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Abstract 

Recently, peer-to-peer (P2P) networks have emerged as 
a covert communication platform for malicious programs 
known as bots. As popular distributed systems, they allow 
bots to communicate easily while protecting the botmaster 
from being discovered. Existing work on P2P-based hotnets 
mainly focuses on measurement ofbot net sizes. In this work, 
through simulation, we study extensively the structure ofP2P 
networks running Kademlia, one ofa few widely used P2P 
protocols in practice. Our simulation testbed incorporates 
the actual code ofa real Kademlia client software to achieve 
great realism, and distributed event-driven simulation tech­
niques to achieve high scalability. Using this testbed, we ana­
lyze the scaling, reachability, clustering, and centrality prop­
erties of P2P-based botnets from a graph-theoretical per­
spective. We further demonstrate experimentally and theoret­
ically that monitoring bot activities in a P2P network is diffi­
cult, suggesting that the P2P mechanism indeed helps hotnets 
hide their communication effectively. Finally, we evaluate the 
effectiveness ofsome potential mitigation techniques, such as 
content poisoning, Sybil-based and Eclipse-based mitigation. 
Conclusions drawn from this work shed light on the struc­
ture of P2P botnets, how to monitor bot activities in P2P 
networks, and how to mitigate botnet operations effectively. 
Keywords: Botnets, Kademlia, structural analysis, monitor­
ing, mitigation 

1 Introduction 

Botnets, which are networks of compromised machines 
that are controlled by one or a group of attackers, have 
emerged as one of the most serious security threats on the 
Internet. With an army of bots at the scale of tens of thou­
sands of hosts or even as large as 1.5 million PCs, the com­
putational power of botnets can be leveraged to launch large­
scale DDoS (Distributed Denial of Service) attacks, sending 
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spamming emails, stealing identities and financial informa­
tion, etc. For instance, it is reported that six botnets con­
tribute 85% of all spamming emails seen on the Internet [26], 
and botnets have been used to launch DDoS attacks against 
DNS service [13]. 

As detection and mitigation techniques against botnets 
have been stepped up in recent years, attackers are also con­
stantly improving their strategies to operate these botnets. 
The first generation ofbotnets typically employ IRC (Internet 
Relay Chat) channels as their cornmanc;l and control (C&C) 
centers. Though simple and easy to deploy, the centralized 
C&C mechanism of such botnets has made them prone to 
being detected and disabled. Against this backdrop, peer­
to-peer (P2P) based botnets have emerged as a new genera­
tion of botnets which can conceal their C&C communication. 
Without a centralized C&C server, a P2P-based botnet does 
not suffer from a single point of failure, and its traffic, when 
buried in the enormous normal P2P traffic in the Internet, is 
extremely hard to detect. J 

-r... 
Current work on P2P-based b<Anets mainly focuses on 

measuring existing P2P-based botnets, such as the highly 
publicized Storm botnet. In this work, we take one step fur­
ther to investigate the structural characteristics of P2P-based 
botnets, explore the challenges of monitoring bot activities 
inside a P2P network, and evaluate the effectiveness of sev­
eral attack techniques against P2P networks for botnet mit­
igation. Achieving all these goals calls for an experimental 
testbed with high flexibility and controllability. Towards thi s 
end, we build a P2P-based botnet simulation testbed, which 
uses the actual implementation code of a real P2P client soft­
ware for great realism, as well as distributed event-driven 
simulation techniques for high scalability. Using this testbed, 
we analyze the structures of P2P-based botnets and evaluate 
several monitoring and mitigation strategies. 

The key contributions we make from this work can be 
summarized as follows: First, we analyze the scaling, reach­
ability, clustering, and centrality properties of P2P-based 
botnets from a graph-theoretical perspective. Second, we 
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demonstrate, from both experimental and theoretical aspects, 
that monitoring bot activities in a P2P network is difficult, 
suggesting that the P2P mechanism indeed helps botnets hide 
their C&C communication effectively. Third, we evaluate 
the effectiveness of some existing well-known attacks against 
P2P, but now used for botnet mitigation, such as content 
poisoning, Sybil-based mitigation, and Eclipse-based miti­
gation. Conclusions drawn from this work shed light on the 
structure of P2P botnets, how to monitor bot activities in P2P 
networks, and also how to mitigate botnet operations effec­
tively. 

'The remainder of the paper is organized as follows . Sec­
tion 2 presents related work. Section 3 provides some back­
ground on the Kademlia protocol and its variant Kad, which 
is used in our simulation-based study. Section 4 gives an 
overview of the design of our P2P-based botnet simulation 
testbed. Next, Section 5 analyzes P2P-based botnets from 
a graph-theoretic perspective, including their scaling, reach­
ability, clustering, and centrality properties. Section 6 dis­
cusses the challenges of monitoring bot activities in a P2P 
network, both experimentally and theoretically. We further 
evaluate the effectiveness of three different mitigation tech­
niques against botnet operations in Section 7. Finally, Sec­
tion 8 concludes the paper. 

