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The Price of Commitment in Online Stochastic Vehicle Routing 

Russell Bent and Pascal Van Hentenryck 

LANL and Brown University 


Abstract 

This paper considers online stochastic multiple ve­
hicle routing with time windows in which requests 
arrive dynamically and the goal is to maximize the 
number of serviced customers. Early work has fo­
cused on very flexible routing settings where the 
decision to assign a vehicle to a customer is delayed 
until a vehicle is actually deployed to the customer. 
Motivated by real applications that require stabil­
ity in the decision making, this paper considers a 
setting where the decision to assign a customer re­
quest to a vehicle must be taken when that request 
is accepted. Experimental results suggest that this 
constraint severely degrades the performance of ex­
isting algorithms. However, the paper shows how 
the use of stochastic information for vehicle as­
signment and request acceptance improves decision 

considerably. Moreover, the use of resource 
i:1U1911t;tltation quantifies precisely the cost of com­
mitment in online vehicle 

1 Introduction 
Vehicle routing with time windows is a hard combinatorial 
optimization problem with many important applications in 
distribution and transportation scheduling. It has received 
considerable attention in the last decades and sophisticated 
algorithms are now available to find near-optimal solutions in 
reasonable time. In recent years, attention has shifted to on­
line and/or stochastic versions of the problem. The stochastic 
and online versions are motivated by the inherent uncertain­
ties arising in many industrial problems and technological de­
velopments such as onboard computers and communication 
systems, which give transportation systems the opportunity 
to update plans even after the vehicle has been deployed. 

In online stochastic problems, customers arrive dynami­
cally as the algorithm proceeds. Each customer request has a 
time window (possibly the entire time horizon) during which 
it can be served and, obviously, a request cannot be served 
before it occurs. Upon arrival, the algorithm must decide 
whether to accept or the request. If the request is ac­
cepted, the online algorithm must serve it before the time 
horizon. The online algorithm typically has two black-boxes 
available to make decisions: an OPtimization algorithm for 

the deterministic version of the problem and a sampung pro­
cedure to generate future requests. 

Online stochastic vehicle routing were first studied in [6] 
using a sampling-based approach. More precisely, the idea 
was to generate scenarios consisting of existing and sam­
pled customers, to solve the scenarios using large neigh­
borhood search [17], and to make online decisions based 
on the scenario solutions. These resulting algorithms were 
then generalized and abstracted in a generic online stochas­
tic framework [4; 7] and applied to other problems such 
as packet scheduling [5; 10] and reservation systems [1; 
20]. The prior work in online stochastic vehicle routing has 
focused on experimental settings where the decision to as­
sign a customer to a vehicle is delayed until the last possible 
moment, i.e., when the decision to a deploy a vehicle to a cus­
tomer is taken. However, in some applications, there is strong 
desire to promote more stability and robustness in the deci­
sion making process, as the logistics of delaying the decision 
until the last possible moment may be fundamentally unde­
sirable or not available [15; 16l. Moreover, simple adaptions 
of existing algorithms exhibit poor decision oualiv when ve­
hicle commitment is required at acceptance 
whether online stochastic approaches would scale for these 
applications. This paper addresses this challenge and make 
three main contributions. 

I. The paper proposes novel online algorithms for online 
stochastic vehicle routing. The algorithms provide a uni­
fied framework by which all the three main decisions, 
request acceptance, vehicle assignment, and vehicle dis­
patch, are based on the same principles and use stochas­
tic information. The novel algorithms produce signifi­
cant gains in solution quality, demonstrating the value 
of stochastic information for these applications as well. 

2. Unlike prior work in less restrictive settings [9], the pa­
per shows that relocation and waiting strategies bring 
very little benefit. 

3. The paper provides empirical quantification of the price 
of commitment and shows how resource augmentation 

the idea of increasing the resources in online algo­
rithms, may reduce or even eliminate this cost. 

