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(Da ted: June 25, 2008) 

We present the construction and detailed analysis of highly-opt imized self-refocusing pulse shapes 
for several rotation angles. W haracterize the constru t d pulses by the coefficient · app aring 
in the Magnus expansion up to second order. This allows a semi-analytical anal sis of t he perfor­
mance of t he con true ted shapes in , equenc and composite pulses by computing the corresponding 
lead ing-order error operators. Higher orders can be analyzed with t he numerical technique suggested 
by uS pr viously. W illu -tra te the techniqu by analyzi ng ev ral comp s it puis s designed to pro­
tect aga inst pulse ampli t ude errors, and on decoupling sequences for pol ntially long chains of qubits 
with on-si t and nearest-neighbor couplings . 

PACS numbers : PACS: 75.40.Gb, 75.40.Mg, 75.10. Jm, 75.30 .Ds 

1. INTRODUCTION 

The implementation of quantum algorithms using 
NMR on molecules in liquid 1 , solid2 , and liquid crystals3 

has demonstrated in prinCiple that pulse-based con­
trol methods can be useful for quantum information 
processing4 (QIP). The techniC[ue has long been a sta­
ple in NMR spectroscopy, where complex molecules like 
proteins are ana1yzed with the help of long sequences of 
precisely designed radiofrequency pulses5 . Related tech­
niques for coherent manipulation of many-body quantum 
systems have emergcd as an important tool in many areas 
of science and technology. 

A useful quantum computer should contain hundreds, 
if not t housands of qubit . The onl hope of caling to 
such sy tem sizes i with th help of multiple levels of 
quantum error correction (QEC). For tllis to \vork, the 
benefits due to each addit ional level of encoding should 
outweigh the corresponding overhead of additional errors. 
This leads to various threshold theorems6,7, estimating 
the maximum error rate for which such concatenated 
encoding can be beneficial . The corresponding thresh­
olds are rather stringent, meaning that for scalability one 
needs very accurate elementary gates. 

Even for relatively small n-b dy systems, the number 
of states seal s exponentially with n , and the accuracy 
required for QIP is tligh. As demonstrated in several 
recent experim nts in :t\l\1R QIP, required accuracy can 
be reached with the help of strongly-modulating plLlses , 
where entire single- or few-qubit gates are desigued nu­
merically for a given molecule8 ,9 [also see 10,11,12,13]. 
\Vhile the technique indeed offers unprecedentedly accu­
rate, fast gates (which also helps to avoid relaxation) , it 
obviously cannot be generalized to lar er systems . 

In contrast, the traditional pulse and sequence design 
rely on the Magnus (cumulant) expan ion5 . The expan­
sion is done around the evolution in the applied con­
t rolling fields, while the chemical shifts l ,15, 16 (resonant­
frequency offsets) and inter-qubit couplings ar treated 
perturbatively. The main advantage of the Magnus ex­
pansion is its locality. Namely, when local qubit cou­

plings are dominant , the control fields accurate to a given 
order can be designed by analyzing relatively timall clus­
ters. The result remain exact independent of the sys­
tem size, or even in the limi t of infinite system. One 
can thus characterize pulse-based method for designing 
control fields as scalable to large system sizesY . 

A scheme to systematically const ruct high-order self­
refocusing pulses and pulse sequences was developed by 
the authors in Ref. 18. Specifically, we construct d "soft" 
lMR-style 14 .19 second-order self-refocusing inversion (7f) 

pulses and several high-order sequences ba d on such 
pulse for refocusing qubit arranged in spin chains with 
on-sitc chemical shifts and XXZ nearest-neighbor cou­
pling. The main t chni al advance which enabled the 
calculations l 8 was the effi cient numerical algorithm for 
computing high-order terms of the Magnus expansion. 
The algorithm is based on the usual tim -dependent per­
turbat ion theory; t he direct computation of multipl in­
tegrals entering higher-order cumulants would be tot ally 
impossible. 

In t his paper we present highly-optimized self­
refocllsing pulse shapes for rotation angl 's cPo other than 
180°. For such pulses, we extend the results of Ref. 20 
and construct the analytical expansion of the evolution 
operator for an arbitrary coupled qubit. While the x­
pansion is more complicated than that for the inver ion 
pulses with ¢o = 180°, to second order, it is still charac­
teriz d by only tlu'ee coefficients, two of which we sup­
press by pulse shaping. This allows us to compute the 
error op rators associated with a given control sequence 
semi-analytically, by evaluating the leading order terms 
in the corre ponding products of the evolution operators . 
\""e illustrat.e the t chnique on several newly-con, tructed 
dec upling s quenc s for a chain of qubits with on-site 
and nearest-neighbor couplings as well as with the com­
posite pul s protecting against ampli tude errors. 

http:75.30.Ds
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II. PROBLEM SETUP 

A. Dynamical Decoupling 

In principle, the simplest type of control pulses consist 
of short, intense bursts of coherent, resonant electromag­
netic radiation, popularly known as "hard" or "bang­
bang" pulses. In this limit, for the duration T of the 
pulse one can t.otally ignore all other couplings of the 
qubit(s). Then, a pulse sequ nee can be viewed as a 
series of free evolution intervals [unitary evolution opel'a­
tors UJ(t) = exp(-itH s), where Hs is he system Hamil­
tonian] intercalated with pulse operators. For example, 
with single-qubit control Hamiltonian, 

1 
He = "2 L V:(t)O'~, (1) 

0. 

where 0'1:, J.L = x, y, z ar the Pauli matrices for a-th 
qubit and Vt(t) are the corresponding control fields (or, 
more precisely, the envelop s of the cont.rol fields applied 
t the resonant frequency of the corresponding quhit), 

the pulse operator is t he product of those for individual 
qubits, P = TIa Pa(¢~a) , iia), 

<Po. , - . ¢op. ( .) (2)0. CPo, n = cos 2 - Ul . 0'a sm 2' 

Here D. i the unit vector that determines the spin rota­
tion axis and ¢o is the corresponding angle, 

The corresponding pulse algebra is s raightforward . 
For example, for a single spin with the chemical shift 
Hamiltonian, 

tJ. z
HS = "2 O' -' (3) 

the sequence of two equally-spaced inversion pulses (¢o = 
±n) in x-direction is equivalent to a unitary, 

P(n, x) Uj(t) P( -7[" , x) Uf(t) 

. ( .ttJ. ) . ( .ttJ. _)= (-zO'X) exp - z2O'z (WX) exp -2 (J ­
2 

ttJ. _) (ttJ.)= exp ( +i2O'~ exp -i O' z = n, (4)
2 

which is , of course, the formal identity behind the well­
known spin-echo sequence2 1 . 