Related Works 

Existing studies on botnets mainly fall under the follow­
ing three main categories: (i) Perform case-study of botnet 
behaviors and structures; (ii) Model hypothetic botnets to 
gain insights on their dynamics and defense schemes against 
them; (iii) Propose techniques for botnet detection and dis­
ruption. In the first category, Freiling et al. [14] infiltrated a 
real botnet to identify C&Cs and study bot commands. Rajab 
et al. [24] employed a multifaceted and distributed infrastruc­
ture to study botnet behaviors. Oth~rs works focused on mea­
suring botnet size by various techniques such as by DNS redi­
rection [10] or DNS cache snooping [23]. Our work on an­
alyzing P2P-based botnets is inspired by some observations 
made from real botnets. In the second category, Dagon et al. 
analyzed intensively the impact of different botnet structures 
on some network metrics such as inverse geodesic length [9). 
In [29], Vogt et al. also used simulation to shed light on the 
feasibility of using super-botnets for their command and con­
trol communication. Wang et al. proposed a hybrid peer-to­
peer botnet structure that is more robust against server shut­
down and hijack attacks than traditional botnets [30] . Dagon 
et al. observed diurnal patterns that impact the propagation 
speed of the botnet and thereby proposed a diurnal propa­
gation model to capture this phenomenon [11]. Recently, a 
stochastic activity network model has been used to charac" 
terize peer-to-peer botnets in the Mobius software tool [25]. 
Our work in this paper relies on a P2P-based botnet simu­
lation testbed, in which a P2P-based botnet is modeled us­

ing discrete-event simulation techniques. Unlike previous 
work, our simulation model uses actual implementation code 
of a popular P2P cIlient software to achieve great reali sm. 
In the third category, several techniques recently al so been 
proposed to detect botnet existence: machine learning [20] , 
anomaly detection [4], traffic or network activity statistics 
analysis [16]. In this work, we explore the difficulty of mon­
itoring bot activities in a P2P network and also evaluate ex­
isting attack techniques against P2P network on mitigation 
against botnet operations. Conclusions drawn from this are 
complementary to existing botnet detection and mitigation 
techniques. 

Kad is the first widely deployed peer-to-peer system based 
on a Distributed Hash Table. Stutzbach et al. were among 
the first to study the performance of lookup operation on 
Kad [28). Steiner et al. [27] investigated several attacks on 
Kad, but they did not focus on the efficiency of the attacks, 
especially in the context of botnets. Some results in their 
paper were later contradicted by other work [17]. Finally, 
attacks against DHT (Distributed Hash Table) P2P networks 
have long been discussed since the dawn of DHT-based net­
works [7], [12). However, they are mostly studied from a hy­
pothetical perspective, and there is little work that explores 
their actual performance on real networks. Here we explore 
the potential of employing these attacks for good use against 
botnets, and from a practical perspective. 

3 Primer on Kademlia and Kad 

Kademlia, a peer-to-peer (P2P) protocol, was proposed by 
Maymounkov and Mazieres in [21). Based on Distributed 
Hash Table (DHT), it provides a structured approach to P2P 
applications, where file storing and lookup operations can be 
efficiently performed with some resource-to-location map­
ping functions. In Kademlia networks, each node or resource 
(e.g., file) is associated with a 160-bit identifier in a circular 
ID space of size 2160. These IDs are generated in a pseudo­
random fashion (usually with a cryptographic hashing func­
tion), so that they can be deemed as uniformly distributed in 
the ID space. The distance d between two IDs X and Y is 
defined as the integral value of the bitwise-XOR result be­
tween X and Y, namely X EB Y. Each resource is stored on 
nodes whose IDs are closest to the resource's ID based on 
this distance metric. 

Routing in Kademlia is done in an iterative fashion based 
on distances. A node, when searching for an ID (either a re­
source ID or a node ID), queries its neighbors for new nodes 
whose IDs are closest to the target ID. Upon receiving the an­
swers, it continues to query those that are closer to the target. 
This process repeats until no closer node IDs can be found 
from the answer set. 

For routing purposes, each node maintains a routing ta­
ble containing information about its neighbors, such as their 
IDs, IP addresses, contact ports, etc. The routing table is 



organized as a tree of subtables called bins, each of which 
stores information about nodes with the same ID prefix. The 
contents of these bins are frequently updated whenever the 
host node receives a query, to ensure that only information of 
alive neighbors is stored. When a bin is full , new entries are 
added only if some old entries appear to be dead and can thus 
be removed. In this sense, Kademlia prefers existing nodes 
to newly joined ones. Further details regarding how routing 
tables are constructed can be found in [21]. 

Kad is a variation of the Kademlia protocol that has been 
adopted by the P2P community on several major P2P net­
works, including Ovemet1 and eMule [I]. Beside using 128­
bit IDs, Kad supports more types of messages than Kadem­
lia, and also handles the routing process in a slightly different 

. fashion. More specifically, the search process in Kad consists 
of two phases: 

• 	 Routing phase: Similar to the original Kademlia rout­
ing protocol, the searching node asks its neighbors for 
nodes closest to the key ID in an iterative fashion. To 
accelerate the process, each peer in Kad simultaneously 
asks for the three closest peers so far in each round. 
The messages used in this phase are KADEMLIARE­
QUEST and KADEMLIARESPONSE, in the parlance 
of Kad. 

• 	 Item querying phase: After a certain amount of time 
since the query starts, the searching node selects some 
nodes that have responded and then queries for the 
key. The messages used in this phase are key-specific 
query messages, such as KADEMLIA_SEARCHREQ 
and KADEMLIA.2UBLISH..REQ. 