The rest of the Daoer recalls the main concepts in vehicle rout­

It then brieflv surveys the ex­


necessary, be­



fore presenting the new setting and its associated algorithms 
and methodologies. 

2 The Offline Problem 

The Input Data A vehicle routing problem is specified by 
a number of customers that must be visited by a pool of ve­
hicles. Each customer makes a request that must be served 
within a time window and takes some capacity from the vehi­
cle. Each vehicle starts at the depot, serves some customers, 
and must return to the depot by the deadline. 

Each problem contains a set R of 11, customers and a depot 
o. The set S of sites is thus R U { o}. The travel time between 
sites i and .1 is denoted by d( i,.1). Each request is associated 
with a customer and, since each customer makes at most one 
request per instance, we use the names customer and request 
interchangeably. Every request c has a capacity q(c) ?:: 0 and 
a service time p(c) ?:: 0, which is the time to serve the request 
once the vehicle is on site. 

Each instance has a pool of m identical vehicles with ca­
pacity Q. Each vehicle starts from the depot and the algo­
rithm may choose to deploy all of them or to use a subset of 
them only. Each customer c has a time window specified by 
an interval [c(c), l(c)] satisfying e(e) l(c). The time win­
dow represents the earliest and latest possible arrival times of 
a vehicle serving customer c. In other words, the service for 
customer c may start as early as e(c) and as late as l(c). A 
customer c may not be served before e(c) but a vehicle arriv­
ing early to serve e may wait at the site until time e(c) before 
beginning service. The depot has a time window H = [eo, 
which represents the earliest departure and latest possible re­
turn for the vehicles. Typically, eo denotes the beginning of 
the day and lo is the deadline by which all vehicles must re­
turn to their depot. 

Routing Plans Optimization algorithms for vehicle routing 
typically return a routing plan that specifies the order in which 
each vehicle visits its customers. The routing plan does not 
prescribe departure times for the vehicles but constrains be­
cause of the time windows. 

A vehicle route, or route for short, starts at the depot, serves 
some customers, and returns to the depot. A customer ap­
pears at most once on a route. Hence a route is a sequence 
(0, e" .. ,en, 0), where Ci E R and all Ci are distinct. The 
capacity of a route P is the sum of its customer capacities, i.e., 
q(p) I:~~I 

A routing plan is a tuple of routes (PI,.'" Pm) one for 
each vehicle, in which each customer appears at most once. 
We also use C'ust(p) and Cu,st(I) to denote the customers of a 
route P and a plan I' Because a customer makes exactly one 
request, a routing plan assigns a unique successor and prede­
cessor for each served customer and depot. For a plan I' the 
successor of site c is denoted by suec(c, "y) and the predeces­
sor is denoted by pred (c, I)' Since, in general, the discussion 
or definitions assume an underlying routing plan I, we abuse 
notations and use ('1 and e- to denote the successor and pre­
decessor of e in I' 

Departure Times Routing plans do not prescribe departure 
times for the vehicles. These departure times are typically not 
uniquely defined: a vehicle may depart at different times from 
specific customers and still visit alJ its assigned customers be­
fore the deadlines. In addition to the routing plan, a solution 
will also consist of an assignment 8 : R -'> H of starting 
times to all customers. 

The Vehicle Routing Problem We are now in position to 
describe the vehicle routing problem. A solution to a vehicle 
routing problem with time windows (VRPTW) is a routing 
plan I (PI, ... , Pm) and a starting time assignment 8 sat­
isfying the capacity and time window constraints, i.e., 

q(Pj):::; Q 

8(c) _. P(C). 

8(c) ?:: )+ + p(e)
{ 
8(c) + d(c. 

for 1 .1:::; m and e E cUBtCr). The objective is to find 
a solution maximizing the number of served customers, 

= ICu,st(r) I Observe that this objective function dif­
fers from the optimization criterion used, for instance, in the 
Solomon benchmarks [18]. In the Solomon problems, the 
goal is to minimize the number of vehicles and, in case of ties, 
to minimize the total travel time, which corresponds more to 
strategic planning than the operational decision making of on­
line optimization. 

