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Abstract

A bundle-of-tubes construct is used as a model system to study ensemble averaged
equations for multiphase flow in a porous material. Momentum equations for the fluid
phases obtained from the method are similar to Darcy's law, but with additional terms.
We study properties of the additional terms, and the conditions under which the averaged
equations can be approximated by the diffusion model or the extended Darcy’s law as
often used in models for multiphase flows in porous media. Although the bundle-of-
tubes model is perhaps the simplest model for a porous material, the ensemble averaged
equation technique developed in this paper assumes the very same form in more general
treatments described in Part 2 of the present work (Zhang 2009). Any model equation
system intended for the more general cases must be understood and tested first using
simple models. The concept of ensemble phase averaging is dissected here in physical
terms, without involved mathematics through its application to the idealized bundle-of-

tubes model for multiphase flow in porous media.

1. Introduction
Flow of immiscible fluids in various porous materials is of special importance to soil

science, chemical, environmental, construction, and petroleum industries. In these



systems, capillary action plays a crucial role in driving the motion of fluids within the
porous media.(Alava et al. 2004; Faybishenko 2004; Hassanizadeh and Gray 1993;
Washburn 1921; Richards 1931; Scheidegger 1974; lanson and Hoff 1986; Hall er al.
1984; Gray and Hassanizadeh 1991; Liu 1991) Extensive theoretical investigations and
advanced experimental techniques, such as neutron radiography, have been applied to
study the motion of the fluids.(El Abd er al. 2005; Lockington and Parlange 2003;
Gummerson et al. 1979; Shiozawa and Fujimaki 2004; Guen and Kovscek 2006;
Manthey et al. 2005; Tsakiroglou et al. 2003; Gray et al. 2002; Beliaev and Hassanizadeh
2001; Hassanizadeh and Gray 1993; Czachor 2007; Hilfer 2006; Hall 2007; Culligan et
al. 2004; Moseley and Dhir 1996) Despite intensive interrogation, models for such flows
are still largely empirical. Typically, the motion of fluids in a porous material are
assumed either to be nonlinear diffusion processes,(Lockington and Parlange 2003;
Pachepsky et al. 2003; El Abd et al. 2005) or to obey the same Darcy's law as in a single
phase flow. (Richards 1931; Brooks and Corey 1964) The diffusion approach is based on
the early work of Washburn (1921) This approach is mainly used to model liquid
imbibition in porous solids. The main focus for this model is liquid motion, while the
motion of the other fluid, typically a gas, is not emphasized. In this paper we explain the
reason why the diffusion approach is more successful in liquid-gas systems than in
liquid-liquid systems. In the Darcy's law approach, each fluid in the porous material is
driven by the pressure gradient. The application of Darcy's law to multiphase flows in
porous materials is a significant extension of Darcy's law originally developed for a
single phase flow in porous materials. For the cases of two-phase flow, this extension
requires a closure model to describe the pressure difference between phases. The
pressure difference is usually taken to be the capillary pressure (Leverett 1941) with an
implicit assumption that the pressure difference is caused solely by the interfacial surface
tension between fluids. In liquid-gas two-phase flows, it was originally thought that the
pressure difference was only a function of the liquid saturation. Later, experimental
observations found that the pressure difference exhibits more complicated characters.
The validity of both the diffusion approach and extensions of Darcy’s law have been
questioned. (Shiozawa and Fujimaki 2004; Tsakiroglou et al. 2003; Hillel 1980,
Hassanizadeh and Gray 1993; Prat 1995; Le Guen and Kovscek 2006; Hilfer 2006; Hall



2007; Czachor 2007; Gummerson et al. 1979; Lockington and Parlange 2003; DiCarlo
2007)

To develop equations describing the motion of fluids in porous materials, the
multiphase flows in a porous material are treated as special cases of multi-material
interactions involving two fluid phases and one porous solid phase using ensemble phase
averaging method (Zhang 2009; Zhang et al. 2007). The closure relations associated with
the averaged equations are expressed as averages of the interactions on phase interfaces.
The averaged equations derived this way are in a form similar to the extended Darcy’s
law, but with additional terms. The presentation of this work is divided into two parts
appearing as scparate papers in this issue of the Journal. In Part 1, we illustrate the
ensemble phase averaging method using a simple but meaningful example. General
theory for multiphase flows in porous material is described in Part 2.

