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OPTIMAL INTERDICTION OF UNREACTIVE MARKOVIAN EVADERS

ALEXANDER GUTFRAIND, AG362@CORNELL.EDU ARIC A. HAGBERG, HAGBERG@LANL.GOV
FENG PAN, FPAN@LANL.GOV

ABSTRACT. The network interdiction problem [4] arises in a wide variety of areas includ-
ing military logistics, infectious disease control, and counter-terrorism [ 13]. In the classical
formulation one is given a weighted network G(N, E) and the task is to find b nodes (or
edges) whose removal would maximally increase the least-cost path from a source node s
to a target node ¢. In practical applications, G represents a transportation or activity net-
work; node/edge removal is done by an agent, the “interdictor” against another agent, the
“evader” who wants to traverse G from s to ¢ along the least-cost route. Our work is mo-
tivated by cases in which both agents have bounded rationality: e.g. when the authorities
set up road blocks to catch bank robbers, neither party can plot its actions with full infor-
mation about the other. We introduce a novel model of network interdiction in which the
motion of (possibly) several evaders is described by a Markov process on G.We further
suppose that the evaders do not respond to interdiction decisions because of time, knowl-
edge or computational constraints. We prove that this interdiction problem is NP-hard, like
the classical formulation[1, 2], but unlike the classical problem the objective function is
submodular. This implies that the solution could be approximated within 1 — 1 /e using
a greedy algorithm. Exploiting submodularity again, we demonstrate that a “priority" (or
“lazy"”) evaluation algorithm can improve performance by orders of magnitude. Taken to-
gether, the results bring closer realistic solutions to the interdiction problem on global-scale
networks.

I. INTRODUCTION

Mathematical modeling of network interdiction was introduced originally in the study
of military supply chains and interdiction of transportation networks [10, 5]. But in general,
the network interdiction problem applies to wide variety of areas including ballistic missile
defense, infectious disease control, and disruption of terrorist networks. Recent interest in
the problem has been revived due to the threat of smuggling of nuclear materials [13].
In this context interdiction of edges corresponds to the placement of special radiation-
sensitive detectors along the selected transportation links.

Network interdiction problems have two opposing actors: one or more network “evaders”
(smugglers, etc.) and an “interdictor” (leader, border agent, etc.) Ecch evader attempts to
minimize some objective function in the network, e.g. the probability of capture while
traveling from network location s to location ¢, while the interdictor attempts to limit suc-
cess by removing network nodes or edges. Most often the interdictor has limited resources
and can thus only remove a very small fraction of the nodes or edges. The case where
the interdictor can choose at most & edges to maximize the shortest path is known as the &
most vital arcs problem [4] and even when there is just one evader it has been shown to be
NP-hard [1, 2] and hard to approximate [3].

This classical shortest-path formulation is not suitable for some interesting interdiction
scenarios for a number of reasons. First, in many practical problems there is a thick fog of
uncertainty about the underling network properties, such as the cost to the evaders to tra-
verse a network arc in terms of resource consumption or probability of detection. Second,
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there are also mismatches in the cost and risk computations between the interdictor and
the evaders, as well as between different evaders, and all agents have an interest in hiding
their actions. Therefore, the interdictor has at best only probabilistic information about the
evaders. Thirdly, on the evader side, classical evader models make maximal assumptions
about the capacity of the evaders to be informed about the interdictor’s strategy, namely,
the choice of interdiction set. Practical evaders likely fall far short of the maximum. There-
fore, this paper considers the other limit, namely, the case when the evaders do not respond
to interdictor’s decisions. Section 2 defines this new interdiction problem and section 3
shows that it is NP-hard to solve. Then section 4 introduces an approximate interdiction
algorithm that runs with fast polynomial time and has a provable approximation bound.

2. PROBLEM FORMULATION

The insufficient realism of the classical model represents an opportunity for the devel-
opment of better interdiction models which would have the additional advantage of being
solvable on much larger networks and this is the project of this paper. The formulation
can be motivated by the following interdiction situation. Suppose bank robbers want to
escape from the bank at node s to their safe haven at node ¢. The authorities are able to po-
sition roadblocks at a few of the roads on the network between s and ¢. The robbers might
not be aware of the interdiction efforts, or believe that they will be outrun the authorities.
They certainly do not have the time or the computational resources to identify the max-min
solution to the shortest path interdiction problem.

Similar instances of evasion are found for example, when the interdiction is able to
remove the edges/nodes clandestinely (e.g. place hidden electronic detectors), or if the
evader has bounded rationality such as in animal migration. Indeed it may even have no
intelligence of any kind and represent a process such as internet packet traffic that the inter-
dictor wants to monitor. Therefore, our fundamental assumption is that the evader does not
respond to interdiction decisions. This transforms the interdiction problem from the prob-
lem of increasing the evader’s cost or distance of travel, as in the classical formulation, into
a problem of directly capturing the evader as explicitly defined below. Additionally, the ob-
jective function acquires the computationally useful property of submodularity discussed
later.

