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OPTIMAL INTERDICTION OF UNREACTIVE MARKOVIAN EVADERS 

ALEXANDER GUTFRAIND. AG362 @CORNELL.EDU RIC A HAGBERG. HAGBERG @LANL.GOY 

FE G PA N. FPAN@LANL.GOY 


ABSTRACT. The network interdiction problem [4] arises in a wide variety of areas includ­
ing military logistics. infect ious disease control. and counter-terrorism [13J. In the classical 
form ulation one is given a weigh ted network G(N , E) and the task is to fi nd b nodes (or 
edges) whose removal would maximally increase the l ea~t-cost path from a source node s 
to a target node r. In practical applications. G represenLs a transportation or activity net­
work ; node/edge removal is done by an agent. the " interdictor" against anmher agent. the 
"evader" who wants to traverse G fro m s to t along the least-cost route. Our work is mo­
ti vated by cases in which both agents have bounded rationality: e.g. when the authorities 
set up road blocks to catch bank robbe rs , neither party can plot its actions with full infor­
mation about the other. We introduce a novel model of network interdiction in which the 
motion of (possibly) several evaders i. described by a Markov pr cess on G.We further 
suppose that the evaden; do not respond to interd iction decisions because of time, knowl­
edge or computational constraint . We prove that this interd iction problem is NP-hard. like 
the classical form ulation[1. 2]. but unlike the c1a.~s ical problem the objective function is 
submodular. This implies that the solution could be approx imated within 1- l i e using 
a greedy algorithm. Exploiting submodularity again . we demonstrate that a "priority" (or 
"lazy") evaluation algOrithm can improve performance by orders of magnitude. Taken to­
gether, the results bring closer real istic solutions to the interdiction problem on global-scale 
networks. 

1. I NTRO DUCT ION 

Mathematical modeling of network interdiction was introduced originally in the study 
of military supply chains and interdiction of transportation networks [10. 5]. But in general, 
the network interdiction problem applies to wide variety of areas including ballistic missile 
defense, infectious disease control, and disruption of terrorist networks . Recent interest in 
the problem has been revived due to the threat of smuggling of nuclear materials [13] . 
In thi s context interdiction of edges corresponds to the placement of special radiation­
sensitive detectors along the selected transportation links. 

Network interdiction problems have two opposing actors: one or more network "evaders" 
(smugglers. etc.) and an "interdictor" (leader, border agent, etc.) ELch evader attempts to 
minimize some objective function in the network, e.g. the probability of capture while 
traveling from network location s to location I. while the interdictor attempts to limit suc­
cess by removing network nodes or edges. Most often the interdictor has limited resources 
and can thus only remove a very small fraction of the nodes or edges. The case where 
the interdictor can choose at most k edges to maximize the shortest path is known as the k 
most vital arcs problem [4] and even when there is just one evader it has been shown to be 
NP-hard [1,2] and hard to approximate [3]. 

This classical shortest-path formulation is not suitable for some interesting interdiction 
scenarios for a number of reasons. First, in many practical problems there is a thick fog of 
uncertainty about the underling network properties, such as the cost to the evaders to tra­
verse a network arc in terms of resource consumption or probability of detection. Second, 
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there are also mismatches in the cost and risk computations between the interdictor and 
the evaders, as well as between different evaders, and all agents have an interest in hiding 
their actions. Therefore, the in terdictor has at best only probabilistic information about the 
evaders. T hirdly, on the evader ide, classical evader models make maximal assumptions 
about the capacity of the evaders to be informed about the interdictor's strategy, namely, 
the choice of interdiction set. Practical evaders likely fall far short of the maximum. There­
fore , this paper considers the other limit, namely, the case when the evaders do not respond 
to interdictor's decisions. Section 2 defines this new interdiction problem and section 3 
shows that it i NP-hard to solve. Then section 4 introduces an approximate interdiction 
algorithm that IUns with fast polynomial time and has a provable approximation bound. 

2 . PROBL EM FORMUL TlON 

The insufficient realism of the classical model represents an 0pP0l1unity for the devel­
opment of better interdiction models which would have the additional advantage of being 
solvable on much larger networks and this is the project of this paper. The formulation 
can be motivated by the following interdiction situation. Suppo e bank robbers want to 
escape from the bank at node s to their safe haven at node t. The authorities are able to po­
sition roadblocks at a few of the road on the network between s and t . The robbers might 
not be aware of the interdiction efforts, or believe that they will be outrun the authorities. 
They certainly do not have the time or the computational resources to identify the max-min 
solution to the shortest path interdiction problem. 