Each unit of information stored in a Kad network is asso­
ciated with a unique key (i.e. an ill). There are three main 
types of keys. (1) Source Key: A source key identifies the 
content of a file and associates with information about the 
source node to download that file. Each instance of a file 
is associated with a unique source key (there can be multi­
ple copies, thus multiple source keys). (2) Keyword Key: A 
keyword key identifies a textual keyword and associates with 
information of the source keys for files related to the key­
word. (3) Note Key: A note key identifies a comment related 
to a specific file, and associates with information about a file 
(i.e its source key). 

In Kad, keys are not just published on a single peer that is 
closest to that key, but instead stored on at most 10 different 
peers close to the key. Keys are periodically republished, 
every 5 hours for a source key and 24 hours for a keyword or 
note key. Keys are removed from their resident peers if they 
have not been republished within their respective lifetime. 

lOvemet was shut down due to copyright violations in late 2006. 

4 P2P-Based Botnet Simulation Testbed 

The distributed architectures and existence of obfuscation 
techniques such as encryption in P2P-based botnets not only 
pose a serious challenge to studying their operational char­
acteristics, but also hinder development of effective defense 
schemes to detect and even disrupt their operations. Cur­
rent work on P2P-based botnets mainly focuses on monitor­
ing, either passively or actively, behaviors of some existing 
P2P-based botnets, such as the Storm botnet [18, 19]. Al­
though these bodies of work offer insights on how those bot­
nets operate underground in reality, they have the following 
disadvantages. First, botnet monitoring usually takes place 
from a single or a few vantage points, thus cannot provide 
a full and consistent picture of the entire network. Second, 
researchers who attempt to actively measure an existing bot­
net may interfere with each other, potentially render informa­
tion collected highly biased. For instance, the Storm botnet 
may have been overestimated due to interference from re­
searchers performing their poisoning mitigation scheme on 
the botnet [19]. Third, even without considering the interfer­
ence caused by other researchers, evaluating the performance 
of a proposed mitigation scheme accurately on a real botnet 
is difficult because the effect is usually observed from one 
or a few vantage points. Fourth, as an intelligent botmaster 
may dynamically change his strategy to evade detection, it is 
difficult to evaluate the effectiveness of a countermeasure on 
a real botnet. Last but not least, performing research on a 
real botnet may involve ethical and legal issues that are often 
neglected by cyber-security researchers [6]. 

With these challenges, it is thus necessary to have a 
testbed with such flexibility and controllability that we can 
use it to understand the operational dynamics of botnets and 
also evaluate effectiveness of different mitigation schemes. 
For this purpose, we develop a simulation-based virtual envi­
ronment in which we can investigate P2P-based botnets ex­
tensively. In this simulation testbed, we simulate behaviors 
of P2P protocols with high fidelity. In contrast to some ex­
isting P2P simulators which often model P2P protocols at an 
abstract level, we use the implementation code of aMule [2], 
a real and popular P2P client software for eMule [1]. The 
aMule P2P client implements the Kad protocol, as described 
in Seetion 3. It is noted that the Storm botnet uses a modified 
version of the Ovemet protocol for communication, which 
also implements the Kademlia algorithm. The code migrated 
from directly from aMule, however, cannot work straightfor­
wardly in a simulation environment because timers in aMule 
are associated with real wall clock time but in the simulation 
time is virtual and simulated. To address this problem, we 
intercept all time-related system calls and replace them with 
functions that use virtual simulation time. 

As we port code from a real P2P client software, we sim­
ulate all details of the P2P protocol without any abstraction. 
Although this provides great realism in our simulation, it also 



brings the scalability challenge: simulating a botnet at the 
scale of a realistic one (e.g., a botnet with tens ofthousands of 
bots like the Storm botnet) is so computationally prohibitive 
that it cannot be finished on a single commodity PC within 
a reasonable amount of time. To improve the scalability of 
our botnet simulator, we resort to distributed simulation tech­
niques. Our botnet simulator is developed on top of PRIME 
SSF [22], a distributed simulation engine based on conserva­
tive synchronization techniques. Our distributed computing 
platform consists of 30 machines, each with 2 Pentium III 
CPUs and 4Gb RAM. Using this platform, our botnet simu­
lator can simulate botnets with hundreds of thousands of bots 
within hours. 

The simulation testbed offers great controllability with re­
gard to how the botrnaster of a bot dynamically changes oper­
ational strategies. For instance, a botnet using the Kademlia 
protocol may not strictly stick to the original protocol; in­
stead, it can tweak some protocol behaviors for its own good. 
Modeling different botnet operational strategies can easily be 
done in our virtual botnet testbed. On the other hand, evalu­
ating the performance of a specific mitigation scheme in the 
simulation testbed does not interfere with the normal oper­
ation of an existing botnet, and we do not need to consider 
those legal and ethic issues that result from working on a real 
botnet. In the following sections, we shall present results of 
using this simulation testbed to investigate characteristics of 
P2P-based botnets and defense schemes against them. 

