
Approved for public release; 
distribution is unlimited. 

~A 
iLosAlamos 

NATIONAL LABORATORY 
--- EST.1943 ---

Title: LEAST-SQUARES FINITE ELEMENT METHODS FOR 
QUANTUM CHROMODYNAMICS 

Author(s): J. BRANNICK 
.C.KETELSEN 
T.MANTEUFFEL 
S. MCCORMICK 

Intended for: JOURNAL: 
SIAM JOURNAL ON SCIENTIFIC COMPUTING 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE·AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish: as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



l 2 

LEAST-SQUARES FINITE ELEMENT METHODS FOR QUANTUM 
CHROMODYNAMICS 

J. BRANNICKl, C. KETELSEN2, T. MANTEUFFEL2, S. MCCORMICK2 

Abstract. A significant amount of the computational time in large Monte Carlo simulations 
of lattice quantum chromo dynamics (QCD) is spent inverting the discrete Dirac operator. Unfor­
tunately, traditional covariant finite difference discretizations of the Dirac operator present serious 
challenges for standard iterative methods. For interesting physical parameters the discretized op­
erator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic 
multigrid (AMG) methods have been shown to be effective preconditioners for Wilson's discretization 
[1] [2] of the Dirac equation. This paper presents an alternate discretization of the Dirac operator 
ba.'5ed on least-squares finite elements. The discretization is systematically developed and physical 
properties of the resulting matrix system are discussed. Finally, numerical experiments are pre­
sented that demonstrate the effectiveness of adaptive smoothed aggregation (o:8A ) multigrid as a 
preconditioner for the discrete field equations resulting from applying the proposed least-squares 
FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics 
(QED). 

Key words. quantum chromodynamics, lattice, finite element, multigrid, smoothed aggregation 

AMS subject classifications. 81 V05, 65N30, 65N55 

1. Introduction. Quantum Chromodynamics (QCD) is the leading theory in 
the Standard Model of particle physics of the strong interactions between color charged 
particles (quarks) and the particles that bind them (gluons). Analogous to the way 
that electrically charged particles exchange photons to create an electromagnetic field, 
quarks exchange gluons to form a very strong color force field. Contrary to the 
electromagnetic force, the strong force binding quarks does not get weaker as the 
particles get farther apart. As such, at long distances (low energies) quarks have 
not been observed independently in experiment and due to their strong coupling, 
perturbative techniques, that have been so successful in describing weak interactions in 
Quantum Electrodynamics (QED), diverge for the low-energy regime of QCD. Instead, 
hybrid Monte Carlo (H~1C) simulations are employed in an attempt to numerically 
predict physical observables in accelerator experiments 

A main computational bottleneck in an HMC simulation is computation of the 
so-called fermion propagator; another name for the inverse of the discrete Dirac op­
erator. This process accounts for a amount of the overall simulation time. For 
realistic physical parameter values, the Dirac operator has random coefficients and is 
extremely ill-conditioned. The two main parameters of interest are the temperature 
(f3) ofthe background gauge field and the quark mass (m). For small temperature val­
ues (f3 < 5), the entries in the Dirac matrix become extremely disordered. Moreover, 
as the quark mass approaches its true physical value, the performance of the commu­
nity standard Krylov solvers degrades; a phenomenon known as critical slowing down. 
As a result, the development of sophisticated preconditioners for computing propaga­
tors has been a priority in the QCD community for some time. Recently, multilevel 
preconditioners like algebraic multigrid (AMG) have proved to be especially effective 
at speeding up simulation time [1] 
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2 Brannick et, al. 

While these works have focused mainly on the task of developing better iterative 
methods for traditional discretizations of the continuous Dirac operator, it is also im­
portant to alternate discretizations as a way to decrease the computational 
cost of QeD simulations. 

In the remainder of §1, we introduce the continuum Dirac equation for the full 
QeD model. We then describe the simplified 2D Schwinger model of QED, which will 
be the focus of the rest of this paper. In §2, we discuss the challenges presented by 
the discrete Dirac equation. We discuss traditional finite difference discretizations of 
the field equations, and their undesirable properties. The discretization 
of the Dirac equations is developed and several important properties of the resulting 
system are discussed, including gauge covariance of the propagator, chiral symmetry, 
and the problem of species doubling. In §3, we describe the use of an adaptive 
algebraic multilevel method as a preconditioner for the solution process. Finally, in 
§4, we make some concluding remarks. 

