or better, compared to typical values of
order one for orders where Ry (7.) # 0. The orders K do
not depend on the chain length; we verified this state-
ment on chains up to n = 7 qubits. Also, the computed
orders are the same for all self-refocusing pulse shapes of
particular order; we believe that the results will remain
valid for other symmetric pulse shapes of the same order
as indicated in the 1st column of Table III.

B. Error scaling

We illustrate the predicted power laws in Fig. 6, where
the average infidelity (A4) is computed for different ra-
tios of t/7, where t is the fixed evolution time and the
pulse duration 7 was reduced to accommodate a differ-
ent number of decoupling cycles. The simulation is done
for chains of n = 4 qubits with randomly chosen but
fixed parameters corresponding to different chain mod-
els as indicated. The steepest lines correspond to largest
order K of the sequence decoupling order. For symmet-
ric sequence 8 with Ising chain, K = 2 for Gaussian
pulses, Fig. 6(a), K = 4 for lst-order pulses, Fig. 6(b),
and K = 6 for 2nd-order pulses, Fig. 6(c). The cor-
responding infidelities for fixed evolution time scale as
x (J,7)4, « (J.7)%, and « (J,7)'2. Larger values of
K can improve accuracy by orders of magnitude, or, at
fixed required fidelity, substantially reduce the number
of decoupling cycles.

| model |Ising|I+A7|XXZ|XXZ+AF|XXZ+A,

pulse sequence
QrL, 4 5 | 2 |1 1 0
all K =2 8 6 3 2 2 0
pulses 16 2 2 ! 1 1
u=a=0 32 3 3 2 2 2
Sr, Herm {14] 3 1 1 1 \ 0
all K =1 8 4 1 1 1 0
pulses 16 1 o} 1 1 1
(v=10) 32 1 1 L | 1 1
Gauss [15] 4 1 0 0 | 0 0
8 2 1 1 1 0
16 0 0 0 0 0
32 1| 1|1 1 1

TABLE III: Order K for several decoupling sequences used
with different pulse shapes upon different spin chains with
nearest-neighbor and local couplings. Order K means that
the first non-zero term in the average Hamiltonian (14) is
H™) | 50 that for small enough 7 the mismatch in the unitary
evolution operator after n decoupling cycles (evolution time
t = n1e) scales as |[U — 1|| « 7/, and the corresponding
infidelity 1 — F' < t")'rsffh‘v. Sequence 8 a sequence of 8 pulses
applied intermittently on odd or even sublattices, see text for
actual definitions.

We saw that with order-K decoupling in multi-qubit
systems with local couplings, the decoupling error oper-
ators can be represented as connected clusters of up to
K + 1 bonds. For a linear chain, these involve up to
K + 2 qubits, and the number of such operators scales
linearly with the total number n of qubits, as long as
n > K + 2. In an n-qubit systemn, each of such operators
can be written as an outer product of the cluster con-
tribution, and the identity operators for the remaining
qubits. As a result, the square of the Frobenius norm
of the error operators scales linearly with the size of the
Hilbert space, that is, exponentially with the number of
qubits. However, this exponential scaling is suppressed
when we compute the infidelity [see Eq. (A4)], so that the
infidelity scales only linearly with the number of clus-
ters, that is, linearly with the number of qubits. The
same scaling with the system size is expected in higher
dimensional arrangements of qubits (planar, 3D).

We illustrate the scaling of decoupling errors with the
qubit number 7 in Fig. 7. The plots show the scaling of
the average infidelity at the end of the interval in Fig. 6
and other data with the chain length n.

C. Composite pulses

Composite pulses are, in fact, pulse sequences designed
to replace a single pulse and specially designed to com-
pensate for some particular systematic errors, includ-

ing off-resonance application, pulse amplitude, and pulse
phase errors36:37:38,39,40,41,42.43,44
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FIG. 6: (color online) Illustration of decoupling accuracy with
sequences 8 and 32 for chains of n = 4 qubits with different
couplings as indicated on the plots. The plots show average
infidelity [see Eq. (A4)] computed at fixed time t as the pulse
duration 7 was reduced to accommodate a different number
of sequences. The values of model parameters were randomly
chosen and remained the same for all simulations. Symbols
are the data points, lines are the single-parameter fits of the
mismatch ¢ [see Eq. (A3)] to § = br’, where the values of
K indicated on the plots correspond to those in Tab. III. (a)
Gaussian pulses; (b) 1st-order pulses St; (¢) 2nd-order pulses
Q1.

