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ABSTRACT 

We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a 
successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy 
forms the basis for object-based image analysis. The framework incorporates the Gestalt principles of visual 
perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, 
while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular 
mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is 
achieved by building the triangular mesh on the top of detected spectral discontinuities (such as edges), which form 
a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the 
form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The 
iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) 
construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is 
constrained by the detected edges; thus the shapes of agglomerated segments are more likely to correspond to the 
outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, 
textural and structural features based on proximity graphs. The framework allows searching for object-oriented 
features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria 
MST to account for multiple criteria important for an application. 

INTRODUCTION 

The need for prior object-oriented segmentation is a central problem for pattern recognition. Methods which are 
able to parse images into meaningful object-oriented image chunks are therefore required for the successful automated 
image interpretation, content-based image retrieval, and object recognition. While low-level features can be easily 
extracted from images, they are not completely descriptive for image interpretation, as object is often not represented in 
single group of pixels. The disconnect between the low-level features and the high-level semantics required for image 
interpretation is known as "semantic gap" (Smeulders, et ai., 2000). Bridging the semantic gap is difficult due to the high 
variability of objects' appearances, occlusions, complex spatial relationships between the objects, and possible 
concealment efforts to suppress objects' signatures. Higher spatial resolution of satellite images adds a complexity for 
automated extraction of image semantics. Increases in spatial resolution extend variation of objects' spectral, structural 
and textural characteristics. Existing techniques used to process lower resolution satellite images do not generalize well 
to higher resolutions, due to the changed appearance of features of interest (for a review, see Baltsavias, 2004; Schiewe, 
et aI., 2001). For instance, roads become less line-like and more polygon-like, while differentiation of roads and rooftops 
based on spectral features is problematic, due to the fact that they can be made of similar materials (asphalt) and thus 
have similar spectral and textural properties (Herold et aI., 2003a, 2004). Additionally, an object can always be 
represented in more than one way, and using more than one level of details (LODs). Therefore agglomeration of pixels 
into groups and then into larger object-oriented chunks takes into account contextual information in the form of spatial 
relations between the object-oriented chunks both on single LOD and across multiple LODs. Exploiting contextual 
information improves object classification by resolving ambiguities, when objects are similar based on features of 
individual objects, such as spectral characteristics, area, shape (Bamsley, et ai., 2000; Blaschke, et aI., 2000; Bock, et 
ai., 2000; Fuller, et ai., 2004; Strat, et ai., 1991). Complementary, it was shown that the localization and recognition of 
an object of interest can be improved through the detection of non-object low-level features whose presence in the image 
background is correlated with the presence of the object of interest. For instance, (Torralba, 2003) exploits the spatial 
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frequency characteristics of the image to detect most likely object locations in general outdoor images. To what extent 
the last approach can be efficiently generalized to satellite imagery remains an open research question, as the 
background in satellite images can vary a lot thus reducing correlation between the presence of specific low-level 
features and the presence of objects of interest. Additionally, the objects themselves are not necessary isolated images 
chunks; they are networks of spatially distributed structures of varying sizes (e.g. an industrial site). Therefore robust 
hierarchic object-oriented segmentation will be essential for a robust satellite image interpretation, map updating, and 
change analysis (Blaschke, et aI., 2006; Hoffmann, et aI., 200 I; Liu et aI. , 2008; Walter, 2004; Zhan, et aI., 2002). 

This paper presents a framework for hierarchical image segmentation that builds upon the detection of spectral 
discontinuities, edges. The framework constructs an irregular pyramid that contains a stack of vectorized images of 
successively reduced LODs. The vectorized images are represented as sets of polygonized pixel patches (polygons) 
attributed with spectral, textural, and structural characteristics. We use a combination of constrained Delaunay 
triangulation and the Gestalt principles of visual perception, such as proximity and closure, to exploit structural relations 
between the detected edges, and build an initial set of polygons (seeds). A polygonized image is then represented as a 
graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the 
iterative graph contraction using Boruvka's Minimum Spanning Tree construction algorithm. The graph contractions 
merge the polygonal patches until dissimilarity criteria are exceeded. The contribution of our work is the following. We 
introduce an approach to construct an irregular image pyramid based on triangular and polygonal tessellations adapted to 
the image content. Our adaptive polygon-based hierarchic image segmentation iteratively constructs image chunks on 
coarser LODs from the chunks built at finer LODs. This results in the image multi-scale spatial network model, that is 
used for object-oriented image analysis, including analysis of contextual relations. In addition, because number of the 
polygonized image partitions is much smaller than that of the image pixels, our approach significantly reduces 
computational complexity compared to conventional graph partitioning methods that are directly applied to the image 
pixels. 

