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Reliable Estimation of Shock Position in
Shock-Capturing Compressible Hydrodynamics Codes

Eric M. Nelson*
LANL, Los Alamos, NM 87545

The displacement method for estimating shock position in a shock-capturing com-
pressible hydrodynamics code is introduced. Common estimates use simulation data
within the captured shock, but the displacement method uses data behind the shock,
making the estimate consistent with and as reliable as estimates of material param-
eters obtained from averages or fits behind the shock. The displacement method is
described in the context of a steady shock in a one-dimensional lagrangian hydro-
dynamics code, and demonstrated on a piston problem and a spherical blast wave.
The displacement method’s estimates of shock position are much better than common
estimates in such applications.

I. Introduction

Common estimates of shock position in a shock-capturing compressible hydrodynamics code rely on
snapshot data within the captured shock. The estimate may be the location at which a material parameter
(e.g., velocity or density) crosses a specified fraction (typically half) of the jump across the shock, the location
of the maximum slope in the material parameter, or the location of peak artificial viscous stress.

Such estimates vary anomalously by a substantial fraction of a zone size depending on the position of
the captured shock relative to the mesh. Such unphysical variation is evident in the step by step estimated
shock position as the captured shock propagates from one zone to the next. Computational physicists have
thus observed that estimates of shock position are not very precise, being certain to a substantial fraction
of a zone size at best.

Simple estimates of shock velocity based on successive common estimates of shock position are likewise
uncertain, especially if adjacent time steps are employed.

Common estimates of material parameters are typically an average or fit to data outside the captured
shock. Provided there are no comparable size waves or additional shocks nearby, estimates of material
parameters before and after a steady or nearly steady shock can be very precise. Uncertainty in a non-
steady shock is mainly due to uncertainty in the shock position to which one extrapolates the fit.

In this paper I introduce the displacement method for estimating shock position and shock velocity as a
reliable alternative to common estimates of shock position. Like common estimates of material parameters,
the displacement method fits to data outside of the captured shock and thus avoids dependence on the profile
of the captured shock, step by step variations of the profile, and the profile’s dependence on the artificial
viscosity treatment. The displacement method is likewise degraded by the presence of comparable size waves
or additional shocks nearby.

For the purpose of clear and simple exposition, I describe and demonstrate the displacement method in
the context of a steady shock in a one-dimensional compatible! lagrangian hydrodynamics code. The method
is easily adapted to two and three dimensional simulations, to compressible eulerian hydrodynamics codes,
and to non-steady shocks. For non-steady shocks, I briefly discuss the adaptation and then demonstrate
the method in a one-dimensional lagrangian simulation of a blast wave?. Adaptation to two and three
dimensional simulations and to eulerian codes are only briefly discussed.

The demonstrations include comparison with analytic solutions, comparison with the common estimates
of shock position, an argument for why the displacement method is the most accurate as well as the most
precise estimate of shock position, and demonstration of improved precision with increasing number of points
in the fit.

I intend to use the displacement method in verification studies, but the method should also be useful
wherever reliable estimates of shock position or shock velocity are desired from compressible hydrodynamic
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Figure 1. Space-time diagram of a steady shock (dot-dash line), a particle trajectory (two solid
line segments), the corresponding unshocked particle trajectory (dashed line), and the time ¢y of a
snapshot (dotted line). The shocked material (shaded) has material velocity v, the undisturbed
material (not shaded) has material velocity vg. This particular diagram is the piston problem
observed in a frame moving to the right with velocity 1/3, hence vg = —1/3, v, = 2/3 and shock
velocity vg = 1.

simulations, such as fitting equation of state shock experiments for material-specific model parameters. In
simulations where resolution of shock position is the primary driver for a fine mesh, the displacement method
may make a coarser mesh viable.