The off-resonance errors appear when the carrier fre-
quency of the applied pulse is off the transition frequency
between the |0) and |1) state of a qubit. In the rotating
reference frame this is equivalent to a non-zero chemical
shift Hamiltonian (3), with A equal to the corresponding
frequency bias. We note that our 1st and 2nd-order self-
refocusing pulse shapes already offer a degree of stability
against such errors.

For this reason we concentrate on the pulse amplitude
errors, where the correct pulse shape is applied with the

10
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FIG. 7: (color ouline) Scaling of the infidelity 1 — F at
t/T = 128 with the chain length n for a particular realiza-
tion of an XXZ chain with on-site disorder A}, decoupling
sequence 8, pulse shapes as indicated. (Data for the pulse
Goio divided by 10 to fit with the other data.) While the uni-
tary matrix mismatch §* [see Eq. (A3)] grows exponentially
with the chain length n, 6% o« 2", the leading-order contri-
bution to the corresponding infidelity (1 — F') represents the
probability of error in one of the clusters, and it scales only
linearly, as also seen in the plots.

wrong amplitude, producing an incorrect rotation angle
¢o # ¢o. Note that no one-dimensional pulse shaping
can compensate for this kind of errors, since the mod-
ified rotation angle is simply proportional to the pulse
amplitude, @9 = (1 + f)co.

On the other hand, one can expect that the pulse am-
plitude offset f remains the same for all the pulses applied
at a particular frequency. This uniformity is utilized in
several composite pulses designed so that the net rotation
would be insensitive to such uniform errors.

1. SCROFULOUS

The three-pulse sequence SCROFULQOUS®® is based on
the sequence originally proposed by Tycko?>46. Particu-
larly, an improved 7 pulse is obtained by applying three 7
pulses, at 60°, 300°, and again at 60°, or just Tgo7300760-
In the case of ideal §-pulses, the resulting pulse compen-
sates for pulse amplitude errors to linear order. With
finite-width shaped pulses, an additional error is gener-
ated due to the presence of the system Hamiltonian. In
particular, for the chemical-shift Hamiltonian (3), the ex-
pansion of a unitary operator applied along z axis has the
form [see Egs. (42), (49)]

0o . . %o
U, = cos g 10, sin )
s 7 .
g (cos oo, — oy singy)

r 2A2U2 ; . @0 " (f)()
Wl i | in — — cos —
+ 3 oz sin 0s

T2A%0
4

<icrm cos %O- -+ sin %) +O(7)3. (50)



Combining the corresponding expressions appropriately
rotated in the z-y plane, and expanding the result to
quadratic power in the relative amplitude offset f, we
obtain for the composite pulse mg07300760,

3,._2 2
Uscr = —ioz + 1iTAVT, — i\/_’%ay +..., (51)

where © = 0(f) = v + v'f + O(f?) is the parameter v
[Eq. (40)] but for the pulse with rescaled amplitude, and
the further terms are of order forA, 92r2A2, afrA2.
Clearly, with Gaussian or other pulse shape such that
v # 0, the error is linear in 7A and quadratic in the
amplitude shift f (although generally there will also be
a cross-term o< f7A). This situation is illustrated in
Fig. 8(a), where the average infidelity is plotted for the
SCROFULOUS sequence with pulses Ggi1g on the plane
A7-f. The region for 1 — F = 1077 is a narrow vertical
line which corresponds to great sensitivity to frequency
shift. With Ist-order self-refocusing pulses such that v =
0, ©(f) o f, the error is dominated by the term o f7A.
The corresponding region corresponds to a diamond-like
shape in the center of Fig. 8(b). We have also generated
self-refocusing pulse shapes such that both v = 0 and
v/ = 0. Then, by symmetry, v/ = 0, and generically
© ox f3. Then, for lst-order pulses, a # 0, the errors are
dominated by the term omitted in Eq. (51); they scale
as O(f?), O Af3), O(aA?), while for second-order
pulses the last two terms become O(A?), O(a’ f2A?%).
Plots for such shapes are shown in Figs. 8(¢) and 8(d)
respectively; the result of improved pulse stability is a
much wider region of high fidelity.