In the next section we present related research in the areas of object-oriented image analysis, and hierarchical 
image segmentation using graphs. Then, we present our framework for feature extraction and image segmentation. We 
describe methods to extract spatial neighbor relations, and MST-based hierarchical image segmentation. This will be 
followed by outlining the results obtained, and fmally, last section presents the conclusions. 

RELATED WORK 

Object-Oriented Image Analysis 
The object-oriented image processing relies heavily on successful image segmentation. However, while image 

segmentation based on color, texture, structural features, and multiresolution hierarchy is a very important step in the 
overall process of image analysis, it alone can not address all the problems of the automated image interpretation. The 
high-level semantics required for image interpretation is mostly contained in the objects' spatial relations. Thus, the 
segmented objects are input for higher-level object-oriented image analysis with the goal of extracting image semantics. 
The extracted information about the objects' relations can then be exploited with semantic networks that formalize 
knowledge about the scene. For instance, semantic networks have been used in aerial image analysis (Quint, et aI., 
1995), and for updating the maps in GIS database (Kunz, et al. 1997). 

The exploitation of spatial relations between the detected objects leads to the detection of geometric arrangements 
of objects. Example sinclude building alignment, settlement partitioning. Spatial analysis facilitates the discrimination of 
classes with similar spectral responses through the detection of the relevant contexts for the classes; it is also useful for 
multitemporal reasoning, analyzing both the former classification of the detected object-oriented image partitions and 
the plausible class transitions in that particular time interval and location. This analysis can also be used to improve 
segmentation of individual objects constituting the constructed cluster. The studies of (Bamsley, et.al, 2000, Herold, 
et.al, 2003b; Lowell, et al. 1992; Mustiere, et aI., 2002) show that the spatial analysis and spatial metrics are 
indispensable for satellite image interpretation, improving landscape classification, and cartographic generalization. 

Delaunay triangulation and related proximity graphs such as MST, Relative Neighborhood Graph, Gabriel Graph 
(Toussaint, 1980; Jaromczyk, et aI. , 1992) have been widely used in spatial analysis and spatial modeling. Much of the 
work has been devoted to the discovery of building structures and road patterns in urban settlements. (Anders, 2003) 
uses graph-based approach to detect "natural" groups of buildings by analyzing and removing graph edges linking 
individual objects. (Regnauld, 200 I) applies a proximity graph based approach to recognize building groups. The 
proximity graph is segmented using criteria inspired by the Gestalt psychology (Wertheimer, 1958). These criteria (e.g. 
proximity, similarity, good continuation, common regions) specify the formation of perceptually significant and visually 
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attractive patterns (Boyer, et aI., 2000). The challenge with using these criteria is that by themselves they provide no 
general-purpose scheme to resolve potentially conflicting outcomes of their application into an overall satisfactory 
result. Probably one of the flIst applications of some of these principles, specifically proximity, to the graph based 
analysis of points was done by (Zahn, 1971); in satellite imagery points would correspond either to detected buildings or 
other objects. Further example of spatial analysis include land use classification in (Zhang, et aI., 2002) that is based on 
Delaunay triangulation that derives spatial relations between the detected image objects. (Taubenbock, et aI., 2006) 
perform urban classification using a combination of color, shape and neighborhood related features. (Sharma, et aI. , 
2008) uses the Delunay and the Voronoi graphs to extract features characterizing road and hydrographic networks. 
(Skourikhine, 2006) uses Delaunay triangulation and Euclidian MST to reconstruct road network using a set of pixel 
patches spectrally pre-classified as candidate road fragments . 