Similar in tances of vasion are found for example, when the interdiction is abl to 
remove the edges/nodes clandestinely (e. g. place hidden electronic detectors), or .if the 
evader has bounded rationality such as in animal migration. Indeed it may even have no 
intelligence of any kind and represen t a proces such as internet packet traffic that the inter­
dictor wants to monitor. Therefore , our fundamental assumption is that the evader does not 
respond to interdiction deci sions. This transforms the interdiction problem from the prob­
lem of increasing the evader's cost or d istance of travel, as in the classical formulation , into 
a problem of directly capturing the evade r as explic itly defined below. Addit ionally, the ob­
jective function acquires the computationall y useful property of 'ubmodularity di scussed 
later. 

Evaders. In examples discussed above, much of the difficulty in interd iction stems from 
the unpredictability of evader motion. Suppo e, then that each evader can be represented 
as a Markov process on the network, with transition probabilities Mij between every pair 
of adjacent nodes i and j . The stochasticity of thi s process represents, firs t, the evader's 
intentional unpredictable movement, and second, the evader's limited information about 
the network topology and the riskslcosts along alternative paths. A imple model of thi s 
behavior was recently developed in Ref.et at. [7] (see also [II J). Briefly, the model a sumes 
that the probability that an evader at node i would traverse i --> j depends on the probability 
qj of (successful) evasion on the shortest path through this edge to the target. Since the 
higher the probability of evasion, the higher the probability it would be taken, the paper 

supposes that Mij DC ( !J..L) Awhere q* is the probabi lity of evasion if the shortest path from 
If · 

node i to the target t is followed and A _ 0 is a parameter. Upon reaching the target the 
evader is removed from the graph . An advantage of the model is that it is possible to 

significantly speed up the computation of evader motion by assuming that the evader does 
not bal:ktrack. For a graphical illustration of evader motion, ee Fig.2 . l. In general, the 
current problem does not depend on any particular stochastic model , and indeed it need 
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not be Markovian. even thought it will be assumed to be to simplify calculations. For the 
Markovian case, it is sufficient that ,'vI has an absorbing state at t [6]. 

(a) (b) 

FIGURE 2.1. Evader motion of an evader on a 3x5 grid graph, starting 
at node O(S) and terminating at node 13(T) based on Ref.[7J with A = 4 
and no backtracking. (a) probabilities that an evad r would pass anyone 
of the edges, as indicated by edge widths . (b) tbe M matrix: edge width 
gives the probability that an evader would transit the edge from either of 
the edge's ends . In both (a) and (b) no edges were interdic ted and the 
asymmetries in probabilities are due to different risks on Lhe paths. 

Due to uncertainty about the source site of the evader. node i E N has probability ai of 
being the :W,JfCe site (LE'N el i = 1). Specifically, the expected number of times the evader 
reaches node i is given by [6J : 

(2.1) 

and the expected number of times the evader reaches edge (i . j) is given by : 

(2.2) 

In general, multiple evaders may traverse the network, where evader ei has likelihood 
(weight) w ei and is described by a possibly eli tinctive source distribution, transition matrix 

aei and target node: , Nri fi. This generalization makes it possible to represent any joint 
probability dis tribution f(.I', t) of source-target pairs, where each evader is a slice of f at a 
spec ific value of t . In this high level view, the evaders collec tively represent a stochastic 
process that connects pairs of nodes on the network, and with which the interdictor attempts 
to interfer. This has practical applications to problems of monitoring traffic between any 
set of nodes when there is a limit on the number of '·sensors" . The underlying network 
could be e.g. transportation, internet. or water supply. 

Interdictor. The interdictor in this formulation is similar to the classical one in possessing 
complete knowledge about the network and all evader parameters parameters a and M . 
Interdiction is represented by the variables ri{ r ij = 1 if edge (i, j ) is intenlicted, and zero 
elsewhere (the tormulation is similar for node inlerdiction). Next let dij be the efficiency 
of the interdiction at (i, j) . Namely. if edge (i , j j is interdicted and then traversed, then the 
evader is remuved from the graph with probabiliiy dij . An equivalent conceptualization 
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Proo.f First, note that the problem is polynomially equivalent to budget minimization 
problem: 

minc(r) S. t. J(r) ~ p 
r ER 

where p E [0 ,1 ] is the minimum allowed interdiction probability. In nrrn, there is a decision 
problem which polynomially reduces to it: 

Can we find r uch that c(r) S; band J(r) 2:: p? 