Evaders. In examples discussed above, much of the difficulty in interdiction stems from
the unpredictability of evader motion. Suppose, then that each evader can be represented
as a Markov process on the network, with transition probabilities M;; between every pair
of adjacent nodes i and j. The stochasticity of this process represents, first, the evader’s
intentional unpredictable movement, and second, the evader’s limited information about
the network topology and the risks/costs along alternative paths. A simple model of this
behavior was recently developed in Ref.et al. [7] (see also [11]). Briefly, the model assumes
that the probability that an evader at node i would traverse i — j depends on the probability
q; of (successful) evasion on the shortest path through this edge to the target. Since the
higher the probability of evasion, the higher the probability it would be taken, the paper

A\ A
supposes that M;; o< (%L) where ¢. is the probability of evasion if the shortest path from

node i to the target ¢ is followed and A > 0 is a parameter. Upon reaching the target the
evader is removed from the graph. An advantage of the model is that it is possible to
significantly speed up the computation of evader motion by assuming that the evader does
not backtrack. For a graphical illustration of evader motion, see Fig.2.1. In general, the
current problem does not depend on any particular stochastic model, and indeed it need
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not be Markovian, even thought it will be assumed to be to simplity calculations. For the
Markovian case, it is sufficient that M has an absorbing state at ¢ [6].

(b)

FIGURE 2.1. Evader motion of an evader on a 3x5 grid graph, starting
at node 0(S) and terminating at node 13(7') based on Ref.[7] with A =4
and no backtracking. (a) probabilities that an evader would pass any one
of the edges, as indicated by edge widths. (b) the M matrix: edge width
gives the probability that an evader would transit the edge from either of
the edge’s ends. In both (a) and (b) no edges were interdicted and the
asymmetries in probabilities are due to different risks on the paths.

Due to uncertainty about the source site of the evader, node i € N has probability a; of
being the source site (Y;cy a; = 1). Specifically, the expected number of times the evader
reaches node i is given by [6]:

(2.1) bi [a-(I-mM)7"],
and the expected number of times the evader reaches edge (i, /) is given by:
22) bi-M;;

In general, multiple evaders may traverse the network, where evader ¢; has likelihood
(weight) w® and is described by a possibly distinctive source distribution, transition matrix
and target node: a® K M* t*. This generalization makes it possible to represent any joint
probability distribution f(s,¢) of source-target pairs, where each evader is a slice of f at a
specific value of ¢. In this high level view, the evaders collectively represent a stochastic
process that connects pairs of nodes on the network, and with which the interdictor attempts
to interfer. This has practical applications to problems of monitoring traffic between any
set of nodes when there is a limit on the number of “sensors”. The underlying network
could be e.g. transportation, internet, or water supply.

Interdictor. The interdictor in this formulation is similar to the classical one in possessing
complete knowledge about the network and all evader parameters parameters a and M.
Interdiction is represented by the variables r;;: r;; = 1if edge (i, j) is interdicted, and zero
clsewhere (the formulation is similar for node inlerdiction). Next let d; ; be the cfficiency
of the interdiction at (i, j). Namely, if edge (i, j} is interdicted and then traversed, then the
evader 1s removed from the graph with probability 4;;. An cquivalent conceptualization
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that preserves the stochastic properties of M 1510 say that instead of reaching the nextnode
and eventually the target, the evaderis redivected to anabsorbing “jail node™ . In monitoring
problems, this redirection does not require the evader 1o be physically removed from the
network because i merely represents a way of talling up traffic that was inspected before
reaching the target,

The feasible interdiction stritegies K are all subsets r < £ such that the cost, c{r) of r
is at most £, In the simplest formulation ¢(r) is just the number of interdicted edges. The
interdiction problem is to find a setr € & s0 as W mininuze the probability of the evader
reaching target r. Equivalently, the task is to maximize the probability J{e. M.rd) of the
evader going 1o the jail node:

(2.3) Ja M. rd) =1 {aw— M—Merod)™

where the symbol “2 is the element-wise Hadamard multiplication (devived from Eqn.2.1).
This could be called the Unreactive Markovian Evader Interdiction (UMED problem:

maxd{a, M, rd)
rER

In the case of multiple evaders, the objective becomes a weighted sum of Eqn2.i: J =
Lo, Wit where 9 is the probability of evader ¢; going to jail. Computation of the ob-
Jective function can be achieved in %]N;‘g time. for each evader, where (¥ is the number
of nodes, because it is dominated by the cost of Gaussian elimination. If M has special
stracture; significant speedups can be achieved a8 in {71,

3, COMPLEXITY OF BOLUTIONS

This section proves a number of technical resulty about the problen - the equivalence in
complexity-of node and edge-interdiction, und the NP-hardness of the optimization prob-
fem.