Less work has addressed the problem of identifYing salient ("interesting") structures across varying backgrounds. 
The saliency is given by semantics. e.g. industrial-like cluster of buildings in remote area. Salient structures can be either 
single objects or groups ofobjects (e.g. industrial facility) . The outstanding problem is to detect such structures as salient 
clusters, while generalizing other objects into larger geospatial groups. It is necessary to efficiently map image partitions 
across multiple scales of the built image hierarchy, while extracting and exploiting their spatial relations and their spatial 
context. This requires the development of methods to construct a fme-to-coarse hierarchical relations between graph­
based spatial networks of objects, and to detect salient object-based clusters (e.g. represented as regions of interest) that 
can be further utilized either by an analyst or some other kind of high-level analysis (e.g. semantic networks). More 
research is also called for the usage of proximity graphs for map generalization (Anders, 2003), as well as for initial 
object-oriented segmentation that provides seed partitions, which the image hierarchy is built upon. 

Finally, quality of segmentation is of crucial importance. In spite of significant advances in image segmentation, 
evaluation of segmentation techniques is difficult. This is due to lack of unique ground-truth segmentation of an image 
against which the output of an algorithm is compared. There are some approaches of how to measure quality for 
segmentation in general such as (Unnikrishnan, et el., 2007; Zhang, 1996). However, these approaches have not been 
originally developed for the field of remote sensing and need to be adjusted. Recent studies of (Corcoran, et aI., 2007; 
Neubert, et aI., 2004, 2006, 2008a, 2008b) provide an overview of possible techniques to evaluate a quality of 
segmentation of satellite images, and show some of the evaluation approaches. (Corcoran, et aI. , 2007) distinguishes 
supervised (when user's outlines are used) and unsupervised evaluation and proposes to develop a cost function for the 
evaluation of quality of unsupervised segmentation. (Neubert, et aI., 2004, 2006, 2008a, 2008b) has performed an 
extensive testing of different image processing software and algorithms, using a variety of measures e.g. overlapping 
areas and the geometrical correctness of the segmented outlines. If segmentation produces a hierarchy of image 
representations, then different objects are segmented out on different LODs of the image hierarchy. As the hierarchy is 
built some of the detected objects can be generalized into higher-level structures on coarser LODs of the hierarchy. This 
raises the question of how to take into account this multiplicity of possible image interpretations. 

Graph Based Image Segmentation 
According to the graph-theoretic approach to the image analysis, image elements such as pixels, regions, or edges 

are described using a weighted graph; and image segmentation is formulated as a graph-partitioning problem. Typically 
segmentation is achieved by optimizing a global criterion that takes into account the similarity between possible image 
partitions relative to the similarity within each partition. The similarity is usually computed based on color, texture, and 
spatial neighbor characteristics of the corresponding image elements. Many graph partitioning based image 
segmentation algorithms have been developed (e.g., Boykov et aI., 2001 ; Fowlkes, et aI., 2003; Shi, et aI. , 2000; Weiss, 
1999; Wu, et aI. , 1993). They use partitioning criteria such as the minimum cut (Wu, et aI. , 1993), the normalized cut 
(Shi, et aI., 2000). These algorithms are related to spectral methods which fmd good partitions via the eigenvectors of a 
matrix derived from the graph affmity matrix. The eigenvectors computations incur high complexity that is of O(N2), or 
O(N3/2) when exploiting the sparseness of the graph, where N is the number of data elements, pixels. This complexity 
makes spectral methods of graph partitioning unsuitable for segmentation of very large satellite images. A possible 
solution to this problem is either to reduce number of pixels that has to be processed or to replace pixels of the original 
image with higher level structures, thus reducing the number of data elements to process. Another problem is related to 
the use of global optimization. Because there is no single optimal scale for segmenting all the objects from satellite 
image simultaneously, segmentation algorithm should produce a hierarchy of LODs (scales), from which objects can be 
detected. For example, (Sharon, et aI., 2006) have proposed a hierarchical image segmentation approach using an 
algebraic multigrid, starting on a select subset of image pixels. Naturally, the overall segmentation performance of such 
approaches depends on the strategy of selection of the seed pixels or regions. 