3 The Online Problem 
In the online problem, requests, which are defined by a site 
and a time window, arrive dynamicalJy and the algorithm 
must make three types of decisions: 

I. Decide whether to accept or reject an incoming request; 

2. Decide which vehicle will serve an accepted request; 

3. Decide where to dispatch an idle vehicle. 

Earlier work in online stochastic vehicle routing [6] ignored 
the second type of decisions and considered only frameworks 
in which the vehicle assignment is flexible and can be deter­
mined subsequently. The paper is motivated by applications 
in which this flexibility is not available and the vehicle as­
signment must be committed when the request is accepted. 
Our goal is to study the impact of this requirement and to 
adapt existing algorithms and methodologies to this new set­
ting. We called these two settings online flexible routing and 
online commitment routing respectively. 

States In online flexible routing, the algorithm maintains a 
current state which represents the state of each vehicle and 
the set of accepted requests which have not yet been served. 
The state of each vehicle is a pair (s, t) indicating that the 
vehicle will be at site s at time t or, alternatively, has arrived 
at site s at time t and is now idle. As a result, the states are of 
the fom1 

,tl),.·.,(sn, 
where A is the set of accepted requests at this state of the 
computation. Given a state (J, we use REQUESTS((J) to de­
note th.e set of accepted requests in (J. In online commitment 



routing, the accepted requests must be assigned to vehicles 
and the states are of the form 

{(SI, tl,AI ), ... , (Sn, tn, 

where Ai denotes the set of accepted requests assigned to ve­
hicle i. Hence, in online commitment routing, the state is 
a collection of single vehicle routing problems. We use a 
number of operations on states. In flexible routing, operation 
ADDREQuEsT(r) adds request r to the state. In commitment 
routing, operation ADDREQUEsT(r, v) which adds request r 
on vehicle 'V. We also have an operation that dispatches a ve­
hicle to a particular site. More precisely, given a state a, a ve­
hicle v which is idle, and a site s, operation DISPATCH(a,v,s) 
dispatches vehicle 'V to site s. Note that the site s does not 
necessarily correspond to a request: It can be the current site 
("waiting") or a relocation [9]. 

Note that the problem could be modeled as a MDP over 
these states. However, the sheer size of the search space and 
the limited time available for decisions precludes the use of 
these techniques. Instead, we will use the exogenous nature 
of the uncertainty and the availability of an optimization al­
gorithm and of a sampling procedure to design in a one-step 
anticipatory algorithm. 

Sampling and Optimization The online algorithms have 
two black-boxes at their disposal: a conditional sampling pro­
cedure which generates scenarios of the future and an op­
timization algorithm to solve static routing problems. The 
sampling procedure returns a set of requests, while the op­
timization algorithm returns an optimal plan (or an approxi­
mation thereof). More precisely, the optimization algorithm 
O(a, R) receives a state a and a set of requests R and re­
turns a routing plan J. We are only interested in three pieces 
of information on a routing plan 1': the next location of a 
vehicle, the vehicle on which a request is served, and the 
number of customers served by the plan. These are denoted 

NEXTLoCATlON(')', VEHICLE(')',r), and w(')') respec­
tively. It is important to note that the optimization algorithm 
is slightly different in online commitment routing, since it 
must also satisfy the vehicle allocation constraints. 

4 Online Flexible Routing 
We now review the earlier algorithms in online flexible rout-

proposed in [6; 9], since this research builds on them. For 
simplicity, we consider only the consensus algorithm from [6; 
9], although it is easy to generalize the results to the regret al­
gorithm. In this setting, the online algorithm must take two 
decisions: (I) to accept or reject an incoming request (func­
tions PROCEssREQUEST and ACCEPTREQUEST in Figure I) 
and (2) to choose where to dispatch an idle vehicle (function 
DISPATCH in Figure I). The first decision is typically greedy: 
accept the incoming request if it can be served by routing 
plan serving all existing requests. (See line I in function 
ACCEPTREQUEST.) The second decision however is critical 
and uses stochastic information. It is based on the following 
principle: Generate a number of scenarios, use the optimiza­
tion algorithm to solve them, and choose the resulting routing 
plan that is most appropriate for all scenarios. The vehicle 

l'ROCESsREQUEST(State a, Reque8t r) 
I if ACCEPTREQUEsT(a,r) 
2 tben return ADDREQUEST(O', r); 
3 else return a; 

