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Quantum Crooks fluctuation theorem and quantum Jarzynski equality in the presence of a reservoir 

H. T. Quan 1 and H. Dong2 

iTheoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A. 
21nstitute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100080, China 

We consider the quantum mechanical generalization of Crooks Fluctuation and Jarzynski Equality Theorem 
for an open quantum system. The explicit expression for microscopic work for an arbitrary prescribed protocol 
is obtained, and the relation between quantum Crooks Fluctuation Theorem, quantum Jarzynski Equality and 
their classical counterparts are clarified. Numerical simulations based on a two-level toy model are used to 
demonstrate the validity of the quantum version of the two theorems beyond linear response theory regime. 

PACS numbers: 05.70.Ln, 05.40.-a 

I. INTRODUCTION: 

Nonequilibrium thermodynamics has been an intriguing re­
search subject for more than one hundred years [1]. Yet 
our understanding about nonequilibrium thermodynamic phe­
nomena, especially about those far-from-equilibrium regime 
(beyond the linear response regime), remains very limited. 
In the past fifteen years, there are several significant break­
throughs in this field, such as Evans-Searls Fluctuation Theo­
rem [2], Jarzynski Equality (JE) [3], and Crooks Fluctuation 
Theorem (Crooks FT) [4]. These new theorems not only have 
important applications in nanotechnology and biophysics, 
such as extracting equilibrium information from' nonequilib­
rium measurements, but also shed new light on some fun­
damental problems, such as improving our understanding of 
how the thermodynamic reversibility arise from the underly­
ing time reversible dynamics. 

Since the seminal work by Jarzynski and Crooks a dozen of 
years ago, the studies of nonequilibrium thermodynamics in 
small system attract numerous attention [5], and the validity 
and universality of these two theorems in classical systems has 
been extensively studied not only by numerical studies [6], but 
also by experimental exploration [7] in single RNA molecules, 
and for both deterministic and stochastic processes. For quan­
tum systems, possible quantum extension of Crooks FT and 
JE have also been reported [8]. Nevertheless, we notice that 
almost all of these reports about quantum extension of Crooks 
FT focus on isolated quantum systems [9], and the explicit 
expression of microscopic work, and their distributions in the 
presence of a heat bath are not extensively studied. In addi­
tion, the relationship between classical and quantum Crooks 
FT is not addressed adequately so far. As a result, the experi­
mental studies of quantum Crooks FT and JE are not explored 
(an exception is the experimental scheme of quantum JE of 
isolated system based on trapped ions [10]). 

In this paper, we will give a detailed proof of the validity of 
quantum Crooks FT and quantum JE for an open quantum sys­
tem based on the explicit expression of microscopic work and 
their corresponding probability distributions for an arbitrary 
prescribed controlling protocol. We also clarify the relation 
between quantum Crooks FT, quantum JE and their classical 
counterparts. In the last part of the paper, the studies based on 
a two-level system is given as an illustration to demonstrate 
our central idea. 
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FIG. I: Trajectories of a quantum system in a nonequilibrium pro­
cess. Similar to Ref. [4] every step (from tn to tn+l) is divided into 
two substeps: the controlling substep of time TQ' in which the energy 
spectrum (black solid line) of the system change with time, and the 
relaxation substep of time T~ in which the energy spectrum (black 
dashed line) remains unchanged. In the controlling substep (solid 
line) work is done, but there is no heat exchange; While in the relax­
ation substep, there is heat exchange between the system and the heat 
bath, but there is no work done. Blue trajectory corresponds to fast 
controlling protocol, during which there are usually interstate excita­
tions in the controlling substep. Red trajectory corresponds to slow 
(quantum adiabatic) controlling protocol, and the system remains in 
its instantaneous eigenstate in the controlling substep. Red trajectory 
is the counterpart of classical case. 

II. NOTATIONS AND ASSUMPTIONS: 

Crooks FT [4] is first derived in classical systems in a mi­
croscopically reversible Markovian stochastic process. In the 
proof of a classical Crooks FT, a key technique is to separate 
work steps from heat steps. In the following discussion of 
quantum extension of Crooks FT and JE, we will employ the 
same technique as that used in Ref. [4] to separate the control­
ling process into two substeps: controlling substep and relax­
ation substep (see Fig. 1). The controlling substep proceeds 
so quickly in comparison with the thermalization process of 
the system that we can ignore the influence of the heat bath 
during the controlling substep. So there is only work done in 
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the controlling substep. In the relaxation substep, on the other 
hand, there is only heat exchange. 