1.1. The Continuous Dirac Operator. The Dirac equation is the relativistic 
analogue of the Schrodinger equation. Depending on the gauge theory the 
operator can take on several forms, the most general form of which is given by 

d 

V'tjJ L ," 0 (0" - iAI,) 'tjJ + m'tjJ. (l.1) 
,,=1 

Here, d is the problem dimension, the ,"'s are matrix °1, is the usual 
partial derivative in the x" direction, m is the particle mass, and A,,(x) is the gauge 
field representing the force carriers. Operator V acts on 'tjJ : (;4 0 (;3, a tensor 
field (multicomponent wavefunction) describing the particle. These symbols take on 
different values and dimensions depending on the gauge theory. In full QeD, d = 4 
(three spatial and one time dimension), ," are the 4 x 4 anticommuting complex Dirac 
matrices, A,,(x) E su(3) are 3 x 3, traceless, Hermitian matrices that describe the 
gluon fields. We mention in passing that the unknown function, 'tjJ, is a 12-component 
wavefunction with each component corresponding to a quark with a specific color 
(red, green, or blue), spin (up or down), and energy (positive or negative). 

The Dirac equation does not necessarily have to describe the behavior of quarks, 
specifically. In it can describe the behavior of any fermion, including elec­
trons. Because of the considerable complexity of the full QeD it is common 
practice to consider the simplified 2D Schwinger model of QED [1], which models 
the interaction between electrons and photons, when developing algorithms for QeD. 
In this case, only two spatial directions are considered, the wave function , 'tjJ, 
has only two components (spin-up and spin-down), and the photon field, A" (x), is 
a real-valued scalar. Though an extreme simplification, the discrete Dirac operator 
associated with the Schwinger model presents many of the same numerical difficulties 
found in the full physical model. 

1.2. Model Problem. Let the domain be r = [0,1] x [0, and let Vc be the 
complex-valued periodic functions in HI (r). We introduce the shorthand notation 
V" = (0" - iA,,) for the 11th covariant derivative. The continuum Dirac equation for 
the 2D Schwinger model with periodic boundary conditions is by 
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V(A)l,b bI V:r+12 Vy+ l,b=i inr, (1.2) 

~(O, =l,b(1, y), 

~(x, 0) 1), 

where A(x,y) = [Adx,y),A2 (x,y)]t is the periodic gauge field, andl,b(x,y) 
(x, y), (x, y)]t E V; is the fermion field with ~u andl,bd representing the spin-

up and spin-down particles, respectively. In 2D, the I-matrices correspond to the 
Pauli spin matrices of quantum mechanics. They are 

~i ] o . 

Note that (1.2) appears in matrix notation as 

[ 
rn 

Vx + iVy 
iV y ] [ l,bu J [iu

] 
m ~d id 

(1.3) 

A word on notation. In this paper we use three different types of objects: contin­
uum functions, finite element functions, and discrete vectors. Continuum functions 
are represented by scripted and Greek symbols, as in A, i, and~. Finite element 
functions are represented by the similar symbols, but with a superscript h, as in Ah, 
ilL, and ~h. Finally, discrete vectors appear with an underbar, as in ii, i, and 3£. 
Operators in the continuum are denoted by scripted symbols, as in V, whiie discrete 
operators will be represented by bold symbols, as in lDl. In any case, the nature of the 
operator should always be clear from the context. 

2. The Discrete Dirac Operator. One computationally intensive part of a 
QCD simulation is the repeated solution of linear of the form 

where lDl is the matrix Dirac operator. Solution of systems of this type are needed both 
for computing observables and for generating gauge fields with the correct probabilistic 
characteristics [2]. In these processes, lDl must be inverted numerous times with many 
different right hand sides and gauge configurations. Because the background fields 
must be varied, the entries in the matrix themselves change throughout a simulation. 

In the discrete setting, r is replaced by an n x n periodic lattice. Let N'cbe 
the space of discrete complex valued vectors with values associated with the sites on 
the lattice. Then, the continuum wavefunction ~ becomes 3£ = [3£Ul 3£dP EN';, which 
specifies complex values of both the spin-up and spin-down components of the fermion 
field at each lattice site. Similarly, the source term, i, becomes l = [lu' II E ~. 
Let [, be the space of discrete real valued vectors with values associated with the 
lattice links. The continuum gauge field A becomes ii = [All E [" where 
specifies the values of the gauge field on the horizontal lattice links, and A2 specifies 
the values of the gauge field OIl the vertical lattice links. 