In reality, the pulse duration T is always finite. Thus, 
during the pulse application the rotation actually hap­
pens around the axis determined by the sum of the 
system and control Hamiltonians; one gets finite-pube­
duration errors. Generically, such errors scale linearly 
with pulse duration. T hese errors are especially danger ­
OllS in systems where one cannot reduce the pulse du­
ration indefinit ly, e.g., because of the need for spectral 

2 

addressing in homonuclear NMR, or in order to avoid ex­ -

citing levels outside the qubit state in .Josephson phase 
qUbits22 . Yet , even in systems with optical qubit cou­
pling where T could be in the sub-picosecond range, the 
finite-pulse-duration errors can be signifi ant if one tar­
gets the accuracy necessary for achieving the s alability 
thresholds23 . 

The finite-pulse-duration error can be significantly 
reduc(~d by suppressing the leading-order error opera­
tors. Th, errors would cale with a higher power of 
t he pulse duration, which makes them much more man­
ageable. This can be achieved either by designing spe­
cial sequences (which typically doubles or quadruples the 
number of pulses), or by using specially designed self­
refocusing puis shapes14 . Typically, the latter strategy 
is more efficient! ; besides, the self-refocu 'ing pulses can 
often be used as drop-in replacements for corresponding 
6_pulses18,20. 

B. Model 

We consider the following simplified Hamiltonian 

H(t) = Hc(t) + H s + Hv(t) + Her, (5) 

with the first (main) term due to individual control fields, 

Hc(t) = ~ L [V: (t)O'~ + VJ(t)O'~ ], (6) 
n 

where O'~, J.L = x,y,z, aTe the usual Pauli matrices for 
the n-th qubit (spin) of the 1Dchain. T he other erms 
include the native Hamiltonian of the system 

(7) 

describing the con tant qubit couplings and the inter­
action between the qubi and the coupling with the 
oscillator thermal bath , 

(8) 

In Eq. (8), A~ == A~(Pi,q'i) account for the possibility 
of a direct coupling of th . controlling fields V~' with 
the bath variables q.;, Pi , while B~ == B~(Pi' qi ) describe 
the usual coupling of the spin with the osci llator bath. 
Already in the linear re ponse approximation the bath 
couplings (8) produce a frequency-dependent renormal­
ization of the control Hamiltonian Hc(t) [Eq. (6)], as 
well a the thermal bath heating via the dissipative part 
of the corresponding response function. Both effects be­
come more of a problem with increased spectral width of 
the controlling signals V,t< . In this work we do not spec­
if I t he explicit form of the coupling Hv(t). Instead , we 
minimize t he spectral width of th constructed pulses . 
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D. Time dependent 

11. (22) 

l)le (17) 
evolution operator 

R(t) = 
Ie (18) 

(19) Hs(t) (24) 
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A4 I A5A2 /bAo Al 
-0.3535804341-0.62261987035 1 (271) 1.0 -0.0237996956 

0.413371 4855-1.1741824154 -0.2097531295-0.0294359406 52 (271) 1.0 
-0.647484441 8 -0.0964846776 -2.3966480505 1.0 2.1406171699Ql(271) 

0.3434236044 0.3103297466-2.6971749102 -0.43846790671.4818894659 Q2(271) 1.0 

0.4796467863 0.22567259590.5 - 1.20531938225) == 5 1 (7r) 
0.7841592117 0.0737326786 -0 .1628226043 0.5 -1.1950692860S2 == 52 (7r) 

-0.6825355002 -0 .2575493698 -1.1374072085 1.57749207850.5Q1 =Ql(7r) 
-1.1472441408 0.0025173181 0.21 03123753 -1.0964843348 1.5308987822 0. 5Q2 == Q2 (7r) 

O'r ._0 -1.8963102551 1.13:37663752 0.5125438801Sl(7r / 2) 
-0.4372211211 1.9858884053 0.10633145010.25 -1. 904 998 7341 52 (7r/2) 

-1.8948543589 0. 5 73324062 0.5970352560 0.46048669690.25Ql(7r/2) 
0.4511145740 -0.9135322049 0.25 -2.1115695246 0.6415685732 1.6854185871Q2(7r/2) 

T BLE I: Fourier coefEcients for the constructed pulses, see Eq. (31). Shapes 5L( (po) and QL(¢o) are the pulse shap s for 
ro ta t ion angle 1;0, respectively first (K = 1) and second (K 
derivative vanish ing a t the ends of the interval. 

C. Pulse shape analysis 

The pulse shapes QL(¢O) , Sd¢o) are constructed as 
first- or second-order elf-refocusing pulses for the chem­
ical shift Hamiltonian , Eq. (3) . We would like, however , 
to have a universally good pulse shape that would work 
in most settings. To analyze the performance of the con­
structed pulses in most general circumstances, we con­
struct the iVlagnus expansion of the evolu ion operator 
for the most gen ral system Hamiltonian, 

where A/-L are the operators responsible for coupling with 
the outside worlds, and Au is the external Hamiltonian. 
The analysis of the inversion pulses with ¢o = If appeared 
previously in Ref. 20; here we extend it to ¢o -1= If. 