Having clarified the main strategy (separating work substep 
from heat substep), let us come to the details of the notations 
and assumptions. We employ the same notations and assump­
tions as that in Ref. [4] to prove the quantum Crooks Fr. In 
Ref. [4] the author assumes discrete time and discrete phase 
space. Here, the discrete energy spectrum in a quantum sys­
tem in place of the discrete phase space of a classical system 
arise naturally. We also assume discrete time to, tI, t2, t3, 
. . " tN for the quantum system (see Fig. 1). The parameter 
A(t) is controlled according to an arbitrary prescribed proto­
col A(tO) = AA, A(td = AI, A(t2) = A2, ... , A(tN) = A8, 
where A and B depict the initial and final point of the pro­
cess. Every step tn -+ tn+I is separated into controlling 
substep of time rb and relaxation substep of time time rk, 
ti+l = ti + rb + rk (see Fig. 1). If we use lin, Am) 
and E (in , Am) to depict the in-th instantaneous eigenstate 
and eigenenergy of the system Hamiltonian H (Am ), we can 
rewrite the trajectory A -+ B of Ref. [4] in the following way 

lio, AO) -+ lio, AI) -+ IiI, AI ) -+ IiI, A2) -+ li2, A2) 
(1 ) 

-+ . .. -+ liN-I, AN) -+ liN-I, AN) -+ liN, AN) 

In the classical case, the system remains in its in-th state of 
the discrete phase space during the controlling substep. Anal­
ogously, in quantum systems, this process corresponds to the 
quantum adiabatic regime, i.e. , the system remains in its in ­

th eigenstate of the instantaneous Hamiltonian when we con­
trol the parameter A(t) of the Hamiltonian H [A(t)] so slowly 
that the quantum adiabatic conditions are satisfied, and the 
above trajectories (1) can be achieved (red trajectory of Fig. 
1). However, if we control the parameter of the Hamiltonian 
very quickly in the controlling substep, and then the quantum 
adiabatic conditions are not satisfied, the trajectory A -+ B in 
general should be written as (see blue trajectory of Fig. 1) 

lio, AO) -+ li~, AI) -+ IiI, AI) -+ li~, A2) -+ li2, A2) 
(2) 

-+ .. . -+ liN-I, AN) -+ li~_l' AN) -+ liN, AN) 

The main difference of the above two kinds of trajectories 
(1 ) and (2) is that after the controlling substep the system 
may not be in the same eigenstate as that before the con­
trolling, i.e., in i- i~ . The internal excitation lin, An) -+ 

l i~, An+!) is due to the quantum randomness and has no 
classical counterpart. Actually this difference of (1 ) and 
(2) highlights the main difference between the quantum and 
classical Crooks Fr. For a quantum system, the microscopic 
work done in every controlling substep is equal to the. dif­
ference of the energy before and after the controlling sub­
step: Wn = E(i~, An+!) - E (in , An), and the heat ex­
changed with the heat bath is equal to the difference of the 
energy of the system before and after the relaxation substep 
Qn = E (in , An - E(i~_I' An) . For the trajectory (2) as a 
whole, we must make 2N times quantum measurements to 
confirm the microscopic work done and heat exchanged with 
the heat bath. Similar to the classical case, the total work 
W performed on the system, the total heat Q exchanged with 

the heat bath are given by the summation of work and heat 

in every step, W = L,~:01 [E(i~, An+!) - E (in , An) ], Q = 
L,~=o [E (in, An) - E(i~_l' An)']", and the to al change in 
energy is tJ..E = Q + W = E (iN, AN) - E (io, AO) . Note 
that the work and heat depend on the trajectory, but the en­
ergy change depends only on the initial and final energy, and 
does not depend on the trajectory. 