5 Structural Analysis 

As the P2P protocol is the bedrock of a P2P-based botnet, 
operations of such a botnet and the corresponding defense 
schemes are inevitably implicated by its distinguishing P2P 
structure. In this section, we analyze the characteristics of 
P2P networks. If the whole P2P network is used exclusively 
for botnet operations, the properties of the P2P network pre­
sented in this section offer insights on the structure of such a 
P2P-based botnet; otherwise if a botnet uses onl)' an existing 
P2P network to hide its communication (e.g., the Storm bot­
net which used Ovemet for its command and control), con­
clusions drawn from the structural analysis of P2P networks 
will used later to decide which nodes we should monitor to 
detect botnet traffic . In the following discussion, we perform 
structural analysis on a P2P network with 20,000 nodes from 
a graph-theoretical perspective. Given this network, we form 
a directed graph G(V, E) as follows: each node in the net­
work is also a vertex in graph G and if a node b appears in 
node a's routing table, an edge from vertex a to b is added to 
the graph. 

5.1 Scaling Property 

Many real-world networks, such as the world wide web 
(WWW) and social networks, have been shown to be scale-

free networks, whose degree distributions follow the power 
law. We are interested in whether a network built on the 
Kademlia protocol is also a scale-free network. In Figures 
lea) and l(b), we depict the cumulative distribution of the 
in-degree and out-degree of graph G(V, E), respectively. Vi­
sually, if the degree distribution follows a power law distri­
bution, the curve should appear linearly. From the figures, 
it seems that both the indegree and outdegree of G(V,E) do 
not follow the power law. 
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Figure 1. CDF ofthe Degrees (log-log scale) 

To verify this observation rigorously, we apply the statisti­
cal method developed by Clauset et al . [8], which is based on 
maximum likelihood methods and the Kolmogorov-Smimov 
statistic. Using this technique, we observe that the p-value, 
which is used to measure the goodness-of-fit, is 0 for both the 
in-degree and out-degree distributions. This further confirms 
that neither indegree nor outdegree of G(V, E) follows the 
power law. 

5.2 Reachability and Clustering Property 

Figure 2(a) shows the complementary cumulative density 
function (CCDF) of the fraction of the reachable population 
from each node (out-reachability). In the network, 80% of 
all the nodes can reach 60% or more of the node population, 
but only 10% of the nodes can reach more than 68% of the 
node population. Interestingly, none of the nodes can reach 
more than 70% of all possible destinations. This observa­
tion, however, does not hold for in-reachability, which shows 
the fraction of nodes that can reach one specific destination. 
The CCDF of in-reachability is also depicted in Figure 2(a). 
We note that nearly 20% of the nodes can be reached from 
more than 90% of the population and some nodes can even be 
reached by all the other nodes. This implies that the P2P net­
work can still work well if the resources are stored on these 
nodes with high in-reachability. Figure 2(b) shows the cu­
mulative distribution of the average path length to reachable 
nodes. The average path length of the overall network is only 
2.5 hops, suggesting that the average path length between two 
nodes is very small if there exists such a path. 

The network is also highly clustered as can be seen from 
Figure 4(a), which shows the individual clustering coefficient 
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of each node. Almost 95% of all the nodes have clustering 
coefficient more than 0.3, and the average network clustering 
coefficient is 0.4136. This is much higher than the theoretical 
value 0.027 in an Erdos-Renyi random graph with the same 
number of nodes and edges. 
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5.3 Centrality Property 

.j 
In this section, we stu~ various measures to identify 

important nodes in a P2P network. The goal is to find good 
metrics to identify strategic points. From a practical perspec­
tive, they should also be easy to use, yet able to give a fairly 
accurate picture of critical nodes. We consider common mea­
sures widely used in other domains. 

Degree centrality. We already showed the distribution of 
the in- and out-degrees in Figure I. In many networks degree 
is an effective measure of the importance of a node. In the 
Internet, for example, nodes with more connections typically 
tend to receive more connections by new nodes. 

Eigenvector Centrality. A more sophisticated measure 
of node importance is the eigenvector centrality. While de­
gree centrality gives a simple count of the number of connec­
tions a vertex has, eigenvector centrality acknowledges that 
all connections are of equal importance. Nodes connected to 
more significant nodes, however, have more influence than 
those connected to less significant nodes. This effect can be 

represented by defining the centrality of a node to be propor­
tional to the average centrality of its neighbors. Under this 
definition, the centrality measures of all the nodes form an 
eigenvector of the network adjacency matrix. This approach 
has shown to be an effective measure in many situations, for 
example in studies of the Internet topologies [15], finding 
clusters in information retrieval context [3], or ranking Web 
pages [5]. 

At the first glance, it seems that the same spectral analy­
sis techniques used to study the Internet topologies [15] can 
be easily adapted to our network. This is not true because, 
unlike the Internet model in that paper, the P2P network is 
directed. Furthermore, the computation cost of the spectral 
analysis method poses a serious challenge for studying large 
scale networks (even the Internet topology studied in [15] 
was only a small fraction of the real Internet). These two fac­
tors render spectral analysis an unsuitable tool for our case. 

