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Quantum Crooks fluctuation theorem and quantum Jarzynski equality in the presence of a reservoir
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We consider the quantum mechanical generalization of Crooks Fluctuation and Jarzynski Equality Theorem
for an open quantum system. The explicit expression for microscopic work for an arbitrary prescribed protocol
is obtained, and the relation between quantum Crooks Fluctuation Theorem, quantum Jarzynski Equality and
their classical counterparts are clarified. Numerical simulations based on a two-level toy model are used to
demonstrate the validity of the quantum version of the two theorems beyond linear response theory regime.

PACS numbers: 05.70.Ln, 05.40.-a

I. INTRODUCTION:

Nonequilibrium thermodynamics has been an intriguing re-
search subject for more than one hundred years [1]. Yet
our understanding about nonequilibrium thermodynamic phe-
nomena, especially about those far-from-equilibrium regime
(beyond the linear response regime), remains very limited.
In the past fifteen years, there are several significant break-
throughs in this field, such as Evans-Searls Fluctuation Theo-
rem [2], Jarzynski Equality (JE) [3], and Crooks Fluctuation
Theorem (Crooks FT) [4]. These new theorems not only have
important applications in nanotechnology and biophysics,
such as extracting equilibrium information from nonequilib-
rium measurements, but also shed new light on some fun-
damental problems, such as improving our understanding of
how the thermodynamic reversibility arise from the underly-
ing time reversible dynamics.

Since the seminal work by Jarzynski and Crooks a dozen of
years ago, the studies of nonequilibrium thermodynamics in
small system attract numerous attention [5], and the validity
and universality of these two theorems in classical systems has
been extensively studied not only by numerical studies [6], but
also by experimental exploration [7] in single RNA molecules,
and for both deterministic and stochastic processes. For quan-
tum systems, possible quantum extension of Crooks FT and
JE have also been reported [8]. Nevertheless, we notice that
almost all of these reports about quantum extension of Crooks
FT focus on isolated quantum systems [9], and the explicit
expression of microscopic work, and their distributions in the
presence of a heat bath are not extensively studied. In addi-
tion, the relationship between classical and quantum Crooks
FT is not addressed adequately so far. As a result, the experi-
mental studies of quantum Crooks FT and JE are not explored
(an exception is the experimental scheme of quantum JE of
isolated system based on trapped ions [10]).

In this paper, we will give a detailed proof of the validity of
quantum Crooks FT and quantum JE for an open quantum sys-
tem based on the explicit expression of microscopic work and
their corresponding probability distributions for an arbitrary
prescribed controlling protocol. We also clarify the relation
between quantum Crooks FT, quantum JE and their classical
counterparts. In the last part of the paper, the studies based on
a two-level system is given as an illustration to demonstrate
our central idea.
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FIG. 1: Trajectories of a quantum system in a nonequilibrium pro-
cess. Similar to Ref. [4] every step (from ¢, to ¢,+1) is divided into
two substeps: the controlling substep of time 7, in which the energy
spectrum (black solid line) of the system change with time, and the
relaxation substep of time 75 in which the energy spectrum (black
dashed line) remains unchanged. In the controlling substep (solid
line) work is done, but there is no heat exchange; While in the relax-
ation substep, there is heat exchange between the system and the heat
bath, but there is no work done. Blue trajectory corresponds to fast
controlling protocol, during which there are usually interstate excita-
tions in the controlling substep. Red trajectory corresponds to slow
(quantum adiabatic) controlling protocol, and the system remains in
its instantaneous eigenstate in the controlling substep. Red trajectory
is the counterpart of classical case.

II. NOTATIONS AND ASSUMPTIONS:

Crooks FT [4] is first derived in classical systems in a mi-
croscopically reversible Markovian stochastic process. In the
proof of a classical Crooks FT, a key technique is to separate
work steps from heat steps. In the following discussion of
quantum extension of Crooks FT and JE, we will employ the
same technique as that used in Ref. [4] to separate the control-
ling process into two substeps: controlling substep and relax-
ation substep (see Fig. 1). The controlling substep proceeds
so quickly in comparison with the thermalization process of
the system that we can ignore the influence of the heat bath
during the controlling substep. So there is only work done in
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the controlling substep. In the relaxation substep, on the other
hand, there is only heat exchange.