II. The Displacement Method for a Steady Shock

Consider a steady shock with shock velocity vg and shock position zg = vg(t — to) + xso propagating
from shocked material on the left, z < zg, into undisturbed material on the right, x > xg. See figure 1. The
material velocity before the shock (on the right) is vg, and the material velocity after the shock (on the left)
is vr. A particle at position z¢ behind the shock at time ¢y is following the trajectory @ = vr,(t — tg) + o
ever since it encountered the shock at time

Zso — To
bog =g = —— (1)
Vs — VL

and position

VsTo — VLTSO
Vs — UL ’

Had the particle not encountered the shock, the particle’s position at time to would be

zse = vs(tse —to) + Tso = vir(tse —to) + 2o =

(2)

(vs —vr)xo — (VL — VR)TS0
vg — VL ’

Ty = UR(to — tSE) +Tsg =

(3)

Call &y the unshocked position of the particle. The displacement of the particle due to encountering the
shock is

v — v UL — v
——Z(zs0 — 30) = ——(

o — To = (v —vR)(to — tsg) = —r. P—

Irso — .’i‘o). (4)
Call z¢g — Zg the shock-induced displacement of the particle.

In a snapshot of a lagrangian hydrodynamic simulation, the position of the ith node is z;. The unshocked
positions &; of each node can often be obtained from the initial conditions specified for a problem. In some
cases the unshocked positions may be extrapolated or computed from a snapshot taken at an earlier time.

For a steady shock, the displacement z; — &; depends linearly on position x;, so one fits a line to select
nodes behind the shock. The intercept with the horizontal axis (zero shock-induced displacement) gives a
precise and reliable estimate of the shock position. The slope —(v, —vg)/(vs —vL), combined with estimates
for the material velocities vy, and vg on either side of the shock, gives a precise and reliable estimate for the
shock velocity vg. Reliability will be discussed and demonstrated later.
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Figure 2. Density, velocity, specific internal energy and pressure at ¢ = 0.7 of the piston problem.

As an example, consider the piston problem. A piston on the left with unit velocity shock compresses
an ideal gas, v = 5/3, that is initially unit density, cold, and at rest. Figure 2 shows typical snapshots of
material parameters at ¢ = 0.7. The simulation has 100 zones initially distributed uniformly over 0 < z < 1.

Figure 3 shows shock-induced displacement versus position z or unshocked position & in the piston
problem. The unshocked positions are just the initial positions of each node. In both cases, the nodes
behind the shock are close to a line, and in both cases a simple least squares fit to nodes 82 through 90 gives
shock position xgp = 0.934420, which is slightly ahead of the theoretical shock position xg9 = 0.933333.

In problems where the unshocked positions Z; are given exactly by specified initial conditions, one might
prefer to fit the displacement versus unshocked position & so that computational errors in the positions z; are
not introduced twice into the fit. In problems where the unshocked positions Z; are not so well known, such
as a noisy extrapolation from an earlier snapshot, one might prefer instead to fit the displacement versus
position z so that the larger errors in Z; are not introduced twice into the fit.

ITI. Consistency of the Displacement Method
with Common Estimates of Material Velocity

The displacement method for estimating shock position and shock velocity is consistent with the common
estimates for material velocity in the following sense. Both estimates require a choice of nodes (or zones)
and a choice of weighting scheme to perform the fit or average. The same choices can be made for both
estimates, making the two estimates consistent.

The shock position estimated by the displacement method is an extrapolation of the fit, which contrasts
with the estimates of material parameters obtained by averaging. But the shock position nonetheless behaves
like the material velocity estimate in two ways: (1) the estimate depend on the selection of nodes for the
average or fit, and (2) the precision or reliability of the estimate improves as the number of nodes in the
average or fit is increased.

Both aspects can be observed in the time evolution of the estimates. For my demonstration, the zones
for the estimate are selected as follows for each time step. Identify the nominal shock front as the zone with
greatest |dv/dr|. Let the index of this zone be js. Average over, or fit to, zones js —5 —n, < j < jg — 5.
The estimate excludes the four zones behind the nominal shock front. The selection of zones for the estimate
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Figure 3. Node displacement due solely to the shock, z — Z, plotted as a function of position x
(upper plots) or unshocked position Z (lower plots). Left plots shows the entire model, right plots
shows the captured shock and the region just behind the shock. Dotted curve is the theoretical

shock, not a fit to simulation data. Nodes 82 through 90 are identified for the fit described in the
text.

will change when the nominal shock front propagates from one zone to the zone’s neighbor on its right:
Js(ti+1) =js(t:) + 1.