2. BB; and related pulses

A longer but more accurate composite pulse known as
BB, was originally proposed by Wimperis®?. For tar-
get angle § = 7, the pulse can be written as BBflw) =
Toms (27 )347s, where ¢ = —cos™(—1/4) ~ 104.5°. For
ideal é-pulses, this cancels errors of both 1st and 2nd or-
der in the relative pulse amplitude bias f. A related sym-
metrized sequence BB&CLJ) = (7/2)oms(27)34me(7/2)0
was proposed in Ref. 38 [see also Ref. 39]; because of
the symmetry it leads to some additional error cancella-
tion at higher order. With shaped pulses, we have also
analyzed variants of these sequences with the 27 pulses
replaced by two 7 pulses, BB(IW’) = Ty (7)3e ()3T
and BBECLJ ) = (7/2)omy(m)ag(T)3e7e (7/2)0.

Computing the products of versions of Eq. (50) ap-
propriately rotated in the z-y plane, for on-resonance
application of any version of the BB, sequerce,

3,3
(A=0) _ . o
BB, — Wz~ gy (5

—i15Y2g,) + O(fY). (52)

We note that to achieve the level of infidelity of, say, 1 —
F = 1074, the frequency mismatch should satisfy |f| <
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FIG. 8: (color online) Contour plots of the average fidelity

for the composite pulse SCROFULOUS mgomanomso with (a)
Gaussian pulses Goio; (b) 1-st order self-refocusing pulses S
(the plots for pulses Qi look similarly but symmetric with
respect to horizontal axis); (c) Ist-order pulse with ampli-
tude correction v = v’ = v = 0; (d) 2nd-order pulse with
amplitude correction, v = v’ = v” = & = 0. The axes are
the relative frequency mismatch 7A and the relative pulse
amplitude (1 + f), see text.



0.136, compared with [ f] < 0:090 for the SCROFULOUS
sequence. Thus, even though order of the BBy family of
composite pulses is higher {and thus, for small |f! their
performance i mueh better asvmptotically), st this level
of infidelity their performange is comparable.

We now turn to offresonance correction terms which
differ between implementations of the BBy sequence. In
particular, with generic pulses such that v 5 0, slready
at f = 0, all of these sequences acquire lpear correc-
tions sealing with 72, For example, the expansion of the
sequence BB at f = 0 can be written as

AW P : TA .
{/éB; ) mm e &Wé”"" {O’z’b‘l - CTy’Ug}
T2A% . N
+ 6 (210@2:“ + Braty + a4 1y 160, {ox e 22;;{:3})
+O(A*7?), (53)

where x = 20r; — 0, ©* = 0% +uf, and the parameters vy,
ooy and g, ¢ correspoiid to the wmand @ pulses respec-
tively. Notice that the second-order coefitients oy entor
only in the vombination 2oy s Notsurprisingly, if we
teplace the Zit-pulse’with two 7 pulses, the costicients o
cancel out,
: ,?“2.{12@%

Gyl
2 e
thus second-order scouracy can be obtained already with
Ist opder pulses, o = 0. Now, when both the ampli-
tude-and the resonant frequency blas are present, [0
and A £ 0, there s an additional source of errtor due
to dependence of the pilse parameters on the ampli-
tude, v, — O{f) &), For regular selfrefocusing
pulses, T(f) = v/f + O(f%), and the 1st order terms in
Eqs. (53], (54) and their analogs for the other variants of
the BBi pulte dominate the error o fr A, Respectively,
the average infidelity seales as o« (frA)?, resulting in
characteristic dlamond-like shape onthe contour plots of
infidelity, see Figs. 9(a.b), 10{a).