Similar to the classical case [4] we assume the trajectories 
(2) to be Markovian, and the forward process starts from the 

' l'b . d ' 'b' P(I ' \ )) e -
i3 E

(io. '>' o)thermaI eqUi I num IStrl utton to, 1\0 = L:i e )jE( i, .>.O) · 

The joint probability for a given trajectory (2) can be ex­
pressed as 

N-I 
PF( A -+ B ) =P (lio, Ao)) II PF(lin, An) -+ l i~, An+!)) 

n=O 

(3) 

It can be seen that the above probability (3) of a trajectory 
for a quantum case is different from the classical case [4] by 
the extra term P (lin, An) -+ li~, An+l)) arising from quan­
tum randomness. When the quantum adiabatic conditions are 
satisfied , PClin, An) -+ li~, An+!)) = bin,i;" we regain the 
probability of a trajectory in classical systems [4] . We will see 
later that the quantum Crooks Fr and quantum JE in the quan­
tum adiabatic regime are the counterpart of classical Crooks 
Fr and classical JE. 

To prove the quantum Crooks Fr, we also need to con­
sider the time-reversed trajectory [11] of the original trajec­
tory (2). The time-reversed trajectory corresponding to the 
forward time trajectory A +- B in Eq. (2) can be written as 

where 8 lin, An) = lin, An) * is the microscopic state in the 
time-reversed trajectory [12]. The sequence in which states 
are visited is reversed, as is the order in which A is changed. 
The work done W, the heat exchange Q with the heat bath, the 
change of the internal energy tJ..E, and the change of free en­
ergy tJ..F for the reversed time direction are the negative value 
of that of the forward time trajectory. The joint probability for 
time reversed trajectory A +- B can be expressed as 

N-I 
PR(A +- B ) = II PR(8 lin ' An) +- 8 li~ , An+!)) 

n=O (5) 
X PR(8 li~, An+l) +- 8 lin+!, An+ l)) 

X P (8 liN, AN)) 

' )) e- i3E(i N ' '>'N ) 
where P (8 1 - tN , AN = L:ie i3 E (i' '>'N ) is the initial thermal 

distribution for the time-reversed trajectory. Also there is en 
extra term PR (8 lin , An) +- 8 li~, An+l )) arising due to the 
quantum randomness in comparison with the classical case. 



III. PROOF OF QUANTUM CROOKS FT AND QUANTUM 
JE 

As we have mentioned before, in a trajectory every step 
consists of two substeps, the controlling substep (not neces­
sarily to be quantum adiabatic) and the relaxation substep. 
The relaxation substeps are assumed to be microscopically re­
versible, and therefore obey the detailed balance [4, 13] for all 
fixed value of the external control parameter A 

PF(li~_l,An) ---4 lin,An)) e-{3 E(in,>'nl 
(6)

PR(e li~_l' An) <- e lin , An)) - e-{3E(i~_ l,>' n l' 

To compare the ratio of the probabilities of forward (3) and 
time-reversed (5) trajectories, we also need to know the ratio 
of the probabilities in the controlling substep. In the follow­
ing we will focus on the study of controlling substep and its 
time reversal. As we mentioned before, during the controlling 
substep, the system can be regarded as an isolated quantum 
system and the evolution is completely determined by a time­
dependent Hamiltonian H[A(t)]. For example, when the con­
trolling parameter A is changed from An to An+l, the prob­
ability of the excitation from a microscopic state lin, An) to 
another microscopic state li~, An+!) can be expressed as 

PF(lin, An) ---4 i~, An+l) = I(i~, An+ll U lin' An) 12 (7) 

where U = Te- ' Jt~l H[>.(tl]dt is the unitary matrix describing 
the evolution of the isolated quantum system in the control­
ling substep, and T is the time-ordered operator. Similarly, in 
the time-reversed trajectory the excitation probability from the 
microscopic state e li~, An+!) to another microscopic state 
e lin, An) in the time reversed trajectory can be expressed as 
[14] 

(8) 

whereeU8 = Te- · Jtt~ H[>.(tO+tl-tl ]dt = (ut)* = UT is 
the time-reversed unitary matrix. Because of the properties of 
the time-reversed transformation e lin, An) = lin, An) *, and 

PR(e lin, An) <- e liri, An+l)) 

the property of the Hermitian conjugate matrix, 

((in, Anl)* UT (Ii~ , An+l))* ;: (i~, An+! I U lin, An) (9) 

it is not difficult to prove that 

PF(lin,An) ---4 l i~,An+l)) ;: l. (10) 

Based on the above two results (6), (10) and Eqs. (3) and 
(5), we reproduce the Crooks FT for a quantum mechanical 
system 

PF(A ---4 B) _ (3(W-~Fl 
(II)PR(A <- B) - e . 

