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Abstract

Recently, peer-to-peer (P2P) networks have emerged as
a covert communication platform for malicious programs
known as bots. As popular distributed systems, they allow
bots to communicate easily while protecting the botmaster
Jfrom being discovered. Existing work on P2P-based botnets
mainly focuses on measurement of botnet sizes. In this work,
through simulation, we study extensively the structure of P2P
networks running Kademlia, one of a few widely used P2P
protocols in practice. Our simulation testbed incorporates
the actual code of a real Kademlia client software to achieve
great realism, and distributed event-driven simulation tech-
niques to achieve high scalability. Using this testbed, we ana-
lyze the scaling, reachability, clustering, and centrality prop-
erties of P2P-based botnets from a graph-theoretical per-
spective. We further demonstrate experimentalily and theoret-
ically that monitoring bot activities in a P2P network is diffi-
cult, suggesting that the P2P mechanism indeed helps botnets
hide their communication effectively. Finally, we evaluate the
effectiveness of some potential mitigation techniques, such as
content poisoning, Sybil-based and Eclipse-based mitigation.
Conclusions drawn from this work shed light on the struc-
ture of P2P botnets, how to monitor bot activities in P2P
networks, and how to mitigate botnet operations effectively.
Keywords: Botnets, Kademlia, structural analysis, monitor-
ing, mitigation

1 Introduction

Botnets, which are networks of compromised machines
that are controlled by one or a group of attackers, have
emerged as one of the most serious security threats on the
Internet. With an army of bots at the scale of tens of thou-
sands of hosts or even as large as 1.5 million PCs, the com-
putational power of botnets can be leveraged to launch large-
scale DDoS (Distributed Denial of Service) attacks, sending
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spamming emails, stealing identities and financial informa-
tion, etc. For instance, it is reported that six botnets con-
tribute 85% of all spamming emails seen on the Internet [26],
and botnets have been used to launch DDoS attacks against
DNS service [13].

As detection and mitigation techniques against botnets
have been stepped up in recent years, attackers are also con-
stantly improving their strategies to operate these botnets.
The first generation of botnets typically employ IRC (Internet
Relay Chat) channels as their command and control (C&C)
centers . Though simple and easy to deploy, the centralized
C&C mechanism of such botnets has made them prone to
being detected and disabled. Against this backdrop, peer-
to-peer (P2P) based botnets have emerged as a new genera-
tion of botnets which can conceal their C&C communication.
Without a centralized C&C server, a P2P-based botnet does
not suffer from a single point of failure, and its traffic, when
buried in the enormous normal P2P traffic in the Internet, is
extremely hard to detect.

;

Current work on P2P-based bb}]els mainly focuses on
measuring existing P2P-based botnets, such as the highly
publicized Storm botnet. In this work, we take one step fur-
ther to investigate the structural characteristics of P2P-based
botnets, explore the challenges of monitoring bot activities
inside a P2P network, and evaluate the effectiveness of sev-
eral attack techniques against P2P networks for botnet mit-
igation. Achieving all these goals calls for an experimental
testbed with high flexibility and controllability. Towards this
end, we build a P2P-based botnet simulation testbed, which
uses the actual implementation code of a real P2P client soft-
ware for great realism, as well as distributed event-driven
simulation techniques for high scalability. Using this testbed,
we analyze the structures of P2P-based botnets and evaluate
several monitoring and mitigation strategies.

The key contributions we make from this work can be
summarized as follows: First, we analyze the scaling, reach-
ability, clustering, and centrality properties of P2P-based
botnets from a graph-theoretical perspective. Second, we
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demonstrate, from both experimental and theoretical aspects,
that monitoring bot activities in a P2P network is difficult,
suggesting that the P2P mechanism indeed helps botnets hide
their C&C communication effectively. Third, we evaluate
the effectiveness of some existing well-known attacks against
P2P, but now used for botnet mitigation, such as content
poisoning, Sybil-based mitigation, and Eclipse-based miti-
gation. Conclusions drawn from this work shed light on the
structure of P2P botnets, how to monitor bot activities in P2P
networks, and also how to mitigate botnet operations effec-
tively.

‘The remainder of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 provides some back-
ground on the Kademlia protocol and its variant Kad, which
is used in our simulation-based study. Section 4 gives an
overview of the design of our P2P-based botnet simulation
testbed. Next, Section 5 analyzes P2P-based botnets from
a graph-theoretic perspective, including their scaling, reach-
ability, clustering, and centrality properties. Section 6 dis-
cusses the challenges of monitoring bot activities in a P2P
network, both experimentally and theoretically. We further
evaluate the effectiveness of three different mitigation tech-
niques against botnet operations in Section 7. Finally, Sec-
tion 8 concludes the paper.