With specially designed pulses such that both v == §

e 2 S I i ) |
BB] % '7);(;3:-{-71

v {54)

that v{ £} = v 3 + O{fY). Then, for sequences other
than BB%W}, with ist-order pulses the error is domi-
nated by the terms quadratic in 74v due to coefficients
oy fof. BEg. (631, As a result, the high-fidelity regions
in Figs. 9{e}, 10{b}): and 11{a} have much more rounded
shape. With 2ndeorder pulses with amplitude correction,
such that oy = 0 but o # 0, the leading-ordey erfor
scales as O(f7T2A%), which extends the hizh-fidelity re-
gions out fo larger values of 74 in a chawacteristic “smile”
patterte. Forthe sequence Bng ! these terms cancel out,
ayucl the leading-ordér ertor term comes from the non-zero
o™ the errors seale as oo FETA,

Ed s
5 SO Pl . A
Um b Fm Fe=0) ?,f 1

BE, Uan, - 5 o. + O A%). (55)

This error has the same crder in f as that in BEq. (52),
and it can compensate or increase the contribution linear

in o,. The result I8 a somewhat skewed in the center
high-fidelity region widely stretched horizontally.

D. Stability of decoupling against amplitude errors

We now return to the problem of decoupling for a chain
of qubits, but now consider the eflect of the amplitude
ertors, This needs a separste study sluee single-qubit
erTors with composite pulses have structure ditferent from
those due o, say, Huike pulse wideh.

In Fig. 12(a} we present the results of simulstions
for a particular 4-qubit Ising chaln with on-site chemi-
cal potentinl shifts A7 over thne interval £ =128 {ex-
actly the same parameters as in Figs 6, 7). Specifi-
cally, we plot the infidelity {1 — F) in units of 1074
as & function of the Gactional pulse amplitude 1+
fo In the first half of the symmetric sequence 8 =
XiYaXi Yo ¥5X, YaX, we uised the original BB?M nulse
X o wpmul 27 ey for wy. rotated appropriately to bm-
plement Y — @ 0Tipm2(27 ) 5g0n/2Fpen/e 85 well as
X = X,, while in the second part of the sequence
we used the same decomiposition but backwards, e.g.,
X = mp(2minsmsmy: Here ¢ = —cos H{~1/4) a 104.5°.
With no-amplitude migimatceh, thus constiucted decou-
pling sequence has order K = L with lst-order pulses,
and an shunost-2nd order *1% with Znd-order pulses,
with the porm of the 2nd-order terin rediced by three
orders of magnitude compared bo Ist-order pulses. [hese
shonid be compared with K =1 and K == 3 respectively
for the vegular 8-pulse sequence [Tab, 111,

it is seen from Fig, 12(s) that regular lst- and 2nd-
order pulses 5y and @y perform in the BBi-corrected
composite seqtence almost a8 well 55 the selfrefocusing
pulses with additional aniplibude protection (lst-arder 4,
and 2nd-order Lg). In addition, the 2nd-order pulses
with amplitude protection (Lg) work almost as well in the
regular S-pulsesequence. All of these allow to-achieve the
infidelity level of 10~ at amplitude mismatch of 3% or
higher {(up to 6% with pulses Lg in the sequence 838, L
With the regular B pulse sequente, ‘the reglion of high
fdelity shrinks substantially for pulses ¢ and Ly, and it
all but disappears for the pulse Sy the coefficient & for
the pulze L1 happens to hea few times smaller than that
for &L