We emphasize another category of algorithms that seek optimal image hierarchic partitioning through a sequence of 
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local computations based on proximity graphs, specifically MST. In contrast with global optimization approaches, the 
MST based image segmentation seeks image partitioning by iteratively linking image elements through the lowest cost 
tree edges, which represent similarity of neighboring elements. One of the earliest applications of tree-based data 
clustering to visual like point data sets analyzed histogram of MST edges and investigated tree characteristics such as 
MST "relative compactness", tree diameter, and point densities (Zahn, 1971). In (Horovitz, et aI. , 1976) the tree-based 
concept was applied to image segmentation. It was suggested to use global homogeneity criterion to control construction 
of an irregular pyramid starting from a regularly sampled pixel grid . (Montanvert, et aI., 1991 ; Jolion, et aI. , 1992) use 
irregular tessellations to generate an adaptive multi-scale image representation. The approach employs an irregular 
sampling of the pixel grid to build the initial (lower scale) image representations. The irregular sampling hierarchy is 
then recursively built from the lower scales. The result depends on the stochastic nature of the sampling procedure. (Xu, 
et aI. , 1997) uses Kruskal's algorithm to construct MST (Kruskal, 1956) of the image from a regularly sampled pixel 
grid. The tree is then partitioned by an optimization algorithm into subtrees based on the subtrees' spectral similarities. A 
set of produced subtrees represents a sought image partition. Similar to (Xu, et aI. , 1997), (Felzenszwalb, et aI., 1998) 
starts from a regular pixel grid and uses Kruskal's algorithm to construct MST of the image. However, MST construction 
is based on thresholding a ratio of the variation between neighboring pixel patches and the variation within the patches. 
To avoid over-fragmentation (generation of too many small regions), the approach adjusts the measure of variation using 
the sizes of patches. The extent of this adjustment controls how easily small patches are agglomerated in comparison 
with the larger ones. While it works in many situations, nontrivial optimization of this size based term is required for 
satellite image segmentation, where image elements of interest (e.g, fences, pipelines) can be of small size (width) and 
may not stand out strongly of the image background. The approach (Haxhimusa, et aI., 2004, 2006; Kropatsch, et aI. , 
2007) is similar to (Felzenszwalb, et aI. , 1998) in how it controls the grouping of pixels into patches based on image 
variation. The approach (Haxhimusa, et aI. , 2004, 2006; Kropatsch, et aI. , 2007) uses Boruvka's MST construction 
algorithm (Bonivka, 1926) instead of Kruskal's algorithm that is used in (Felzenszwalb, et aI. , 1998). Computational 
complexity of Kruskal's algorithm for computing the MST of a graph is O(ElogE), and the complexity of Boruvka's 
algorithm is O(ElogN), where E is the number of edges in the graph. In contrast with Kruskal 's and Prim's (Prim, 1957) 
MST construction algorithms, that build the MST one edge at a time, Boruvka's algorithm adds several MST edges at 
each stage (Fig. I). In the context of image segmentation this characteristic of Boruvka's algorithm provides an efficient 
approach for simultaneous agglomeration of image elements into higher level structures; it also makes possible to 
introduce user priors to control the MST construction. 

Our framework belongs to the image segmentation approaches, producing an irregular image pyramids. However, 
in contrast with the stated approaches that start from regular or irregular pixel grids we build an irregular hierarchy of 
image partitions starting from triangular and polygonal tessellations of the image. The irregular polygon based image 
segmentation hierarchy is iteratively built bottom-up using Boruvka's MST algorithm. LODs of the constructed pyramid 
contain graphs of the agglomerated objects, and spatial analysis based on proximity graphs (such as Delaunay 
triangulation network and it's related neighborhood graphs) can now be applied to extract and exploit contextual 
relations between the objects across multiple LODs. 

