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LEAST-SQUARES FINITE ELEMENT METHODS FOR QUANTUM
CHROMODYNAMICS

J. BRANNICK!, C. KETELSEN?, T. MANTEUFFEL?, 8. MCCORMICK?

Abstract. A significant amount of the computational time in large Monte Carlo simulations
of lattice quantum chromodynamics {QCD) is spent inverting the discrete Dirac operator. Unfor-
tunately, traditional covariant finite difference discretizations of the Dirac operator present serious
challenges for standard iterative methods. For interesting physical parameters the discretized op-
erator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic
multigrid (AMG) methods have been shown to be effective preconditioners for Wilson’s discretization
[1} [2] of the Dirac equation. This paper presents an alternate discretization of the Dirac operator
based on least-squares finite elements. The discretization is systematically developed and physical
properties of the resulting matrix system are discussed. Finally, numerical experiments are pre-
sented that demonstrate the effectiveness of adaptive smoothed aggregation (aSA ) multigrid as a
preconditioner for the discrete field equations resulting from applying the proposed least-squares
FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics

(QED).

Key words. quantum chromodynamics, lattice, finite element, multigrid, smoothed aggregation
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1. Introduction. Quantum Chromodynamics (QCD)} is the leading theory in
the Standard Model of particle physics of the strong interactions between color charged
particles {quarks) and the particles that bind them {gluons). Analogous to the way
that electrically charged particles exchange photons to create an electromagnetic field,
quarks exchange gluons to form a very strong color force field. Contrary to the
electromagnetic force, the strong force binding quarks does not get weaker as the
particles get farther apart. As such, at long distances {low energies) quarks have
not been observed independently in experiment and due to their strong coupling,
perturbative techniques, that have been so successful in describing weak interactions in
Quantum Electrodynamics (QED), diverge for the low-energy regime of QCD. Instead,
hybrid Monte Carlo (HMC) simulations are employed in an attempt to numerically
predict physical observables in accelerator experiments [6].

A main computational bottleneck in an HMC simulation is computation of the
so~called fermion propagator; another name for the inverse of the discrete Dirac op-
erator. This process accounts for a large amount of the overall simulation time. For
realistic physical parameter values, the Dirac operator has random coefficients and is
extremely ill-conditioned. The two main parameters of interest are the temperature
{73 of the background gauge field and the quark mass {m). For small temperature val-
ues {5 < 5}, the entries in the Dirac matrix become extremely disordered. Moreover,
as the quark mass approaches its true physical value, the performance of the commu-
nity standard Krylov solvers degrades; a phenomenon known as erétical slowing down.
As a result, the development of sophisticated preconditioners for computing propaga-
tors has been a priority in the QCD community for some time. Recently, multilevel
preconditioners like algebraic multigrid (AMG) have proved to be especially effective

at speeding up simulation time [1] [2].
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2 Brannick et. al.

While these works have focused mainly on the task of developing better iterative
methods for traditional discretizations of the continuous Dirac operator, it is also im-
portant to investigate alternate discretizations as a way to decrease the computational
cost of QCD simulations.

In the remainder of §1, we introduce the continaum Dirac equation for the full
QCD model. We then describe the simplified 2D Schwinger model of QED, which will
be the focus of the rest of this paper. In §2, we discuss the challenges presented by
the discrete Dirac equation. We discuss traditional finite difference discretizations of
the field equations, and their undesirable properties. The least-squares discretization
of the Dirac equations is developed and several important properties of the resulting
system are discussed, including gauge covariance of the propagator, chiral symmetry,
and the problem of species doubling. In 83, we describe the use of an adaptive
algebraic multilevel method as a preconditioner for the solution process. Finally, in
§4, we make some concluding remarks.