Lemma. Edge interdiction with any dy; is pelvomially equivalent to node interdiction in
complexing

Proof. To reduce edge interdiction to node interdiction, replace graph G by & where &
is constructed by splithing the edges. That &s; by adding to the middle of each edge {1, J)
in G anode vy and setting dy,; = 9y <£’j) E E‘ where £ ure the-edges of Gand oy 18
0 ()7 E
the interdiction efficiency of {4, /) inE. Conversely. to reduce node interdiction 1o edge
interdiction, construct from G another graph ) by replacing each node v with efficiency
de (i jye N
0 DEN
N are the nodes of G. Nexi, change the transition matrix M of each evader such thay all
fransitions into v Aow move into v* while all depurtures from v now oectir from v dnd

i

Mvmvam ], L

d, by nodes v v** and joining therr with an edge such that 4, T where

The hardness of the UMEL problem siems from the difficulty interdicting edges while
avolding redundancy: it is wasteful to interdict edges on the same evader path. This resem-
bles the Set Cover problem [8] because including an element in two sets s redundant in a
similar way. and this is how reduction is proved.

Theorvem. The UMEI problem is NP-hard even if dy; =constant,
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Proof. First, note that the problem is polynomially equivalent to budget minimization
problem:
m_i;)c(r) st.J(r)=2p

where p € [0, 1] is the minimum allowed interdiction probability. In turn, there is a decision
problem which polynomially reduces to it:

Can we find r such that c(r) < b and J(r) > p?

The lemma implies that it would be sufficient to prove the hardness of node interdiction.
The core of the proof is the demonstration that the NP-complete Set Cover problem poly-
nomially reduces to the decision problem. In the problem one is given elements x; € X,
and a collection of subsets C = {S I ‘Sj- & 2x } and the task is to decide whether there
exist b subsets which would contain all of X. For the reduction, construct a graph G
with nodes labeled S ; for each §; € C. For each element x; introduce an evader x;. If
xi € Ci = {S; € C|x;€5;}, then x; starts at one S € C; and transitions once through each
of the nodes in C;. It is clear that evader x; would be jailed iff at least one of the nodes in its
path, that it, in C; is interdicted. Hence, the interdiction decision problem on H with p =1
(all go to jail) is equivalent finding the set cover. O

FIGURE 3.1. Washington subway map. Interdiction of any station
would catch the evader taking the lines that pass through it. Image
©Colin M.L. Burnett, licensed under GFDL.

The idea in the reduction below is to produce a transportation graph similar Lo the sub-
way system of Washington, Fig.3.1. For each evader there is a subway line which the
evader rides from end to end. “Transfer stations”, that is, stations serviced by multiple
lines are akin to non-singleton subsets whose interdiction would catch all the evaders tak-
ing any of the connecting lines. The set cover problem is exactly problem of finding b
stations of any kind which would interdict all the lines.

In general, the cost ¢; of interdicting a node or edge i may depend on i. If so, the hardness
of the problem is even easier to prove through reduction to the knapsack problem: Given
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values v; and costs ¢;, construct the UMEI problem on a star graph for a suitable M: Make
the central node the target and choose a, M so that probability flows of the evader through
edge i give v; (up to normalization).

4. AN EFFICIENT INTERDICTION ALGORITHM

The UMEI problem can be efficiently approximated using a greedy algorithm by ex-
ploiting submoduiarity. We prove this property for UMEI, construct a greedy algorithm
and prove its performance. We then show that the solution speed can be further improved
by exploiting submodularity once again.

A function is called submodular if the rate of increase decreases monotonically, which
is ukin to concavity. Formally:

Definition. A function f: S — R where S is a subset of some space R is submodular [12]
if for any subsets S| C S, C R and any X C R it satisfies

FSUX)=f(S1) 2 f(S2UX) = f(S2)

Consider now how the weighted probability J(r) of the evaders being sent to jail changes
as the number of interdicted edges increases. This probability is a weighted sum of the
number of paths from the source nodes to the target nodes that cross an interdicted edge.
Consider now two cases: in case one the edges S| have been interdicted and in case two
S> D S; edges have been interdicted. If X is any set of edges (some possibly interdicted
already), then with S; at least as many but maybe more paths cross X as compared with S;.
This is because with a smaller interdiction set, not fewer and maybe more paths reach X.
This means that the gain from adding X to the interdiction set is at least as large but maybe
larger when the set is S| as compared to S>. Hence:

Lemma. J(r) is submodular on the set of interdicted edges, r.