Figure 1. Iterations of Boruvka's MST reconstruction algorithm (from left to right). MST edges are shown in solid 
black lines; numbers next to the lines represent similarities between the nodes, the lower the number, the more 

similar the nodes are . 
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HIERARCHICAL IMAGE SEGMENTATION AND FEATURE EXTRACTION 

In a polygon-based image pyramid, each level represents a polygonal tessellation of the image. The pyramid is built 
iteratively from bottom-up using only local interactions ofthe neighboring polygons. On the lowest level (1=0, fme level 
of detail) of the pyramid the polygons are constructed from an irregular triangular tessellation of the image; they are 
unions of triangles. On higher level (/>0, coarser level of detail) of the pyramid the polygons are unions of neighboring 
polygons on a lower finer level (I-I). The polygons on level I of the pyramid are considered as the vertices of an 
undirected graph G,. The edges of the graph describe the adjacency relations between the polygons on level I. Thus G, =( 
V" E, ), where V, is the set of vertices, and E, is the set of edges. The derivation of G,+, from G, is formulated as 
construction of an MST of G,. The built pyramid P is described as a set of graphs G, representing the image in a fme-to­
coarse hierarchy. 

Extraction of Spatial Neighborhood 
Spatial neighbors are usually defined as objects with common boundaries. However, evaluation of neighborhood 

relations and detection of spatial patterns require to consider more than nearest neighbors sharing common 
boundaries. It is necessary to take into account relations with more distant neighbors, k-order neighbors. Two objects 
are said to be k-order neighbors if the minimum number of regions to go through in order to get from one to another 
is (k-I). For an overview, see (Chen, et aI. , 2004). (Chen, et aI. , 2004) also develops a method to extract k-order 
neighbor relations based on the Voronoi diagram. 

There are two general approaches to define spatial neighborhood: geometry based evaluating distance between 
objects, and topology based extracting spatial adjacency pattern between objects (e.g. a path). For a reason of 
computational efficiency we use the concept of topological neighborhood. We first introduce the maximal order of 
the topological neighborhood, kmax, that will be extracted and used in further analysis . Topological neighborhoods of 
individual polygons are then extracted using graph search algorithms such as depth-first search (OFS) or breadth-first 
search (BFS), which use kmax as the threshold defming the search region. Computational complexity of these search 
algorithms is O(V2) with adjacency matrix or O(V+E) with adjacency list data representation, where V is number of 
polygons and E is number of edges linking the polygons. The polygon's topological neighborhood containing k­
order neighboring polygons may then be attributed with pairwise polygon distances or other information. An 
example of the extracted topological neighborhood is shown in Fig. 2. 

Figure 2. Extraction of multi-order topological neighborhood. Left: Contours (in red) of the generated polygons 
superimposed on top of the original image. Right: k-order neighbors of the red polygon: 1st order neighbors are in 
green, 2nd order neighbors are in blue, 3rd order neighbors are in cyan, others are shown with the computed color. 

Construction of Seed Polygons 
Polygons on the lowest (fme) level of a pyramid are built upon the triangular tessellation of the image. We employ 

the image vectorization approach (Prasad, et aI. , 2006a, 2006b) to process the generated triangle grid. First, we detect 
edges in the image, e.g using Canny edge detector (Canny, 1986) (Figs. 3a, 3b). This is followed by constrained 
Oelaunay triangulation (COT) (Schewchuk, 1996) where the detected edges are used as constraints for the triangulation 
(Fig. 3c). Thus, the COT tessellation grid is adapted to the image content, since triangle vertices and edges reflect the 
structure and spatial adjacency of the detected edges, such as Canny edges. COT generated triangular mesh is then 
processed by edge filtering. The filtering keeps constraints (such as detected Canny edges) and selectively deletes 
generated triangle edges. Triangle edge filtering is based on prespecified rules inspired by the principles of visual 
perception, such as proximity and closure. Proximity filters out triangle edges based on their length (Fig. 3e). As a result, 
the detected edges that are spatially close to each other are linked by the kept triangle edge. Otherwise, the detected 
edges remain separated. The closure rule is responsible for filtering out triangle edges which are bounded by the same 
detected edge (e.g., "U"-shape) or the same pair of detected edges (e.g. , "II" configuration) (Fig. 3t). This results in a set 