Having clarified the main strategy (separating work substep

from heat substep), let us come to the details of the notations
and assumptions. We employ the same notations and assump-
tions as that in Ref. [4] to prove the quantum Crooks FT. In
Ref. [4] the author assumes discrete time and discrete phase
space. Here, the discrete energy spectrum in a quantum sys-
tem in place of the discrete phase space of a classical system
arise naturally. We also assume discrete time tg, t;, to, t3,
-+-, ty for the quantum system (see Fig. 1). The parameter
A(t) is controlled according to an arbitrary prescribed proto-
col )\(to) = )\A, )\(tl) = /\1, A(t2) = AQ, E W 4 /\(tN) = )‘B»
where A and B depict the initial and final point of the pro-
cess. Every step t, — t,41 is separated into controlling
substep of time 7‘(5 and relaxation substep of time time T}é,
tiy1 = ti + 745 + Th (see Fig. 1). If we use [in, Am)
and E(in, Ap,) to depict the 7,-th instantaneous eigenstate
and eigenenergy of the system Hamiltonian H()\,,), we can
rewrite the trajectory A — B of Ref. [4] in the following way

lig, Ao) — |i0, A1) — |i1, A1) — |i1,A2) — iz, A2)

— oo > |ino1, AN) = |iN—1, AN) = iN, AN)

ey

In the classical case, the system remains in its 7,,-th state of
the discrete phase space during the controlling substep. Anal-
ogously, in quantum systems, this process corresponds to the
quantum adiabatic regime, i.e., the system remains in its %,-
th eigenstate of the instantaneous Hamiltonian when we con-
trol the parameter A(t) of the Hamiltonian H [A(¢)] so slowly
that the quantum adiabatic conditions are satisfied, and the
above trajectories (1) can be achieved (red trajectory of Fig.
1). However, if we control the parameter of the Hamiltonian
very quickly in the controlling substep, and then the quantum
adiabatic conditions are not satisfied, the trajectory A — B in
general should be written as (see blue trajectory of Fig. 1)

lio, Ao} — [ig, A1) — |1, A1) — [i], A2) — i2, A2) @

— > ino1, AN) — 'z’;v_l,/\zv> = |in, An)

The main difference of the above two kinds of trajectories
(1) and (2) is that after the controlling substep the system
may not be in the same eigenstate as that before the con-
trolling, i.e., i, # 4,. The internal excitation |i,, A\,) —
[il,, An+1) is due to the quantum randomness and has no
classical counterpart. Actually this difference of (1) and
(2) highlights the main difference between the quantum and
classical Crooks FT. For a quantum system, the microscopic
work done in every controlling substep is equal to the. dif-
ference of the energy before and after the controlling sub-
step: W, = E(il,An+1) — E(in, M), and the heat ex-
changed with the heat bath is equal to the difference of the
energy of the system before and after the relaxation substep
Qn = E(in, A\ — E(il,_;, M\). For the trajectory (2) as a
whole, we must make 2V times quantum measurements to
confirm the microscopic work done and heat exchanged with
the heat bath. Similar to the classical case, the total work
W performed on the system, the total heat () exchanged with

the heat bath are given by the summation of work and heat
in every step, W = Zf:’;ol [E(i), An+1) — E(in, An)],Q =
SN o [Elins An) — E(ily_1,A)], an€ tie total change in
energy is AE = Q + W = E(in,An) — E(io,Xo). Note
that the work and heat depend on the trajectory, but the en-
ergy change depends only on the initial and final energy, and
does not depend on the trajectory.

Similar to the classical case [4] we assume the trajectories
(2) to be Markovian, and the forward process starts from the
thermal equilibrium distribution P(|ig, Ag)) = %

The joint probability for a given trajectory (2) can be ex-
pressed as

N-1
Pp(A — B) =P(Jio, \o)) [ Pr(lin: An) = lif, Ans1))
n=0
X Pp(lin; Ant1) = lin+1, Ant1))

3

It can be seen that the above probability (3) of a trajectory
for a quantum case is different from the classical case [4] by
the extra term P(|in, Ap) — [il,, An+1)) arising from quan-
tum randomness. When the quantum adiabatic conditions are
satisfied, P(|in, An) — |in, An+1)) = 8,1, We regain the
probability of a trajectory in classical systems [4]. We will see
later that the quantum Crooks FT and quantum JE in the quan-
tum adiabatic regime are the counterpart of classical Crooks
FT and classical JE.