The lemma implies that it would be sufficient to prove the hardness of node interdiction. 
The core of the proof is the demonstration that the NP-complete Set Cover problem poly­
nomially reduces to the decision problem. In the problem one is given elements Xi E X, 
and a collec tion of subsets C = {5j ISj E 2X } and the task is to decide whether Lhere 
exist b subsets which would contain all of X. For the reduction, construct a graph G 
with nodes labeled 5j for each Sj E C. For each elemenl Xi introduce an evader Xi . If 
Xi E Ci = {S j E C IXj E Sj }, Lhen Xj starts at one S E Ci and transitions once through each 
of the nodes in Cj. It is clear that evader Xi would be jailed iff atlens t one of the nodes in its 
path, that it, in Ci is interdicted. Hence, the interdiction decision problem on H with p = 1 
(all go to jail) is equivalent finding the set cover. 0 

_... 
o _"' .... "Qp"...

",,­"../0 __ 

o 
"lORn< 

FIG R 3. 1. Washington subway map. Interdiction of any station 
would catch the evader taking the lines that pass lhrough it. Image 
©Colin M.L Burnett, licensed under GFDL 

The idea in the reduction below is to produce a transportation graph imilar to the sub­
way system of Washington, Fig.3.t. For each evader there is a subway line whic h the 
evader rides from end to end. "Transfer stations", that is, stations serviced by multiple 
hnes are akin to non-singleton subsets whose interdiction would catch all the evaders lak­
ing any of the connecting lines. The set cover problem is exactly problem of finding b 
stations of any kind which would interdict all Lhe lines. 

In general, the cost Ci of inlerdicting a node or edge i may depend on i. If so, th hardness 
of the problem is even easier to prove through reduction to the knapsack problem: Given 
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values Vi and costs Ci, construct the UMEI problem on a star graph for a sui table M: Make 
the central node the target and choose a, M so that probability flows of the evader through 
edge i give Vi (up to normalization). 

4. AN EFFICI ENT INTERD ICTION ALGO RI THM 

The UMEI problem can be efficiently approximated using a greedy algorithm by ex­
ploiting submoduiarity. We prove thi s property for UMEI, construct a greedy algorithm 
and prove its performance. We then show that the solution speed can be fUl1her improved 
by exploiting submodularity once again. 

A functiun is called submodular if the rate of increase decreases monotonically, which 
is akin to concavity. Formally : 

Definition. A function f : S ---> lR where S is a subset of some space R is submodular [I 2J 
if for any subsets SI ~ S2 C R and any X C R it satisfies 

f(SI UX ) - f (Sd '2 f (S2 UX ) - f (S:d 

Consider now how the weighted probability 1 (r ) of the evader being sent to jail changes 
as the number of interdicted edges increases. This probability is a weighted sum of the 
number of paths from the source nodes to the target node that cr s an interdicted edge . 
Consider now two cases: in case one the edges 51 have been interdicted and in ca e two 
S2 ~ SI edges have been interdicted. If X i any set of edges (some possibly interdi ted 
al ready), then with SI at least as many but maybe more paths cross X as compared with S2. 
This is becau e with a smaller interdiction set, not fewer and maybe more paths reach X . 
This means that the gain from adding X to the interdiction set is at least as large but maybe 
larger when the set is SI as compared to S2 . Hence: 

Lemma. 1(r) is submodular on the set of interdicted edges, r. 

Note that the proof crucially relies on the fact that the evad r does not react to interdic­
tion. If it di d, then the larger interdicted e t S2 may actuall y redirect the evader towards 
paths that cross X , increasing their number and likelihood more so than SI . Incidentally, f 
has a non-decreasing property, but will not need this. 