ASPRS 2009 Annual Conference 
Baltimore, Maryland. March 9-13, 2009 



(a) (b) 

(d)(c) 

(f)(e) 

Figure 3. Construction of a fine LOD polygon-based image representation. We show a sequence of steps, which 
produce image segmentation on fine level of detail. (a) an original image. (b) edge detection using Canny edge 

detector. (c) generation of an irregular triangular mesh based on Constrained Delaunay triangulation (Canny edges 
are shown in red color, generated triangle edges are shown in cyan color). (d) contours (in red) of the created 

polygons superimposed on top of the original image. (e) an example of triangle edge filtering based on proximity. (f) 
an example of triangle edge filtering based on closure. Canny edges are shown in red color, deleted triangle edges 

are shown in blue, and the kept triangle edges (closing the gaps between Canny edges) are shown in cyan color. 

of closed contours consisting of combination of the generated triangle edges and spectrally detected edges. Finally, a 
graph traversal algorithm (e.g., depth-first search or breadth-first search) groups triangles within the constructed closed 
contours into polygons (Fig. 1 d). These polygons are assigned median color based on a sampling of pixels covered by 
the grouped triangles. Thus the image is segmented in a set of spectrally attributed polygonal patches (Fig. 2). The 
constructed polygon boundaries are built upon the detected edges, and thus reflect important spectral discontinuities in 
the image. This produces visually appealing results and reduces the amount of data, number of pixels to number of 
generated polygons, by 20-80 times depending on the image content. However, because the result is still over­
fragmented, it is necessary to agglomerate the produced partitions into larger ones in order to perform object-oriented 
analysis. 
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Hierarchical Image Segmentation 
While fme level-of-detail polygon-based image representation is over-fragmented, building larger polygons on top 

of it has the following distinct advantage: agglomeration of polygons will be implicitly directed in the sense that 
boundaries of agglomerated polygons will also be authentic to the image spectral discontinuities. The latter distinguishes 
our approach from other approaches, where selection of good seed pixels or pixel patches is challenging. It is due to the 
fact that pixel itself does not carry any object-oriented information. We extend our previous work (Skurikhin, 2008; 
Skurikhin, et aI., 2008) by taking into account variogram-based spatial variation (Chica-OLmo, et aI. , 2004). 

Once the polygon-based image representation on the lowest level of a pyramid is produced, we iteratively group 
polygons, sharing their contour fragments, on level/into larger polygonal chunks, producing level (/+ J) of the image 
pyramid. Polygon agglomeration is based on Boruvka's algorithm to construct MST. Boruvka's algorithm proceeds in a 
sequence of stages, and in each stage it identifies a forest F consisting of the minimum-weight edge incident to each 
vertex in the graph G, then forms the graph G I = G\F as the input to the next stage. G\F denotes the graph derived from 
G by contracting edges in F. Boruvka's algorithm takes O(E1ogV) time, where E is number of edges and V is number of 
vertices. 

The overall quality of segmentation depends on the pairwise polygon adjacency matrix, containing E,. The attributes 
of edges are defmed using two features: color similarity, /::"Cij, and strength of the contour segment separating polygons, 
Pw • We evaluate the affmity wij between two neighboring polygons i and): 

(1)_{I1Cij . k· exp( P~), if nmLODs::;; No 
~- p , 

(I1Cij + !1Yij )· k· exp( Ya),ofherwise 

(2) 

where No is the number of LODs that should be constructed before variation term is taken into account, contour 
segment shared by two neighboring polygons consists of N edge fragments (Fig. 4), S is the length of the shared 
contour segment, Sk is the length of the shared edge fragment belonging to a given contour fragment, k and (J control 
the scale of polygons similarity, and mk is the magnitude of the shared edge segment. mk is 0 for triangle edge and 
non-zero for spectrally detected edge (such as Canny edges) . Thus the cost of merging two polygons separated only 
by triangle edges is less than the cost of merging polygons separated by spectrally detected edges. 
The algorithm constructs level (/+ J) of a pyramid containing coarser image partitioning by running one Boruvka's 
iteration on level/using the evaluated color, variogram, and contour relations between the polygons. Once a coarser 
level is constructed, the color characterization of agglomerated polygons on level (/+ J) is evaluated: 

M A' (3)C'+l ="'_k_.C'. 
I 	 ~ fi '+1 k 

k=1 i 

where M is the number of polygons merged into polygon i on level (/+ J), C: is the color of a polygon i on levell, 

A: is the area of a polygon i on level /. 