This paper is Part 1, in which we apply the ensemble averaging method to a
bundle-of-tubes model for two-phase flows in porous materials. The main objective of
this paper is to understand the additional terms that arise in the averaged equations, and to
study their properties and the possible closure of the equations using this simple example.
Although a typical porous material has a much more complex morphology than that
captured by the bundle-of-tubes model, the model does possess a unique advantage of
being conceptually simple and amenable to analytical solution. This porous material
model has been used by Dahle ez al.(2005) to study the behavior of the capillary pressure.
By using the bundle-of-tubes model, we hope to explain the physical meaning of the
closure relationships.

We will show that, despite of its simplicity, dissecting the averaged equations
associated with the bundle-of-tubes model provides interesting insight into characteristics
common to more complex porous materials. From the point view of the averaged
equations, any theoretical model intended for describing two-phase flows should first be
validated in a simple system such as this. The study of this simple bundle-of-tubes
provides a starting point to study more general cases described in Part 2 of the present

work.

2. Flow in capillary tubes



We consider a one-dimensional two-phase flow in a porous material consisting of parallel
capillary tubes with various diameters as shown in Figure 1. Let L be the length of the
capillary tubes, ¢ be the diameters of the capillary tube, and S be the contact angle of
fluid / on the solid wall, measured from the solid wall in contact with fluid / to the
interface between fluids / and 2. For capillary tubes, the curvature radius a of the fluid
interface can be calculated as a = ¢/(2 cosf). In this example, we suppose that there is a
reservoir of fluid / on the left of the capillary tubes. Initially the capillary tubes are filled
with fluid 2 and are connected to a reservoir of fluid 2 on the right ends. Let p; and pg
denote the pressures in left and right reservoirs, respectively, as illustrated in Figure 1.
Inside a given capillary tube the flow is a Poiseuille flow, except for in the region close to
the interface between two phases. The momentum equations can be written as

32u p.—pi(x)
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where y; and u; are viscosities, p;(x) and p,(x) are pressures for fluids / and 2 within the
tube, x; is the interface location as measured from the left end of the capillary tube.
Because of the curvature of the fluid interface in a capillary tube, the interface location
can only be determined within an error of order of the diameter of the tube. In this
example we assume that the length of the tube is much greater than the tube diameter, L
>> ¢. As a consequence of this assumption, an error of order ¢/L is expected in the
quantities calculated in this paper. In formulating the equations above we have used the
fact that the diameter of a tube is independent of location x, and the pressures varies
linearly within a given tube. Across the fluid interface, the pressure difference caused by
surface tension is
p,(x)—p(x)=2Iy, /a=4, cos B/¢. 3)
Continuity of the fluid phases requires # = %, in a capillary tube. Using this
relation, we can eliminate the pressures p; and p; at the interface from (1) and (2), and

find
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where Ap = p;, — pr is the pressure difference between the reservoirs at the ends of the

capillary tubes.
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Figure 1. The illustration of ensemble of capillaries with different diameters.

For simplicity, we assume Ap > 0 and /3; 2 0, hence the velocity of the invading fluid /
increases with the capillary diameter. The interface location can be calculated by solving

dxydt = u,. The solution is

P(PAp +4T,, cos B)t =16ux} +1641,(2Lx, —x}). ®)
This solution relates the penetration of fluid / to the diameter of the capillary tube.
Given a fluid interfacial position x and time #, we can use (5) to find a diameter ¢(x,f) of
the tubes that the fluid interfaces are in. For a capillary tube with a specified diameter ¢,
one can also use (5) to find the location of the fluid interface in the tube, x;(@¢). The
interface location x;(@,¢) is an increasing function of @¢. The pressure within a capillary
tube is found by substituting (4) into (1) and (2) '

4 (Ap +4Ty cos B/ §)x % <X
3, (B,)+ [ L=x, (4,0 v

pl(x’t’¢)=pL— (6)

and
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These results are obtained based on the Poiesuille flow in a circular capillary tube.
Near a fluid interface the flow is not a true Poiesuille flow and the pressures are different.
The size of the region where the pressures differ significantly is of the order of the
diameter of the capillary tube and can be estimated from (6) and (7). When pressures
derived from (6) and (7) are used to calculate the average pressures, or the phase

interaction forces, an error of order ¢/L should be expected.