1.1. The Continuous Dirac Operator. The Dirac equation is the relativistic
analogue of the Schrodinger equation. Depending on the specific gauge theory the
operator can take on several forms, the most general form of which is given by

d
D= ¥ ® (8, —iA,) ¢+ myp. (1.1)

=1

Here, d is the problem dimension, the y*’s are matrix coefficients, 8, is the usual
partial derivative in the x, direction, m is the particle mass, and A4, (z) is the gauge
field representing the force carriers. Operator D acts on 1 : R?  C* @ C3, a tensor
field (multicomponent wavefunction) describing the particle. These symbols take on
different values and dimensions depending on the gauge theory. In full QCD, d = 4
(three spatial and one time dimension), ¥* are the 4 x 4 anticommuting complex Dirac
matrices, A, (x) € su(3) are 3 x 3, traceless, Hermitian matrices that describe the
gluon felds. We mention in passing that the unknown function, ¥, is a 12-component
wavefunction with each component corresponding to a quark with a specific color
(red, green, or blue), spin (up or down), and energy (positive or negative).

The Dirac equation does not necessarily have to describe the behavior of quarks,
specifically. In general, it can describe the behavior of any fermion, including elec-
trons. Because of the considerable complexity of the full QCD model, it is common
practice to consider the simplified 2D Schwinger model of QED [1], which models
the interaction between electrons and photons, when developing algorithms for QCD.
In this case, only two spatial directions are considered, the particle wavefunction, 1,
has only two components (spin-up and spin-down), and the photon field, A, (), is
a real-valued scalar. Though an extreme simplification, the discrete Dirac operator
agsociated with the Schwinger model presents many of the same numerical difficulties
found in the full physical model.

1.2. Model Problem. Let the domain be I' = [0,1] x [0,1], and let V, be the
complex-valued periodic functions in H'(I'). We introduce the shorthand notation
V, = (8, —1.A,) for the ;*" covariant derivative. The continuum Dirac equation for
the 2D Schwinger model with periodic boundary conditions is given by
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DAY=V, +nVy+ml¢Yp=f inT, (1.2)
¥(0,y) = ¥(1,y),
Tr/)(x,()) = y(z,1),

where A(z,y) = [A; (z,9), 4 (z,9)|" is the periodic gauge field, and v (z,y) =
[ (z,9) , ¥a (z,9)] € V2 is the fermion field with 1, and 44 representing the spin-
up and spin-down particles, respectively. In 2D, the y-matrices correspond to the
Pauli spin matrices of quantum mechanics. They are

Jo 1 [0 —i
’Yl' 1 0 b ’YQ—' ‘i O M

Note that (1.2} appears in matrix notation as

m Vx — iV U:'u — fu ‘
{VI‘HV?J U yl[wd:[“{fd] (13)

A word on notation. In this paper we use three different types of objects: contin-
uum functions, finite element functions, and discrete vectors. Continuum functions
are represented by scripted and Greek symbols, as in A, f, and 7. Finite element
functions are represented by the similar symbols, but with a superscript k, as in A,
f*, and 9". Finally, discrete vectors appear with an underbar, as in A, f, and .
Operators in the continuum are denoted by scripted symbols, as in D, while discrete
operators will be represented by bold symbols, as in . In any case, the nature of the
operator should always be clear from the context.

2. The Discrete Dirac Operator. One computationally intensive part of a
QCD simulation is the repeated solution of linear systems of the form

DAy =1,

where DD is the matrix Dirac operator. Solution of systems of this type are needed both
for computing observables and for generating gauge fields with the correct probabilistic
characteristics [2]. In these processes, I must be inverted numerocus times with many
different right hand sides and gauge configurations. Because the background fields
must be varied, the entries in the matrix themselves change throughout a simulation.

In the discrete setting, I' is replaced by an n x n periodic lattice. Let N, be
the space of discrete complex valued vectors with values associated with the sites on
the lattice. Then, the continuum wavefunction ¢ becomes ¥ = [¢,,, ¥,;]t € N, f, which
specifies complex values of both the spin-up and spin-down components of the fermion
field at each lattice site. Similarly, the source term, f, becomes f = | iu, f d]t € J\fc2
Let £ be the space of discrete real valued vectors with values associated with the
lattice links. The continuum gauge field A becomes A = [4,,4,]" € &, where 4,
specifies the values of the gauge field on the horizontal lattice links, and A, specifies
the values of the gauge field on the vertical lattice links.