Traditional discretization methods for the Dirac operator are based on covari­
ant finite differences (CoFD) [9]. Formulations of this type are problematic from a 
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computational perspective because they frequently introduce numerical instabilities 
into the solution process, which are sometimes remedied by adding artificial stabi­
lization terms. Furthermore, the resulting discrete operator is not usually Hermitian 
and positive definite. It is standard practice to solve the discrete form of the normal 
equations, 

IIJl*iDJJk = (2.1) 

rather than treating the original system directly. This decreases the efficiency of the 
simulation since iDJ*iDJ has a stencil than iDJ and a potentially larger condition 
number, The proposed discretization, based on least-squares finite elements, produces 
a discrete operator that is hermitian positive definite (HPD) and has a smaller stencil 
what than the CoFD method produces. 

2.1. The Least-Squares Discretization. We formulate the solution to (1.2) 
in terms of a minimization principle: 

arg min II'O,¢ f116, 
!JIEV~ 

(2.2) 

where Vc is the space of continuous, periodic, complex-valued, HI functions defined 
previously. Eq.(2.2) is equivalent to the weak form 

Find '¢ V; s.t. ('O'¢, 'Ov) (1, 'Ov) \Iv E V;, (2.3) 

where ( . , . ) is the usual 
formally equivalent to 

inner product. If 'ljJ is sufficiently smooth, (2.3) is 

Find'ifJ V; S.t. ('O*'O'ifJ, v) = ('0* f, v) Vv E V:. 
Thus, we can think of the least-squares formulation of the problem as being loosely 
equivalent to solving the continuum normal equations, 'O~'O'¢ '0* f, by the 
method. Looking at the formal normal operator, '0*'0, can often give insight into the 
potential success of the least-squares formulation: 

'0*'0= [ 
m ~~\;iVy ] [ m Vx ~ iVy 

iVy +iVy m 

= [ m
2 V 2 0 y 

m 2 ~ V 2 V 2 J. 0 x y 

In the Schwinger case, the formal normal has uncoupled Laplacian-like operators 
on the main diagonaL Though these are not simple constant coefficient Laplacians 
(because they include the random background fields), their Hermitian positive definite 
scalar character should lend themselves to a more efficient treatment by multigrid 
methods. 
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The least-squares solution is obtained by requiring that the minimization problem 
posed in (2.2), and thus, the weak form given in Eq.(2.3), hold for all functions in a 
finite-dimensional space V~ C Vc' That our solution must satisfy 

(2.4) 

In analogy to the nodal setting, each elementary square on the lattice, or plaquette, 
is represented by a quadrilateral finite element. We equate any t N; with the 

bilinear function fh E (V~') 2, where V~ span{ 4>j }j:l is taken to be the space 
of periodic bilinear finite element functions over the complex numbers. Here, is 
the usual bilinear nodal basis function associated with lattice site Xj' Similarly, we 
equate any A E E with Ah E wh, where Wh is the Nedelec space over the real 
numbers. In this context, the x-component of the gauge field, Aq, is represented by a 
linear combination of edge functions, associated with the horizontal lattice links. The 
corresponding basis functions are constant along the and have support only in 
the elements above and below. They take on the constant value 1.0 on the link, and 
are linear in y, decaying to 0.0 at the opposite horizontal links in their shared elements 
(see Figure 2.1a). The basis for the y-component, Aq, is similar: but oriented on the 
vertical links (see Figure 2.1b) [8]. 

The maps between members of the discrete spaces Nc and E, and the finite element 
spaces V; and Wh, are quite trivial. To see this, let 

II 
n2 

t= fj and fh 

j=1 

fn 2 

Note that fj is the value of the discrete field at the lh lattice and the finite 
element field, fh, takes on the value bj at the /h lattice site. In order for the two 
field descriptions to be consistent, we must have fj bj , j = 1, ... , . Thus, the 
mapping between JVc and V~ is simply the bijective identity map between the entries 
of the nodal vector and the coefficients of the finite element function. A similar 
analysis shows that the same relationship holds between the gauge field edge values of 

E E and the coefficients of the Kedelec representation of the gauge field A h W h . 