2 Related Works

Existing studies on botnets mainly fall under the follow-
ing three main categories: (i) Perform case-study of botnet
behaviors and structures; (ii) Model hypothetic botnets to
gain insights on their dynamics and defense schemes against
them; (iii) Propose techniques for botnet detection and dis-
ruption. In the first category, Freiling et al. [14] infiltrated a
real botnet to identify C&Cs and study bot commands. Rajab
et al. [24] employed a multifaceted and distributed infrastruc-
ture to study botnet behaviors. Others works focused on mea-
suring botnet size by various techniques such as by DNS redi-
rection [10] or DNS cache snooping [23]. Our work on an-
alyzing P2P-based botnets is inspired by some observations
made from real botnets. In the second category, Dagon et al.
analyzed intensively the impact of different botnet structures
on some network metrics such as inverse geodesic length [9].
In [29], Vogt et al. also used simulation to shed light on the
feasibility of using super-botnets for their command and con-
trol communication. Wang et al. proposed a hybrid peer-to-
peer botnet structure that is more robust against server shut-
down and hijack attacks than traditional botnets [30]. Dagon
et al. observed diumnal patterns that impact the propagation
speed of the botnet and thereby proposed a diurnal propa-
gation model to capture this phenomenon [11]. Recently, a
stochastic activity network model has been used to charac-
terize peer-to-peer botnets in the Mdbius software tool [25].
Our work in this paper relies on a P2P-based botnet simu-
lation testbed, in which a P2P-based botnet is modeled us-

ing discrete-event simulation techniques. Unlike previous
work, our simulation model uses actual implementation code
of a popular P2P cllient software to achieve great realism.
In the third category, several techniques recently also been
proposed to detect botnet existence: machine learning [20],
anomaly detection [4], traffic or network activity statistics
analysis [16]. In this work, we explore the difficulty of mon-
itoring bot activities in a P2P network and also evaluate ex-
isting attack techniques against P2P network on mitigation
against botnet operations. Conclusions drawn from this are
complementary to existing botnet detection and mitigation
techniques.

Kad is the first widely deployed peer-to-peer system based
on a Distributed Hash Table. Stutzbach et al. were among
the first to study the performance of lookup operation on
Kad [28]. Steiner et al. [27] investigated several attacks on
Kad, but they did not focus on the efficiency of the attacks,
especially in the context of botnets. Some results in their
paper were later contradicted by other work [17]. Finally,
attacks against DHT (Distributed Hash Table) P2P networks
have long been discussed since the dawn of DHT-based net-
works [7], [12]. However, they are mostly studied from a hy-
pothetical perspective, and there is little work that explores
their actual performance on real networks. Here we explore
the potential of employing these attacks for good use against
botnets, and from a practical perspective.

3 Primer on Kademlia and Kad

Kademlia, a peer-to-peer (P2P) protocol, was proposed by
Maymounkov and Mazieres in [21]. Based on Distributed
Hash Table (DHT), it provides a structured approach to P2P
applications, where file storing and lookup operations can be
efficiently performed with some resource-to-location map-
ping functions. In Kademlia networks, each node or resource
(e.g., file) is associated with a 160-bit identifier in a circular
ID space of size 2!60. These IDs are generated in a pseudo-
random fashion (usually with a cryptographic hashing func-
tion), so that they can be deemed as uniformly distributed in
the ID space. The distance d between two IDs X and Y is
defined as the integral value of the bitwise-XOR result be-
tween X and Y, namely X @ Y. Each resource is stored on
nodes whose IDs are closest to the resource’s ID based on
this distance metric.

Routing in Kademlia is done in an iterative fashion based
on distances. A node, when searching for an ID (either a re-
source ID or a node ID), queries its neighbors for new nodes
whose IDs are closest to the target ID. Upon receiving the an-
swers, it continues to query those that are closer to the target.
This process repeats until no closer node IDs can be found
from the answer set.

For routing purposes, each node maintains a routing ta-
ble containing information about its neighbors, such as their
IDs, IP addresses, contact ports, etc. The routing table is



organized as a tree of subtables called bins, each of which
stores information about nodes with the same ID prefix. The
contents of these bins are frequently updated whenever the
host node receives a query, to ensure that only information of
alive neighbors is stored. When a bin is full, new entries are
added only if some old entries appear to be dead and can thus
be removed. In this sense, Kademlia prefers existing nodes
to newly joined ones. Further details regarding how routing
tables are constructed can be found in [21].

Kad is a variation of the Kademlia protocol that has been
adopted by the P2P community on several major P2P net-
works, including Overnet! and eMule [1]. Beside using 128-
bit IDs, Kad supports more types of messages than Kadem-
lia, and also handles the routing process in a slightly different
-fashion. More specifically, the search process in Kad consists
of two phases:

e Routing phase: Similar to the original Kademlia rout-
ing protocol, the searching node asks its neighbors for
nodes closest to the key ID in an iterative fashion. To
accelerate the process, each peer in Kad simultaneously
asks for the three closest peers so far in each round.
The messages used in this phase are KADEMLIARE-
QUEST and KADEMLIARESPONSE, in the parlance
of Kad.

e Item querying phase: After a certain amount of time
since the query starts, the searching node selects some
nodes that have responded and then queries for the
key. The messages used in this phase are key-specific
query messages, such as KADEMLIA_SEARCH_REQ
and KADEMLIA _PUBLISH_REQ.