To circumvent this problem, we instead use the method 
employed for ranking Web pages [5] to compute centrality 
measure. The ranking method is the following: let A' is the 
directed adjacency matrix. For each node i define the out 
degree of i as dout(i) = Ij : aij = 11. Now consider the 
stochastic matrix P where Pij = d(li Z(.) + (I - a). The eigen­

o ut t n 
vector with eigenvalue 1 of P gives the ranks of the nodes. 
Note that since each of the nodes in our network has non zero 
outdegree, we have no dangling nodes, one important condi­
tion for the existence of this vector. Figure 4(b) shows the 
PageRank values of the nodes against their ranks. We note 
from the figure that the PageRank measure decays rapidly 
with the node rank, suggesting that a small fraction of nodes 
bear very high PageRank value compared to the remaining 
ones. 

Betweenness Centrality. The betweenness centrality of 
vertex i is defined as the fraction of geodesic paths between 
other vertices on which it falls. That is, we find the shortest 
path (or paths) between every pair of vertices in the network 
and then derive the fraction of paths on which vertex i ap­
pears. In the P2P network, however, the geodesic paths do 
not reflect the actual routing paths, as explained in Section 3. 
To make betweenness a more reasonable centrality measure 
in our context, we define it based on the concept of query set 
from a source to a destination, which gives the set of nodes 
that will be queried by the source node in order to get to the 
destination. The betweenness centrality is thereby defined as 
the fraction of query set between other vertices that contain 
i. Figure 3(a) plots the betweenness measures against node 
ranks in the network. From the figure, we observe a similar 
pattern to PageRank centrality: only a sma)) number of nodes 
appear frequently in the query sets of all source-destination 
pairs. For instance, only 20 nodes appear more than 0.5% 
of the paths between all source-destination pairs. This seems 
intuitive as P2P protocol is designed to be fully distributed so 
that each node in the network should have equal importance. 

Closeness Centrality. The closeness centrality of vertex 
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i is defined as the mean distance from vertex i to every other 
reachable vertex. We have already showed the cumulative 
distribution of the average distance per node in Figure 2(a). 
Figure 3(b) shows these distances against their ranks. 

Routing-based Centrality. We define another metric 
called the routing weight based on the actual routes in the 
network. These actual routes are computed in accordance 
with the Kademlia routing protocol. For each route of length 
L (excluding the source and target node), we define a routing 
weight for each node in the route as: 1 + t. Here i is the or­
der of the current node, starting from 0 with the node next to 
the target, and increases towards the nodes near the source. 
The intuition behind this scheme is to put more weight on 
nodes that appear close to the source, yet still taking into ac­
count the number of routes they are on. The application of 
this metric will be explained further in the following sections. 

Correlations between different centrality measures. Is 
there any relation between the above measures? Some of the 
above centrality measures can be computed easily, while oth­
ers require significant efforts. From a practical perspective, 
if there are strong connections between two measures, one 
can estimate the measure that is hard to compute based on 
the more simple measure. We compute the correlation coef­
ficients between these centrality measures with significance 
level 5% and the results are shown in Table I. There are 
three interesting strong correlations: between betweenness 
and routing centrality, between closeness and out-degree cen­
trality, and between betweenness and in-degree centrality. To 

confirm this, two of these correlations are further depicted in 
Figure 5. 

6 	 Monitoring 

To detect bot behaviors hidden in a P2P network, we need 
to monitor P2P traffic for some distinguishing features of bot­
nets. The monitors can be placed at the enterprise gateway or 
ISP backbone routers. Given the scale of current P2P net­
works and the intensive P2P traffic, it is extremely difficult, 
if not impossible, to monitor all P2P traffic. We thus con­
sider the following problem: suppose that we already know 
the topology of a P2P network through crawling, find the 
nodes to monitor so that botnet communication traffic can 
be checked as much as po~ib}~. To answe~t!lis question, we 
simulate a P2P network ~~ portion life bots. The bot­
master publishes bot commands as keywords in the network. 
Other bots, meanwhile, search for the bot command based on 
the keyword ID they already knew in advance (hardcoded) or 
can easily be computed (e.g, in the case of Peacomm bots ). 

We record all queries generated by these bots during the 
routing phase and rank the nodes in the network based on the 
traffic (number of queries) each node receives. Monitoring 
malicious traffic provides a venue to detect botnet command 
and control since each routing query packet carries a unique 
keyword ID. If we know a keyword ID has been used for bot 
communication in advance, a surge of query packets associ­
ated with this ID is a good indicator of intense bot activities. 
Due to the dynamics of routing queries in a P2P network, 
one may wonder whether it is possible to use centrality mea­
sures discussed in Section 5 to predict the importance of the 
nodes. This knowledge can then be used for monitoring traf­
fic efficiently. To address this question, we first define the 
overlapping ratio metric as follows. Given two rankings of 
all the nodes in the P2P network, their overlapping ratio for 
the top n nodes is given by the fraction of common nodes 
that appear in the top n nodes of both rankings. For instance, 
if 20 nodes appear among the top 100 ones of both rankings, 
the overlapping for the top 100 is 20%. 