To prove the quantum Crooks FT, we also need to con-
sider the time-reversed trajectory [11] of the original trajec-
tory (2). The time-reversed trajectory corresponding to the
forward time trajectory A <+ B in Eq. (2) can be written as

O [ig, Ao) — © [ig, A1) — O i1, A1) — O i}, Ao) —

; 4 . C))
c—Olin_1,AN) — O iN_1,AN) — Olin, AN)
where O in, An) = |in, An)" is the microscopic state in the
time-reversed trajectory [12]. The sequence in which states
are visited is reversed, as is the order in which A is changed.
The work done W, the heat exchange @ with the heat bath, the
change of the internal energy AF, and the change of free en-
ergy AF for the reversed time direction are the negative value
of that of the forward time trajectory. The joint probability for
time reversed trajectory A < B can be expressed as

N-1
Pr(A — B) = [[ Pa(® lin, An) — O iy, Ant1))
n=0

©)
x Pr(© |i:u’\n+l> — O ling1, Ant1))

X P(@ liN;)\N»

, -BE(iN AN) . -
where P(© |in, AN)) = iTM is the initial thermal

distribution for the time-reversed trajectory. Also there is en
extra term Pr(O |i,, \,) <« © |i,, A\ny1)) arising due to the
quantum randomness in comparison with the classical case.



ITII. PROOF OF QUANTUM CROOKS FT AND QUANTUM
JE

- Y

As we have mentioned before, in a trajectory every step
consists of two substeps, the controlling substep (not neces-
sarily to be quantum adiabatic) and the relaxation substep.
The relaxation substeps are assumed to be microscopically re-
versible, and therefore obey the detailed balance [4, 13] for all
fixed value of the external control parameter \

PF(li;t-—lv )\n> — |in, An)) & PEln.An) 6
Pr® [t 1 M) — Olim ) e PEGim O
To compare the ratio of the probabilities of forward (3) and
time-reversed (5) trajectories, we also need to know the ratio
of the probabilities in the controlling substep. In the follow-
ing we will focus on the study of controlling substep and its
time reversal. As we mentioned before, during the controlling
substep, the system can be regarded as an isolated quantum
system and the evolution is completely determined by a time-
dependent Hamiltonian H[A(t)]. For example, when the con-
trolling parameter ) is changed from A, to A, 41, the prob-
ability of the excitation from a microscopic state |i,, A,) to
another microscopic state |i/,, \,+1) can be expressed as

Pr(lins An) = 1y Ant1) = | (i Ant1| U lin, M) 2 (D)

where U = Te™ Jeg HA®AL g ghe unitary matrix describing
the evolution of the isolated quantum system in the control-
ling substep, and T is the time-ordered operator. Similarly, in
the time-reversed trajectory the excitation probability from the
microscopic state © |il,, A\,+1) to another microscopic state
© |in, An) in the time reversed trajectory can be expressed as
[14]

Pr(© lim /\n> =0 IZ;w >‘n+1>)

: &= = g ®
= | ((ins 20| ©) OU® (B lif, Ans1)) I,
where OU© = Te *Jic A(tott-0ldt _ (rtye — T jg
the time-reversed unitary matrix. Because of the properties of
the time-reversed transformation © |i,,, A,) = in, An)", and
the property of the Hermitian conjugate matrix,

(Cins Al *UT (fiy Ans1))* = i At | U fims An) — 9)
it is not difficult to prove that
PF(|im ’\n) =y |i;w)‘n+1>)
PR(® lin; An) — O i, Ant1))

Based on the above two results (6), (10) and Eqgs. (3) and
(5), we reproduce the Crooks FT for a quantum mechanical
system

1]

1. (10)

Pr(A—> B) _ gw-ar)

0 AT T 5 iy

Pr(A—B) .
From Eq. (11) we group all those trajectories with the same
amount of microscopic work, and obtain

PF(W|a)

_ ,B(a—AF)
—_— = " (12
Pa(—W|-a) )

Eq. (12) is the Crooks FT. Similar to the derivation in Ref.
[4], we obtain the JE for a quantum open system straightfor-
wardly (e™PW) = ¢=PAF Here, we would like to empha-
size that though quantum generalization of Crooks FT and JE
have been reported in some previous work, the explicit con-
sideration of the influence of the heat bath, i.e., the explicit
expression of microscopic work in the presence of a heat bath
has not been reported before. Also the relation between quan-
tum and classical trajectories are not addressed clearly. Hence
our quantum mechanical extensions of Crooks FT and JE are
highly nontrivial.