Figure 4 shows how estimates of the shocked material velocity vy, evolves in time near t = 0.7. Four
estimates, each with a different number of zones n, included in the average, are shown. The estimates
evolve smoothly in time when the zones in the estimate are fixed, indicated by points connected with solid
line segments. The estimates exhibit some sudden jumps when the zones selected for the estimate change,
indicated by pairs of points connected with dotted line segments.

Figure 4 also shows how the estimates of shock position and shock velocity, computed with the displace-
ment method, evolve in time. The analytic shock position is subtracted from the estimate to better show
the variation. The estimate of shock position is not as smooth as the estimate of material velocity, but some
jumps are still noticeable when the zones selected for the fit change. The estimate of shock velocity is nearly
as smooth as material velocity, but some small kinks are evident.

The figure shows that the overall variation of the estimates decrease as the number of zones in the
estimates increase. Taking the range of variation (maximum minus minimum) in the time range as an
approximate measure of an estimate’s precision, one finds that the precision is roughly inversely proportional
to the number of zones selected for the estimate, as shown in figure 5. The nodes of the simulation are
sufficiently correlated in space and time to make the precision of the estimates scale like 1/n,, rather than
the 1/,/n, scaling one would obtain if the samples were statistically independent.

I deliberately limited figure 5 to n, < 50. The shock position’s range of variation begins to increase
rather than decrease as I average over much more than 50 nodes. The increased variation is due to the fit
encountering a larger (and persistent) variation of displacement correlated over a longer spatial scale starting
near node 40 and extending to the left toward the piston. See figure 6. The fit is encountering the effects of
wall heating. The displacement method’s ability to observe such remnants of wall heating nearly 40 zones
from the wall is a testament to the method’s precision.
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Figure 4. Material velocity, shock position error relative to initial zone size, and shock velocity
estimated from average or fit to n, + 1 nodes, as the simulation evolves in time near ¢ = 0.7, and for
various number of zones n,. Dotted portion of curves show where the nodes selected for averaging
shift one node to the right. The index (preceded by a dash) of the rightmost node included in the
average or fit is listed along the bottom of the material velocity plot. Black horizontal line is the
theoretical material velocity or shock velocity.

IV. Common Practice for Estimating Shock Position

Common estimates of shock position contrast starkly with common estimates of material parameters
in the following way. The shock position is computed from simulation data within the captured shock, not
simulation data behind the captured shock. The common estimates of shock position are considered reliable
at best to a zone size, and the estimates may depend strongly on the shock capturing algorithm, such as the

coefficients in the artificial viscosity calculation.
One common estimate of shock position is the place where a material parameter obtains a value that is

the average of the material parameter before and after the shock. This is a three step process: first estimate
the material parameter after the shock (and before if necessary), compute the average, then find the position
within the captured shock where the material parameter obtains the average value. The material parameter
may be interpolated linearly to obtain a subgrid-scale shock position. Call this the half method.

Another common estimate of shock position is the place where the spatial derivative of the material
parameter obtains its maximum absolute value. The spatial derivative may be interpolated quadratically to
obtain a subgrid-scale shock position. Call this the mazimum derivative method. For interpolation, I center
the derivative of zone-centered material parameters halfway between zone centers. The derivative of velocity
is zone centered.

Yet another common estimate of shock position is the place where the artificial viscous stress, ¢, obtains
its maximum value. The artificial viscous stress may be interpolated quadratically to obtain a subgrid-scale
shock position. Call this the mazimum ¢ method.

Figure 7 shows the captured shock in the piston problem, along with linear interpolations of the zone-
centered material parameters. The dotted line is the theoretical shock. Table 1 lists the various estimates
of the shock position, along with their error relative to the theoretical shock position. The right side of the
table (labeled “nearest”) lists estimates without interpolation: the estimates will be a zone center (for the
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Figure 6. The deviation from the fit to shock-induced displacement, versus unshocked position.
The solid circles, nodes 41 to 90, are the nodes included in the fit for n,, = n, + 1 = 50, and
at ¢ = 0.7. The open circles are nodes excluded from the fit. The large deviations on the left
(Z <0.4) are due to wall heating. The deviation on the right (Zz > 0.9) is the captured shock. The
right plot is the same data, but plotted as the deviation of node position from theory rather than
deviation from the fit. The dotted line is the fit in both plots.

half v, max |dv/dz| and max ¢ methods) or a node (for the remaining common estimates).