Traditional discretization methods for the Dirac operator are based on covari-
ant finite differences (CoFD) [9]. Formulations of this type are problematic from a
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computational perspective because they frequently introduce numerical instabilities
into the solution process, which are sometimes remedied by adding artificial stabi-
lization terms. Furthermore, the resulting discrete operator is not usually Hermitian
and positive definite. It is standard practice to solve the discrete form of the normal
equations,

D*Dy =D*f (2.1)
rather than treating the original system directly. This decreases the efficiency of the
simulation since D*ID has a larger stencil than D and a potentially larger condition
number. The proposed discretization, based on least-squares finite elements, produces
a discrete operator that is hermitian positive definite (HPD) and has a smaller stencil
what than the CoFD method produces.

2.1. The Least-Squares Discretization. We formulate the solution to (1.2)
in terms of a minimization principle:

o
o
S

g in IDy — Fli2
P argég%?i v — flIg, (

where V. is the space of continuous, periodic, complex-valued, H' functions defined
previously. Eq.(2.2) is equivalent to the weak form

Find ¢ € V2 s.t. (Dg,Dv) = (f,Dv) Vv eV, (2.3)

where (-, -} is the usual L? inner product. If ¢ is sufficiently smooth, (2.3) is
formally equivalent to

Find ¢ € V2 s.t. (D*Dy,v) = (D*f,v) W e Vi

Thus, we can think of the least-squares formulation of the problem as being loosely
equivalent to solving the continuwm normal equations, D*Dy = D* f, by the Galerkin
method. Looking at the formal normal operator, D*D, can often give insight into the
potential success of the least-squares formulation:

oy m -V +1Vy, m Ve —iVy
DD““[-—vx—wy m Hvx-mvy m
[mPoviove 0
= 0 m? — V2 -V

In the Schwinger case, the formal normal has uncoupled Laplacian-like operators
on the main diagonal. Though these are not simple constant coefficient Laplacians
{because they include the random background fields), their Hermitian positive definite
scalar character should lend themselves to a more efficient treatment by multigrid
methods.
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The least-squares solution is obtained by requiring that the minimization problem
posed in (2.2), and thus, the weak form given in Eq.(2.3}, hold for all functions in a
finite-dimensional space Vf C V.. That is, our solution must satisfy

Find ¢ € (V") st. (D", Do) = (f, D) vl e (VM. (24)

In analogy to the nodal setting, each elementary square on the lattice, or plaquette,
is represented by a quadrilateral finite element. We equate any f € NCZ with the

bilinear function f* € (Vél)z, where Vb = span{q&j}?il is taken to be the space
of periodic bilinear finite element functions over the complex numbers. Here, ¢; is
the usual bilinear nodal basis function associated with lattice site x;. Similarly, we
equate any A € &£ with A® € W', where W" is the Nedelec space over the real
numbers. In this context, the z-component of the gauge field, A%, is represented by a
linear combination of edge functions, associated with the horizontal lattice links. The
corresponding basis functions are constant along the link, and have support only in
the elements above and below. They take on the constant value 1.0 on the link, and
are linear in y, decaying to 0.0 at the opposite horizontal links in their shared elements
(see Figure 2.1a). The basis for the y-component, A%, is similar, but oriented on the
vertical links (see Figure 2.1b) [8].

The maps between members of the discrete spaces NV, and £, and the finite element
spaces V({f and W", are quite trivial. To see this, let

N

f= fj and f"=>"b¢;.
. j=1

f n?
Note that f; is the value of the discrete field at the j'* lattice site, and the finite
element field, f", takes on the value b; at the j** lattice site. In order for the two
field desecriptions to be consistent, we must have f; == by, 7 =1,... ,n?. Thus, the
mapping between A, and Vél is simply the bijective identity map between the entries
of the nodal vector and the coefficients of the finite element function. A similar
analysis shows that the same relationship holds between the gauge field edge values of
A € € and the coeflicients of the Nedelec representation of the gauge field A" € Wh.
‘We wish to use the least-squares formalism described above to approximate the
solution of (2.1). This process should accept source data, f, defined on the nodes, and
gauge field data, A, prescribed on the lattice links, and return the discrete wavefunc-
tion %, defined at the nodes. We do this by mapping f and A into their respective
finite element spaces , solving the weak formulation (2.4), and mapping the resulting
finite element solution back to j\f’f. This process is summarized in Algorithm 1:
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ALGORITHM 1: Least-Squares Dirac Solve
o Input: Gauge field A, source term f.
o Outpul: Wavefunction .
1. Map A+ Ah e W,
. Map f fhe (Vé‘)g
. Find ¢t € (V1) st (Dyh, Doh) = (£, Duh) ol e (V1)
where A = A‘g.
4. Map P v ¢ € NZ.