ACCEPTREQUEST(State 0', Request r) 
I retornw(O(a, {t})) IREQuEsTs(a)l+l; 

DISPATCH(State a, Vehicle 
I {6, ... ,<Ed 
2 for 8 E Sites 
3 dof(s) 0; 
4 for i ELk 
5 do 'Yi f- O(a, 
6 for j E l..m 
7 do s f-- NEXTLoCATIONbi,j); 
8 f(s) f(s)+wbi); 
9 1'* = arg-maxiELk 2:;'1 f(NEXTLOCATIONbi,j)); 

10 return DISPATCH (0', 11, NEXTLOCATION('Y*, 11 )); 

Figure I: Online Flexible Routing 

Problem Name MO 
2.08 

OSR 
2.24 

OSR-W 
--4.16 ---­

OSR·R 
-nO 

OSA-WR . --­ 3.64­
20-20-60-rc101-1 
2Q.2Q.60-rc 101-2 6.78 5.42 5.94 3.62 4.26 
20·20-6Q.rc!oI-3 3J16 2.06 3.06 2.28 3.08 
2Q.20-60·rc101-4 2.90 3.16 4.30 5.54 3.06 
2Q.20-60·rc!oI-5 7.70 4.02 5.48 5.12 3.44 
2Q.20·60-rcl02-1 L74 1.78 1.22 0.54 0.36 
2Q.20-60-rcI02·2 4.28 1.94 3.44 2.76 3.32 
20-20-6Q.rcI02·3 8.70 3.24 5.06 3.32 3.96 
2Q.20-6(~rc102-4 2.18 0.92 1.48 1.84 1.92 
2Q.20-6Q.rc102-S 3.76 2.46 2.90 2.02 1.88 
2Q.20-60·rc 1 04-1 21.10 19.70 14.40 13.82 13.94 
20-20-60-rc I 04-2 25.56 28.58 13.92 IUO 14.38 
2Q.20-60-rclQ4.3 20.90 16.64 10.40 8.84 9.78 
2Q.20-6Q.rcl04-4 19.60 19.28 14.08 6.36 13.08 
20-20-60·rc I 04-5 15.86 18.96 14JlO 9.94 10.96 
Average 9.75 8.69 6.92 540 6.07 

Table I: Number of Rejected Customers in Online Flexible 
Routing 

is then sent to its next location in the selected plan. To se­
lect the routing plans, the algorithm uses the desirability of 
the next decision for each vehicle, i.e., the number of times a 
request is scheduled next on a vehicle. More precisely, the al­
gorithm generates k scenarios (line I in function DISPATCH) 
and solves them optimally (line It then considers every ve­
hicle (line 6) and determines which request is served first (line 

Any such request is credited by the objective value of the 
plan (line 8). At this point, all the requests have been eval­
uated and the algorithm selects the plan "'/* that maximizes 
the selection of the desirable requests (line 9). The function 
returns a state in which vehicle v has been dispatched to its 
next location in plan 1". Note that the algorithm in [9] con­
sider not only sending a vehicle to an existing request: it also 
allows the vehicle to wait at their existing location and to re­
locate to any customer location. 