From Eq. (11) we group all those trajectories with the same 
amount of microscopic work, and obtain 

(12) 

Eq. (12) is the Crooks FT. Similar to the derivation in Ref. 
[4], we obtain the JE for a quantum open system straightfor­
wardly (e-{3W) = e-{3~F. Here, we would like to empha­
size that though quantum generalization of Crooks FT and JE 
have been reported in some previous work, the explicit con­
sideration of the influence of the heat bath, i.e., the explicit 
expression of microscopic work in the presence of a heat bath 
has not been reported before. Also the relation between quan­
tum and classical trajectories are not addressed clearly. Hence 
our quantum mechanical extensions of Crooks FT and JE are 
highly nontrivial. 

IV. ILLUSTRATION OF QUANTUM CROOKS FT AND 

QUANTUM JE IN A TWO·LEVEL SYSTEM 
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FIG. 2: Microscopic work distribution PF(W) of forward tra­
jectories (solid lines), and the negative reverse work distribution 
PRe - W) of their corresponding time-reversed trajectories (dashed 
lines). The probabilities have been normalized. Here we fix .6.(to) 
and .6.(tN). Different distributions represent different controlling 
time (the more steps, the longer control time). The controlling time 
are chosen to be N = 5 (red), N = 10 (blue), N = 15 (purple), and 
N = 20 (green). It can be seen that the work distributions for both 
forward and reversed trajectories are not Gaussian. Moreover, the 
decrease of the controlling speed, the fluctuation of the distributions 
decreases, and the difference between the work distribution of the 
forward and time-reversed trajectories becomes less obvious. The 
corresponding forward and negative reverse work distribution cross 
at W = .6.F, and this is a direct consequence of the quantum Crooks 
FT. 

Having generalized the Crooks FT and JE to quantum sys­
tems in the presence of a heat bath. In the following, we 
use the studies based on a two-level system [15] as an illus­
tration to demonstrate our main idea. The Hamiltonian of 
the two-level system is H = !fl(t) ((Jz + 1), where fl(t) 
is the parameter of the Hamiltonian, and (J z is Pauli matrix. 
The initial and final value of the parameter are flA = fl(to) 
and flB = fl(tN) respectively. The controlling scheme is 
the same as that in Ref. [15]: We divide the whole pro­
cess into N even steps. Hence the parameter in the nth 
step is fl(tn ) = fl(to) + nfl, where fl = ~BN~A is 
the change of the parameter in every step. Every step con­
sists of two substeps: the controlling substep, in which we 



IV 

change the parameter from ~ (tn) to ~n+1 = ~(tn) + ~, 
and the relaxation substep. For simplicity, we consider the 
case where the system reaches thermal equilibrium with the 
heat bath in every relaxation substep. Hence, the probabil­
ity for the forward and reverse relaxation substep can be ex­

./ ). e- i3E (i n , An )
pressed as PF ( 1tn- I , An ---> Itn , An}) = L i e (:IE(i , An) ' and 

-..aE(i~ l,An) 

PR(8 li~_l' An) ~ 8 lin, An}) = E i e i3;(i, Anj ' Also we 
assume the quantum adiabatic conditions are satisfied in ev­
ery controlling substep. That is PF( lin, An} ---> l i~ , An+l}) = 
Oin,i~ ' and PR (8 lin' An} ~ 8 l i~, An+1}) = Oin,i~' Based 
on these assumptions, the microscopic work distribution for 
the forward trajectories can be obtained [15] 

( 13) 

F N e- i3[aA +(j- l)a j 
where Pe = TIj=l l+e i3\ a A+(j lj a l ' k = 0 , 1 , 2, ... , 

N. Similarly, the microscopic work distribution for the time­
reversed trajectory can be expressed as 

N-k- l {3 t::. [ (3 t::. B (3( t::. A +l t::. )]
R e e -eII 

PR( - W I-kt::. ) = Pe e{3(I+1) t::. -1 ' 
1=0 

(14) 
R N e- i3 [a B-(j-l)a j _ 

where Pe = TIj=l H e i3\a B (j lja \ , k - 0, 1, 2, . . . , N . 
We plot the above distributions (13) and (14) of microscopic 
work in Fig. 2. Here the probability distribution in the ex­

cited state are Pe (~A) = l~~ i3~~A = ~, and Pe(~B) 
l~~i3~~B = i. The free energy difference is ~FAB = 