IV. ILLUSTRATION OF QUANTUM CROOKS FT AND
QUANTUM JE IN A TWO-LEVEL SYSTEM

Pe[W].PR[-W]

4

FIG. 2: Microscopic work distribution Pr(W) of forward tra-
jectories (solid lines), and the negative reverse work distribution
Pr(—W) of their corresponding time-reversed trajectories (dashed
lines). The probabilities have been normalized. Here we fix A(to)
and A(ty). Different distributions represent different controlling
time (the more steps, the longer control time). The controlling time
are chosen to be N = 5 (red), N = 10 (blue), N = 15 (purple), and
N = 20 (green). It can be seen that the work distributions for both
forward and reversed trajectories are not Gaussian. Moreover, the
decrease of the controlling speed, the fluctuation of the distributions
decreases, and the difference between the work distribution of the
forward and time-reversed trajectories becomes less obvious. The
corresponding forward and negative reverse work distribution cross
at W = AF, and this is a direct consequence of the quantum Crooks
Fl.

Having generalized the Crooks FT and JE to quantum sys-
tems in the presence of a heat bath. In the following, we
use the studies based on a two-level system [15] as an illus-
tration to demonstrate our main idea. The Hamiltonian of
the two-level system is H = 1A(t) (o, + 1), where A(t)
is the parameter of the Hamiltonian, and o, is Pauli matrix.
The initial and final value of the parameter are A4 = A(to)
and Agp = A(ty) respectively. The controlling scheme is
the same as that in Ref. [15]: We divide the whole pro-
cess into N even steps. Hence the parameter in the nth
step is A(t,) = A(to) + nA, where A = 25284 js
the change of the parameter in every step. Every step con-
sists of two substeps: the controlling substep, in which we



change the parameter from A(t,) to Ay = A(ty) + A,
and the relaxation substep. For simplicity, we consider the
case where the system reaches thermal equilibrium with the
heat bath in every relaxation substep. Hence, the probabil-

ity for the forward and reverse relaxation substep can be ex-
. e —BE(in,An)
pressed as Pr(|il,_1, An) — [in, An)) = ‘f?ﬁs_(z‘xm' and

e—aE(i’n_l.,\n)

PR(6|z’;_1,>\n> — @|’Ln,)\n>) = Wm Also we
assume the quantum adiabatic conditions are satisfied in ev-
ery controlling substep. That is Pg(|in, An) — [i,, An+1)) =
57:1“7:17;’ and PR(@ lzn»)\n> £ eli;,/\nﬂ)) = 5im¢/n. Based
on these assumptions, the microscopic work distribution for
the forward trajectories can be obtained [15]

N-k-1 pgAp B(Aa+1A)
F € = €
PF(W|/€A) =S Pe H eAUHDA _ 1 )
=0

(13)

F _ N —B8la 4+(i-1)4) _
where ;" = [[;_, vo=smaso-nar ¥ = 0, 1, 2, -+,
N. Similarly, the microscopic work distribution for the time-
reversed trajectory can be expressed as

N—-k=1 BA[.80p _ .B(Aa+lD)
R e”4 e € ]
Pr(=W|-xa) = P, H BUDA _ 1 ’

. 14)
(
e—BlAp—(i-1A)

N
where P} = ] 1S =pma=g=var- k = 0, 1,2, .-, N.
We plot the above distributions (13) and (14) of microscopic
work in Fig. 2. Here the probability distribution in the ex-