Table I reports our results on online flexible routing which 
provide a basis for comparison when we moved to online 
commitment routing. The experimental results are based on 



PROCESSREQUEST(State (1, Request r) 
1 if ACCEPTREQlJEsT(a, r) 
2 then 11 +- SELECTVEIIICLE(cr, 
3 return ADDREQUEST(cr, r, 
4 else return cr; 

Figure 2: Online Flexible Routing 

Problem Name MO OSR OSR-W OSR-R OSR-WR 
2Q-20-60-rdOl-j"'S.Q " 9.0­ 10,0 10.0 10,5­
20-20-60-rcI01-2 12.0 6.:\ 7,1 6,7 6.9 
20-20-60-rcI01-3 2.0 8.0 8.8 8.8 8.7 
20-20-60-rclOI-4 8,0 7.0 9.0 9,2 9.0 
20-20-60-rc 10 1-5 5.0 6.0 6.0 6.0 6.1 
20-20-60-rcl02-1 3.0 2.2 2.2 2.4 2,6 
20-20-60-rcl02-2 10.0 8,5 93 9,4 9.3 
20-20-60-rc 102-3 6.0 5.1 9.1 9.5 9.6 
20-20-60-rc 102-4 5,0 7.0 4.3 4.2 4,6 
20-20-60-rcl02-5 10.0 7,0 7.3 7.8 7,6 
20-20-60-rcl04-1 29.0 32.5 36.1 36.7 36.5 
20-20-60-rc104-2 39,0 32,2 34,5 33.6 33.7 
20-20-60-rc104-3 20.0 24.6 26,6 26.8 27.2 
20-20-60-rcl04-4 28.0 25,1 25.5 25,7 24,2 
20-20-60-rcI04-5 21.0 23,3 23.6 ~ 24,4 
Average lin I 13.6 14.6 14,7 14,7 

Table 2: Number of Rejected Customers in Online Commit­
ment Routing with Greedy Acceptance and Vehicle Assign­
ment. 

some of the harder benchmarks proposed in [6] (class 4) 
which are stochastic versions of the hard Solomon problems 
which includes 100 customers. The results are the average 
of 50 runs for each type of instances. The stochastic algo­
rithms use 10 scenarios for each decision, except for the first 
decision for which they use 100. The table reports the num­
ber of rejected customers by various algorithms: myopic op­
timization (MO) which uses the optimization algorithm but 
no stochastic information, the basic online stochastic routing 
algorithm (OSR), and then the variants with waiting (OSR­
W), relocation (OSR-R), and both (OSR-WR). The results 
are consistent with those in [9] (they could be improved by 
using the regret algorithm). They indicate that stochastic in­
formation brings significant benefits in online flexible rout­
ing, particularly when waiting and/or relocation are used. The 
benefits are particularly significant on the harder instances 
(e.g., 20-20-60-rcl04-2), where myopic optimization may re­
ject about 25 customers in average, while the best stochastic 
algorithm would reject only about 12. 

5 Online Commitment Routing 
We now move to online commitment routing in which a re­
quest must be assigned a vehicle upon acceptance. This adds 
a third decision, selecting a vehicle, to the framework, cap­
tured in function PROCESSREQUEST (line 3) of Figure 2. 

Since request acceptance is greedy in earlier work [6], it is 
tempting to proceed similarly for vehicle assignment and to 
assign the incoming request to minimize the total travel dis­
tance. Unfortunately, the solution quality of the algorithms 
deteriorates significantly with this choice, as indicated in Ta­
ble 2. Obviously, the increased problem difficulty partly ex­
plains this quality loss, since the online myopic algorithm 

SELECTVEHICLE(State IJ', Request r) 
1 {{I,,,.,{A:}+-SAMPLE(k); 
2 for v E Lm 
3 do l(v) +- 0; 
4 for i E 
5 do for v E Lm 
6 do l(v) +- l(v) + W(O(ADDREQUEST((J, r, {))); 
7 return arg-maxvELm l(v); 

Figure 3: Vehicle Selection for Commitment Routing 

" ,

"Problem Name MO OSR OSR-W ~~~SR-WR 
-;;,--- ­

20-20-60-rclOl-1 8.0 7.8 9.3 9.8 9.9 
20-20-60-rc10l-2 5.0 6.7 7.46.8 6.8 

4.020-20-60-rclO\-3 6.2 8.5 7.9 7.5 
20-20·60-relO \-4 7.0 5.7 8.08.0 7.6 
20-20-60-rclOl-5 6.0 7.0 7.9 7.7 7.1 