1. Driven evolution 

The control Hamiltonian (30) alone [to zeroth order 
in Hsl produces the following unitary evolution operator 
[ef. Eq. (12)1 

Uo(t) = -;.(I"'1>( t )/2 ¢(t) == lot dt' V(t') . (34) 

\\Then actin on the spin operators , t his is just a rotation, 
UJ(t) I)"V Uo (t) = uVcos¢(t) - I)" Zsin ¢(t) . Con~equently, 
t he system Hamiltonian in the interaction representation 
has the form 

ifs (t) = 	 Ao + I)"x Ax + I)"Y (Ay cos ¢ , Az sin ¢ ) 

+crZ( Azcos¢- Aysin ¢ ). (35) 

= 2) order for the Hamiltonian (3). These shapes have 2L 

2. Lead'ing-order average Hamiltonian 

The zeroth order average Hamiltonian (17) is just the 
average of Eq. (35) over the pulse duration. We assume 
V(t) represents a symmetric pulse, V(Tp - t) = Vt(t). 
Then, ¢(t) is antisymmetric, ¢ ( Tp - t) = ¢o - ¢(t), where 
¢o == ¢(Tp) is the overall notation angle. It is convenient 
to introduce the symmetrized rotation angle, 

<p (t) == q)(t) - ¢o/2, (36) 

such that <p (Tp - t) = -<p(Tp) . Then, the average of the 
sine over the pulse duration vanishes, (sin <p) = O. This 
implies that the averages of the cosine and sine of the 
original rotation angle are 

c (cos¢) = cos(¢o/2) (cos<p), (37) 

s (sin ¢) = sin ( ¢o/2) (cos <p), (38) 

where 

j.rp1 
(f(t)) == - dt f(t). (39) 

Tp . 0 

If we denote 

l
rp dt 

'U == (COSy) = - cos <p(t), ( 40) 
o Tp 

then the zeroth order average Hamiltonian for a one­
dimensional pulse becomes 

fI( O) = Ao I)" x Ax + 1[I)"Y (Ay cos ~o + Az sin ~O) 

Z (A <Po A . ¢u ) ] +1)" z cos 2 - )J sm 2 . (41) 

For th€~ special case of the ch mkal-shift Hamiltonian (3), 
we have Au = Ax = Ay = 0, Az = D. / 2, and Eq. (41) 
gives 

ff (O) = 'U D. (I)"Z cos ¢o + I)"Y sin ¢o) . (42)
2 2 2 
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FIG. 1: A single-spin second-order inversion (7r) pulse Ql (7r) . 
(a) Pul e profile over complet ' period, (b) Evolution of the 
spin beginning with Sz = 1. ( ) T he power spectrum of the 
pulse. The vertica l lines denote the loe tion of the harmonics. 
As seen , the spectral weight is a lmost entir ly confined to 
w < 5wo. 

Clearly, t he 1st-order self-refocusing condition corre­
sponds to 1) = O. For such pulses t he full zeroth-order 
average Hamiltonian is given just by the two first terms 
in Eq. (42) . 

3. 1st-order average Hamiltonian 

The 1st-order average Hamiltonian (17) is given by a 
double integral of the comrnutator of the system Hamil­
tonian in the in eraction representat ion (35) evalua ed 
a two different times . We note that every term in 
Eq. (35) can be cla sified as either time-independent [pro­
portional to (t) == 1], proportional to c(t ) == coA>(t) , or 
to set) == in ¢ (t) . T herefore, most generally, the second­
order terms in the evolution operator can contain the 
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FIG. 2: As in Fig. 1, but for the single-spin second-order 7r / 2 
pulse Ql (7r/2). 

-


FIG. 3: (color online) Pulse shapes for </>0 = 7r/ 2. Solid 
lines repr ent Qd7r/ 2) , dashed line correspond to SL(7r/ 2). 
P ulse shap with L = 1 are drawn with thin blue lines, while 
those with L = 2 are drawn wiLh thick red lines. T he black 
doted line shows the Gaussian shape GOIO ( 7r/ 2). 
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FIG. 4: (color online) As in Fig. 3 but for the inver~ion pulses, 
<Po = 7r . Note that the lst. order pulses (S'L(7r) , dashed lin $) 
actually have a smaller power than the Gaussian pulse. 

' " 

FIG. 5: (color online) As in Fig. 3 but for the pulses with 
rPo= 27r. The pu lse sha.pes a.pp ar to resemble those of a pa.ir 
of consecutive 7r plllse~. Second-order pulses happen to ha.ve 
the :;ma llest power. 

foIl wing nine in egrals, 

1 
ee == (1'1) = 2' 	 ec == (1' cos ¢), es == (1' sin ¢), 

ce == (cos¢'I), se == (sin ¢ 'l), 

cc == (cos ¢' cos ¢), cs == (cos ¢/ sin ¢ ), 


sc == (sin ¢ ' cos ¢) , s s == (sin ¢' .-in ¢), (43) 


where we used the notation 

(f( ¢/ )g(¢)) == 12 r dt' f(¢(t')) rt'dtg (¢(t) ) , (44) 
T 10 10 

and 1 == e(t) or l' == e(t') indicate an identity factor at 
the corrcl:iponding position of the average. However, be­
cause of the commutator tructure in Eq. (17), only the 
following antisymmetric combination' appear in the ex­
pression for the corresponding t erm in the average Hamil­
tonian t heory, H(l ), 

ec - ce es - se 
(c == --=-2- (5 == --2- (45)

2 2 

where 

1 lTP j.t'
a == - 2 dt' dt sin(1)(t') - 1>(t) ) (46) 

27 0 0 
In face, the coefficiellts (c and ( s can be reduced further , 

r r' 1>0 1>0 
,>c = '> 5111 2 ' (5 = - ( cos 2 ' (47) 

where [see Eq. (36) for the definition of <p( t) I 

l
TP elt' t 1

( == - (- - -) sin cp(t). (48) 
o Tp Tp 2 

Thus , to second order, the avera"e Hamiltonian of a sym­
met.ric angle-1>o one-dimensional p uis is determined by 
only three dimensionless coefficients, v, a, and (, see 
Eqs. (40), (46), and (48). These coefficients contain all 
the relevant informat,ion about the shape of the pulse. 