2
3

It is not immediately obvious how to implement the solution of the weak form
(2.4), which appears in Step 3 of Algorithm 1. Using the nodal basis for Vé‘, we can
establish the following matrix equation for this process:

Au = Gb,
where the entries in vectors u and b are the coefficients in the expansions of ¥/* and

fP, respectively, and the elements of the matrices are given by

[Al; ¢ = (Ddw, Déy) (2.5)
(G, x = (¢x, D5} (2.6)

Then, Step 3 in Algorithm 1 can be replaced by computing

and setting

’Lf)h = Z%j@j.
F=1

Recalling the relationship between the entries of ¥ and f, and the coefficients in the
expansion of ¥* and f", we see that Steps 2-4 in Algorithm 1 can be replaced by

v =A"'GJ. (2.7)

It is easy to see that, for m > 0, both A and G are nonsingular. For A, note that
by construction A is Hermitian positive semi-definite and if it were singular, then the
original Dirac operator would be singular on some element of (V;‘)g. Also, note that,
from the form of the formal normal, it is clear that A is block-diagonal. That is,

A= { f [}u. (2.8)

To see that & is nonsingular we look more closely at the block form of G. Recall the
matrix form of the continuous Dirac operator given in (1.3). Then,
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mM B, —iB,

G= B, +iB, mM

(2.9)

where

[]k:< >
]k'"<kv"c¢1>
Ehz(@ Vyds).

Notice that & is a skew-Hermitian matrix shifted by mJZ. Thus, all eigenvalues of G
are of the form m -+ is for some s € R.

2.2. Gauge Covariance of the Quark Propagator. A desirable property of
any QCD {or QED) theory is that the fermion propagator must transform covariantly
under local gauge transformations. These local transformations can be thought of as
redefining the coordinate system of the background gauge field at different points in
space. In full QCD, for instance, applying a gauge transformation to wavefunction
1 at position z changes the color reference frame at that particular point. A trivial
example would be if the roles of blue and red particles where switched at one or several
points in the domain.

Suppose we have a fermion field, ¥, defined in a color reference frame, C. Now
suppose we are given a gauge transformation, Q(z) € SU(3), that transforms the
field into a new reference frame, C, according to ¥ v 2 {z)¢. Note that elements of
SU(3) are 3 x 3 unitary matrices with determinant 1. Propagator D~! transforms
covariantly if, given Q (z), it is possible to specify a modified propagator, 2’5‘& such
that applying D! to a field in € is equivalent to applying the original propagator to
the field in C and then transforming the result to C. In other words, given Q (2), we
must be able to specify D! such that

D @)y = Q(z)D Yy

It should not be surprising that the correct transformation of D! requires mod-
ifying the background gauge fields that the Dirac operator is built upon. 1t is helpful
to look at an example of this concept in the 2D Schwinger model of QED, where the
gauge transformation comes from U(1). That is, the gauge transformation, £ {x, vy},
is a complex scalar with unit magnitude.

EXAMPLE 1. Counsider the continuum 2D Schwinger model. From (1.1) the
Dirac operator is

m Vg, —1iVy

D=V, +7V, +tml]= V. +iY, o ,

(2.10)

where V, and V; are the covariant derivative in the z, and y directions, respectively.
We want to show that, given a U(1) transformation, © (z) = ¥ we can modify
the covariant derivative operators, V,, V,, so that the propagator, D~!, transforms
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covariantly. Here, f is a real-valued periodic continuous function in H'. We denote
the space of such functions by V, C V.. To see this, set

e 71 Va2 +72Vy + m[]_1 P=£

implying

P =[NV + ¥ Vy + ml] e*ieg,
¥ =V (e77) + 12V, (e77€) +me ¢,
= (0 — 1A (€77€) + 72 (O — ia) (7€) + me™ %,
¥ =7 [ (8 - AL+ 0:}) + 92 (B — A +6,)) + S,
(2.11)

where 0, = 0.6 and 0, = 8,6. Thus,

— —~ " -1
[fnvm + 72 Vy + ml} e“gyﬁ = €,

implying

[@fl%erwgﬁg—ka} e = e |41V + 72V, + mI] .