The estimates differ by a substantial fraction of the local zone size. The size of the two zones in the
middle of the captured shock are 0.646 Azy and 0.318 Axy.

If agreement with theory were the sole criterion for choosing an estimate, then the table suggests the
estimates computed from pressure would be best, at least for this piston problem.

But the shock in a simulation will not necessarily agree with theory. The difference between simulation
and theory is something I want to measure in test problems such as the piston problem. With this motive
in mind, the comparisons with theory in table 1 make no effective distinction between the estimates.

The simulated node positions behind the shock front are roughly 0.08 Az ahead of where they should
be theoretically. The difference is mostly due to the density deficit at the piston that was induced by wall
heating, as seen in the density plot in figure 2 and in the node position error in figure 6. The advanced node
positions corresponds to a simulated shock that is ahead of theory by about 0.11 Azg, which is consistent
with the displacement method. So the displacement method is giving a shock position whose error (relative
to theory) can be explained by errant behavior (wall heating) elsewhere in the simulation.

A great distinction between the estimates is observed in their time evolution. Shock position is plotted
versus time near t = 0.7 in figure 8 for the displacement method and the common subgrid-scale (interpolated)
estimates. The displacement method’s estimate is a straight line (on this scale), as one would expect for
the position of a steady shock. The other estimates show significant deviations from a straight line. The
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Figure 7. Density, velocity, specific internal energy and pressure at the captured shock. Dashed
curves linearly interpolate zone-centered variables through the zone centers. Dotted curve is the

theoretical shock.

method position | error position | error
theory | 0.933333 =
displacement | 0.934420 | 0.109 Az
interpolated nearest

p half | 0.934423 | 0.109 Az | 0.934055 | 0.072 Az

e half | 0.934916 | 0.158 Az | 0.934055 | 0.072 Az

p half | 0.933719 | 0.039 Az | 0.934055 | 0.072 Az

v half | 0.937078 | 0.374 Az | 0.937283 | 0.395 Az

|dp/dx| max | 0.934563 | 0.123 Axg | 0.934055 | 0.072 Axzg

|de/dx| max | 0.935743 | 0.241 Az | 0.934055 | 0.072 Azg

|dp/dxz| max | 0.933868 | 0.053 Azq | 0.934055 | 0.072 Axg

|dv/dz| max | 0.937319 | 0.399 Axq | 0.937283 | 0.395 Axzg

q max | 0.937117 | 0.378 Azq | 0.937283 | 0.395 Axy

Table 1. Estimates of shock position at ¢ = 0.7, and the corresponding error relative to the
theoretical shock position. Common estimates based on material parameters in the captured shock
are listed in the last 9 rows of the table. Subgrid position obtained with interpolation is on the left,
nearest node or zone center (no interpolation) is on the right.

displacement method is much more reliable in this sense.

Figure 9 shows the error relative to the theoretical shock as a function of time, so that the behavior of
the individual estimates can be observed. On this scale the displacement method exhibits no variation as
the shock propagates from one zone to the next, while the common estimates exhibit substantial variation.
The error nominally depends on the position of the shock relative to the grid, and so I call such artificial
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variations grid phase oscillations.

Among the common interpolated estimates, the half methods have roughly half the variation of the
maximum derivative and maximum g methods. The half p method is most reliable (least variation from time
step to time step), while the maximum ¢ method is the least reliable (most variation from time step to time
step).

Figures 10 and 11 show the grid-scale (not interpolated) estimates, along with the displacement method.