We next discuss possible strategies from the botmaster's 
point of view. As described in the previous section, a peer 



Table 1. Correlation Coefficients Between Centrality Measures 

Closeness 
Closeness 

1.0000 
Betweenness 

-0.1112 
Routing 
-0.3684 

In-Degree 
-0.2572 

Out-Degree 
. -0.6392 

PageRank 
0.4261 

Betweenness -0.1112 1.0000 0.7744 0.6933 0.0722 -0.3127 
Routing -0.3684 0.7744 1.0000 0.8540 0.4383 -0.4751 

In-Degree -0.2572 0.6933 0.8540 1.0000 0.3606 -0.3217 
Out-Degree -0.6392 0.0722 0.4383 0.3606 1.0000 -0.5144 
PageRank 0.4261 -0.3127 -0.4751 -0.3217 -0.5144 1.0000 

goes through two phases to publish (or query for) a key: rout­
ing phase for finding nodes closer to the key, and publish (or 
query) phase when some responded nodes are requested to 
publish (or query for) the key. In practice, the set of nodes 
involved in the second phase is much smaller than the set of 
responded nodes in the first phase. We also observe one key 
feature of the protocol: keywords are published in a passive 
fashion, namely only the original node publishes keywords, 
whereas other nodes only passively accept the keyword with­
out republishing it elsewhere. Consequently, bot commands 
will only be published by bots, not by regular benign Kad 
clients. Thus the prevalence of a bot command in the net­
work depends only on how the bots publish it. As the chance 
of finding a keyword successfully is proportional to its avail­
ability in the network, the bot master can design the bots in 
such a way that the prevalence of the keyword in the network 
is significantly improved, although such behavior does not 
conform to the standard Kad protocol. In our study, we con­
sider three different strategies by the botrnaster in terms of 
the aggressive levels with which bots publish/query the com­
mand keyword: in the publish/query phase, a bot selects only 
a small set of responded nodes as in the standard protocol 
(strategy 1), 50% of all responded nodes (strategy 2), or all 
responded nodes (strategy 3). 

In the experiments, we consider two different stable rout­
ing table snapshots. From each snapshot, we select 10 sets 
of random bot nodes and simulate the communication within 
1.8 hour. In each simulation, we select a set of top m nodes 
that receive the most querying bot traffic and compare it with 
top m nodes defined by each centrality measure. The per­
formance of each centrality measure in terms of the overlap­
ping ratio for the top 1,000 and 2,000 nodes is depicted in 
Figures 6, 7, and 8, under the three strategies, respectively. 
In this figures, CLO, BTW, RT, ID, OD, and PR stand for 
the closeness, Betweenness, Routing-based, Indegree, Out­
degree, and PageRank centrality measures, respectively. At 
each data point, we give the mean overlapping ratio and its 
observed minimum and maximum over the 10 sample runs. 

From these plots, it can be seen that none of the standard 
centrality measures provide good prediction on those impor­
tant nodes in terms of their routing query traffic, regardless 
of the strategy applied by the botmaster. In fact, their per­
formance is close to the case when the nodes are randomly 
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Figure 6. Overlapping ratios under strategy 1 

0.1 4 

0.12 

0.' 

0.08 

0.06 

0.04 

0.02 

t 
t 
t t 

+ t 
ClO 8TW RT 10 00 PR 

(a) 1000 nodes 

0.24 

0.22 t 
0.2 + 

.0 
l' 0.18 

K 0.'6 ~ ! 0.14 + t
l +0.12 

0.' 

0.08 t t t0.06 
CLO 8rw RT 10 00 PR 

(b) 2000 nodes 

Figure 7. Overlapping ratios under strategy 2 

selected, as can be seen from the following lemma. 

Lemma 6.1. Let X be a fixed set of size m in a space 
N,INI = n ~ m. Let Y be another set of the same size 
selected randomly from N. The expected number ofcommon 
elements between X, Y can computed as: 

2 

E[lX nYIJ = m (1) 
n 

Proof Denote e = IX n YI. We have: 

'""' m k(m) (n-m)
E[e] L 

m 

kP[e = k] = L k m-c 
k=O (n)k=l m 

(n-l) 2 m m-l m 

C;,) n 

o 
Plug in the value of 11 = 20000, m = 1000 and m 

2000, we have E[lX n YIJ = 50 and E[lX n YI] = 200, 
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respectively. From these numbers, it can be seen that all cen­
trality measures except Betweenness do not yield better re­
sults than a random approach. 
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Figure 9. Observed Traffic 

ent bot sets; the fraction of traffic observed by these common 
nodes against their numbers is shown in Figure lO(b). These 
results show one important characteristic of Kad networks: 
the routing query traffic is very dynamic and is significantly 
affected by where those querying peers are distributed in the 
network. As a result, centrality measures discussed in Sec­
tion 5 all perfonn poorly in predicting those important nodes. 
Table 2 shows the number of common elements across all 10 
scenarios with different bot sets that can be predicted by each 
centrality measure. It can be seen that the betweenness cen­
trality outperfonns all others but is still only able to capture 
a small number of common nodes. However, even if there is 
a measure that can capture most of the common nodes, the 
amount of observed traffic by these nodes is still small as 
shown in Figure 1O(b). 