An explicit calculation of the 1st-order average Hamil­
tonian gives 

H(1.) aTp(i [A z, AyJ- o-X(Ae + A;)) 

+ 	(TpCOS ~o (O-Y (i [Az,Aol + {Ax,Ay}) + o-Z(i Ao,Ay] + {Ax.Az})) 

(Tpsin ~o (o-Y( i [Ay,AoJ- {Ax,A z}) , o-Z(i [Az,Aol + {A;l;, Ay}) ) . 

For the Hamiltonian (3), the terms with ( disappear, and The actual parameters for the pulses with 1>0 = 1f/2, 
we have, simply 'if, and 27r are listed in TAB. II. 

(49) 

Thus, the second-order self-refocusing pulses have both 
v = 0 and a = O. 
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pulse <Po v == (cos 'P) Q 

<Po 8(t - T p / 2) <Po COtiq!O 
sm tpo 

2 4 

( 

1 . t o - sm­
4 2 

~8(t ­ T p /2) 7r/2 -12/ 2 1/ 4 

Go os [90j 7r/2 0.730111 0.3985 19 

GO 1(90) 7T/2 0.7ti3116 0.420275 

5 1 (90) 7r / 2 0 -0.013067 

52(90) 7r/2 0 - 0.0294665 

Q l (90) 71 / 2 0 0 

Q2(90) r. / 2 0 0 

-12/8 

0.175999 
0.173655 

0.198719 

0.182109 

0.202067 

0.161658 

7r (t ­ T p / 2) 7r 0 0 1/4 
G005 ( 180) 7T 0.0744894 0.03771151 0.249476 

Go.) (180) 7T 0.1<18979 0.0764911 0.247905 

5 ) (180) 7T 0 0.0332661 0.238227 

52 (180) 7r 0 0.0250318 0.241378 

Ql(180) 7r 0 0 0.239888 

Q2 (180 ) 7T 0 0 0.242209 

2r. (t - T,,/2) 27r -1 0 0 

Go os (360) 27r -0.8969-9 0. 402852 0.00291436 

Go 1(360) 271' - 0.793918 0.317488 0.0116577 

5 ) (360) 271 0 0.0739621 0.113233 

5 2 (360) 27r 0 0.0612747 0.081 1486 

Q 1 (360) 27r 0 0 0.00403872 

Q2 (360) 27r 0 0 0.00734526 

TABLE II: Parameters of several common pulse sb apes. T he 
first line represents the "hard" 8-function pulse applied at Lhe 
center of the interval of durat ion T , Gool denotes he Gaussian 
pulse with the width O. Oh ]), while 5n and Q" denote the 1st 
and 2nd-order sel f- refocusing puis s from Tab. L 

IV. OPEN SYSTEMS 

In this work we concentra te on t.he performance of 
high-order pulses and pulse sequences in closed quantum 
systems. How vel', it turns out that such sequences also 
r main efficient in OpCll systems, in the presence of low­
frequency bath modes2o,30. 

The analysis is done in general form with the help of 
an assumption that the bath couplings have the same 
form as the existin rr terms in the syst m Hamiltonian (7), 
which are assumed to be suppressed to order K = 1 
or K = 2. The bath modes al'e a sumed to be low­
frequency; in addit ion to the expansion in powers of the 
corresponding 'ollplings, one ne ds a low frequ(~llcy ex­
pansion in powers of the adiabaticity par-ameter Tc/TO, 
where T c is t he decoupling cycle duration and TO is the 
bath correia ion time. 

With K = 1 decoupling, t he effect in the open sys­
tem is a suppression of direct decay (T l ) processes, as 
well as the reduction of the dephasing ra e (T2) by the 
fac to r of order of the adiabaticity parameter TclTo, The 
former result can be understood by analyzing the spec­

tral properties of the driven system31.32 , while the latter 
can be viewed as due to a reduction of t he t ime step for 
phase diffusion. With second-order decoupling, K = 2, 
the decoherence rate is additionally suppressed, and with 
time-reversal invarian bath coupling all orders of the ex­
pansion in powers of adiabaticity parameter may vanish , 
in which case the leading-order dephasing term becomes 
exponent ially small and dephasing would likely be deter­
mined by terms of higher order in bath coupling. Along 
with the decoherence rates characterizing the exponen­
tial decay of qUaJ1t um correla tions with time, the corre­
sponding prefactor, which determines the "visibility" (or 
"initial decoherence,,33 ) was also an alyzed3o . While for 
generic refocusing sequences with K :?: 1 the initial de­
coherence is quadratic in Tc and does not scale with the 
thermal bath correia ion time TO, for symmetric pulse se­
quences it is reduced by an additional power of the adia­
baticity paJ'ameter ( T / TO)' These results were originally 
derived for a generic featureless bath , but they also hold 
in a vicinit of a sharp resonance as long as the effective 
(i. e. , renormalized as in the average Hamiltonian) cou­
pling to the corresponding mode is small compared to its 
width2o . 

V. APPLICATION EXAMPLES. 

A. Decoupling sequences for a chain of qubits 

Decoupling sequences are designed to prevent quant um 
evolution from happening. Thus, we want to construct a 
sequence such that t he resul ting evolution operator over 
the period Tc is identity, U(Tc) = n. . '''Ie illustrate the 
scalability of dynamical decoupling to large system sizes 
by considering linear chains of qubit· with either Ising or 
XXZ n.n. random-valued couplings [only J';' .n+l or both 
J';' ,n,+l and J'~,n+ l = J,;,n+l in Eq. (7)], plus t he local 
fields either along z ax is or in arbitrary direction [.6.; =I 0 
or .6.;~ =I 0 for f-i = x ,y, z in Eq. (7)]. 