2.0 2.3 2.620-20-60-rc102-1 3.1 3.0 
7,820-20-60-rc 1 02-2 6.4 6.79.0 6.7 
6,020·20-60-rcl02-3 4.0 4.3 6.5 6.3 

4,620-20-60-rcI02-4 6.0 6.6 5.7 5.9 
20·20-60-rcI02-5 11.0 5.2 7.8 7.7 6.1 
20-20-60·rc 104·} 26.0 18.1 20.1 18.2 19.5 
20-20-60-rcl04-2 37.0 22.4 24.5 26.8 23.0 
20-20-60-rc I 04-3 16.126.0 12,2 17.0 17.6 
20· 20-60-rc 104-4 25.0 16.7 18.0 13.6 17.5 
20-20-60-rc 104-5 25.0 10.8 12.8 13.3 12.9 
Average 10.5 10.613.7 9.1 ,,'_ 10.8 

Table 3: Number of Rejected Customers in Online Commit­
ment Routing with Greedy Acceptance and Stochastic Vehi­
cle Assignment. 

now rejects about 14 customers in average (instead of about 
10) and may reject 39 customers (out of 100) in some in­
stances. However, the performance of the stochastic algo­
rithms is also extremely disappointing. The basic algorithm 
(OSR) is roughly comparable to online myopic optimization 
but the waiting and relocation variant perform even more 
poorly. This raises two fundamental questions: 

I. 	Can the algorithms be enhanced to bridge most of the 
gap in solution quality? 

2. Is there a value of stochatic information in online com­
mitment routing and is there a real price of commitment? 

The rest of this paper addresses both issues. 

6 Stochastic Vehicle Assignment 
To improve solution quality, we first use stochastic informa­
tion to select the vehicle for an incoming request. The algo­
rithm for selecting the vehicle of a request is depicted in Fig­
ure 3. The key idea is to generate scenarios and to evaluate the 
consequences of the various allocation decisions on the num­
ber of serviced customers_ The algorithm generates scenarios 
(line I) and initializes the scores of the vehicles (lines 2-3). 
Then, for every scenario, it calls the optimization algorithms 
for each of the allocation decision (line 4-6). The algorithm 
then returns the allocation with the best score. The algorithm 
requires km optimizations per decision. The number can be 
reduced by using the regret algorithm [5], 

Table 3 depicts the result., which show significant improve­
ments for stochastic algorithms and, in particular, on the 



ACCEPTREQlJEST(State a,Reque8t r) 
I {~I""'~k}r-SAMPLE(k); 
2 for v E l..m 
3 do f(v) r- 0; 
4 r r ­

5 fori E l..k 

6 do for VEL rn 

7 do f(v) r- f(v) + W(O(ADDREQUEST(a, r, 

8 r r- r + w(O(a, 0); 

9 return rnax"ELm f(v) :::; 


Figure 4: Request Acceptance for Commitment Routing 

OSR-WProblem Name MO OSR OSR-R OSR-Wlf 
20-20-60-rc 10I-I 
20-20-6O-rclOl-2 
20-20-6O-rclOl-3 
20-20-6O-rclOl-4 
20-20-60-rclOl-5 
20-20-6O-rc I02-1 
20-20-60-rc I 02-2 
20-20-60-rc102-3 
20-20-60-rcI02-4 
20-20-6O-rc I02-5 
20-20-60-rcl04-1 
20-20-60-rcl04-2 
20-20-60-rc104-3 
20-20-60-rc I 04-4 
20-20-60-rc I 04-5 