The results of analosous caleulation for a particular
4oguibit XXZ chaln with onssite chiemical potential shifts
AF over thme interval = 1287 (exactly the same parame-
ters as in Flgs. 6, 7) arve presented in Fig. 12(b). However,
it turns out that the BB, composite pulses lose accuracy
when used with XX7Z chain. Even in the absence of am-
plitude errors, there are linear errors in vJ* [the zeroth
order aversge Hamiltonian is non-serol. Thus, we only
present the results for the regular 8-pulse sequence. With
this sequence, the decoupling orders for Ist- and 2und-
order pulses are K = Land K =2 respectively [ Tab. 1T
Comparad with Ising-only couplingg, with the particular
parameters chosen, this ihereases the fidelity by some
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FIG. 9: (color online) Contour plots of the average infidelity
1— F for the composite pulse BB{""” [mome(2m)aems] with (a)
Ist-order self-refocusing pulses S1; (b) 2nd-order pulses Qq;
(¢) 1st-order pulses with amplitude correction; (d) 2nd-order
pulses with amplitude correction. The axes are the relative
frequency mismatch 7A and the relative pulse amplitude (1+
f), see text.
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FIG. 10: (color online) As in Fig. 9 but for the sym-

metrized sequence BB(IC[‘J) [(7/2)0ms(27)34me(7/2)0]. The
pulse shapes are (a) lst-order pulses S; (the fidelity for the
2nd-order pulses Q1 is similar); (b) 1st-order pulses with am-
plitude correction; (¢) 2nd-order pulses with amplitude cor-
rection. Note how regular are the shapes of high-fidelity re-
gions.

five orders of magnitude with pulses Q, [Fig. 6(c)], and
by some two orders of magnitude for pulses S; [Fig. 6(b)].
As for the Ising chain, the effect of the amplitude errors
is weaker with specially-designed pulses L; and L3 such
that the 1st-order coefficient 0(f) scales as a higher power
of f. With the pulse L;, the 2nd-order coefficient « is
non-zero but small; it is seen from Fig. 12(b) that its ef-
fect is to introduce a linear term 1 — F o< f which tends
to skew the infidelity minimum away from f = 0. We
should also note that with the Gaussian pulses Ggio (not
shown), even the on-resonance infidelity is out of range
of the plots Fig. 12.
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FIG. 11: (color online) As in Fig. 9 but for the sequence BBY"/
[MoTeT36TapTe) using only m-pulses. (a) Ist-order pulses with
amplitude correction; (b) 2nd-order pulses with amplitude
correction. The absence of the error terms linear in o [see
Egs. (54), (55)] produces a much wider high-fidelity region
already with lst-order pulses.

VI. CONCLUSIONS

We presented a comprehensive study targeting pulse
and sequence design and analysis based on a consistent
high-order average Hamiltonian expansion. The numer-
ical technique for expanding the evolution operator was
originally introduced by us in Ref. 18, and a complimen-
tary analytical technique was developed for w-pulses by
one of the authors in Ref. 20.

The overall approach is to start with a closed sys-
tem described by a finite-dimensional Hamiltonian Hg
and design a sequence of shaped pulses such that the
evolution operator would be accurate to a given or-
der K in powers of Hg. The key to this approach
are the NMR-style 1st- and 2nd-order self-refocusing
one-dimensional pulses constructed for a single-qubit
chemical-shift Hamiltonian (3). In this work we designed
a number of such shapes for different rotation angles ¢y,
and presented a careful analytical analysis of the first
two leading orders of the average Hamiltonian theory
for driven qubit evolution with the most general system
Hamiltonian Hg. While any symmetric one-dimensional
pulse shape is characterized by only three parameters,
two of these can be set to zero by pulse shaping. The
remaining parameter is also non-zero for an ideal “hard”
0-function pulse. This leads to an important conclusion
that the constructed pulses can be used as drop-in re-
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FIG. 12: (color online) Decoupling errors as a function of
relative pulse amplitude for a chain of n = 4 qubits with dif-
ferent decoupling schemes as indicated. (a) Ising chain in the
presence of individual chemical shifts A;. 8-pulse sequence
with BB; composite pulses offers the best accuracy, which re-
mains essentially the same whether the sequence is used with
regular 1st- or 2nd- order pulses or with the pulses stabilized
against amplitude errors (1st-order pulses L: and 2nd-order
pulses L3). However, the pulse L3 works well enough even
with regular 8-pulse sequence. While the details of the ampli-
tude scaling differ, at the level of 1 — F = 107", the 1st-order
amplitude-protected pulses L, and regular 2nd-order pulses
@1 have comparable accuracy. The use of lst-order pulses
show relatively poor performance even on resonance. (b) XXZ
chain in the presence of individual chemical shifts A7. With
XXZ coupling, The BB; composite pulse is no longer accu-
rate, as the errors appear already in the lincar order in 7J+-
(not shown). With the regular 8-pulse sequence 8, the best
accuracy is obtained for the pulses with amplitude correction.