Each unit of information stored in a Kad network is asso-
ciated with a unique key (i.e. an ID). There are three main
types of keys. (1) Source Key: A source key identifies the
content of a file and associates with information about the
source node to download that file. Each instance of a file
is associated with a unique source key (there can be multi-
ple copies, thus multiple source keys). (2) Keyword Key: A
keyword key identifies a textual keyword and associates with
information of the source keys for files related to the key-
word. (3) Note Key: A note key identifies a comment related
to a specific file, and associates with information about a file
(i.e its source key).

In Kad, keys are not just published on a single peer that is
closest to that key, but instead stored on at most 10 different
peers close to the key. Keys are periodically republished,
every 5 hours for a source key and 24 hours for a keyword or
note key. Keys are removed from their resident peers if they
have not been republished within their respective lifetime.

1Overnet was shut down due to copyright violations in late 2006.

4 P2P-Based Botnet Simulation Testbed

The distributed architectures and existence of obfuscation
techniques such as encryption in P2P-based botnets not only
pose a serious challenge to studying their operational char-
acteristics, but also hinder development of effective defense
schemes to detect and even disrupt their operations. Cur-
rent work on P2P-based botnets mainly focuses on monitor-
ing, either passively or actively, behaviors of some existing
P2P-based botnets, such as the Storm botnet [18, 19]. Al-
though these bodies of work offer insights on how those bot-
nets operate underground in reality, they have the following
disadvantages. First, botnet monitoring usually takes place
from a single or a few vantage points, thus cannot provide
a full and consistent picture of the entire network. Second,
researchers who attempt to actively measure an existing bot-
net may interfere with each other, potentially render informa-
tion collected highly biased. For instance, the Storm botnet
may have been overestimated due to interference from re-
searchers performing their poisoning mitigation scheme on
the botnet [19]. Third, even without considering the interfer-
ence caused by other researchers, evaluating the performance
of a proposed mitigation scheme accurately on a real botnet
is difficult because the effect is usually observed from one
or a few vantage points. Fourth, as an intelligent botmaster
may dynamically change his strategy to evade detection, it is
difficult to evaluate the effectiveness of a countermeasure on
a real botnet. Last but not least, performing research on a
real botnet may involve ethical and legal issues that are often
neglected by cyber-security researchers [6].

With these challenges, it is thus necessary to have a
testbed with such flexibility and controllability that we can
use it to understand the operational dynamics of botnets and
also evaluate effectiveness of different mitigation schemes.
For this purpose, we develop a simulation-based virtual envi-
ronment in which we can investigate P2P-based botnets ex-
tensively. In this simulation testbed, we simulate behaviors
of P2P protocols with high fidelity. In contrast to some ex-
isting P2P simulators which often model P2P protocols at an
abstract level, we use the implementation code of aMule [2],
a real and popular P2P client software for eMule [1]. The
aMule P2P client implements the Kad protocol, as described
in Seetion 3. It is noted that the Storm botnet uses a modified
version of the Overnet protocol for communication, which
also implements the Kademlia algorithm. The code migrated
from directly from aMule, however, cannot work straightfor-
wardly in a simulation environment because timers in aMule
are associated with real wallclock time but in the simulation
time is virtual and simulated. To address this problem, we
intercept all time-related system calls and replace them with
functions that use virtual simulation time.

As we port code from a real P2P client software, we sim-
ulate all details of the P2P protocol without any abstraction.
Although this provides great realism in our simulation, it also



brings the scalability challenge: simulating a botnet at the
scale of a realistic one (e.g., a botnet with tens of thousands of
bots like the Storm botnet) is so computationally prohibitive
that it cannot be finished on a single commodity PC within
a reasonable amount of time. To improve the scalability of
our botnet simulator, we resort to distributed simulation tech-
niques. Our botnet simulator is developed on top of PRIME
SSF [22], a distributed simulation engine based on conserva-
tive synchronization techniques. Our distributed computing
platform consists of 30 machines, each with 2 Pentium III
CPUs and 4Gb RAM. Using this platform, our botnet simu-
lator can simulate botnets with hundreds of thousands of bots
within hours.

The simulation testbed offers great controllability with re-
gard to how the botmaster of a bot dynamically changes oper-
ational strategies. For instance, a botnet using the Kademlia
protocol may not strictly stick to the original protocol; in-
stead, it can tweak some protocol behaviors for its own good.
Modeling different botnet operational strategies can easily be
done in our virtual botnet testbed. On the other hand, evalu-
ating the performance of a specific mitigation scheme in the
simulation testbed does not interfere with the normal oper-
ation of an existing botnet, and we do not need to consider
those legal and ethic issues that result from working on a real
botnet. In the following sections, we shall present results of
using this simulation testbed to investigate characteristics of
P2P-based botnets and defense schemes against them.