This shows that if fermion field ¥ is transformed according to % — (¥4, then the
gauge field must transform as A +— A + V6 to obtain covariance.

A simple consequence of these facts is the following: suppose we are given con-
tinuum data A and f. Then we define the related gauge field and source terms
A= A+V0and f = ¢ f. It is easy to check, using the principle of gauge covariance,
that if + is the solution to the continuum Dirac equation with data A and f, then
the solution with the modified data should be 7 = ey, We use this fact as a basis
for a test of the gauge covariance of our discrete algorithm.

EXAMPLE 2. Consider the continuum Dirac equation with gauge field A,
which we write as

D(A)Y = f. (2.12)

Now, suppose we compute a Helmholtz decomposition of the gauge field A such that

A= Ag + Vuw,

where Ap is divergence free and w € V,. Then (2.12) becomes

D (Ao + V) = f, (2.13)

to which the solution is
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W = [D(Ap+ Vw) ' f. (2.14)

Rewrite the source function as f = ¢™g for some g € V,. Then (2.14) becomes

=D (Ag+ V)] g, (2.15)

But, from gauge covariance of the propagator, we know that

P = e [D(A)] ' g,

implying

Now, suppose that we wish to solve the same problem but with rotated data. In this
case the Dirac equation becomes

D(Ay) = f. (2.16)

The Helmholtz decomposition of A s

A= Ay + Vw + V8,

and the Dirac equation becomes

D( Ao+ Vw + Vo) = f. (2.17)

Writing the source term as f: e 07 the solution becomes

¢ = [D(Ag + Vw + V)] ! ety (2.18)

Again, by gauge covariance, the solution becomes

g = et D (A)] 77,
implying
QE: ei(w-i—é?) {@ («AOH“] e—z’(w»{»@)f
= e {e™ [D (Ao)] " e f}.

Thus, ¥ = ¢4, as desired.
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The key to retaining this property in the discrete setting is that the quark propa-
gator, computed in both cases, is constructed with the same gauge field, Ay, and the
same source term, e~ * f. As such, we must be able to efficiently compute a discrete
Helmholtz decomposition of the gauge field, A®. Fortunately, the choice to represent
the gauge field by Nedelec elements makes this fairly easy. Given any A® € W", there
exists a unique ¢" € V" such that

Al = A§ +th,

where ¢" € V}g is a bilinear function and A2 is characterized by the property that

(Af, V") =0 W € VI (2.19)

A vector in V" that satisfies (2.19) is known as a weak curl [8]. The decomposition
can be accomplished by solving the least-squares problem

h : h hi2
= arg min [|A" — Vv iE, {2.20
q gvhevg [ llo \ )

which is equivalent to the weak form

(V" Vo) = (A" Vo) Wl e Vi

This weak formulation yields a linear system that is equivalent to that involved in
the solution of Poisson’s equation with periodic boundary conditions using a Galerkin
finite-element method. It is easily solved by standard geometric multigrid methods.
Now we write down a new discrete algorithm which is gauge covariant. First,
given ¢ € N, C N, defined on the lattice sites, let ©, be the n® x n? complex-valued
matrix with the quantity e*% in the j** diagonal position, and 0.0 elsewhere. Notice
then, that 7 is also diagonal, and has e~ in the j** diagonal position. Both 9,
and Q; are unitary matrices. B

ALGORITHM 2: Gauge Covariant Least-Squares Dirac Solve
o Input: Gauge field 4, source term f.
e Output: Wavefunction 1.

Map A — A" ¢ Wh.
Compute A® = A} + Vgt
Map ¢* — q.

Set g =Q; f andg, =
Map g — g" € Vf') .
Find ¢" € (V1)” st (Dgh, Duh) = (g, DuP) Wk € (VY
where A = Ag.

Map ¢" — ¢ ¢ NZ.