The spatial layout of the polygons changes after each agglomeration iteration. As a result, the adjacency matrix 
corresponding to level (/+ J) is re-evaluated. This generation of coarser level based on fmer level of a pyramid iteratively 
goes (Fig. 4) until dissimilarity threshold is exceeded. 

~_

Polygon B 

S__ 5, 2 "","5, 

Polygon A 

Figure 4. An example of the contour fragment shared by two neighboring polygons A and B. The shared contour 
fragment consists of five edge fragments of corresponding lengths Sl through S5. 
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Figure 5. An example of the hierarchical image segmentation. Source of the original image: DigitalGlobe.com 
Top row: Original image size of size 2,512 x 2,525 pixels is on the left; the result of polygon agglomeration on 

LOD= IO is on the right, number of polygons on LOD=10 is 22,773 . Bottom row: region of the original image (on 
the left), polygon-based representation of the same region is on the right. 

Experimental Results 
The presented framework was preliminary evaluated using the Berkeley Segmentation dataset' and Digital Globe 

satellite imagery. Figures 5 through 7 show some results of satellite image segmentation using our framework. Figs. 5 
and 6 show the results of segmentation on the coarsest LOD; Fig. 7 show the result of man-made object detection based 
on the coarsest LOD produced by the presented framework. 

Fine level of detail of a pyramid is constructed using Canny edge detector with the (JCanny = I., hysteresis low 
threshold = 2.5, and hysteresis high threshold = 5. We use the Triangle code" to generate triangular tessellation over the 
detected edge map. Color images were processed using either one of CIELab, CIELuv, or HSV spaces. No is set to 2 to 
create two coarser LODs on top of the fine LOD before variogram is taken into account. The results are shown for 
CIELab space. Global threshold was set to 20 because the perceptually significant difference in color space is estimated 
in the range [15, 30]. Scale parameters k and (J for adjacency relations were both set to I. On average the produced 
hierarchies contained 6-10 levels of detail. 

CONCLUSIONS 

We have presented a framework to construct a fme-to-coarse hierarchy of irregular image partitions. Experimental 
results support the validity of the proposed method. It uses spectral and contour relations between polygons as criteria of 
their agglomeration. Computational complexity of the algorithm makes it possible to use it for processing large images. 
Additional research is required to generalize the method to process texture, e.g. using Gabor filters, wavelets (Jain, et aI., 
1991; Livens, et aI. , 1997; Newsam, et aI. , 2004). The problem to address is more efficient evaluation of texture 
properties to attribute to the generated partitions. Another subject to investigate is an automated evaluation of optimal 
LODs to perform structural analysis. This problem is also related to replacing fixed scheme of selection of No threshold 
with a scheme that depends on the progress of the construction of image hierarchy. 

• http://www . eecs. berkeley .eduJResearchiProj ects/CS/vision/ grouping! segbenchl 
.• http://www.cs.cmu.eduJ~quake/triangle.html 
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Figure 6. An example ofthe hierarchical image segmentation. Source of the original image: DigitalGlobe.com 
Top row: Original image size of size 2,897 x2,891 pixels is on the left; the result of polygon agglomeration on 

LOD= lOis on the right, number of polygons on LOD= lOis 1,026. Bottom row: Contours of the polygons are 
superimposed on top of the original image (on the left), polygons attributed with color are shown on the right. 

Figure 7. An example of man-made object detection using partitions on single LODs of the built hierarchy. 
Left: Image of nuclear facility at Arak, Iran. Source: DigitaIGlobe.com. Right: the result of detection (in white). In 

order to achieve better detection it is necessary to perform the detection across multiple LODs and then integrate 
results. 
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