3. Ensemble Phase Averaged Equations

With the analytical solutions for pressures and velocities listed above, we can apply the
ensemble phase averaging method to study properties of the resulting closure quantities
in this simple geometry. The ensemble phase averaging method has been used previously
to derive averaged equations for disperse multiphase flows. (Zhang and Prosperetti 1994,
1997) The method has also been extended for continuous multiphase flows with infinite
number of degrees of freedom in the system. (Zhang et al. 2007) In the ensemble phase
averaging method, at a given location x and time ¢, the average of a quantity pertaining to
a specified phase is calculated by averaging over all the flows in which the specified
location is occupied by that phase at the time. Although a general derivation of the
averaged equations has been developed in Part 2 of this work (Zhang 2009), for the
simple bundle-of-tubes geometry the derivation of the ensemble phase averaged
equations can be significant simplified. This simplified derivation illustrates the physical
interactions on the phase interfaces with much less mathematical steps. In this section we
present this derivation. For general derivations, readers are referred to the cited work
(Zhang 2009; Zhang et al. 2007).

In the ensemble averaging method, the volume fraction 6, of fluid 1 at any point is
calculated as the probability of the point occupied by the fluid. In the simple bundle-of-
tubes model, this probability can be calculated geometrically as the ratio of the cross
section area of the capillary tubes containing fluid 1 to the total area 4t of the cross
section. Let Ny be the total number of tubes in the cross section and P(¢) be the
probability distribution of the tube diameters. For a specified location x and time ¢, the
penetration depth of the invading fluid increases with the diameter of the tube. Thus fluid

1 will only occupy capillary tubes with a diameter larger than the ¢(x,#) calculated from



(5) by replacing x, with x. The respective areas occupied by fluids / and 2 in the cross

section are
ﬂx:)m
4=N, j—P(¢)d¢ 4,=N, [ = -P@ds, ®)
#x,0 0

and their volume fractions of fluids / and 2 can be calculated as & (x,f)= 4,/ 4_, or

© 2 #x,ty 2
on=n, [ Z-P)as, on=n, | Z-rpds, )
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where n, = N,/ 4, is the number of the tubes per unit cross section area. The gradient of
the volume fractions can be calculated as
VO, (x,1)=-VO,(x,1) = -n, ”¢ X pgErl a‘“’“ . (10)
The degree of saturation for fluid i can be defined as S, =6, / (6, + 8,) for i=1,2. Then,
#(x.0)
S,(x.1) = J ¢ P($)dp / [#*P(#)dg, S, (x.t)= J #P($)d¢ / [ P@)dg. (11)
#(x0)
For a given position and time, the average of a quantity pertaining to a phase is then
calculated by averaging over all possible values of that quantity for which the spatial
position of interest is occupied by the phase at the specified time. In this bundle-of-tubes
model, the chance of a tube being selected as a sample is proportional to its cross section
area. Hence in this example, the ensemble phase average of a quantity becomes a cross
section area weighted average. Again, since the invading fluid only occupies the tubes

with diameter greater than ¢(x,7), the average pressure (p,), the average pressure

gradient, and the average velocity (,) can be calculated as

()= [ L nenor@is] [ Zrpas, (12)
#50) #5.0)

(V)= | vncrpp@rs| | 2 pgydg, (13)
#(x.0) #(x.0)
- [ aeiorgas| | 2 pop. (14)
(x4} $(x0)



Similarly the receding fluid occupies the tubes with the diameter less than ¢(x,?),

the cross section area weighted averages for the pressure, the pressure gradient and the

velocity are given by

#(x,0) 7[¢ (x, r)
(p:)= [ - prlxthP@)dg / ™ pgyag, (15)
#x.1) #(x,1)
(Vp,)= [ %sz(x L H)P()d¢ / ™ pgyg, (16)
#xt) 42 #(xt)y 2
()= [ Zarpr@as / P p(g)dg. (17)

The volume fractions and averages defined above, can be used to derive averaged

equations. Using (9), we find
@ }2‘¢2
8(p) 0=, [ == p(xn19)P@)ds. (18)
$x)
where we employ the notation (p, }(x,7)= (p,(x,,¢)) . Upon differentiation of (18) with
respect to x, and using (9), (10), (12), and (13), we find
ez(vpl)=glv<p1>“{<p|>; —<pl>]vgl (19)
where ( 2 ) , = Di(x,1,8(x,0)) is the pressure of fluid 1 on the phase interface with fluid 2.

