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The synthesis of [Np Vi02CI2(thf)ln offers the potential for more 
detailed exploration of neptunyl(Vl) chemistry while the 

10 	synthesis of the mixed valence cluster complex 
[(NpVi02CI2){Npv02CI(thf)3hl allows neptunyl(V) 'cation­
cation' interactions to be probed in a molecular system. 

NeptWlium has three readily accessible oxidation states, IV, V 
and VI, which can coexist under certain conditions, with the 

15 aqueous soluble neptunyl(V) moiety, {Np02} +, of most 
environmental relevance. Careful control of Np chemistry is 
required during actinide separation processes e.g. the PUREX 
(Plutonium and Uranium Recovery by Extraction) processJI] In 
addition, the long half life of the major alpha emitting isotope 

20 CZ37Np, tl/2 = 2. 144 x 106 years) renders Np a major contributor to 
the radiotoxicity of nuclear waste as a function of timeYl 
Significant quantities of neptunium are generated in nuclear 
reactors and the current surge in interest in nuclear power will 
lead to an increase in our need to further understand the 

25 chemistry of this element. 
It is clearly of importance that Np chemistry is well 

understood and there have been several recent investigations into 
the structural, spectroscopic and magnetic properties of Np 
compounds. [3J However, the vast majority of this chemistry has 

30 	been performed in aqueous solution, prohibiting the use of air and 
moisture sensitive ligands. This is in stark contrast to uranium 
and thorium where inert atmosphere chemistry with moisture 
sensitive donor ligands has flourished, yielding greater insight 
into the structural and electronic properties of these early 

J5 	actinides.[4J For the uranyl(VI) moiety, {U02}2+, U02Clz(thf)3 
(and the desolvated dimer [U02CIz(thf)h) have proven to be 
excellent moisture-free reagents for inert atmosphere uranyl 
chemistry. [5J These starting reagents have been used extensively 
within our group to study soft donor ligand coordination in the 

40 	 uranyl equatorial plane and oxo-activation to Lewis acid 
coordination.[6J However, until now the absence of such a starting 
reagent for Np has limited our ability to extend this chemistry any 
further across the actinide series, [7J which is required if we are to 
gain a more complete understanding of 5felement chemistry. 

45 Our belief that [Np02CI2(thf)3] and/or [Np02Clz(thf)h could 
be prepared appeared to be justified by the recently reported 
plutonyl(VI) complex [Pu02CI2(thf)2h,[8J and we have been able 
to synthesise and structural characterise the related complex, 
[Np02CI2(thf)]n (1). NpOz(OH)2.xH20 was suspended in thf 

50 	solution and slightly greater than two molar equivalents of HCl in 
Et20 solution was added to yield a deep yellow solution, which 
was evaporated to dryness in vacuo to yield Np02CI2(thf), . 

Complex 1, [Np02CI2(thf)]n (Figure I), could be obtained 
through crystallizing out of thf by vapour diffusion with hexanes 

55 overnight. The structure consists of a one dimensional chain in 
which each linear neptWlyl(VI) moiety is coordinated by two 
chloride ligands bridged to one additional neptunyl(VI) centre, 
two chloride ligands bridged to a second neptunyl(VI) centre and 
one terminally coordinated thf molecule. The axial Np-Oyl bond 

60 lengths are both 1.767(10) A and the O=Np=O angle is 178.2(5)°, 
consi stent with known {Np02} 2+ structural parameters.[IIJ The 
bridging chloride Np-CI distances are 2.779(3) A and 2.818(3) A 
and are essentially the same as the bridging chloride ·An-CI 
distances in [Pu02CIz(thf)2h (2.810(4) and 2.800(4) A) and 

65 [U02CI2(thf)2h (2.80(2) and 2.83(2) A). [5b. 8] The Np-O'hf bond 
distance is 2.396( II) A, the same, within errors, as the PU--O,hf 
distance in [Pu02CI2(thf)2h (2.401 (I 0) A)J8] Complex 1 contains 
the fewest coordinated thf molecules of all the known actinyl(VI) 
chloridelthf adducts, and this feature appears to dictate the 

70 	structure, viz [U02CI2(thf)3] (monomer), [U02CI2(thf)2h and 
[Pu02CI2(thf)2h (dimers) and [Np02C\z(thf)]n (chain). We 
assume that either [Np02CI2(thf)3] and/or [Np02C\z(thf)2h are 
the dominant species in solution. 