Bot communication interdiction. The results from the 
above section show that the set of traffic-critical nodes de­
pends on the locations of the bots. Note that given the rout­
ing tables of all nodes in the network, one can roughly esti­
mate the path between any source node and destination key 
(or nodes). In some cases, we can collect a list of suspicious 
nodes that are or may be bots. An interesting question is: if 
we know the paths among these nodes, which nodes should 
we monitor so that communication traffic generated between 
these suspicious nodes can always be interdicted? We formu­
late it as the following problem: 

Problem 1. (Bot Communication Interdiction - BCI) 
Given a set of communication paths P = {PI ,P2, . .. , Pn} 
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Figure 10. Observed Traffic 

However, is it possible that the traffic is well distributed 
over the whole network, rendering any ranking methods in­
effective? To answer this question, we look at the traffic ob­
served by top m nodes with heaviest traffic when m varies. 
Figure 9(a) shows this relation (averaged over 10 different 
bot sets). It can be seen that for each key, its query traffic is 
disproportion ally distributed. For example, nearly 80% of all 
traffic is observed (received) by 10% of the population (2,000 
nodes out of 20,000 in our case). This is further confinned in 
Figure 9(b), which shows the histogram of the number of ob­
served queries by each node. It is noted that for the majority 
of the nodes, they only observe a few queries. 

In Figure lO(a), we depict the number of common nodes 
shared among the top m ones across the scenarios with differ-

ordered list < ViI, ... > of nodes in V. A subset [ ~ V in­
terdicts a path Pi if 3vj E [ and Vj E Pi. Find the minimum 
interdiction set I for P such that VPi E P , [ interdicts Pi. 

Here, each path represents a communication path esti­
mated between two suspicious nodes. One would hope to 
find the smallest set of nodes that lay on all of these paths 
'so that the monitoring cost can be minimized. This problem, 
unfortunately, is intractable, as shown by the following theo­
rem. 

Theorem 6.2. The general version o/BCI is NP-hard. 

Proof We reduce HITTING SET to BCI. Consider an in­
stance of the decision version of HITTING SET where we are 
given a collection C of subsets of a finite set S, and a positive 
integer k. A hitting set for C is defined as a subset S' ~ S 
such that S' contains at least one element from each subset in 
C. It is NP-hard to determine if there is a hitting set of size 
at most k. 

An instance of BCI is constructed as follows. For each 
element in S, create a corresponding vertex in V . From each 
subset Si E C, create a path P i consisting of elements in Si. 

The order of the vertices in P i is not important for our proof. 
It is straightforward to see that HITTING SET has a hitting set 
of size at most k if and only if BCI has an interdiction set of 
size at most k. 0 



Table 2. Number of common nodes among the top m under different rankings 
m 

1000 
Total number of common nodes 

127 
Closeness 

2 
Betweenness 

46 
Routing 

29 
In-Degree 

23 
Out-Degree 

12 
PageRank 

26 
2000 535 40 219 152 142 75 152 

7 Mitigation 

In the previous section, we have shown that monitoring 
bot activities in P2P networks is a challenging task. In the 
section, we shall use simulation to further explore effective­
ness of defense schemes against botnet operations that have 
already been proposed in the literature. The three schemes 
discussed here include content poisoning, Sybil-based miti­
gation, and Eclipse-based mitigation. 

7.1 Poisoning-Based Mitigation 

As bot command keys are used by bots to search new com­
mands in a P2P-based botnet, they are actually one Achilles' 
heel of such botnets: once these keys are known, we can in­
ject benign contents with the same key into the network so 
that some bots may not receive the original bot commands. 
This technique is thus called poisoning attack and was first 
experimented in [17] . 

In our simulation, we publish the bot command key with 
benign contents on a set of nodes. Bots that make search re­
quests to these special nodes are considered to be "poisoned" 
with the content we provided. This is because the poisoned 
nodes reply to any request for the bot command with the con­
tent they have (which we provided). One interesting question 
that follows is how effective this method is, with respect to 
the size of the initially poisoned set. To answer this ques­
tion, we vary the size of the initially poisoned set among 
10, 100, 300, 500, 700, 900, and 1000. The poisoned nodes 
are chosen from those with the top betweenness values, since 
as shown in the previous section, the betweenness centrality 
measure seems to provide more nodes with high query traffic 
than other measures. 
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Figure 11. Performance of Poisoning Schemes 

Figure 11 (a) shows the average number of affected bots 
that received poisoned bot commands under all scenarios. It 

can be seen that although the nodes chosen based on the be­
tweenness centrality measure are not efficient from the traffic 
monitoring perspective, they are still effective in poisoning 
the bots. For instance, using only 10 initially poisoned nodes 
we can poison on average 25% of the total number of bots 
(more than 500 bots), regardless of their locations. With 100 
nodes, we can poison more than half of the bots. However, 
it is more costly to poison a large portion of the bot popula­
tion. After 400 nodes, the size of the initially poisoned set 
just makes little difference in the final number of poisoned 
bots. 

To understand the impact of the size of the initially poi­
soned set on the speed of the poisoning process, we show the 
fraction of poisoned bots (over all poisoned bots eventually 
in each scenario) against the simulation time in seconds un­
der different sizes of the initially poisoned set, denoted by 
n. It is noted that higher number of initially poisoned nodes 
helps speed up the poisoning process, but again the difference 
becomes smaller when the size is sufficiently large. 

7.2 Sybil-Based Mitigation 

Table 3. Sybil-based Mitigation Scenarios 
Mitigated IDs per Total No. 