We wish to use the least-squares formalism described above to approximate the 
solution of (2.1). This process should accept source data, defined on the nodes, and 
gauge field data, A, prescribed on the lattice links, and return the discrete wavefunc­
tion '!IL, defined at the nodes. We do this by mapping f and into their respective 
finite element spaces, solving the weak formulation (2.4), and mapping the resulting 
finite element solution back to . This process is summarized in Algorithm 1: 
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ALGORITHM 1: Least-Squares Dirac Solve 
• lnpv,t; Gauge field 1!, source term f. 
• Output: Wavefunction 'Jl2.. -

1. J\1ap Ah E Wh 

2. Map L f.4 .fh E (V~ ( 
3. Find 'l/Jh E (Vh)2 s.t. (V'l/Jh,Vvh) (fh,Vvh) Vvh E (V~)2, 

where A A~. 
4. Map 'l/Jh f.4 'Jl2. N;. 

It is not immediately obvious how to implement the solution of the weak form 
(2.4), which appears in Step 3 of Algorithm 1. Using the nodal basis for V~, we can 
establish the following matrix equation for this process: 

Au Gb, 

where the entries in vectors u and b are the coefficients in the 
.fh, respectively, and the elements of the matrices are given by 

[Alj,k 

[Glj,k 

(V¢>k, V¢>j), 

(¢>kl V¢>j) . 

Then, Step 3 in Algorithm 1 can be replaced by computing 

u 

and setting 

j=1 

l..Ie"'''"''HO of 'l/Jh and 

(2.5) 

(2.6) 

Recalling the relationship between the entries of 'l1!. and f, and the coefficients in the 
expansion of 'l/Jh and .f", we see that Steps 2-4 in Algorithm 1 can be replaced by 

(2.7) 

It is easy to see that, for m > 0, both A and G are nonsingular. For A, note that 
by construction A is Hermitian positive semi-definite and if it were singular, then the 

original Dirac operator would be singular on some element of (V~l.) 2. Also, note that, 
from the form of the formal normal, it is clear that A is block-diagonal. That is, 

(2.8) 

To see that G is nonsingular we look more closely at the block form of G. Recall the 
matrix form of the continuous Dirac operator given in (1.3). 
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[ 
mM 

lR -l-x ' mM 

[M]j,k (CPk,CPj) , 
~lRx]j,k "-c: (cpk, VxCPj) , 
[lRyl j ,/;;= Vycpj), 

7 

(2,9) 

Notice that <G is a skew-Hermitian matrix shifted by mI. Thus, all eigenvalues of G 
are of the form m -l- is for some s E R 

2.2. Gauge Covariance of the Quark Propagator. A desirable property of 
any QCD (or QED) theory is that the fermion propagator must transform covariantly 
under local gauge transformations. These local transformations can be thought of as 
redefining the coordinate system of the background gauge field at different points in 
space. In full QCD, for instance, applying a gauge transformation to wavefunction 
1/J at position x changes the color reference frame at that particular point. A trivial 
example would be if the roles of blue and red particles where switched at one or several 
points in the domain. 

Suppose we have a fermion field, 1/J, defined in a color reference frame, C. Now 
suppose we are given a gauge transformation, n (x) E SU(3), that transforms the 
field into a new reference frame, according to 1f; H n (x)1f;. Note that elements of 
SU(3) are 3 x 3 unitary matrices with determinant 1. Propagator V-I transforms 
covariantly if, given n it is possible to specify a modified propagator, 15- 1

, such 
that applying 15- 1 to a field in is is equivalent to a£plying the original propagator to 
the field in C and then transforming the result to C. In other words, given n (x), we 
must be able to specify such that 

It should not be surprising that the correct transformation of V-I requires mod­
ifying the background gauge fields that the Dirac operator is built upon. It is helpful 
to look at an example of this concept in the 2D Schwinger model of QED, where the 
gauge transformation comes from U(l). That is, the gauge transformation, n (x, y), 
is a complex scalar with unit magnitude. 

EXAMPLE 1. Consider the continuum 2D Schwinger model. From (1.1) the 
Dirac operator is 

V bi V x + 12 V y + mIl [ Vx - iVy J 
m ) (2.10) 

where and are the covariant derivative in the x, and y directions, respectively. 
We want to show that, given a U(l) transformation, n (x) eili(x,y), we can modify 
the covariant derivative operators, V x) V y, so that the propagator, V-I) transforms 
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covariantly. Here, {} is a real-valued periodic continuous function in HI. 'vVe denote 
the space of such functions by c Vc' To see this, set 

implying 

'IjJ = h'1 \7 x + + mIl e-iO~, 
'IjJ = (e-ie~) +~f2\7y (e-ili~) +me-ie~, 

'if; II (ax - iA1 ) (e- iO
() + ~(2 (ay - iA2 ) (e-iO~) + me-ie(, 

'1/.) h'dax - i{Al + (}x}) + Iz(ay i{A2 + (}y}) + mIl (, 
(2.11 ) 

implying 

h'1 \7 x + 12 \7 y + mIl-
1 

'IjJ. 