With such a system Hamiltonian, zeroth-order averaO'e 
Hamiltonian (16) contains only individual qubits or pairs 
of neighboring qubits, the largest clusters cont ribut ing 
to the 1st-order average Hamiltonian (17) originate from 
two bond sharing a site (three qubits ), and in general 
fI( n ) con ains terms spanning contiguous dusters of up 
to n + 1 bonds, that is, n + 2 qubits. Thus, to design 
a K- th order decollpling sequence , one needs to consider 
individuc:J clusters of up to J( + 1 qubits. 

With nearest-neighbor and local couplings only, the de­
coupling can be implemented by Simultaneously applying 
pulses on either odd or even sublattice. vVe note that in 
our setup there is no gap between subsequent pulse. , t he 
pulses follow back to back with the repetit ion period T. 

The system is "focused" at t he end of each cycle consist­
ing of several pulses of length T. Such a scheme with a 
common "clock" ime T is conveni nt , e.g., for parallel 
execution of quantum gates in different parts of the sys­
tem. For each qubit, various pulses (or intervals of no 

http:system31.32
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signal) can be executed in sequence. 
In t his work we consider t he following two sequences 

from Ref. 18, 4 = Xl Y 2XlY 2 and its symmetrized ver­
sion 8 = XIY2XIY2Y2XIY2Xl, which provide universal 
refocusing of the couplings b tween t.h sublattices, and 
also suppress the on-si te chemical shifts ~;, . Here, Xl 
is a '7rx pulse simultaneously applied on all odd sites, Y2 

is a (-7r)y = 7r -'11 pulse applied on all even sites, etc. 
These sequences are "best" sequences at given length for 
all pulse shapes found by exhaustive search (high-order 
sequencesJ4 ,35 equivalent for hard pulses do not nec ssar­
ily have equal orders here). The fact that such a brute­
force optimization approach works is entirely due to the 
efficiency of the numerical method. 

In addition we constructed tv-'O longer sequcnces, 
16 = Xl Y2Y10X j X2Y10X1Y2YI0XjX2YiO, and its sym­
me rized version 32, constructed by running th sequence 
16 first directly and then in reverse ord r. Here 0 denotes 
zero pulse , an empty interval of duration T. These two 
sequences provide universal dccoupling both for any cou­
plings between the sublattices and for arbitrary on-site 
fields (~~ =I- 0). 

In addit ion to he system Hamiltonian, the effec:tive­
ness of a sequence application depends on the quality of 
the pulses . In Table III , we list orders of the sequen es 
when applied with different pulse shapes, computed us­
ing the numerical time-dependent perturbation theory as 
described in sec . II D. The term Rk (Tc) was considered 
to be zero if its norm vanished wit h numerical precision , 
typically 10- 8 or bet. er, compared to typical values of 
orc! I' one for orders where RdTc) =I- U. The orders I( do 
not depend on the chain length; we verified this state­
ment on chains up to n = 7 qubits. Also, t he computed 
orders are th same for all self-refocusing pulse shapes of 
paTticular order; we believe that the results will rema.in 
valid for other symmetric pulse shapes of the same order 
as indicated in the 1st column of Table III. 

B. Error scaling 

We illustrate t he predicted power laws in Fig. 6, vvhere 
the average infideli ty (A4) is computed for different ra­
tios of ti T, where t is the fixed evolution time and the 
pul e duration T was reduced to accommodate a differ­
ent number of decoupling cycles. The simulation is done 
for chains of n = 4 qubits with randomly chosen but 
fixed parameters corresponding to different chain mod­
els as indicat d . The st epest lines correspond to largest 
order I( of th sequence decoupling order. For symmet­
ric sequen e 8 with Ising hain, I( = 2 for Gaus ian 
pul es, Fig. 6(a) , I( = 4 for 1st-order pulses, Fig. 6( b), 
and I( = 6 for 2nd-Ql'd r pulses, F ig. 6( c). The cor­
responding infidelities for fixed evolution time scale as 

(JzT )4, ex (.JzT)8, and ex (JzT)12. Larger values of 
I( can improv · accuracy by orders of magnitude, or, at 
fixed required fidelity, substantially reduce the number 
of decoupling cycles . 

puL'ie 
model 

sequence 
Ising 1+6.; XXZ XXZ+ .0.i XXZ+ .&; 

QL, 4 5 2 1 1 0 
allK=2 8 6 3 2 2 0 

pulses 16 2 2 1 1 1 

(v=Q= O) 32 3 3 2 2 2 

SL , Herm [14] 4 3 1 1 1 0 
all K = 1 8 4 1 1 1 0 

pulses 16 1 1 1 1 1 

(v = 0) 32 1 1 1 1 1 

Gauss [15] 4 

8 

16 

32 

1 

2 

0 

1 

0 

1 

0 

1 

0 

1 

0 
1 

0 

1 

0 
1 

0 

0 

0 

1 

TABLE III: Order K for sev ral decoupling sequences used 
with different pulse shapes upon different spin chains with 
nearest-neighbor and local couplings. Order K m ns that 
the fir t non-zero term in the average Hamiltonian (14) is 
fI (K) , so that for 'mall enough T the mismatch in the unitary 
evolution operator after n decoupling cye! . (evolution time 
t = nTc) scales as II U- Il il ex tTf<, and the cOlTesponding 
infideli ty 1 - F ex eT:::~lc ' Sequence 8 a sequence of 8 pulses 
applied intermittently on odd or even sublattices, see text for 
actual definitions. 