placement for hard pulses; with proper pulse placement
the results should be identical to first two orders. The
structure of errors appearing in higher orders of the evo-
lution operator can be understood by analyzing the nu-
merical time-dependent perturbation series for the evo-
lution operator of a closed system.

An important advantage of this approach is that the
expansion order offers a natural classification of the er-
ror operators. As a result, (i) the convergence regions
have regular shapes as a function of parameters [see
Figs. 10(c,d) and 11(b,c)]. Furthermore, with local two-
(or few-)qubit couplings dominant, (ii) the error opera-
tors can be placed on connected clusters of up to £+ 1
qubits for terms of order k&, which allows one to under-
stand their structure in terms, e.g., the direct products of



up to (k+1) Pauli matrices. Once their structure under-
stood, the convergence can be readily improved by sup-
pressing the error operators, as in our analysis of pulse-
amplitude errors. We emphasize, that such an analy-
sis can be performed even for very large qubit systems.
Thus, (iii) this approach is characterized by scalability
with the system size, as we illustrated by analyzing de-
coupling infidelity with the system size [Fig. 7]. Although
in this work we concentrated on the dynamics of closed
systems, another important advantage is that (iv) the
high-order control sequences result in lower decoherence
in the presence of slow environmental modes?®:39.

Most obvious application of highly-optimized shaped
pulses of the sort presented in this work is in solid-state
quantum computation, where the bandwidth available
for quantum gates is typically limited. Our techniques
based on analytical and numerical high-order average
Hamiltonian theory offers a systematic scalable approach
for constructing gates for such multi-qubit systems, with-
out need of solving their full dynamics. However, even if
the bandwidth does not appear to be at premium, simple
pulse shaping (e.g., using 1st-order pulses) can still offer
a substantial improvement of control accuracy.
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APPENDIX A: AVERAGE FIDELITY

Here we discuss the calculation of the fidelity averaged
over the initial state, in the case of unitary evolution with
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known evolution matrix U, while the desired evolution
matrix is Uy. Let us write the density matrix of the initial
pure state as po = !, where 1) is an N-component
complex vector. Then the actual density matrix is p =
UypTUT, while the desired density matrix is pigeas =
Uoy'U{. The fidelity with the given initial state

F¢ = tr(pidenlp) = tl'(Uolr"W'-’TUdU?;‘.-"q‘!TU%)
= > it (UGU)awowi (USU )31

ikl

(A1)

The only condition on the components ; of the wave-
function is the normalization, 1 = ¥y = >l |2. Gen-
erally, this means that the average of the product in
Eq. (Al) can only depend on the identity tensor ¢;;. By
symietry, ('u','ﬂ;’,:]“:,.-';k-g")f) = A(0;j0r1 + 0;10x;), where the
unknown coefficient A can be computed from the nor-

malization by tracing over ¢« = j, & = [. We obtain
1= A(N? + N), so that the average fidelity
N+ |tr V]? N2 —|tr V)?
FP=r—row - 1-F=—— A2
N + N2 ° N+ N2 (A2)

where V = Ug U. Numerically, with V close to identity
matrix, the loss of precision can be avoided by expressing
the infidelity 1 — F in terms of the modified mismatch,

[tr V|

5% = —~it(@ -V V = )
el -V -V), V=vV_—o

(A3)

Namely, since 62 = 2N — 2[tr V|, the average infidelity
can be written as

32(4N — §%)

1= F i
4(N + N7y

(A4)
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