This shows that if fermion field 'IjJ is transformed !1ccording to 'if; I-> eiO(x,y)'IjJ, then the 
gauge field must transform as A I-> A + \7B to obtain covariance. 

A simple consequence of these facts is the following: suppose we are given con­
tinuum data A f. Then we define the related gauge field and source terms 
A = A + \7 Band eiO j. It is easy to check, using the principle of gauge covariance, 
that if'IjJ is the solution to the continuum Dirac equation with data A and j, then 
the solution with the modified data should be J; We use this fact as a basis 
for a test of the gauge covariance of our discrete algorithm. 

EXAMPLE 2. Consider the continuum Dirac equation with gauge field A, 
which we write as 

D(A)'IjJ f. (2.12) 

Now, suppose we compute a Helmholtz decomposition of the gauge field A such that 

A Ao + \7w, 

where Ao is divergence free and wE Vit. Then (2.12) becomes 

D(Ao + \7w)'IjJ = j, (2.13) 

to which the solution is 
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7jJ [V (Ao + 'Vw) 1 f. (2.14) 

Rewrite the source function as f = for some 9 E Vc Then (2.14) becomes 

(2.15) 

But, from gauge covariance of the propagator, we know that 

I - iw [V (A )1~1 1jJ - e 0 g, 

implying 

Now, suppose that we wish to solve the same problem but with rotated data. In this 
case the Dirac equation becomes 

V(A);j f. (2.16) 

The Helmholtz decomposition of A is 

A Ao + 'Vw + 'VB, 

and the Dirac equation becomes 

V(Ao + 'Vw + 'VB);j T (2.17) 

Writing the source term as f ei(wH)g the solution becomes 

(2.18) 

Again, by gauge covariance, the solution becomes 

implying 

7jJ [V (Ao)r 1 e~i(w+l) J 
= e,e {eiw [V (Ao)r 1 

e- iw n. 
Thus, ;j = eie7jJ, as desired. 
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The key to retaining this property in the discrete setting is that the quark propa-
, computed in both cases, is constructed with the same gauge field, Ao, and the 

same source term, e- iw f. As such, we must be able to efficiently compute a discrete 
Helmholtz decomposition of the gauge field, A h. Fortunately, the choice to represent 
the gauge field by Nedelec elements makes this fairly easy. Given any Ah E W h , there 
exists a unique qh E such that 

where qh E V!~ is a bilinear function and AS is characterized by the property that 

(2.19) 

A vector in V~ that satisfies is known as a weak curl [8]. The decomposition 
can be accomplished by solving the least-squares problem 

(2.20) 

which is equivalent to the weak form 

This weak formulation yields a linear system that is equivalent to that involved in 
the solution of Poisson's equation with periodic boundary conditions using a Galerkin 
finite-element method. It is solved by standard geometric multigrid methods. 

Now we write down a new discrete algorithm which is gauge covariant. First, 
q E J~ C Nc' defined on the lattice sites, let ~ be the n 2 x n 2 complex-valued 

matrix with the quantity in the lh diagonal position, and 0.0 elsewhere. Notice 
that il; is also diagonal, and has e- iqj in the jth diagonal position. Both il.'[ 

are unitary matrices. 

ALGORITHM 2: Gauge Covariant Least-Squares Dirac Solve 
• Input: Gauge field source term f. 
• OutP'ut: vVavefunction -

1. Map A 1-4 Ah E Who 
2. Compute Ah = AS + 
3. Map qh --+ q. 

4. Set flu = ll~ Land !Lt. 
5. Map fll-4 gh E (V~1)2. 
6. Find ¢h E (Vh)2 s.t. (V¢h,Vvh) = (gh,Vvh) 

where A = A~. 
7. Map ¢h 1-412 E .M;. 
8. Set '!£U = il.'[ 12u and 

Kote also that Steps 5-7 can replaced by the familiar matrix operation 
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(2.21) 

where matrices A and G were constructed using the grad-free gauge field, AS. 
There is significant motivation for formulating the discrete algorithm in a gauge 

covariant way, despite the minor increase in computational cost, due to the Helmholtz 
decomposition. In the Monte Carlo process it is desirable to generate gauge fields that 
are statistically distinct from one another. If one gauge field can be generated from 
another through the application of local gauge transformations, then we say the two 
configurations are in the same equivalence class. Formally, given q E NIP define 