We saw that with order-I( decoupling in multi-qubit 
systems wit.h local couplings, the decoupling error oper­
ators can be represented as connect.ed clusters of up to 
I( + 1 bonds. For a linear chain, these involve up to 
I( + 2 qubits, an the number of such operators scales 
linearly with the total number n of qubits, as long as 
n > K + 2. In an n-qubit sy tem, each of such operators 
can b written as an outer produc of the cluster con­
tribu ion, and the identity operators for he r maining 
qubits . As a result, the squ ar of the Fro enius norm 
of he error operator· scal s lin arl with t he size of t it 
Hi lbert space: that is, ex ponentially with t he number of 
qubi ts . However, this exponential scaling is suppressed 
when we compute t he infidelity [see Eq. (A4)], so that th 
infidelity scales only lineaT'iy with t he number of clus­
ters t hat is, linearly with the number of qubit. The 
same scaling wit h the system ize is expected in higher 
dimensional arran ·ements of qubits (planar, 3D). 

vVe illustrate the scaling of decoupling errors with the 
qubit number n in Fig. 7. The plots show t h scaling of 
t he average infidelity at t h end of the interval in Fig. 6 
and other data with the chain length n. 

C, Composite p u lses 

Composite pulset; are, in fact pulse sequences designed 
to replace a single pulse and specially designed to com­
pensate for some part icular systematic errors, includ­
ing off-resonanc application , pulse amplitude, and pulse 
phas errors36,37,T ,39 ,40 ,4 l ,42 ,43,44. 

http:connect.ed
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FIG. 6: (color onl ine) IIlust[ation of dec:oupling accu racy with 
sequences 8 and 32 for chains of 7l = 4 qubit with different 
couplings as indic ted on the plots. T he plots show av [age 
infidelity [see Eq. ( 4)] computed at fixed time t as the pulse 
dura tion T was reduced to acconUDodate a d ifferent number 
of sequences. The values of model parameters w [e randomly 
chosen and rema ined the same for all simulations. Symbols 
are the data pain " lines a re the single-parameter fits of the 
misma tch 6 [see Eq. (A3)] to 6 = bTK, where the values of 
K indica ted on the p lots correspond to those in Tab. III. (a) 
Gaussian pul 'e5; (b) 1st-o[de[ pul es S j; (c) 2nd-order pulses 
Qj. 

The off-resonance errors appear when the carrier fre­
quency of th applied pulse is off the transition frequency 
between the 10) and 11) state of a qubit. In the rotating 
ref rence fr ame this is equivalent to a non-zero chemical 
shift Hamiltonian (3), with l:. equal to the corresponding 
frequency bias. \Ve note t.hat our 1st and 2nd-order self­
refocusing puis shapes already offer a degTee of stability 
against such errors. 

For this reason we concentrate on the pulse amplitude 
errors, where the correct pulse shape is applied with the 

0018 
XXZ+il' 8 GOlO

0.018 51 

0.014 0 1 

0.012 
;E ./
N 0.01 ,/i 0.008 ,/
U, 

,/0006 
,/

0.004 ,/ 
0.002 ./ 

0 '· 
1 3 4 6 7 

FIG. 7: (color online) Scaling of the infidelity 1 - F at 
ti T = 128 with the chain length n for a particular real iza­
tion of an XXZ chain with on-si te disorder .6.~, decoupling 
sequence 8, pulse shapes a', indicat d . (Data for the pulse 
C OlO divided by 10 to fit with the ot.her data. ) While the uni­
ta[y matrix rrtisma ch 62 [see q. (A3)] grows exponent ially 
with the chain length n, 82 ex , the leading-order contri­2n 

bution to the corresponding infidelity (1 - F) represents the 
probability of error in one of the clusters, and it scales only 
linearly, as also seen in the plot '. 

wrong amplitude, producing an incorrect rotation angle 
¢o =1= <Po· :"ote that no one-dimensional pulse shaping 
can compensate for t his kind of errors, since the mod­
ified rotation angle is simply proportional to the pulse 
amplitude, ¢o = (1 + f) <Po· 

On the other hand, one can expect that the pul ' am­
plitude offset f remains the same for all t he pulses applied 
at a particular frequency. This uniformity is utilized in 
several composite puIs designed so that t he net rotation 
would be insensitiv to such uni form errors. 

1. SCROF ULOUS 

The three-pul e sequence SCROFULOUS38 is based on 
the sequence originally proposed by Tyck045 ,46. Particu­
larly, an improved 7r puis is obtained by applying three 7r 

pulse' , at 600 
, 3000 

, and again at 60°, or just 7r607r3007r60. 

In the case of id al a-pulses, the resulting pulse compen­
sates for pulse amplitude errors to linear order. With 
fini te-width shaped pulses, an additional error is gener­
ated due to the presence of the system Hamiltonian. In 
particular, for the chemical-shift Hamiltonian (3) , the ex­
pansion of a unitary operator applied along x a,xis has t he 
form [see Eqs. (42), (49)J 

<Po . . <PoUx = cos - - U), SID­
2 x 2 

yl:.v
-i-- (cos <PoCYz - CY y sin <Po)

2 

y2 l:. 21)2 ( cbo <Po)+ iCY sin -'-- - cos ­8 x 2 2 
2

y l:. 20: ( <Po <Po)+ --4- iCYxcos 2 + sin 2 +O(T)3 . (50) 
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Combining t he corresponding expressions appropria tely 
rota ted in the x-y plane , and expanding the result to 
quad ratic power in the relative amplitude offset I, we 
obtain for he composite pulse 7r607r3007r60 , 

where f) == v (f ) = v + Vi1 + 0(f2) is t he parameter v 
[Eq. (40)] but for the pulse with rescaled amplitude, and 
he further terms are of order 11)76, f/·T 2 6 2

, &.IT2 6 2
. 