Set Qu = Qg Qu and ?Qd = Qg Q’d‘

> o

o

Note also that Steps 5-7 can replaced by the familiar matrix operation
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¢ =A"'Gyg, (2.21)

where matrices A and G were constructed using the grad-free gauge field, A,

There is significant motivation for formulating the discrete algorithm in a gauge
covariant way, despite the minor increase in computational cost, due to the Helmholtz
decomposition. In the Monte Carlo process it is desirable to generate gauge fields that
are statistically distinct from one another. 1f one gauge field can be generated from
another through the application of local gauge transformations, then we say the two
configurations are in the same equivalence class. Formally, given g € N, define
[Asq, Ayq]T € € such that

Gy 9 .
[Axg:‘l(k-}—lf?‘l) - h ! (2'22)

where g, ,, is the value of g associated with the k* lattice site in the z-direction and
* the 1** lattice site in the y-direction. The subscript (k + 1/2,1) indicates that the
value is associated with the lattice link between the lattice sites (k,1) and (k -+ 1,1).
Similarly, define

q ~ Qe
[A B 2.23
- yﬂ(k,eﬂ;z) h ( )

DEFINITION 1: We say the pairs (¢, A) and (:u_, _;1“) are in the same equivalence
class if there exist ¢ € N, such that

) D R

and
~ — ~ 7t t
A=A, &) = (A +809, 4+ 800"

THEOREM 1: Suppose (f, 4) and (z, g) are in the same equivalence class.
Then, Algorithm 2 yields i and if} such that

. ; ¢ 7 51
W= (3211,7&(1] = {Qf}_ EQU’ Qg:lgd} Y

PROOF: The proof follows directly from Definition 1 and the development of
Algorithm 2. [
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2.3. Chiral Symmetry. In the broadest sense, chiral symmetry is a global
symmetry property that, in the massless case, independent transformations of the
spin-up and spin-down fields do not change the physics of the model. This property
is manifested mathematically by setting m = 0, and assuming that 1 is the solution
of the continuous Dirac equation with source term f. That is, assume

:DOI/):ﬂ

where Dy is the massless Dirac operator in the continuum. Next, define a global
transformation 2, such that

et
Q =[ 0 et |-

Then, define rotated wavefunction, 1; = Q), and rotated source term, ]?= Qf. We
say that our theory has chiral symmetry if

Dot = f. (2.24)

It is important to note the difference between the requirements of chiral symmetry
and those of gauge covariance. First, we are not permitted to alter Dy to make {2.24)
hold. Second, chiral symmetry is a global symmetry, which is why 6, and 84, in the
definition of , do not have spatial dependence. All spin-up and spin-down fields are
rotated by the same transformation at each point.

In the discrete setting, we recall that solving the Dirac equation amounts to
solving the matrix equation

Av = Gf. (2.25)

where, in the massless case,

_ | A O _ 0 B, —iB,
A“{ 0 Agg}’ G_{Bm-FZBy 0 }

Given phase factors 8, 8; € R, define the discrete global transformation € X’
by

1 0
Q.. - { O 6?:9{5 1' .

Where I is the n® xn? identity matrix. We say that our discrete formulation has chiral
symmetry if, given 1 and f satisfying (2.25), rotated vectors ¥ = Qi and f = Qf
also satisfy (2.25). Clearly, this is true in the least-squares formulation. To see this,

AY = G,
AQ*Q ¥ = GQQ f,
QAQY =GR f,
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since, because of their block forms in the massless case, A and G commute with Q.
This implies,

=GQ f,

AQ 0
v =Gl

Aq

as desired.

2.4. Species Doubling. A concern in the numerical analysis of the field equa-
tions for QCD is the problem of species doubling. We illustrate this phenomenon by
returning to the 1D Schwinger model. In CoFD formulations, the massless discrete
Dirac operator in the absence of a gauge field is given by

D=y V. (2.26)

The so-called naive discretization corresponds to the discretization of covariant deriva-
tive V3 using central differences:

bY@ =)

v 2.27
; - (227)
Transforming D into Fourier space, we obtain the dispersion relation
in{ph
R(p) = —i Sneh) (2.28)

h

or, in full matrix notation,

& 0 sin(ph)
R(p) = —1i sin(ph) 8 .
R

The eigenvalues of dispersion relation R are associated with the energy of the system
and are given by