5 Structural Analysis

As the P2P protocol is the bedrock of a P2P-based botnet,
operations of such a botnet and the corresponding defense
schemes are inevitably implicated by its distinguishing P2P
structure. In this section, we analyze the characteristics of
P2P networks. If the whole P2P network is used exclusively
for botnet operations, the properties of the P2P network pre-
sented in this section offer insights on the structure of such a
P2P-based botnet; otherwise if a botnet uses only an existing
P2P network to hide its communication (e.g., the Storm bot-
net which used Overnet for its command and control), con-
clusions drawn from the structural analysis of P2P networks
will used later to decide which nodes we should monitor to
detect botnet traffic. In the following discussion, we perform
structural analysis on a P2P network with 20,000 nodes from
a graph-theoretical perspective. Given this network, we form
a directed graph G(V, E) as follows: each node in the net-
work is also a vertex in graph G and if a node b appears in
node a’s routing table, an edge from vertex a to b is added to
the graph.

5.1 Scaling Property

Many real-world networks, such as the world wide web
(WWW) and social networks, have been shown to be scale-

free networks, whose degree distributions follow the power
law. We are interested in whether a network built on the
Kademlia protocol is also a scale-free network. In Figures
1(a) and 1(b), we depict the cumulative distribution of the
in-degree and out-degree of graph G(V, E), respectively. Vi-
sually, if the degree distribution follows a power law distri-
bution, the curve should appear linearly. From the figures,
it seems that both the indegree and outdegree of G(V, E) do
not follow the power law.
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Figure 1. CDF of the Degrees (log-log scale)

To verify this observation rigorously, we apply the statisti-
cal method developed by Clauset et al. [8], which is based on
maximum likelihood methods and the Kolmogorov-Smirnov
statistic. Using this technique, we observe that the p-value,
which is used to measure the goodness-of-fit, is O for both the
in-degree and out-degree distributions. This further confirms
that neither indegree nor outdegree of G(V, E) follows the
power law.

5.2 Reachability and Clustering Property

Figure 2(a) shows the complementary cumulative density
function (CCDF) of the fraction of the reachable population
from each node (out-reachability). In the network, 80% of
all the nodes can reach 60% or more of the node population,
but only 10% of the nodes can reach more than 68% of the
node population. Interestingly, none of the nodes can reach
more than 70% of all possible destinations. This observa-
tion, however, does not hold for in-reachability, which shows
the fraction of nodes that can reach one specific destination.
The CCDF of in-reachability is also depicted in Figure 2(a).
We note that nearly 20% of the nodes can be reached from
more than 90% of the population and some nodes can even be
reached by all the other nodes. This implies that the P2P net-
work can still work well if the resources are stored on these
nodes with high in-reachability. Figure 2(b) shows the cu-
mulative distribution of the average path length to reachable
nodes. The average path length of the overall network is only
2.5 hops, suggesting that the average path length between two
nodes is very small if there exists such a path.

The network is also highly clustered as can be seen from
Figure 4(a), which shows the individual clustering coefficient
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of each node. Almost 95% of all the nodes have clustering
coefficient more than 0.3, and the average network clustering
coefficient is 0.4136. This is much higher than the theoretical
value 0.027 in an Erdos-Renyi random graph with the same
number of nodes and edges.
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5.3 Centrality Property
J

In this section, we studies- various measures to identify
important nodes in a P2P network. The goal is to find good
metrics to identify strategic points. From a practical perspec-
tive, they should also be easy to use, yet able to give a fairly
accurate picture of critical nodes. We consider common mea-
sures widely used in other domains.

Degree centrality. We already showed the distribution of
the in- and out-degrees in Figure 1. In many networks degree
is an effective measure of the importance of a node. In the
Internet, for example, nodes with more connections typically
tend to receive more connections by new nodes.

Eigenvector Centrality. A more sophisticated measure
of node importance is the eigenvector centrality. While de-
gree centrality gives a simple count of the number of connec-
tions a vertex has, eigenvector centrality acknowledges that
all connections are of equal importance. Nodes connected to
more significant nodes, however, have more influence than
those connected to less significant nodes. This effect can be

represented by defining the centrality of a node to be propor-
tional to the average centrality of its neighbors. Under this
definition, the centrality measures of all the nodes form an
eigenvector of the network adjacency matrix. This approach
has shown to be an effective measure in many situations, for
example in studies of the Internet topologies [15], finding
clusters in information retrieval context [3], or ranking Web
pages [5].

At the first glance, it seems that the same spectral analy-
sis techniques used to study the Internet topologies [15] can
be easily adapted to our network. This is not true because,
unlike the Internet model in that paper, the P2P network is
directed. Furthermore, the computation cost of the spectral
analysis method poses a serious challenge for studying large
scale networks (even the Internet topology studied in [15]
was only a small fraction of the real Internet). These two fac-
tors render spectral analysis an unsuitable tool for our case.

To circumvent this problem, we instead use the method
employed for ranking Web pages [5] to compute centrality
measure. The ranking method is the following: let A’ is the
directed adjacency matrix. For each node 7 define the out
degree of ¢ as doyt (i) = |7 : ai;; = 1|. Now consider the
stochastic matrix P where p;; = d—:j%; + LI_TD‘Z The eigen-
vector with eigenvalue 1 of P gives the ranks of the nodes.
Note that since each of the nodes in our network has non zero
outdegree, we have no dangling nodes, one important condi-
tion for the existence of this vector. Figure 4(b) shows the
PageRank values of the nodes against their ranks. We note
from the figure that the PageRank measure decays rapidly
with the node rank, suggesting that a small fraction of nodes
bear very high PageRank value compared to the remaining
ones.