Using this relation and averaging over the momentum equation (1), we obtain
n, [ 8uaBP@)dg=-6V(p,)+F,, (20)
#(x.1)
where
Fy=I{p), ~(p)IVE,. @n
The left hand side of equation (20) represents the viscous drag acting on fluid /. If we
write the viscous drag on the left hand side of (20) as 6,Ciu{u;) then the drag
coefficient can be calculated as
C.= [ 32mP@)dg | [ ¢u(x.1.9)P(P)ds (22)
#(x.0) #(x.1)

With this definition, we have the averaged momentum equation for fluid /



6C, 1, (u1> = _‘91?<P1>+ £,. (23)
Similarly, the averaged momentum equation and the drag coefficient for fluid 2 can be

written in the similar forms,

0,C,.1, <u2 ) =-6,V (pz > +F, (29)
#x,) $(x.0)
C,= | 2mP@Wds | | #7,(ut.HP@B)dp, (25)
with Fy; defined as
Fy =[py(6,1,806,0)=(p, )1V 6,= -{(p,), - (p,)IVE, , (26)

where( pz) , = Py (x,1,4(x, 1)) is the pressure of fluid 2 on the interface. Using (21) and

(26), and noting that p,(x,?,#(x,?)) and p,(x,?,¢(x,)) are evaluated at the interface, we
find

Fa(x,0)+ Fy (6,0 = [(p, ) (x,0) (P, ) (x,£) ~ 4T cos B/ $(x,)IV 6, @7
after using (3).

Although in this paper we derived momentum equations (23) and (24) in the
bundle-of-tubes model for a porous material, the functional forms of these momentum
equations are quite general since similar equations are obtained in a more general
treatment (see Part 2) after neglecting inertial terms.

If Darcy’s law were assumed to be valid for each fluid phase, the force densities
F1;and F,; have to vanish simultaneously implying(pz) - (p,) =4I, cos B/ ¢(x,t). This
is in agreement with the original concept of capillary pressure. According to Dahle e? al.

(2005), the quantity 4I',, cos S/4(x,t) is a static part of the capillary pressure; and
(p,)—{p,)—4T,, cos B/ (x,1) is a dynamic part of the capillary pressure. Equations

(23) and (24) show that the dynamic part of the capillary pressure not only affects the
pressure difference but also presents itself as a term in the momentum equations.
These momentum equations together with the continuity equations
06,
—4+V(6{u))=0, i=12 28
V(6 (u) @8)

and the condition 6 +#6,=6,, where 8 is the porosity, form a closed system of



equations provided a closure relation for (p,)—(p,) and F, or F,can be found.

Although this averaging method does not give the functional forms for these closure
quantities, it does provide an explicit way to calculate the closure relationship using
related quantities evaluated at the phase interfaces. This is a significant advantage of the
averaging method. For this simple bundle-of-tubes model, we have the analytical
solutions for the quantities needed to specify the closure relationship. For more complex
pore morphologies, numerical results can be used for this purpose. Of course, calculation
of closure quantities is not required if the flow details in the pores are already known. It
is hoped that by explicitly calculating and studying the closure quantities in the selected
(simple) cases, one can obtain better understanding of the transport process and then

formulate physically-based closure models for the more complicated cases.

4. Properties of the closure relationships

In the bundle-of-tubes model, the key closure quantities, (i.e. the pressure difference, the
drag coefficients, and the force densities F;; and F3;), can be calculated explicitly for a
specified tube diameters distribution P(¢). In this section, we take this advantage and
calculate the closure quantities. To facilitate the study of the relative magnitudes of the
terms in the averaged equations, we non-dimensionalize the key terms. Length is non-
dimensionalized by the characteristic length L of the capillary tube; force is non-

dimensionalized byI',,L ; and time is non-demensionalized by 44 L/I",,. The length of

the capillary tube, the viscosity of fluid / and the surface tension between the fluids are
thereby set to unity. Table 1 shows the value of other quantities under this non-
dimensionalization scheme. In the following calculations, we assume that the probability

distribution for the tube diameters is uniform between the smallest pore size ¢ and the
largest pore size ¢, as

P(g)=1/(¢, - ¢5) (29)

10



Table ]. Parameters for bundle of tube models. The values of the dimensionless L, £
and /” are equal to 1.