In the half method, the shock position is where the material parameter has experienced half of the
jump across the shock. A different fraction of the jump may be chosen, yielding a different estimate of
the shock position. Increasing the fraction above one half reduces the variation of the shock position a
little, as shown in figure 12, but there is no fraction that makes the estimate as reliable as the displacement
method. An interpolation scheme much more sophisticated than linear interpolation can reduce the variation
substantially.

VI. An Unsteady Shock: The Sedov Blast Wave Problem

I have just introduced the displacement method on a steady shock. The displacement method also works
on unsteady shocks, such as the Sedov blast wave problem. As can be seen in figure 13, the shock-induced
displacement versus position behind the shock is no longer approximates a line, but rather a smooth curve.
So instead of fitting the displacement to a line, one fits to a curve, typically a polynomial. The position
of the shock is still the intercept of the (extrapolated) curve with the horizontal axis: zero shock-induced
displacement.

Recall that the Sedov blast wave problem is a unit of energy deposited at the origin of a three-dimensional
space filled with cold, unit density, ideal (take v = 5/3) gas at rest. The self-similar solution can be obtained
numerically integrating a coupled set of ordinary differential equations?® or analytically.? The position 74 of

the shock is 1
1 /B4
o) o
0

where F, = 1 is the deposited energy, po = 1 is the initial density, and Q = 0.86830699 is the numerical
factor obtained from integration of the self-similar solution’s total energy.

With a polynomial fit, the estimation procedure has another parameter: the order of the polynomial.
The adequacy of the polynomial order may be checked by inspecting the fit and its residual. Alternatively,
one can observe how the estimate depends on the zones selected for the fit, and then choose the polynomial
order to minimize that dependence.

The left plot in figure 14 shows how the shock position estimate at ¢ = 0.5 varies with n,s, the number
of zones skipped behind the nominal shock front. The number of zones fit, n.y, is fixed as n,, varies, but
differs for each polynomial order.

Near n.s = 5, the estimates obtained with a cubic fit vary little. The estimates obtained with a linear
fit vary considerably on this scale. The estimates obtained with a quadratic fit vary much less, but the
dependence is still noticeable. Considering the limited smoothness of the curves, estimates obtained with a
quartic fit are not obviously better than those obtained with a cubic fit. I will thus prefer the cubic fit.

Extrapolation of increasingly higher-order polynomial fits is prone to noise-induced failure. The right
plot of figure 14 shows that my fits are well-behaved, and can be reliably extrapolated some distance beyond
the fit nodes indicated by the shaded dots. I use only two nodes for the linear fit (n,y =1 and n,s =1). I
use 7, 16 and 21 nodes for the quadratic, cubic and quartic fits, respectively. The latter three fits all skip
5 zones behind the nominal shock front (n,s = 5).

Figure 15 shows how the evolution in time of the displacement method’s estimates compare with the
common estimates of shock position. The maximum derivative and maximum ¢ (artificial viscous stress)
methods for estimating shock position can be applied without modification to this blast wave. The half
method is adapted like the displacement method, in that the material parameter behind the shock is fit to a
quadratic curve and then extrapolated to the vicinity of the captured shock. The half method’s estimate of
shock position is the location where the linearly interpolated material parameter within the captured shock
is half of the extrapolated quadratic fit to the material parameter behind the shock.

The common estimates (from the maximum derivative methods, the maximum ¢ method, and the half
methods) all have substantial grid phase oscillations. The peak-to-peak oscillation amplitude of the maximum
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Figure 11. The difference of each estimate (without interpolation) from the theoretical shock

position xs ., on a scale relative to the initial zone size Azp. The displacement method (solid
black curve) alone is consistent from time step to time step. See previous figure for legend.
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Figure 12. The range (minimum to maximum) of shock position error in the time range 0.688 <
t < 0.712, as a function of the fraction f of the jump in the material parameter at which the estimate
of shock position is located. The material parameter before the shock corresponds to f = 0, the
material parameter after shock corresponds to f = 1. The half method corresponds to f = 1/2.
The reliability of the estimated shock position improves only slightly at higher fraction. No fraction
eliminates the variation from time step to time step.

derivative and maximum ¢ methods is about 0.09 Arg. This oscillation amplitude is larger than the typical
0.027 Arg grid phase oscillation observed with the half methods. The estimates based on density p have
slightly higher oscillation amplitudes: 0.11 Arg for the maximum derivative method and 0.05 Arg for the
half method.