Submodularity has a number of important theoretical and algori thmic consequences. 
Suppose , as is likely in practice, that the edges are interdicted in steps I = 1,2,3 , .. . such 
that the interdiction set S, at step I is contained by S,+ 1, the set at step I + I. M reover, 
suppose at each step I, the interdiction set S, is grown by adding the one edge that gives 
the greatest increase in 1 giving in the following algorithm: 

Algorithm. Greedy construction of the interdiction S with budget b 
S~ 0 

while b > 0: 

For each element Ei E G '-. S : Compute !l(Ei) := 1 (SU {Ei} ) - 1 (S) 

S ~ S U {argmaxEi !l(Ei) }, resolving ties arbitrarily. 

b~b-I 

The computational time is O(bINl3IE I) for each evader, which is polynomial, but it 
could be improved fUl1her: the !l(Ei) for the initi al step only could be computed for all 
edges simultaneously by determining the probability How ii through each edge and multi ­
plying by di, the interdiction efficiency. 
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Solution Quality. The quality of the approximation can be bounded as a fraction of the 
optimal solution by exploiting the submodularity property. Consider the following : if Si; 
is the optimal interdiction set within budget b, then the first edge E I found by the greedy 
algorithm provides a gain that is not less than the average gain for all the edges in Si" that 

is, ~ (EI) 2': J \~ ) . A similar idea for all subsequent edges c uld be use to show that the 

solution Sf with a greedy algorithm satisfies 

J(S~) 2': (I - ~) . J(5'b) 

where e is Euler's constant [12]. Hence, the greedy algorithm achieves at least 63% of 
the optimal solution. Intuitively, submodularity implies that most of the gains in interdic­
tion would be attained by edges interdicted in early steps and thus ever a myopic greedy 
algorithm is able to capture a large fraction of this gain. 

Exploiting Submodularity with Priority Evaluation. In addition to its theoretical util­
ity, submodularity can be exploited to improve performance as follows. The basic greedy 
algorithm recomputes the ~, (E; ) for each edge Ei E G '-... 5, at each step I. However, sub­
modularity implies that the gain ~I (Ei) from adding any edge E; to the interdiction set at 
step 1 is not greater than the gain ~k (Ei) computed at any earlier step k « l) . Therefore, 
if for some edge Ej , ~/(Ej) > ~dEi) for all Ei and any past step ki :s; l , then Ej is the 
optimal edge at tep I - there is no need for further computation (as was suggested in a 
different context by Ref.[9]). As a result, on average it would not be necessary to compute 
~(Ei ) for all edges Ei E G '-... S at every iteration. Rather, the computation should priori tize 
the edges in descending order of~. This "priority" or "lazy" evaluation algorithm is easily 
implemented with a priority queue which stores the gain ~(Ei) for each edge, as well as the 
step k at which it was last calculated (the latter informing whether it needs to be updated.) l 

The performance gain from this improvement can be dramatic: in many computational 
experiments, the second best edge from the previous step was the best in the current step. 
Frequently, only a small fraction of the edge had to be recomputed at each iteration. 
However, in the worst case the gains would all need to be recomputed, so the speedup 
would vanish . In order to better gauge the improvement in performance, the algorithm 
was run on a highly synthetic hard interdiction problem, as follows. The transportation 
graph was a IOxlO unweighted grid with the boundary nodes connected to make the graph 
periodic, and then 10 random ties were added to simulate jumps - a total of 110 edges. 
There was a single highly-randomizing Markov evader (based on the model of Ref.[7], 
with A = 0) with source nodes uniformly distributed over the graph. The interdictor had a 
budget of IO edges, where each interdiction cuts the flow in half (dij = 0.5). It was found 
that the solution required just 33 evaluations of ~ in the priority evaluation scheme, instead 
of the 991 = 1 +9 · 110 in the simple algorithm: a speedup by a factor of 30 (cf [9]) . W hen 
the budget was reduced to 5, the speedup was a factor of 25. 

5. FU RTHER WORK 

The submodularity property of the UMEI problem developed above provides a rich 
source for algorithmic improvement. In particular, there i. room for and value in more effi ­
cient approximation schemes. Simultaneously, it would be interesting to classify the UMEI 
problem into a known approximability class and to prove its hardness even when there is 
just one evader. Of more practical interest would be to investigate various trade-offs in 

IThe source code is ava ilable from the authors. 
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the interdiction problem, such as the trade-off between quality and quantity of interdiction 
devices, as well as to quantify the loss of accuracy in problems where the evader is able to 
respond to the interdiction decisions, even if uboptimaJly. 
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