Clearly, with Gaussian or other pulse shape such that 
v :f. 0, the error is linear in T6 and quadratic in t he 
amplitude hift 1 (alt hough generally there will also be 
a cross-term ex IT6) . Thjs situation is illustrated in 
Fig. 8(a), wh re t he average infidelity is plotted for the 
SCROFULOUS sequence with pulses COlO on the plane 
67- f. The region for 1 - F = 10- 5 is a narrow vertical 
line which corresponds to great sensitivity to frequency 
shift. V/ith 1st-order self-refocusing pulses such that v = 
0, v(f) ex I, t he error is dominated by the term ()( f76. 
The corresponrung region corresponds to a diamond-like 
shape in t.he cent r of Fig. 8(b). We have also generated 
self-refocusing pulse shapes such that both v = 0 and 
Vi = o. Then, by symmetry, v " = 0, and generically 
v ()( p. Then, for 1st.-order pulses, ex :f. 0, t h errors are 
dominated by the term omitted in Eq. C 1); they scale 
as 0(.[2), 0(V"16f3), 0(0:6. 2

), while for second-order 
pulses the last two terms become 0(6.3) , 0(0:1f 26 2 ) . 

Plots for such shapes are shown in Figs. 8(c) and 8(d) 
respect ively; the result of improved pulse st ability is a 
much wider region of high fidelity. 

2. BBI and related pulses 

A longer but more accurate composite pulse known as 
BBI was originally proposed by Wimperi::P. For tar­
get angle () = 7r , the pulse can be written as BB1W

) = 

7r07r¢ (27fh,p7rq" where ¢ = - cos- l
( - 1/4) ;::0 104.5°. For 

ideal o-pulses, this cancels errors of both 1st and 2nd or­
der in t he rela tive pulse amplit ude bias f. A related sym­

metrized sequellce BB~CU) = (7r/2)07r,p (27rh<f>1r</> (1r/2)o 
was proposed in Ref. 38 (see also Ref. 39]; because of 
t he symme ry it leads to some additional error cancella­
tion at higher ord .r. ·With shaped pulses , we hav Iso 
analyzed variants of hese sequences with t.he 27r pulses 
, . . (W ')replaced by two 7r pulse:, BBI = 7r(j7r<t> (7fhq, (7r)Jq, 7r.p 

and BBiCL.i') = (7r/2)07rq, (7rbt,(7rh¢7rq, (7r/2)o. 
Comput.ing t he products of versions of Eq. (50) ap­

propriately rotated in t he x-y plane for on-resonance 
application of any version of t he BBI s quence, 

3 
u(.6. = O) = - icr. _ f 7r .3 (5 _ i15 1/ 2cr.) + 0(f4). (52)

BB, x 64 0 

We note that to achieve the level of infidelity of, say, 1 ­
F = 10-4, the frequency mismatch should satisfy if I < 
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FIG. 8: (color onlin ) Contour plot , of the average fidelity 
for the composite pulse SCR FU LO S 7r607r3007f60 with (a) 
Gaussian pulses COlO ; (b) l-st order self-refocusing puIs s S 1 

(the plots for pu lses Ql look similarly but symmetric with 
respec · to horizon tal axis) ; (c) Is -order pube with a.mpli­
tude correction v = v' = v" = 0; (d) 2nd-order pulse wiLh 
amplitude correction, 11 = v' = v" = a: = o. Th 'es are 
the relative frequency mismatch Ti::;. and the relative pulse 
amplitude (1 + f), see text . 
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1 - F for the composite pulse BB\W) [7r07r¢(27rh:> 7r4>l with (n.) 
bt-order self-refo utiing pul-'es 51; (b) 2I1d-order pu lses Ql; 
(c) 1st-order pulses wilh amplitude correclion; (d) 2nd-order 
pul es with amplitude correction. T he axes are t he relative 
frequ ncy mismatch 76. and the relative pulse amplitude (1 + 
j) , see text. 
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FIG. 10: (color online) A in Fig. 9 but for the tiym­
metriz d s quen e BB~CLJ ) [(7r/2)oT.<I> (27rh<l> 7r<i> (1T/2)o j. The 
pulse shapeti are (a) 1st-order pulses 51 (th fi delity for the 
2nd-order pu lses Q 1 is similar); (b) 1st-order pulses with am­
plitude correction; (c) 2nd-order pulses with ampli tude cor­
recti n. Note how regular are the shapes of high-fidelity re­
gion . 

five orders of magnit ude with pulses Ql [F ig. 6(c)] and 
by some two orders of magnitude for pulses 51 ig .6(b) ]. 
As for the Ising chain, the effect of the amplitude errors 
is weaker with specially-designed pulses L1 and L3 such 
tha. t he 1 t -order coeffic:ien iJ (f) scales as a higher power 
of f . With the pulse L 1 , the 2nd-order coefficient a: is 
non-zero but small ; it is seen from Fi . 12(b) t ha t its ef­
fect is to introduce a.lineaT term 1 - F ex f which tends 
to skew the infidelity minimum away fTom f = O. We 
should also note t hat with the Ga ussian pulses GOlD (not 
shown), even the on-resonance infidelity is out of range 
of t he plots Fig. 12. 
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FIG. 11 : (color online) As in Fig. 9 but for the sequ nce BBrv' 
[7r0 7r¢7r3¢7r3 .;> 7r¢] using only 7r-pulses. (a) 1st-order pulses with 
am plitude correction ; (b) 2nd-order pulses vvilh amplitude 
correc ion . T he absence of the error terms linear in Q [ e 
Eqs. (54), (55)] produces a much wider high-fidelity region 
already with 1st-order pu lse!; . 

VI. CONCLUSIONS 

'0/e presented a comprehensive study t a rgeting pulse 
and sequence design and analy 'is based on a consistent 
high-order av rage Hamiltonian expansion. T he numer­
ical technique for expanding the evolut ion opera tor was 
originally introduced by us in Ref. 18. and a complimen­
tar y a na ly tical t echn ique was developed for 7r-pulses by 
one of the authors in Ref. 20 . 