1
E = v ﬁsmz(ph).

For the results to be physical, as the lattice spacing h — 0, we require that the energy
in the system not diverge. In the above expression, this happens when p = 0 or
=7 /h. Note that these frequencies correspond to zeros of the dispersion relation, R{p}.
Also, notice that we do not consider p = +nw/h for n > 1 because modes of these
frequencies cannot be represented on the lattice. The range of possible frequencies,
—w/h < p < w/h, is called the Brillouin zone. The problem arises because the three
physical frequencies p = 0, +w/h correspond to multiple particles described by the
same theory, which is not physical. By periodicity, the particles described by p = n/h
and p = —x/h are the same so this formulation represents two distinct particles when
there should only be one. Hence, the phenomenon is called species doubling [6].
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The usual fix is to add an artificial stabilization term to D. This is the basis for
the Dirac-Wilson operator, which is given in 1D by

h
D =1V} + oy, (2.29)

In the free case, the dispersion relation for the Dirac-Wilson operator looks like

R(p) = _Z.’hSin(ph) n w1 - cos(ph.)]'

s . (2.30)

In this case, p = 0 is still a root of the dispersion relation, but now

R(dr/h) = 5’%“

s0 the Dirac-Wilson operator does not suffer from species doubling. This comes at a
high price however, to avoid species doubling it was necessary to add a nonphysical
term to the operator. Furthermore, the additional term appears on the main diagonal
of I, thus breaking chiral symmetry.

To see if this is a problem for the least-squares discretization, consider (?7), the
general form of the least-squares version of . Since we ignore the gauge field, terms
P*B*BP and P*BB*P are just the usual finite element discretization of the standard
Laplacian. Similarly, terms P*BP and P*B* P are the usual Galerkin discretization
of the first derivative operator. Thus, I} in one dimension becomes

D=y Yiz + h)z—hi&’}(l‘ - h)} - [%")(ﬂf +h) — 2@2(237) + ¢ —h)

The corresponding dispersion relation is given by

1 - cos{hp)] /h‘

Rip) = i sin{hp)

Clearly, p = 0 is the only root of R. In fact, R — oo as p — Zx/h. Thus, the
least-squares formulation does not suffer from species doubling.

3. Numerical Experiments. In this section, we explore the use of a multilevel
iterative method for solving the matrix system (2.21), that takes the place of Steps
5-7 of Algorithm 2. To avoid working in complex arithmetic, we solve the equivalent
real formulation of Eq. (2.21):

A

where X, Y are real-valued matrices satisfying A = X+1Y, ¢ = z+1iy, and Gg = a-+ib.

(3.1)

w R
| S——
I
rom——
o &
f A— |
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3.1. Smoothed Aggregation Multigrid. We wish to use a multilevel method
to solve {3.1). Multigrid methods are a class of iterative algorithms used to solve
linear systems of the form Aw = f that can be shown to be optimal in the sense
of accuracy gained per computational cost. Multigrid methods rely on two comple-
mentary processes to reduce the error in each successive iterate. Relaxation is a local
process that reduces a large portion of the error in a relatively inexpensive way. Error
that relaxation fails to adequately reduce is called algebraically smooth. Coarse-grid
correction is a global process that is designed to coruplement relaxation by reducing
the algebraically smooth error. This process works by doing relaxation on a fine grid
until only smooth error remains, and then moving to a coarser-grid and solving for a
lower dimensional representation of the error. The coarse grid approximation to the
error is then taken back up to the fine grid through an interpolation process and used
to correct the approximate there. The success of the coarse-grid correction process
depends on how accurately smooth error modes can be represented on the coarse grid.

For many problems in the physical sciences, the algebraically smooth error modes
are geometrically smooth as well. Standard geometric multigrid methods are usually
very effective at solving these problems. Unfortunately, due to the random nature of
the background gauge fields in QCD, the smooth error modes are in no way geomet-
rically smooth. In Figure 3.1, we see that both the real and imaginary components
of the smooth error are highly oscillatory. These plots were obtained by applying 100
iterations of Gauss-Seidel on the problem A¢ = 0 with a random initial guess.