[6. x !b .0..y 2J T E E such that -

l6. x q 1 = ---'--'..c.:...'-_~ 
c - (k+l/2.l) h 

(2.22) 

where is the value of 9. associated with the kth lattice site in the x-direction and 
the ]th lattice site in the y-direction. The subscript (k + 1/2, l) indicates that the 
value is associated with the lattice link between the lattice sites (k,l) and (k + l,l). 
Similarly, define 

q(k,l+l) q(k.l) 

h 

DEFINITION 1: We say the pairs (Ji1, £1) and 
class if there exist 9. E N..~ such that 

and 

A= ~ ]t , £12 

(2.23) 

are in the same equivalence 

THEOREM 1: Suppose £1) and a,A.) are in the same equivalence class. 

Then, Algorithm 2 yields Ji1 and such that 

PROOF: The proof follows directly from Definition 1 and the development of 
Algorithm 2. 0 
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2.3. Chiral Symmetry. In the broadest sense, chiral symmetry is a global 
symmetry property in the massless case, independent transformations of the 
spin-up and spin-down fields do not change the physics of the model. This property 
is manifested by setting m = 0, and assuming that 'ljJ is the solution 
of the continuous Dirac equation with source term j. That is, assume 

Do'ljJ j, 

where Do is the massless Dirac operator in the continuum. Next, define a global 
transformation n, such that 

Then, define rotated ;;; n'ljJ, and rotated source term, j = nj. We 
say that our theory has chiral symmetry if 

(2.24) 

It is important to note the difference between the requirements of chiral symmetry 
and those of gauge covariance. First, we are not permitted to alter Do to make (2.24) 
hold. Second, chiral symmetry is a global symmetry, which is why Ou and Od, in the 
definition of n, do not have spatial dependence. All spin-up and spin-down fields are 
rotated by the same transformation at each point. 

In the discrete we recall that solving the Dirac equation amounts to 
solving the matrix 

(2.25) 

where, in the massless case, 

[ o 

Given phase factors Ou, Od E JR., define the discrete global transformation n E C2n2 x2n
2 

by 

x n 2 identity matrix. We say that our discrete formulation has chiral 
'lid. and satisfying (2.25), rotated vectors;;; = nw and 1 

is true in the least-squares fonnulation. To sie this, 

=Gj, 

YL = Gn*n[, 
n*An'lid. = n*Gn[, 



Least-Squares Finite Element Methods for Quantum Chromodynamics 13 

since, because of their block forms in the massless case, A and G commute with £1*. 
This implies, 

as desired. 

Ail Yl. GilL 

A1f; GL 

2.4. Species Doubling. A concern in the numerical analysis of the field equa­
tions for QCD is the problem of species doubling. We illustrate this phenomenon by 
returning to the 1D Schwinger model. In CoFD formulations, the massless discrete 
Dirac operator in the absence of a gauge field is given by 

[)) 11 (2.26) 

The so-called naive discretization corresponds to the discretization of covariant deriva­
tive \7 1 using central differences: 

(2.27) 

Transforming D into Fourier space, we obtain the dispersion relation 

R(p) 
.Ilsin(ph) 

-~ -'-'--c:-
h

'-'--'- (2.28) 

or, in full matrix notation, 

R(p) = -i [ sin?Ph) 
-h- o ]. 

The eigenvalues of dispersion relation R are associated with the energy of the system 
and are given by 

E J h\ sin
2
(ph). 

For the results to be physical, as the lattice spacing h -., 0, we require that the energy 
in the system not diverge. In the above expression, this happens when p = 0 or 
±" /17,. Note that these frequencies correspond to zeros of the dispersion relation, R(p). 
Also, notice that we do not consider p = ±n" / 17, for n > 1 because modes of these 
frequencies cannot be represented on the lattice. The range of possible frequencies, 
-,,/h :::; p :::; ,,/h, is called the Brillouin zone. The problem arises because the three 
physical frequencies p 0, ±" /h correspond to multiple particles described by the 
same theory, which is not physical. By periodicity, the particles described by p = "/ h 
and p -It / h are the same so this formulation represents two distinct particles when 
there should only be one. Hence, the phenomenon is called species doubling [6]. 
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The usual fix is to add an artificial stabilization term to D. This is the basis for 
the Dirac-vVilson operator, which is given in ID by 

(2.29) 

In the free case, the dispersion relation fOl' the Dirac-Wilson operator looks like 

R(p) = 
cos(ph)] 
h 

In this case, p = 0 is still a root of the dispersion relation, but now 

R(±7f/h) 

(2.30) 

so the Dirac-Wilson operator does not suffer from species doubling. This comes at a 
high however, to avoid species doubling it was necessary to add a nonphysical 
term to the operator. Furthermore, the additional term appears on the main diagonal 
of lDl, thus breaking chiral symmetry. 