i —-BA

cited state are P.(A4) = -1%3% = %, and P.(AB) =
N

Ifr—efgfrs = %. The free energy difference is AFap =

[In(1+3) —In(1+1)] k5T ~ 0.263(In4 — In2)kpT. It
can be seen (see Fig. 2) that the corresponding forward and
negative reverse work distributions cross at W = AF, no
matter what the controlling protocol is, and this result is a di-
rect consequence of Crooks FT. It should be pointed out that
the work distributions (13) and (14) are non-Gaussian [15].
Hence, the processes discussed here are beyond the linear re-
sponse regime. Yet we will see both Crooks FT and JE holds.
We also Plot the logarithm of the ratio of the forward and neg-
ative reverse work distribution (See Fig. 3A). It can be seen
that all data collapse onto the same straight line. In addition,
the slope of the line is equal to unit, and the line cross the
horizontal axis at W = 0.263(In4 — In2)kgT = AFap.
Thus our numerical simulation confirms the validity of quan-
tum Crooks FT when the process is beyond the linear response
regime. We also plot the logarithm of the exponent averaged
work In (e=#"') and averaged work (W) of the forward pro-
cess (see Fig. 3B) to test the validity of quantum JE. It can
be seen that the averaged work is greater than the free energy
difference (W) > AF, while the logarithm of the exponent
averaged work is identical to the difference of the free energy

In{e P¥)=AF =In }iiﬁ ~ 0.1823kpT no matter what

the controlling protocol is. Hence, Fig. 3B verifies quantum
JE when the process is beyond the linear response regime.
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FIG. 3: Above: The logarithm of the probabilities of forward and
time-reversed trajectories as a function of work. It can be seen that
all data of different work and different control protocols (N = 5
(red), N = 10 (blue), N = 15 (purple), N = 20 (green)) collapse
onto the same straight line. The slop of the line is equal to unity, and
the line cross the horizontal axes at W = AF'. Thus the numerical
result verifies the quantum Crooks FT In P_:’(A_VWV_t% = f(a—AF).
Below: The averaged work VS. the logarithm of averaged exponent
work for different control protocols. It can be seen that the averaged
work (W) is always greater than the difference of free energy AFap
and differ from one control protocol to another, while the logarithm
of the exponentially averaged work In (e_ﬁ W) is always equivalent
to the difference of free energy irrespective of the control protocols.
Thus the numerical result verifies the JE In (e_ﬁw) =AF

V. CONCLUSION AND REMARKS

In this paper, we explicitly consider the quantum Crooks
FT and quantum JE in the presence of an external heat bath.
Our proof includes the proof of classical Crooks FT as a spe-
cial case. When the quantum adiabatic conditions are satis-
fied, we reproduce the result of Crooks FT and JE for classi-
cal systems. Our work indicates that in quantum systems, the
probabilities (Egs. (3) and (5)) comes from both the quantum
randomness and statistical mechanical randomness, while in
classical system, the randomness only comes from the later
case. We use the two-level system as an illustration to demon-
strate the validity of quantum Crooks FT and quantum JE be-
yond the linear response regime.

Before concluding the paper, we would like to mention the
following points. First, though the quantum randomness is



introduced into the controlling substep, this substep is time
reversal symmetric. 1. e., all the time asymmetry is due the
relaxation substep (sthﬂstical mechanical randomness), rather
than the controlling substep (quantum randomness). This is
the same as the classical case. Second, when we change the
Hamiltonian slowly, we reproduce the proof of Crooks for
classical systems. In this sense, we say that our proof in-
cludes the classical Crooks FT and classical JE as a special
case. Third, for classical system, the Crooks FT and JE have
been experimentally verified [7]. However, for a quantum me-
chanical system, the experimental exploration on Crooks FT
and JE has not been reported (an exception is [10]). This per-
haps is mainly due to the fact that microscopic work in a quan-
tum mechanical system is not a well defined observable [18].
There is no well defined pressure or force for a quantum sys-
tem [17]. Hence, we cannot follow the way that we do in
classical system to measure the force and make the integral of
the force by the extension. On the contrary, we will have to in-
troduce quantum measurement processes to confirm the initial
and final energy of the system and then calculate the micro-

scopic work done from the difference of the initial and final
energy difference [16]. Fourth, though the numerical simula-
tions consider only the special cases: 1) the system reach ther-
mal equilibrium with the heat bath in every relaxation substep,
and 2) the quantum adiabatic conditions are satisfied in every
controlling substep, the quantum Crooks FT and quantum JE
are not constrained in these special cases. Finally, our numer-
ical simulations based on a two-level system can possibly be
testified by employing Josephson Junction charge qubit [19].
Discussion about employing Josephson Junction qubit to test
the quantum Crooks FT and quantum JE will be given later.
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