Fig. 3.1: Real and complex components of algebraically smmooth error of A for m = 0.1,
8 =2 and N = 16. Error was computed using 100 iterations of Gauss-Seidel on
Ag = 0 with a random initial guess

Smoothed aggregation multigrid (SA [3]) is a multilevel solver that is based on
algebraic smoothness as an abstraction of the property of geometric smoothness
used in conventional multilevel algorithms. Given prototype representations of al-
gebraically smooth error, SA automatically builds intergrid transfer operators that
attempt to represent all smooth error modes on coarser grids, regardless of their geo-
metric smoothness. Unfortunately, this requires a prioré knowledge of the prototype
modes. Randomness of the background fields in QCD applications causes the na-
ture of the smooth error to vary widely between different gauge configurations and,
in any case, little is known about their local character. We turn instead to adap-
tive smoothed aggregation multigrid (aSA [4]), which uses a setup procedure to first
expose these problematic error components, and then builds a multigrid process to
effectively reduce them.
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3.2. Results. Table 3.1 reports convergence factors of conjugate gradients (CG)
preconditioned by aSA applied to the homogeneous version of {3.1) for various values
of the particle mass, m, and gauge field temperature 5. The aSA preconditioner was
based on V{2,2)-cycles and 3 grid levels. The aggregation process was performed
algebraically and the relaxation scheme was nodal Gauss-Seidel. Finally, 8 prototype
error components were found during the adaptive setup process and used to define
the intergrid transfer operators in the V-cycle. A single V(2,2)-cycle was used as the
preconditioner in the CG solve. For comparison, convergence factors for diagonally
preconditioned CG are also provided in Table 3.1.

B/m ] o1 | 1 | 3 |
2 |21/ 0820/ 94] 20/ .94
3 || .25/ .98 | 24795 22/ 94
5 || 23/.97] 23/.94 21/ 93

Bm 01 | 1 | 3 |
2 || .32/.98.317.96 32/ 94

3 [ 36799 .34/ .95 .34/ 95
5 | .32/.96| 38794 41/ 92 |

Table 3.1: Average convergence factors for aSA preconditioned CG and diagonally
preconditioned CG applied to (2.21) on 64 x 64 {top) and 128 x 128 {bottorm) lattices
with varying choices of mass parameter m and temperature 3.

Notice that, as mass parameter m is decreased, the performance of the solver remains
fairly static. This is an important result because it means that the problem of critical
slowing down has been greatly reduced. :

In addition to good convergence rates, our formulation generally improves compu-
tational cost per multigrid cycle over conventional solvers applied to {2.1) by avoiding
the added complexity of these discrete normal equations. Our least-squares approach
does form normal equations, but more effectively on the continuum Dirac operator
only, without the additional stabilization term. Discretizing the continuum normal
equations in this way results in a stencil that has only the nearest-neighbor connec-
tions typical of a second-order operator, in contrast to the wider and more compli-
cated stencils for the normal equations of the Dirac-Wilson matrix. As a result, the
least-squares matrix is more compact and has about 30% fewer nonzeros than the
Dirac-Wilson matrix.

Also, the operator complexity in the multigrid cycle based on the least-squares
formulation is significantly better than those observed in formulations based on CoFDs
[1]. The operator complexity is defined as the ratio of the total number of degrees of
freedom on all grids in the multigrid hierarchy to the number of degrees of freedom on
the finest grid. This number indicates how much work has to be done on the coarse
grids compared to that on the fine grid. For the lattice sizes that were tested in these
experiments operator complexity stayed bounded below 1.5, a very satisfactory result.

4. Conclusions. We described a discretization of the continuous Dirac equation
for the 2D Schwinger model of QED based on least-squares finite elements. The for-
mulation avoids several pitfalls of traditional discretizations based on covariant finite
differences by producing a discrete operator that is Hermitian, positive definite, and
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extremely sparse. We argued that it retains a sense of global chiral symmetry and
avoids the need for irrelevant stabilization terms by not suffering from species dou-
bling. Furthermore, we show that the resulting discrete system can be handled quite
effectively by conjugate gradient with adaptive smoothed aggregation as a precondi-
tioner.
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