[In(l +~) - In(l + i)] kBT ~ 0.263(ln 4 - In2 )k BT. It 
can be seen (see Fig. 2) that the corresponding forward and 
negative reverse work distributions cross at W = ~F, no 
matter what the controlling protocol is, and this result is a di­
rect consequence of Crooks FT. It should be pointed out that 
the work distributions (13) and (14) are non-Gaussian [15]. 
Hence, the processes discussed here are beyond the linear re­
sponse regime. Yet we will see both Crooks FT and JE holds. 
We also Plot the logarithm of the ratio of the forward and neg­
ative reverse work distribution (See Fig. 3A). It can be seen 
that all data collapse onto the same straight line. In addition, 
the slope of the line is equal to unit, and the line cross the 
horizontal axis at W = 0.263(ln 4 - In 2)k BT = ~FAB . 
Thus our numerical simulation confirms the validity of quan­
tum Crooks FT when the process is beyond the linear response 
regime. We also plot the logarithm of the exponent averaged 
work In (e-{3W) and averaged work (W ) of the forward pro­
cess (see Fig. 3B) to test the validity of quantum JE. It can 
be seen that the averaged work is greater than the free energy 
difference (W) ~ ~F, while the logarithm of the exponent 
averaged work is identical to the difference of the free energy 

In (e-{3W) == ~F = In ~ !~~; ~ 0.1823kBT no matter what 
the controlling protocol is. Hence, Fig. 3B verifies quantum 
JE when the process is beyond the linear response regime. 
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FIG. 3: Above: The logarithm of the probabilities of forward and 
time-reversed trajectories as a function of work. It can be seen that 
all data of different work and different control protocols (N = 5 
(red), N = 10 (blue), N = 15 (purple), N = 20 (green» collapse 
onto the same straight line. The slop of the line is equal to unity, and 
the line cross the horizontal axes at W = t:.F. Thus the numerical 
result verifies the quantum Crooks FT In p:fJ:I~),,) = (3(a- t:.F). 
Below: The averaged work VS. the logarithm of averaged exponent 
work for different control protocols. It can be seen that the averaged 
work (W ) is always greater than the difference offree energy t:.FAB 
and differ from one control protocol to another, while the logarithm 
of the exponentially averaged work In (e-fjW) is always equivalent 
to the difference of free energy irrespective of the control protocols. 
Thus the numerical result verifies the JE In <e- fj W) == t:.F 

V. CONCLUSION AND REMARKS 

In this paper, we explicitly consider the quantum Crooks 
FT and quantum JE in the presence of an external heat bath. 
Our proof includes the proof of classical Crooks FT as a spe­
cial case. When the quantum adiabatic conditions are satis­
fied, we reproduce the result of Crooks FT and JE for classi­
cal systems. Our work indicates that in quantum systems, the 
probabilities (Eqs. (3) and (5» comes from both the quantum 
randomness and statistical mechanical randomness, while in 
classical system, the randomness only comes from the later 
case. We use the two-level system as an illustration to demon­
strate the validity of quantum Crooks FT and quantum JE be­
yond the linear response regime. 

Before concluding the paper, we would like to mention the 
following points. First, though the quantum randomness is 



introduced into the controlling substep, this substep is time 
reversal symmetric. I. e., all the time asymmetry is due the 
relaxation slfOstep (statistical mechanical randomness), rather 
than the controlling substep (quantum randomness). This is 
the same as the classical case. Second, when we change the 
Hamiltonian slowly, we reproduce the proof of Crooks for 
classical systems. In this sense, we say that our proof in­
cludes the classical Crooks Ff and classical JE as a special 
case. Third, for classical system, the Crooks Ff and JE have 
been experimentally verified [7]. However, for a quantum me­
chanical system, the experimental exploration on Crooks Ff 
and JE has not been reported (an exception is [10]). This per­
haps is mainly due to the fact that microscopic work in a quan­
tum mechanical system is not a well defined observable [18]. 
There is no well defined pressure or force for a quantum sys­
tem [17]. Hence, we cannot follow the way that we do in 
classical system to measure the force and make the integral of 
the force by the extension. On the contrary, we will have to in­
troduce quantum measurement processes to confirm the initial 
and final energy of the system and then calculate the micro­
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