I
Nodes Mitigated Nodes of IDs 

Scen. (1) 10 1000 10000 I 

Scen. (2) 100 100 10000 
Scen. (3) 1000 10 10000 
Scen. (4) 100 1000 100000 
Scen. (5) 1000 100 100000 
Scen. (6) 1000 300 300000 

-­ - - - ­

Passively monitoring traffic of a large number of nodes in a P2P 
network is challenging and resource-intensive. A more aggressive 
approach is to introduce a set of node IDs that are actually controlled 
by a small number of physical processing nodes. In thi s way, traffi c 
routing through these IDs are available for full analysis. Moreover, 
these nodes do not have to conform to the standard protocol, and 
may even reduce the processing overhead. For example, the pro­
cessing nodes may ignore IDs that they are not interesting, or just 
selectively reply with fake IDs to trick the querying node to pub­
lish valuable resources on them. This is a form of Sybil at/ack, as 
describe in [12]. 

In our simulation, we inject a varied number ofIDs into the rout­
ing tables of a selected set of nodes in the network. Again, these 
nodes are chosen based on the betweenness centrality measure. All 
injected Sybil IDs are associated with one extra node designated as 



Table 4. Traffic Observed by Sybil Agent 
Seen. (1) 

(1 Ox 1000) 
Seen. (2) 
(100xlOO) 

Seen. (3) 
(1000xlO) 

Seen. (4) 
(l00x1000) 

Seen. (5) 
(1000x'100) 

Seen. (6) 
(1000x300) 

0 2.6017e-06 0.0023 1.6122e-05 0.0142 0.021112 
--- ­

Table 5. Bot Coverage by Sybil Agent 
Seen. (1) 

(lOx 1000) 
Seen. (2) 

(100x100) 
Seen. (3) 
(lOOOxlO) 

Seen. (4) 
(100x1000) 

Seen. (5) 
(1000xlOO) 

Seen. (6) 
(1000x300) 

0 6.7 1935.3 26.6 1998.8 1999 

the central processing node called Sybil Agent. This agent is re­
sponsible for all requests directed to a Sybil ID. However, we only 
simulate a passive agent that collects requests without further re­
plying any IDs. Using this setup, we study the performance of this 
approach with respect to some key parameters, including the num­
ber of nodes to which the Sybil IDs will be introduced into and the 
number of Sybil IDs per node. 

We consider three different sets of Sybil IDs with size 10000, 
100000 and 300000. For the first two sets, we consider several sub­
scenarios when the set of nodes to be mitigated varies. Table 3 
details the configuration of each of these scenarios. Table 4 shows 
the fraction of queries that were sent to the Sybil agent through these 
IDs. The results reveal that the traffic received by the Sybil Agent 
is very small even when the number of injected nodes is large. 

A better metric to assess the performance of Sybil-based mitiga­
tion is the number of bots that queried at least one Sybil ID. Table 
5 shows the average number of such bots, out of 2000 bots. Here 
we can see the Sybil Agent has very good coverage of the bot pop­
ulation when we send Sybil IDs to a large number of nodes. Hence, 
given the same number of Sybil IDs, it is more effective to spread 
out the IDs on more nodes than sending more IDs to a small number 
of nodes. Note that this is not obvious because sending more IDs 
also increases the chance to catch more keys. 

7.3 Eclipse-Based Mitigation 

Eclipse attacks against P2P networks were first described by 
Castro et al [7]. In this type of attacks, a set of nodes collaborate 
to separate a node from the rest of the network by cutting off all 
information towards and out of the node. This can only be done 
when all incoming and outgoing traffic is directed through the ma­
licious nodes. For outgoing traffic, the victim's routing table needs 
to contain only information about malicious nodes. For incoming 
traffic, the malicious nodes must be able to interfere with all queries 
towards the victim. If any of these conditions fails, the victim will 
still be able to contact benign nodes, get updated with fresh infor­
mation and break out of the quarantine. 

We only look at incoming traffic towards the victim, since poi­
soning the victim's whole routing table requires significant time, 
even not possible if existing nodes in the table are still alive (due 
to Kad's preference for existing nodes). In our experiments, we use 
our Sybil IDs as the malicious nodes. Any bot that queries at least 
one of these IDs within 120 seconds are considered to be fooled by 
our nodes. Table 6 shows the number of bots among the 2,000 bots 
in the network that can be fool ed. It shows that eclipse-based mit­

igation is not efficient against botnets, even although Sybil-based 
mitigation can achieve very high coverage. This is because we re­
quire the malicious nodes to be contacted at a much earlier state 
of the querying process. Our simulation result also agrees with the 
outcome in [17], where the authors tried to eclipse bot commands 
with very large number of Sybil IDs. 

8 Conclusions 

In this work, we build a P2P-based botnet simulation testbed, 
which uses actual implementation code of the Kad P2P protocol to 
achieve great realism. This simulation testbed employs distributed 
event-driven simulation techniques for high scalability. With this 
testbed, we analyze the structural characteri stics of P2P-based bot­
nets, explore the challenges of monitoring bot activities inside a P2P 
network, and evaluate the effectiveness of mitigation techniques that 
are already proposed in the literature. Conclusions drawn from this 
work offer many insights on the structure of P2P botnets, how to 
monitor bot activities in P2P networks, and also how to mitigate 
botnet operations effectively. 
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