Betweenness Centrality. The betweenness centrality of
vertex 7 is defined as the fraction of geodesic paths between
other vertices on which it falls. That is, we find the shortest
path (or paths) between every pair of vertices in the network
and then derive the fraction of paths on which vertex 7 ap-
pears. In the P2P network, however, the geodesic paths do
not reflect the actual routing paths, as explained in Section 3.
To make betweenness a more reasonable centrality measure
in our context, we define it based on the concept of guery set
from a source to a destination, which gives the set of nodes
that will be queried by the source node in order to get to the
destination. The betweenness centrality is thereby defined as
the fraction of query set between other vertices that contain
4. Figure 3(a) plots the betweenness measures against node
ranks in the network. From the figure, we observe a similar
pattern to PageRank centrality: only a small number of nodes
appear frequently in the query sets of all source-destination
pairs. For instance, only 20 nodes appear more than 0.5%
of the paths between all source-destination pairs. This seems
intuitive as P2P protocol is designed to be fully distributed so
that each node in the network should have equal importance.

Closeness Centrality. The closeness centrality of vertex



2 Betweenness Ranks, 20000 Nodes Routing-based Centrality g Closeness, 20000 Nodes
> 0.1 1%10 528 |
w -
c o e
3 =2 @
20.05 0.5 82.4 -
£ £ 5
3 E 022
°
2
[3 0.5 1 1.5 2 0.5 1 1.5 3 1] 0.5 1 1.5 2
> <
< Rank x10* Rank x10° Rank x 10
(a) Betweennes (b) Routing Weight (b) Closeness

Figure 3. Betweenness,Routing Weight and Closeness Centrality Measures

2
e £
€ £
G40 5 e
£ S )
530 g
] E
520 . 3
o "
22 24 26 28 % 0.05 0.1
Closeness Centrality - Query Centrality
(a) OutDegree vs. (b) Betweenness vs.
Closeness In-Degree

Figure 5. Centrality Correlations

1 is defined as the mean distance from vertex ¢ to every other
reachable vertex. We have already showed the cumulative
distribution of the average distance per node in Figure 2(a).
Figure 3(b) shows these distances against their ranks.
Routing-based Centrality. We define another metric
called the routing weight based on the actual routes in the
network. These actual routes are computed in accordance
with the Kademlia routing protocol. For each route of length
L (excluding the source and target node), we define a routing
weight for each node in the route as: 1+ % Here i is the or-
der of the current node, starting from 0 with the node next to
the target, and increases towards the nodes near the source.
The intuition behind this scheme is to put more weight on
nodes that appear close to the source, yet still taking into ac-
count the number of routes they are on. The application of
this metric will be explained further in the following sections.

Correlations between different centrality measures. Is
there any relation between the above measures? Some of the
above centrality measures can be computed easily, while oth-
ers require significant efforts. From a practical perspective,
if there are strong connections between two measures, one
can estimate the measure that is hard to compute based on
the more simple measure. We compute the correlation coef-
ficients between these centrality measures with significance
level 5% and the results are shown in Table 1. There are
three interesting strong correlations: between betweenness
and routing centrality, between closeness and out-degree cen-
trality, and between betweenness and in-degree centrality. To

confirm this, two of these correlations are further depicted in
Figure 5.

6 Monitoring

To detect bot behaviors hidden in a P2P network, we need
to monitor P2P traffic for some distinguishing features of bot-
nets. The monitors can be placed at the enterprise gateway or
ISP backbone routers. Given the scale of current P2P net-
works and the intensive P2P traffic, it is extremely difficult,
if not impossible, to monitor all P2P traffic. We thus con-
sider the following problem: suppose that we already know
the topology of a P2P network through crawling, find the
nodes to monitor so that botnet communication traffic can
be checked as much as possib/l . To answer this question, we
simulate a P2P network 'a portion afe bots. The bot-
master publishes bot commands as keywords in the network.
Other bots, meanwhile, search for the bot command based on
the keyword ID they already knew in advance (hardcoded) or
can easily be computed (e.g, in the case of Peacomm bots ).

We record all queries generated by these bots during the
routing phase and rank the nodes in the network based on the
traffic (number of queries) each node receives. Monitoring
malicious traffic provides a venue to detect botnet command
and control since each routing query packet carries a unique
keyword ID. If we know a keyword ID has been used for bot
communication in advance, a surge of query packets associ-
ated with this ID is a good indicator of intense bot activities.
Due to the dynamics of routing queries in a P2P network,
one may wonder whether it is possible to use centrality mea-
sures discussed in Section 5 to predict the importance of the
nodes. This knowledge can then be used for monitoring traf-
fic efficiently. To address this question, we first define the
overlapping ratio metric as follows. Given two rankings of
all the nodes in the P2P network, their overlapping ratio for
the top n nodes is given by the fraction of common nodes
that appear in the top n nodes of both rankings. For instance,
if 20 nodes appear among the top 100 ones of both rankings,
the overlapping for the top 100 is 20%.