-11-:9I--'-~9.28.0 11.6 
5.0 5.9 5.7 6.1 5.9 
4.0 5.9 7.6 7.37.6 

8.07.0 7.6 7.4 7.7 
6.0 6.7 8.0 7.7 8.2 
2.0 2.5 3.2 3.13.5 
9.0 7.56.4 6.6 7.4 
4.0 4.3 5.7 6.4 6.7 

6.6 6.9 5.96.0 5.8 
11.0 4.6 5.35.7 5.5 
26.0 17.4 19.9 18.519.2 
37.0 20.7 22.022.3 21.7 
26.0 I3.3 12.7 14.3 15.5 

13.8 14.625.0 13.1 11.4 
12.125.0 ILl 12.6 11.3 

13.7 9.0 9.9 9.9 ~I Average 

Table 4: Number of Rejected Customers in Online Commit­
ment Routing with Stochastic Acceptance and Stochastic Ve­
hicle Assignment. 

harder instances_ Algorithm OSR now rejects about 9 cus­
tomers in average and it now accepts about 10 additional cus­
tomers on the harder instances. The waiting and relocation al­
gorithms show similar improvements but are still dominated 
by OSR. These results clearly indicated the value of stochas­
tic information for vehicle assignment. 

7 Stochastic Acceptance 
We now move to the stochastic acceptance of requests, using 
stochastic information to decide whether to accept or reject 
a request. The algorithm is depicted in Figure 4 and follows 
the same pattern as the stochastic vehicle selection. The only 
additions are line 4 and 8 which are used to evaluate the deci­
sion to reject the request and, of course, line 9 which returns 
the decision. Intuitively, the idea underlying the algorithm 
is to evaluate the scenarios for each possible vehicle alloca­
tion decision and for request rejection_ If the best vehicle 
allocation is superior to rejection, the request is accepted; It 
is rejected otherwise. Once again, the algorithm require krn 
optimization which can be reduced by using the regret algo­
rithm. The resulting algorithm exploits the same stochastic 
techniques for all three deciSions, request acceptance, vehicle 
assignment, and vehicle dispatching, and provides a unified 
framework for online routing. Note also that our implementa­
tion combines request acceptance and vehicle allocation since 
the optimizations are similar. 

Table 4 depicts its experimental results, which exhibit 

Prohlem Name MO OSR OSR-W OSR-R OSR-WR 
20-20-60-rc 101-1 5.6 6.4 -7.9 8.3 8.2 
20-20·6O-rclOl-2 9.0 4.7 4.4 5.0 5.1 
20-20-6O-rc 101-3 0.0 4.5 6.0 5.7 5.5 
20-20-60-rc 101-4 S.O 6.2 8.4 7.9 7.7 
20-20-60-rc 101-5 3.0 5.0 6.3 5.9 6.2 

120-20-6O-rcI02-1 2.0 1.4 0.7 0.6 L3 
20-20-60-rcI02-2 3.6 5.1 4.6 4.7 
20-20-60-rcI02-3 8.02.0 I 3.3 5.1 4.4 5.2 
20-20-60-rc 102-4 2.0 2.6 3.8 3.5 3.8 
20-20-60-rcI02-5 6.0 3.5 3.6 3.1 4.2 
20-20-60-rc 104-1 23.0 11.7 15.3 16.1 14.7 
20-20-60-rc I 04-2 29.0 13.9 13.9 13.1 13.8 
20-20-60·rc I 04-3 18.0 11.0 13.1 14.3 1'1.& 
20-20-60-rc 104-4 25.0 9.1 12.3 10.3 10.7 
20-20-60-rcl04-5 18.0 6.7 9.3 7.5 9.0 
Average 10.3 6.2 7.7 7.4 7.6 

Table 5: Number of Rejected Customers for Online Commit­
ment Routing with Resource Augmentation: One Additional 
Vehicle 