C5 

C6 

Figure 1. ORTEP representation ofpart of the chain of! , [Np02Ch(thf)]n 

75 The IH NMR spectrum of the thf solvate of [Np02Ch] in thf­
d8 reveals two broad overlapping peaks in the a-H position of thf 
(3.61 and 3.64 ppm) and two broad overlapping peaks in the i3-H 
position of thf (1 .83 and 1.78 ppm) (see ESI). This pattern may 
correspond to coordinated and uncoordinated thf, as suggested for 

80 the comparable Pu VI system.8 Alternatively, it could correspond 
to thf and thf-d7, with NpVI coordinated thf being unobservable 
due to the paramagnetism of the metal centre (NpVI is an / 
system). The comparable spectrum for U02C\z(thf)3 in thf-d8 
revea ls only one broad resonance in the a-H region (3.62 ppm) 

85 and one broad resonance in the i3-H region (1.77 ppm).[5aJ 
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The nIR spectrum of [Np02CI2] in thf exhibited a broad band 
at 1244 nm, assigned to an f-f transition and vibronic coupling 
below 800 nm, both of which can be attributed to the {Np02}2+ 
cation.[9] When pure [Np02CI2( tht)]n is redissolved in thf some 

5 	 neptunyl(V) can be observed as a contaminant, the major f-f 
transition for th is species comes at 1004 nm, a typical energy for 
this transition when a {Np02} + oxygen is coordinating to another 
metal centre in a 'cation-cation ' type interaction (Figure 2).110] 
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10 Figure 2. Vis./nJR spectrum of[Np02Ch(thf)]o (\) dissolved in thf. 

The partial reduction ofNpVI to Npv for a Np02CI2 solution 
in thf resulted in the isolation of product 2, 
[{NpvI02C12}{Npv02CI(tht)3h], which crystallizes from a 
thfJhexanes solution of neptunyl(VI) chloride after a period of 

15 	 days. Compound 2 is a trimetallic mixed oxidation state 
neptunyl(Vl/V) cluster (Figure 3). Two neptunyl(V) moieties are 
linked through two bridging chlorides, with their distorted 
pentagonal bipyramidal inner coordination spheres completed by 
three coordinated thf molecules per metal centre. One neptunyl 

20 	oxygen from each of the two neptunyl(V) species coordinates 
into the equatorial plane of a neptunyl(VI) centre, which has a 
distorted tetragonal bipyramidal geometry completed by two 
coordinated chloride ligands. [l 2J ' Cation-cation' bonding of a 
neptunyl(V) oxygen to another neptunyl(V) metal centre has been 

25 	 observed on numerous occasions in the solid state, and there are 
reports of similar interactions with a range of metal cations in 
solution. [10] In addition, axial oxygen coordination has received 
recent interest in uranyl(Vl/V) chemistry. [6c.13] However, to the 
best of our knowledge this is the first structurally characterized 

)0 example of a neptunyl(VI) equatorial coordination shell being 
occupied by a neptunyl(V) axial oxygen, despite previously 
structurally characterized examples of mixed neptunyl(VUV) 
oxidation state complexes. [l4J 

The NpVI_OYI bond lengths in 2 are essentially the same 
)5 (1.771(12) and 1.793(10) A) and comparable with the analogous 

bond lengths in 1. As is typically the case for neptunyl(V) 
'cation-cation' bonding,[IO] the NpV_Oyl oxygens coordinated to 
the NpVI centre are significantly longer (1.885(11) and 1.912(11) 
A), and hence probably weaker, than the uncoordinated Npv 'yl' 

400xygens (1.751(13) and 1.805(12) A). The NpVI_~p(V) bond 
lengths (2.317( II and 2.303( 11) A) are significantly shorter than 
the Np-Othf bond length in I (2.396( II) A) which suggests a 

stronger bonding interaction and at least partially explains why 
the axial oxygens of two {Np02r moieties out-competes thf for 

45 coordination to neptunyl(VI) in 2. 