Compared to these oscillation amplitudes, the displacement method’s estimates have negligible grid
phase oscillations or noise. The displacement method’s estimates are thus much more reliable than the
common estimates, even for a shock that is as nonsteady as a blast wave.

None of the estimates agree well with theory. The simulated shock positions are ahead of theory by
roughly one zone width. This difference is not easily understood. It is not, for example, due to the shock
having a head start when the initial energy is deposited “uniformly” throughout the first zone.

V. Discussion

I intend to apply the displacement method in my verification studies of impedance matching and shock
capturing in a lagrangian hydrodynamics code, where variations of mesh size and artificial viscosity coef-
ficients may change the shock position a fraction of a mesh zone. The method is ideally suited for this
application.

However, the method should be useful in other applications where one wants to know how the simulated
shock position depends smoothly on continuously variable physical or numerical simulation parameters, or
otherwise wants to resolve the simulated shock position to a fraction of the zone size.

The method accommodates a weighted fit just as an average for a material parameter can be weighted.
For both the displacement method and for estimates of material velocity, weighting by the mass identified
with each node would be typical. Such weighting can reduce the impact of larger errors that may be observed
in smaller zones.

In addition to unsteady shocks, the displacement method can be adapted for two-dimensional or three-
dimensional shock simulations. Instead of fitting to a line (or one-dimensional curve), one fits displacement to
a plane (or two-dimensional surface) in two dimensional simulations, or to a hyperplane (or three-dimensional
hypersurface) in three dimensional simulations. The intersection of the surface or hypersurface with zero
displacement gives the position of the shock. The shock velocity is obtained from the gradient (at zero
displacement when the shock is not steady).
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Figure 13. Shock induced displacement r — 7 versus radius r (left plots) and unshocked radius 7
(right plots), at ¢ = 0.5. Top two plots show the entire model. Bottom two plots expand on the
shock. Solid curves are the simulated displacement, dashed curves are the theoretical displacement.
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Figure 14. Left plot is the dependence of the shock position estimate on n,, the number of zones
skipped behind the nominal shock front, for various orders of the polynomial fit to shock-induced
displacement. A cubic fit works well to minimize this dependence. Right plot compares four fits
(colored curves, one fit for each polynomial order) with the simulated displacement (black curve).
The fits are improving as polynomial order increases. Colored dots are the fit data: 2 nodes for the
linear fit, 7, 16 and 21 nodes for the quadratic, cubic and quartic fits, respectively. Nodes for the
latter three fits overlap.

The displacement method may be adapted to an eulerian hydrodynamic simulation. In an eulerian
simulation, one needs the mass of material passed from one zone to the next. This is the integral over time
of the mass flux across a face. Subtracting the mass that would have passed without the shock, one obtains
the shock-induced passed mass. Plotting shock-induced passed mass versus position gives a set of points
behind the shock to which a curve can be fit, and the intercept of this curve with the horizontal axis (zero
shock-induced passed mass) gives the shock position.

The principal limitation of the displacement method is the need to know the unshocked position & of a
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Figure 15. Evolution in time, near ¢ = 0.5, of the shock position estimates by the maximum
derivative methods (dashed curves) and the maximum ¢ method (dot-dash curve). Half method
estimates based on quadratic fits to the material parameters are also shown (solid curves), along
with the displacement method based on the cubic fit (solid black curve). The bottom plot is the
difference of each estimate from the theoretical shock position 5, on a scale relative to the initial
zone size Aryg.
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node. The unshocked position is easily obtained when the shock is encountering only undisturbed material.
But when the shock of interest is encountering disturbed material, such as from a previous shock, then
estimating the unshocked position well can be a chore. In some cases, such as a weak shock in the presence
of many comparable or larger waves, or the presence of a material interface just behind the shock, obtaining
a sufficiently reliable unshocked position will be intractable. Waves, other shocks or interfaces nearby will
similarly degrade or limit estimates of material parameters before or after the shock.
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