OSR-W OSR-RMO OSR 
6.13.0 5.0 6.0 

20-20-60-rclOl-2 0.0 3.1 3.2 3.1 2.9 
2.820-20-60-rcl01-3 0.0 2.4 3.53.4 

20-20-60-rclOl-4 4.0 4.0 5.9 6.0 6.0 
2.0 4.2 5.420-20-60-rc101-5 5.6 

0.4 0.620-20-60-rcI02-1 0.0 0.3 
2.220-20-60-rc 102·2 5.0 1.8 2.6 

20-ZO-60-rcl02-3 0.0 1.6 2.4 2.9 
20-20-60-rc 102-4 2.1 3.51.0 2.0 

4.0 1.92O-20-60-rc 102-5 L3 L8 
20-20-6O-rc 104-1 19.0 9.1 10.1 12.3 
20-20-60-rc 104-2 25.0 11.410.8 11.5 
20-20-60-rc I 04-3 9.2 10.6 10.016.0 
2O-20-60-rcl04-4 21.0 7.9 6.9 10.9 

5.5 7.1 5.216.0 
9.5 4.6 5.2 5.8 

Table 6: Number of Rejected Customers for Online Commit­
ment Routing with Resource Augmentation: Two Additional 
Vehicles 

slight improvements for each of the stochastic algorithms, al­
beit marginal for OSR. Overall, the results indicate the value 
of stochastic information for online commitment routing. The 
solution quality of OSR in this seeting is close to its perfor­
mance in online flexible routing. However, the waiting and 
relocation variants are not, suggesting that waiting and re­
location strategies have little benefit in online commitment 
routing. This is rather unexpected, since the vehicle assign­
ment does not prescribe any specific dispatching decision but 
just the vehicle allocation. As a consequence, the benefits of 
waiting and relocation seem to be the main loss of moving 
from a flexible to a commitment framework. 

8 Resource Augmentation 
A traditional methodology in online algorithms consist.~ in 
adding resources to account for the additional cost of taking 
decisions dynamically. In this section, we consider resource 
augmentation for online commitment routing by adding one 
or more vehicles. 

Table 5 reports the results with one addition vehicle. The 
results are illuminating. OSR now improves on its results for 
online flexible routing, moving from 8.69 to 6.2 rejections 
in average and significantly reducing the number of rejected 
customers on the harder instances. This should be contrasted 



with online myopic optimization whose average number of 
rejections for online commitment routing with one additional 
vehicle (10.3) is still higher than its flexible counterpart Re­
source augmentation also improves the waiting and relocation 
variants but they are still dominated by OSR. In fact, the dis­
tance between OSR on the one hand and OSR-W, OSR-R, 
and OSR-RW on the other hand increases both in percentage 
and absolute terms with resource augmentation. 

Table 6 depicts the results with 2 additional vehicles. Once 
again, the stochastic algorithms benefit the most from the ad­
ditional resource, but the waiting and relocation variants still 
do not improve the basic stochastic algorithm. 

9 	 Conclusion 
In this paper, we studied online stochastic vehicle routing in a 
setting which requires to commit specific vehicles to accepted 
requests (online commitment routing). This online commit­
ment routing setting is motivated by actual applications in 
which the flexibility of moving a request from a vehicle to 
another is fundamentally undesirable or not available. Exper­
imental results indicated that simple generalizations of exist­
ing algorithms for online flexible routing do not scale to on­
line commitment routing. We then proposed a unified frame­
work in which all three decisions, i.e., request acceptance, ve­
hicle selection, and vehicle dispatching, are based on similar 
principles and use a combination of sampling and optimiza­
tion. The experimental results show significant improvements 
in quality, demonstrating the value of stochastic information 
in this setting and showing the criticality of vehicle selection. 
However, the solution quality for online commitment routing 
was still inferior to its flexible counterpart. For this reason, 
we consider resource augmentation and showed that the pro­
posed algorithm with one additional vehicle outperforms its 
flexible counterpart. However, there is an additional price of 
commitment: the waiting and relocation strategies so effec­
tive in online flexible routing degrade solution quality when 
vehicle commitments are required. Understanding why this is 
the case and characterizing when waiting and relocation are 
valuable are interesting open issues. 
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