T he overaU approach is t o star t with a closed sys­
tem descri bed by a fini te-d imensional Hamiltonian Hs 
and design a sequence of shaped pulses such that the 
evolution operator would be accurate to a given or­
der K in powers of H s. The key to this approach 
are the _IMR-style 1st- and 2nd-order self-refocusing 
one-dimensional pul es constructed for a single-qubi t 
chemical-shift Ha.miltonian (3) . In this work w d signed 
a number of such sha pes for different rot at ion angles 4;0, 
and pr sent ed a carefu l analyt ical a nalysis of the firs 
two leading orders of t he average Hamil tonian t heory 
for driven qubit evolut ion wit h th most general system 
Hamilto nian Hs . \Vhile a ny symmetric one-d irnensiolla l 
puIs hape is charact erized by only three parameter , 
two of t hese can be set to zero by pulse shaping . T h 
remaining pararrieter i. a1 0 non-zero for an ideal "hard" 
o-fun t ion pulse . This leads t o an important concl usion 
that t he constructed pulses can be used as drop- in re­
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FIG. 12: (color online) Decoupling errors a'i a function of 
relat ive pulse amplitude for a chain of n = 4 qubi ts with dif­
ferenLdccoupling schemes as ind icated. (a) ISing chain in the 
presenc of ind ividual chemical shi fts 6..:. 8-puls . quence 
'with BBl composite pulses offers the best accuracy, which re­
mains essent ially the same whether the , equence is used with 
regular 1st- or 2nd- order pulses or with the pulses stabilized 
against. amplitude errors (lst-order pulses L1 and 2nd-order 
pu lses L3 ). However, the pulse L3 works well enough ev n 
with regular 8-puls sequence. While the details of the ampli­
tude scal ing differ , at he level of 1 - F = 10- 4 

, the 1st-order 
ampli tude-protected pulses LJ and regular 2nd-order pulses 
Q 1 have comparable accuracy. The use of 1st-order pu lses 
' how relatively poor performance even on resonance. (b) XXZ 
chain in the presence of individual chemical shifts 6..i . With 
XXZ coupling, The BB I co'mposite pulse is no longer accu­
rate, as the errors appear already in the linear order in T J l. 
(noLshown). With the regular 8-pulse sequence 8, the best 
accuracy is obtained for the pulses wit h amplitude correction. 

placement for hard pulses; with proper pulse placement 
t he res ul ts should be ident ical to fir st two orders. The 
struct ure of errors a ppearing in h igher orders of the evo­
lut ion op rat~r can be understood by analyzing the nu­
meri cal t ime-dependent per t urba tion series for the evo­
lut ion operator of a closed system. 

An importan t advantage of t his a pproach is tha t t he 
expansion order offers a natural classification of the er­
ror operators. As a res ult , (i) t he convergence regions 
have regular shapes as a function of parameters [see 
Figs . 10 (c,d) and ll (b ,c) ]. Furthermore, wit h local two­
(or few-)qubit couplings dominant , (ii) t he error opera­
tor can be placed on connected clusters of up to k + 1 
qubits for terms of order k, which allows one to under­
stRnd t heir structure in terms, e.g., the direct products of 
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up to (k + 1) P auli matrices. Once their structu re under­
stood , the converO'ence can be readily improved by sup­
pressing the error operators , as in our analysis of pulse­
amplitude errors . Vve emphasize, that such an analy­
sis can be performed even for very large qubit systems. 
Thus, (iii) t his approach is characteriz d by scalabili y 
wit h the system size, as we illustrated by analyzing de­
coupling infidelity with the system siz [F ig. 7]. Alt hough 
in this work we concentrated on the dynamics of closed 
systems, another import.ant advantage is that (iv) t he 
high-order control sequences result in lower decoherence 
in the presence of slow environmental modes2o ,:3o. 

YIost obvious application of highly-optimized shaped 
pulses of the sort presented in this work is in solid-state 
quantum computat.ion, where the bandwidth available 
for quantum gat s is typically limited. Our techniques 
based on analytical and numerical high-order average 
Hamiltonian theory offers a systematic scalabl approach 
for constructing gates for such multi-qubit sy "tems, with­
out need of solving their full dynamics. However, ven if 
t he bandwidth does not appear to be at premium, simple 
pulse shaping (e.g., using 1st-order pulses) can still offer 
a substantial improvement of cont rol accuracy. 
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APPENDIX A: AVERAGE FIDELITY 

Here we discuss the calcula tion of the fidelit.y averaged 
over the initial state, in the case of unitary evolution with 

known evolution matrix U , while the desired evolution 
matrix is Uo. Let us write the density matrix of the initial 
pure state as Po = 'ljJ7pt) where 'I/J is an N-component 
complex vector. Then the actual density matrix is P = 

U'I/J'I/J t u t, while t he desired density matrix is Pid ...1 

Uo'I/J1/; tud. The fidelity with th given initial state 

F..p tr(PideaIP) = tr(Uo'I/J'l/J t udU'l/J1/;tut ) 

L 'l/Ji'l/Jj (UJU) ik'l/Jk'I/J'i(UdU) jl' (AI) 
ijkl 

The only condition on the components 'c/J, of the wave­
function is the norrnaliLlation, 1 = v"t,c/J = Z=i l1Pi !2. Gen­
erally, his means that the average of the product in 
Eq. (AI) can only depend on the ident ity t n'or bij . By 
symmetry, \'I/Ji'l/Jj7/lkVJL) = A(bijbkl + bileSkj) where the 
unknown coefficient A can be computed from t he nor­
malization by tracing over i = j, k = t . We obtain 
1 = A(N2 + N), so t hat the average fidelity 

N +! trV!2 NZ - Itr VI 2 (A2) 
F = A .' 2 ' 1 - F = N + N2 ' 

where V == ulu. lumerically, with V close to identity 
matrix , the loss of precision can be avoided by expressing 
the infidelity 1 - F in terms of t.he modified mismatch, 

(A3) 

Namely, since b2 = 2N - 21 tr V I, the average infidelity 
can be written as 

(A4) 
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