Figure 3. ORTEP Representation of2. [{NpVI0 2CI21 {NpV0 2CI(thf))}2] 

In order to gain further insight into the relative strength of the 
interactions between the Np centres and the coordinated atoms in 

50 1 and 2, single point density functional calculations were 
performed at the experimentally determined geometries. For 2 the 
structure shown in Figure 2 was employed, whereas for 1, a 
fragment of the chain containing three neptunyl units was studied 
in which the outer neptunyl coordination was terminated by one 

55 thf molecule and a chloride ligand. We chose to probe the Np­
element bonds using Mayer bond orders (MBOs), which are 
straightforward to calculate and which have been shown to 
provide useful, if indirect, measutes of interaction energies. [6.. IS, 
17] 

60 The MBO data are collected in Table I. Both compounds 
provide examples of Np-Oyl bonds in which the Oyl are 
uncoordinated to other atoms. In all such cases the MBOs are 
slightly larger than 2.0 (and slightly larger in 1 than 2). These 
values are similar to the M-O we found previously in [MOXsr­

65 	 (M = Pa, n = 2; M = U, n = I; M = Np, n = 0; X = F, CI or Br); 
somewhat lower than the formal value of 3. [16] Of more interest 
are the MBOs of the bridging Np-O bonds in 2. In 2 the Np2/3­
Oyll /2 MBOs (1.54 and 1.58) are significantly reduced from the 
regular Np-Oyl value, reflecting the longer Np-Oyl distance in 

70 	Np2/3-0yl l /2. We also calculated a smaller, but still significant, 
MBO between Np I and 01/2 (0.4 I and 0.37). 

Table 1. Mayer bond orders (MBOs) calculated for \ and 2. 

Bond MBO Bond MBO 
Npl-Oyl ( \) 2.1212.10 
Npl-Oyl (2) 2.01 /2.01 Np2/3-Oylll2 (2) 1.54/1.58 

Npl-O 112 (2) 0.41 /0.37 Np213-0yI8/ 12 (2) 2.0812.08 

Conclusions 

75 We have shown that a neptunyl(VI) chloride thf adduct 
solution can be prepared and a solid product crystallized from 
solution, [Np02CI2(tht)]n' This could provide a convenient entry 
route into the development of neptunyl(VI) inert atmosphere 
chemistry, and hence increase our understanding of the chemistry 

80 	 of the {Np02}2+ cation to something approaching that of the 
chemistry of the {U02}2+ cation. In addition, the structural 

2 I Journal Name. [yearJ. [vol]. 00-00 	 This journal is © The Royal SOCiety of Chemistry [year] 



characterization of a mixed valence neptunyl(VIIV) molecular 
cluster complex evidences the rich structural and redox 
neptunium chemistry awaiting discovery in organic solvents. 
Finally, Mayer bond order data has yielded fundamental insight 

,into the strength of neptunyl(V) 'cation-cation' bonding 
interactions in the mixed valence complex. This, in tum, should 
yield fundamental insight into neptunium solvent extraction and 

redox chemistry in the PUREX process, an area of continuing 
industrial relevance. [17-18] We are currently studying the synthetic 

10 utility of [NpVI02Ch(thf)]n, undertaking a more detailed study of 
its stability in organic solvents and seeking to probe the magnetic 
properties of [{Np vI02CI2}{Np v02CI(thf)3}2]. In addition, it 
would be interesting to see if a pure neptlll1yl(V)chloride complex 
could be crystallised from thf solution, and if 'cation-cation 

15 	 interactions would result in the formation of infinite chains or 
sheets - as observed in the analogous aqueous systems. 19 
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