We next discuss possible strategies from the botmaster’s
point of view. As described in the previous section, a peer



Table 1. Correlation Coefficients Between Centrality Measures

Closeness | Betweenness | Routing | In-Degree | Out-Degree | PageRank
Closeness 1.0000 -0.1112 -0.3684 | -0.2572 | . -0.6392 0.4261
Betweenness | -0.1112 1.0000 0.7744 0.6933 0.0722 -0.3127
Routing -0.3684 0.7744 1.0000 0.8540 0.4383 -0.4751
In-Degree -0.2572 0.6933 0.8540 1.0000 0.3606 -0.3217
Out-Degree -0.6392 0.0722 0.4383 0.3606 1.0000 -0.5144
PageRank 0.4261 -0.3127 -0.4751 | -0.3217 -0.5144 1.0000
goes through two phases to publish (or query for) a key: rout- 014 X 024 :
ing phase for finding nodes closer to the key, and publish (or e s n;fi 1
query) phase when some responded nodes are requested to & § om
publish (or query for) the key. In practice, the set of nodes & Z:: o § o i }
involved in the second phase is much smaller than the set of ¥ | T 1 ¥ oon !
responded nodes in the first phase. We also observe one key I T oi; 3
feature of the protocol: keywords are published in a passive 0 1

fashion, namely only the original node publishes keywords,
whereas other nodes only passively accept the keyword with-
out republishing it elsewhere. Consequently, bot commands
will only be published by bots, not by regular benign Kad
clients. Thus the prevalence of a bot command in the net-
work depends only on how the bots publish it. As the chance
of finding a keyword successfully is proportional to its avail-
ability in the network, the bot master can design the bots in
such a way that the prevalence of the keyword in the network
is significantly improved, although such behavior does not
conform to the standard Kad protocol. In our study, we con-
sider three different strategies by the botmaster in terms of
the aggressive levels with which bots publish/query the com-
mand keyword: in the publish/query phase, a bot selects only
a small set of responded nodes as in the standard protocol
(strategy 1), 50% of all responded nodes (strategy 2), or all
responded nodes (strategy 3).

In the experiments, we consider two different stable rout-
ing table snapshots. From each snapshot, we select 10 sets
of random bot nodes and simulate the communication within
1.8 hour. In each simulation, we select a set of top m nodes
that receive the most querying bot traffic and compare it with
top m nodes defined by each centrality measure. The per-
formance of each centrality measure in terms of the overlap-
ping ratio for the top 1,000 and 2,000 nodes is depicted in
Figures 6, 7, and 8, under the three strategies, respectively.
In this figures, CLO, BTW, RT, ID, OD, and PR stand for
the closeness, Betweenness, Routing-based, Indegree, Out-
degree, and PageRank centrality measures, respectively. At
each data point, we give the mean overlapping ratio and its
observed minimum and maximum over the 10 sample runs.

From these plots, it can be seen that none of the standard
centrality measures provide good prediction on those impor-
tant nodes in terms of their routing query traffic, regardless
of the strategy applied by the botmaster. In fact, their per-
formance is close to the case when the nodes are randomly

CLO BTW RT ID OD PR

(a) 1000 nodes

CLO BTW RT ID OD PR

(b) 2000 nodes

Figure 6. Overlapping ratios under strategy 1
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Figure 7. Overlapping ratios under strategy 2

selected, as can be seen from the following lemma.

Lemma 6.1. Ler X be a fixed set of size m in a space
N,|IN| = n > m. Let Y be another set of the same size
selected randomly from N. The expected number of common
elements between X,Y can computed as:

2
EXNY] = % 1)

Proof. Denote ¢ = | X NY|. We have:

Eld = ZkP[c:k]:Zk(_kz&;_;c)
k=0 o s
(o n

O

Plug in the value of n = 20000, m = 1000 and m =
2000, we have E[|X NY|] = 50 and E[|X NY|] = 200,
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Figure 8. Overlapping ratios under strategy 3

respectively. From these numbers, it can be seen that all cen-
trality measures except Betweenness do not yield better re-
sults than a random approach.
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Figure 9. Observed Traffic
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Figure 10. Observed Traffic

However, is it possible that the traffic is well distributed
over the whole network, rendering any ranking methods in-
effective? To answer this question, we look at the traffic ob-
served by top m nodes with heaviest traffic when m varies.
Figure 9(a) shows this relation (averaged over 10 different
bot sets). It can be seen that for each key, its query traffic is
disproportionally distributed. For example, nearly 80% of all
traffic is observed (received) by 10% of the population (2,000
nodes out of 20,000 in our case). This is further confirmed in
Figure 9(b), which shows the histogram of the number of ob-
served queries by each node. It is noted that for the majority
of the nodes, they only observe a few queries.