To see if this is a problem for the least-squares discretization, consider (??), the 
general form of the least-squares version of lDl. Since we ignore the gauge field, terms 
P* B* BP and P* BB* P are just the usual finite element discretization of the standard 
Laplacian. Similarly, terms P* BP and P* B* P are the usual Galerkin discretization 
of the fust derivative operator. Thus, lDl in one dimension becomes 

[
'l/J(X + h) - 'l/J(x - h)] -1 ['l/J(X + h) 2JjJ(x) + 'l/J(x - h)] 

11 2h ~--~~~h~2~--~--~ 

The corresponding dispersion relation is by 

R(p) = ~--7:--:-::-'--

Clearly, p 0 is the only root of R. In 
least-squares formulation does not suffer from 

(X) as p ----t ±7f /h. Thus, the 
doubling. 

3. Numerical Experiments. In this section, we explore the use of a multilevel 
iterative method for solving the matrix system (2.21), that takes the place of Steps 
5-7 of Algorithm 2. To avoid working in complex arithmetic, we solve the equivalent 
real formulation of Eq. (2.21): 

(3.1) 

where l'{ are real-valued matrices satisfying A X 
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3.1. SIlloothed Aggregation l'vIultigrid. We wish to use a multilevel method 
to solve (3.1). Multigrid methods are a class of iterative algorithms used to solve 
linear systems of the form AtL = f that can be shown to be optimal in the sense 
of accuracy gained per computational cost. Multigrid methods rely on two comple­
mentary processes to reduce the error in each successive iterate. Relaxation is a local 
process that reduces a large portion of the error in a relatively inexpensive way. Error 
that relaxation fails to adequately reduce is called algebraically smooth. Coarse-grid 
correction is a global process that is designed to complement relaxation by reducing 
the algebraically smooth error. This process works by doing relaxation on a fine grid 
until only smooth error remains, and then moving to a coarser-grid and solving for a 
lower dimensional representation of the error. The coarse grid approximation to the 
error is then taken back up to the fine grid through an interpolation process and used 
to correct the approximate there. The success of the coarse-grid correction process 
depends on how accurately smooth error modes can be represented on the coarse grid. 

For many problems in the physical sciences, the algebraically smooth error modes 
are geometrically smooth as well. Standard geometric multigrid methods are usually 
very effective at solving these problems. Unfortunately, due to the random nature of 
the background gauge fields in QeD, the smooth error modes are in no way geomet­
rically smooth. In Figure 3.1, we see that both the real and imaginary components 
of the smooth error are highly oscillatory. These plots were obtained by applying 100 
iterations of Gauss-Seidel on the problem Ad2. = 0 with a random initial guess. 

Fig. 3.1: Real and complex components of algebraically smooth error of A for m = 0.1, 
{3 = 2, and N = 16. Error wa.s computed using 100 iterations of Gauss-Seidel on 
Ad!. = 0 with a random initial guess 

Smoothed aggregation multigrid (SA [3]) is a multilevel solver that is based on 
algebraic smoothness as an abstraction of the property of geometric smoothness 
used in conventional multilevel algorithms. Given prototype representations of al­
gebraically smooth error, SA automatically builds inter grid transfer operators that 
attempt to represent all smooth error modes on coarser grids, regardless of their geo­
metric smoothness. Unfortunately, this requires a priori knowledge of the prototype 
modes. Randomness of the background fields in QCD applications causes the na­
ture of the smooth error to vary widely between different gauge configurations and, 
in any case, little is known about their local character. We turn instead to adap­
tive smoothed aggregation multigrid (GSA [4]), which uses a setup procedure to first 
expose these problematic error components, and then builds a multi grid process to 
effectively reduce them. 
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3.2. Results. Table 3.1 reports convergence factors of conjugate (CG) 
preconditioned by aSA applied to the homogeneous version of (3.1) for various values 
of the particle mass, m, and gauge field temperature (3. The aSA preconditioner was 
based on V(2,2)-cycles and 3 grid levels. The aggregation process was performed 

and the relaxation scheme was nodal Gauss-Seidel. Finally, 8 prototype 
error components were found the adaptive setup process and used to define 
the intergrid transfer operators in the V-cycle. A single V(2,2)-cycle was used as the 
preconditioner in the CG solve. For comparison, convergence factors for diagonally 
preconditioned CG are also provided in Table 3.1. 