Note that the proof crucially relies on the fact that the evader does not react to interdic-
tion. If it did, then the larger interdicted set S2 may actually redirect the evader towards
paths that cross X, increasing their number and likelihood more so than Sy. Incidentally, f
has a non-decreasing property, but will not need this.

Submodularity has a number of important theoretical and algorithmic consequences.
Suppose, as is likely in practice, that the edges are interdicted in steps / = [,2,3,... such
that the interdiction set S; at step / is contained by S|, the set at step [+ 1. Moreover,
suppose at each step /, the interdiction set S; is grown by adding the one edge that gives
the greatest increase in J giving in the following algorithm:

Algorithm. Greedy construction of the interdiction S with budget b
S—0
while b > 0:
For each element E; € G\ S : Compute A(E;) = J (SU{E;}) —J(S)
S« SU{argmaxg, A(E,) }, resolving ties arbitrarily.
be—b—1

The computational time is O(b|N[*|E|) for each evader, which is polynomial, but it
could be improved further: the A(E;) for the initial step only could be computed for all
edges simultaneously by determining the probability How f; through each edge and multi-
plying by d;, the interdiction efficiency.
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Solution Quality. The quality of the approximation can be bounded as a fraction of the
optimal solution by exploiting the submodularity property. Consider the following: if Sj
is the optimal interdiction set within budget b, then the first edge E; found by the greedy
algorithm provides a gain that is not less than the average gain for all the edges in S}, that

is, A(E)) > j——(;j‘—’\ A similar idea for all subsequent edges could be use to show that the

solution Si with a greedy algorithm satisfies

55> (1- 1) 9055

where e is Euler’s constant [12]. Hence, the greedy algorithm achieves at least 63% of
the optimal solution. Intuitively, submodularity implies that most of the gains in interdic-
tion would be attained by edges interdicted in early steps and thus ever a myopic greedy
algorithm is able to capture a large fraction of this gain.

Exploiting Submodularity with Priority Evaluation. In addition to its theoretical util-
ity, submodularity can be exploited to improve performance as follows. The basic greedy
algorithm recomputes the A;(E;) for each edge E; € G\ §; at each step /. However, sub-
modularity implies that the gain A/(E;) from adding any edge E; to the interdiction set at
step / is not greater than the gain Ai(E;) computed at any earlier step k (< [). Therefore,
if for some edge Ej, A/(E;) > A(E;) for all E; and any past step k; < [, then E; is the
optimal edge at step / - there is no need for further computation (as was suggested in a
different context by Ref.[9]). As a result, on average it would not be necessary to compute
A(E;) for all edges E; € G~ S at every iteration. Rather, the computation should prioritize
the edges in descending order of A. This “priority” or “lazy” evaluation algorithm is easily
implemented with a priority queue which stores the gain A(E;) for each edge, as well as the
step k at which it was last calculated (the latter informing whether it needs to be updated.)'

The performance gain from this improvement can be dramatic: in many computational
experiments, the second best edge from the previous step was the best in the current step.
Frequently, only a small fraction of the edges had to be recomputed at each iteration.
However, in the worst case the gains would all need to be recomputed, so the speedup
would vanish. In order to better gauge the improvement in performance, the algorithm
was run on a highly synthetic hard interdiction problem, as follows. The transportation
graph was a 10x10 unweighted grid with the boundary nodes connected to make the graph
periodic, and then 10 random ties were added to simulate jumps - a total of 110 edges.
There was a single highly-randomizing Markov evader (based on the model of Ref.[7],
with A = 0) with source nodes uniformly distributed over the graph. The interdictor had a
budget of 10 edges, where each interdiction cuts the flow in half (d;; = 0.5). It was found
that the solution required just 33 evaluations of A in the priority evaluation scheme, instead
of the 991 = 149-110 in the simple algorithm: a speedup by a factor of 30 (¢f. [9]). When
the budget was reduced to 5, the speedup was a factor of 25.

5. FURTHER WORK

The submodularity property of the UMEI problem developed above provides a rich
source for algorithmic improvement. In particular, there is room for and value in more effi-
cient approximation schemes. Simultaneously, it would be interesting to classify the UMEI
problem into a known approximability class and to prove its hardness even when there is
Jjust one evader. Of more practical interest would be to investigate various trade-offs in

I'The source code is available from the authors.
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the interdiction problem, such as the trade-off between quality and quantity of interdiction
devices, as well as to quantify the loss of accuracy in problems where the evader is able to
respond to the interdiction decisions, even if suboptimally.
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