In Figure 10(a), we depict the number of common nodes
shared among the top m ones across the scenarios with differ-

ent bot sets; the fraction of traffic observed by these common
nodes against their numbers is shown in Figure 10(b). These
results show one important characteristic of Kad networks:
the routing query traffic is very dynamic and is significantly
affected by where those querying peers are distributed in the
network. As a result, centrality measures discussed in Sec-
tion 5 all perform poorly in predicting those important nodes.
Table 2 shows the number of common elements across all 10
scenarios with different bot sets that can be predicted by each
centrality measure. It can be seen that the betweenness cen-
trality outperforms all others but is still only able to capture
a small number of common nodes. However, even if there is
a measure that can capture most of the common nodes, the
amount of observed traffic by these nodes is still small as
shown in Figure 10(b).

Bot communication interdiction. The results from the
above section show that the set of traffic-critical nodes de-
pends on the locations of the bots. Note that given the rout-
ing tables of all nodes in the network, one can roughly esti-
mate the path between any source node and destination key
(or nodes). In some cases, we can collect a list of suspicious
nodes that are or may be bots. An interesting question is: if
we know the paths among these nodes, which nodes should

Number of Observed Queries we monitor so that communication traffic generated between

these suspicious nodes can always be interdicted? We formu-
late it as the following problem:

Problem 1. (Bot Communication Interdiction — BCI)
Given a set of communication paths P = {p1,p2,...,Pn}
in a directed graph G = (V, E), where each path p; is an
ordered list < v;1,--- > of nodes in V. A subset I C V in-
terdicts a path p; if Jv; € I and v; € p;. Find the minimum
interdiction set I for P such that Vp; € P, I interdicts p;.

Here, each path represents a communication path esti-
mated between two suspicious nodes. One would hope to

soo find the smallest set of nodes that lay on all of these paths
so that the monitoring cost can be minimized. This problem,

unfortunately, is intractable, as shown by the following theo-
rem.

Theorem 6.2. The general version of BCI is NP-hard.

Proof. We reduce HITTING SET to BCI. Consider an in-
stance of the decision version of HITTING SET where we are
given a collection C of subsets of a finite set S, and a positive
integer k. A hitting set for C is defined as a subset S’ C S
such that &’ contains at least one element from each subset in
C. It is NP-hard to determine if there is a hitting set of size
at most k.

An instance of BCI is constructed as follows. For each
element in S, create a corresponding vertex in V. From each
subset s; € C, create a path p; consisting of elements in s;.
The order of the vertices in p; is not important for our proof.
Itis straightforward to see that HITTING SET has a hitting set
of size at most £ if and only if BCI has an interdiction set of
size at most k. O



Table 2. Number of common nodes among the top m under different rankings

m Total number of common nodes || Closeness | Betweenness | Routing | In-Degree | Out-Degree | PageRank
1000 127 2 46 29 23 12 26
2000 535 40 219 152 142 75 152

7 Mitigation

In the previous section, we have shown that monitoring
bot activities in P2P networks is a challenging task. In the
section, we shall use simulation to further explore effective-
ness of defense schemes against botnet operations that have
already been proposed in the literature. The three schemes
discussed here include content poisoning, Sybil-based miti-
gation, and Eclipse-based mitigation.

7.1 Poisoning-Based Mitigation

As bot command keys are used by bots to search new com-
mands in a P2P-based botnet, they are actually one Achilles’
heel of such botnets: once these keys are known, we can in-
ject benign contents with the same key into the network so
that some bots may not receive the original bot commands.
This technique is thus called poisoning attack and was first
experimented in [17].

In our simulation, we publish the bot command key with
benign contents on a set of nodes. Bots that make search re-
quests to these special nodes are considered to be “poisoned*
with the content we provided. This is because the poisoned
nodes reply to any request for the bot command with the con-
tent they have (which we provided). One interesting question
that follows is how effective this method is, with respect to
the size of the initially poisoned set. To answer this ques-
tion, we vary the size of the initially poisoned set among
10, 100, 300, 500, 700, 900, and 1000. The poisoned nodes
are chosen from those with the top betweenness values, since
as shown in the previous section, the betweenness centrality
measure seems to provide more nodes with high query traffic
than other measures.

Poisoning Attack Performance
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Figure 11. Performance of Poisoning Schemes

Figure 11(a) shows the average number of affected bots
that received poisoned bot commands under all scenarios. It
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can be seen that although the nodes chosen based on the be-
tweenness centrality measure are not efficient from the traffic
monitoring perspective, they are still effective in poisoning
the bots. For instance, using only 10 initially poisoned nodes
we can poison on average 25% of the total number of bots
(more than 500 bots), regardless of their locations. With 100
nodes, we can poison more than half of the bots. However,
it is more costly to poison a large portion of the bot popula-
tion. After 400 nodes, the size of the initially poisoned set
just makes little difference in the final number of poisoned
bots.

To understand the impact of the size of the initially poi-
soned set on the speed of the poisoning process, we show the
fraction of poisoned bots (over all poisoned bots eventually
in each scenario) against the simulation time in seconds un-
der different sizes of the initially poisoned set, denoted by
n. It is noted that higher number of initially poisoned nodes
helps speed up the poisoning process, but again the difference
becomes smaller when the size is sufficiently large.