Table 3.1: Average convergence factors for aSA preconditioned CG and diagonally 
preconditioned CG applied to (2.21) on 64 x 64 (top) and 128 x 128 (bottom) lattices 
with varying choices of mass m and temperature 

Notice that, as mass parameter m is decreased, the performance of the solver remains 
fairly static. This is an important result because it means that the problem of critical 
slowing down has been greatly reduced. 

In addition to good convergence rates, our formulation improves compu-
tational cost per multigrid cycle over conventional solvers applied to (2.1) by avoiding 
the added complexity of these discrete normal equations. Our least-squares approach 
does form normal equations, but more effectively on the continuum Dirac operator 
only, without the additional stabilization term. Discretizing the continuum normal 
equations in this way results in a stencil that has only the nearest-neighbor connec­
tions typical of a second-order operator, in contrast to the wider and more compli­
cated stencils for the normal equations of the Dirac-Wilson matrix. As a result, the 
least-squares matrix is more compact and has about 30% fewer nonzeros than the 
Dirac-Wilson matrix. 

Also, the operator complexity in the multigrid cycle based on the least-squares 
formulation is significantly better than those observed in formulations based on CoFDs 
[1]. The operator complexity is defined as the ratio of the total number of degrees of 
freedom on all grids in the multigrid hierarchy to the number of of freedom on 
the finest grid. This number indicates how much work has to be done on the coarse 

compared to that on the fine For the lattice sizes that were tested in these 
experiments operator complexity stayed bounded below 1.5, a very satisfactory result. 

4. Conclusions. 'Ve described a discretization of the continuous Dirac equation 
for the 2D Schwinger model of QED based on least-squares finite elements. The for­
mulation avoids several pitfalls of traditional discretizations based on covariant finite 
differences by producing a discrete operator that is Hermitian, positive definite, and 
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extremely sparse. We argued that it retains a sense of global chiral symmetry and 
avoids the need for irrelevant stabilization terms by not suffering from species dou­

Furthermore, we show that the resulting discrete system can be handled quite 
effectively by conjugate gradient with adaptive smoothed aggregation as a precondi­
tioner. 

Acknowledgments. The authors wish to thank Achi Brandt of the Weizmann 
Institute, Rich Brower, Claudio Rebbi, and Mike Clark of Boston University, and 
Pavlos Vranas of Lawrence Livermore National Lab, for their many useful comments 
and clarifications. 

REFERENCES 

[IJ J. Brannick, M. Brezina, D. Keyes, O. Livne, I. Livshits, S. MacLachlan, T. Manteuffel, S. 
McCormick, J. Ruge, and L. Zikatanov, Adaptive Smoothed Aggregation in Lattice QCD, 
Lecture Notes Compo Sci. Eng., 55 (2006), pp. 499-506. 

[2J J. Brannick, R.C. Brower, M.A. Clark, J.C. Osborn, C. Rebbi, Adaptive Multigrid Algorithm 
for Lattice QCD, Phys. Lett., 100 (2008). 

[3] P. Vanek, J. Mandel, and M. Brezina, Algebraic Multigrid by Smooth Aggregation for Second 
and Fourth Order Elliptic Problems, Computing, 56 (1996), pp. 179-196. 

[4J M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, Adaptive 
Smoothed Aggregation (aSA), SIAM J. Sci. Comp., 25 (2004), pp. 1896-192. 

[5J M. Creutz, Quarks, Gluons and Lattices, Cambridge Univ. Press, Cambridge, 1983. 
[6J T. DeGrand, C. DeTar, Lattice Methods for Quantum Chromodynarnics, 'World Scientific, New 

Jersey, 2006. 
[7] W. Griener, S. Schramm, E. Stein, Quantum Chromodynamics, Springer-Verlag, Berlin Hei­

delberg, 2007 
[8] J. C. Nedelec A New Family of Mixed Finite Elements in 1R3 , Numerische Mathematik, 50 

pp. 57-81 
[9] K. Wilson, Confinement of Quarks, Phys. Rev. D, 10 (1974). 