7.2 Sybil-Based Mitigation

Table 3. Sybil-based Mitigation Scenarios

Mitigated IDs per Total No.
Nodes Mitigated Nodes of IDs
Scen. (1) 10 1000 10000
Scen. (2) 100 100 10000
Scen. (3) 1000 10 10000
Scen. (4) 100 1000 100000
Scen. (5) 1000 100 100000
Scen. (6) 1000 300 300000

Passively monitoring traffic of a large number of nodes in a P2P
network is challenging and resource-intensive. A more aggressive
approach is to introduce a set of node IDs that are actually controlled
by a small number of physical processing nodes. In this way, traffic
routing through these IDs are available for full analysis. Moreover,
these nodes do not have to conform to the standard protocol, and
may even reduce the processing overhead. For example, the pro-
cessing nodes may ignore IDs that they are not interesting, or just
selectively reply with fake IDs to trick the querying node to pub-
lish valuable resources on them. This is a form of Sybil attack, as
describe in [12].

In our simulation, we inject a varied number of IDs into the rout-
ing tables of a selected set of nodes in the network. Again, these
nodes are chosen based on the betweenness centrality measure. All
injected Sybil IDs are associated with one extra node designated as



Table 4. Traffic Observed by Sybil Agent

Scen. (1) Scen. (2) Scen. (3) Scen. (4) Scen. (5) Scen. (6)
(10x1000) | (100x100) | (1000x10) | (100x1000) | (1000x100) | (1000x300)
0 2.6017e-06 0.0023 1.6122e-05 0.0142 0.021112
Table 5. Bot Coverage by Sybil Agent
Scen. (1) Scen. (2) Scen. (3) Scen. (4) Scen. (5) Scen. (6)
(10x1000) | (100x100) | (1000x10) | (100x1000) | (1000x100) | (1000x300)
0 6.7 1935.3 26.6 1998.8 1999

the central processing node called Sybil Agent. This agent is re-
sponsible for all requests directed to a Sybil ID. However, we only
simulate a passive agent that collects requests without further re-
plying any IDs. Using this setup, we study the performance of this
approach with respect to some key parameters, including the num-
ber of nodes to which the Sybil IDs will be introduced into and the
number of Sybil IDs per node.

We consider three different sets of Sybil IDs with size 10000,
100000 and 300000. For the first two sets, we consider several sub-
scenarios when the set of nodes to be mitigated varies. Table 3
details the configuration of each of these scenarios. Table 4 shows
the fraction of queries that were sent to the Sybil agent through these
IDs. The results reveal that the traffic received by the Sybil Agent
is very small even when the number of injected nodes is large.

A better metric to assess the performance of Sybil-based mitiga-
tion is the number of bots that queried at least one Sybil ID. Table
5 shows the average number of such bots, out of 2000 bots. Here
we can see the Sybil Agent has very good coverage of the bot pop-
ulation when we send Sybil IDs to a large number of nodes. Hence,
given the same number of Sybil IDs, it is more effective to spread
out the IDs on more nodes than sending more IDs to a small number
of nodes. Note that this is not obvious because sending more IDs
also increases the chance to catch more keys.

7.3 Eclipse-Based Mitigation

Eclipse attacks against P2P networks were first described by
Castro et al [7]. In this type of attacks, a set of nodes collaborate
to separate a node from the rest of the network by cutting off all
information towards and out of the node. This can only be done
when all incoming and outgoing traffic is directed through the ma-
licious nodes. For outgoing traffic, the victim’s routing table needs
to contain only information about malicious nodes. For incoming
traffic, the malicious nodes must be able to interfere with all queries
towards the victim. If any of these conditions fails, the victim will
still be able to contact benign nodes, get updated with fresh infor-
mation and break out of the quarantine.

We only look at incoming traffic towards the victim, since poi-
soning the victim’s whole routing table requires significant time,
even not possible if existing nodes in the table are still alive (due
to Kad’s preference for existing nodes). In our experiments, we use
our Sybil IDs as the malicious nodes. Any bot that queries at least
one of these IDs within 120 seconds are considered to be fooled by
our nodes. Table 6 shows the number of bots among the 2,000 bots
in the network that can be fooled. It shows that eclipse-based mit-

igation is not efficient against botnets, even although Sybil-based
mitigation can achieve very high coverage. This is because we re-
quire the malicious nodes to be contacted at a much earlier state
of the querying process. Our simulation result also agrees with the
outcome in [17], where the authors tried to eclipse bot commands
with very large number of Sybil IDs.

8 Conclusions

In this work, we build a P2P-based botnet simulation testbed,
which uses actual implementation code of the Kad P2P protocol to
achieve great realism. This simulation testbed employs distributed
event-driven simulation techniques for high scalability. With this
testbed, we analyze the structural characteristics of P2P-based bot-
nets, explore the challenges of monitoring bot activities inside a P2P
network, and evaluate the effectiveness of mitigation techniques that
are already proposed in the literature. Conclusions drawn from this
work offer many insights on the structure of P2P botnets, how to
monitor bot activities in P2P networks, and also how to mitigate
botnet operations effectively.
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