Parameter Description Value

L Length of tube 1

u; Viscosity of fluid 1 -

I Surface tension 1

s Lower cut-off pore diameter 10°L

& Upper cut-off pore diameter 10°L

B Contact angle 0 (radians)

4.1. Receding fluid with negligible viscesity
We first study a case in which the viscosity of fluid 2 is negligible and the pressures in
both reservoirs are set to zero. This case resembles the scenario in which water replaces

air in the capillary tubes at ambient conditions. Since the fluid 2 is inviscid, we have
P> =(p,)=0 and F,, =0 . Using (27) we have
Fy =~{(p,)(x,1)+4T,, cos / §(x,0]V 6, (30)
In this case, the interface location x in a specified tube can be solved from (5) and
is proportional to the square root of timevf. Asa consequence, at a given x and ¢, the
pressure p,(x,t) for fluid I as calculated in (6) can be expressed in terms of the grouping
x/+Jt . The same is true for the tube diameter ¢ solved from (5), the volume fraction 6,
calculated using (9), the averaged pressure of fluid / (p,) calculated using (12), and the
drag coefficient C,, calculated using (22). The volume fraction, the saturation (defined
as S, = 6,/(6, +6,)), the drag coefficient, the average pressure, and the tube diameter can
all be expressed as a single valued functions of x/ Jt for different time ¢, as shown in

Figure 2. Similar profiles of S, versus x/t are commonly reported for water
imbibition in building materials (Hall et al. 1984; Hall 2007; El Abd et al. 2005; Ridgway
et al. 2006, Lockington and Parlange 2003).

11
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Figure 2. The correlations of S; vs. x/ (a), ¢ vs.x//t (b), {p,) vs. x/\t (c), and Cs,
vs. x/+Jt (d) at different imbibition times.

Figure 2(c), the plot of (p,) vs. x/t , suggests that the ensemble averaged

pressure ( p,) is not a monotonic function of x/+/7 . The response seen in Figure 2(c) can

be rationalized by referring to Figure 1 and recalling that in this case both p; and pi are
zero. For a specified time, ensemble averaging over the tubes at small values of x
involves tubes (of various diameters) that all contain the invading fluid 1. Within in each
of these individual tubes the pressure decreases with increasing x. Thus the ensemble
averaged pressure decreases with increasing x in this regime. However, when the
ensemble average is performed at larger values of x, the tubes containing the invading
fluid 1 are those tubes of larger diameter. This is a consequence of the fact that the
velocity of invading fluid is slower in the smaller diameter tubes and thus at the specified
time, and large enough values of x, the small diameter tubes are not yet filled by the
invading fluid. At even larger values of x, only the very largest diameter tubes are filled

with fluid 1. In such tubes the pressure drop due to friction with walls is relatively small

12



compared to that in smaller tubes; and the pressure in forefront of the invading fluid is

close to the pressure on the fluid interface, which is —4I',, cos #/¢(x,¢t), an increasing
function of x, because #(x,t) increases with x. Since only the filled tubes are counted in

the ensemble phase averaging procedure in the calculation of the average pressure of
fluid 1. The resulting ensemble average then increases with x as shown in Figure 2(c). In
this case, the extended Darcy’s law is invalid in the forefront of the invading fluid since it
would predict negative velocities for fluid /, if used. Difficulties associated with direct
application of Darcy’s law to two-phase flows in a porous medium have been recognized
previously (Hall et al. 1996; Nordbotten er al. 2008). In an attempt to amend Darcy’s
law, a “macroscopic pressure” is sometimes defined as a linear combination of the spatial
derivatives of the volume averaged pressure of various orders (Nordbotten et al. 2008).
In the case of this bundle-of-tubes model, the ensemble phase average can be regarded as
a volume average with the representative volume being a slab perpendicular to the tube
direction with infinitesimal thickness in the direction of flow. For the case of inviscid
fluid 2, the “macroscopic pressure” of the fluid vanishes, and flux of fluid 1 is then
proportional the gradient of the “macroscopic pressure” of fluid 1 according to equation
(33) of Nordbotten et al. (2008) Since the flux is positive in this example, this requires
the gradient of the “macroscopic pressure” of fluid / to be negative. However, as shown
in Figure 2(c), the gradient of ensemble phase averaged pressure, which equals to the
intrinsic volume averaged pressure, is positive. In other words, the gradient of the so-
called “macroscopic pressure” and the gradient of the intrinsic volume averaged pressure
have different signs; while the lowest order approximation to the “macroscopic pressure”
is thought to be the intrinsic average pressure (Nordbotten et al. 2008).

From (11) we find that saturation S, can be written as a single-valued function of

diameter ¢. As mentioned above the diameter ¢(x,?) is a single-valued function of

x/ Jt . Therefore the variable x/ Jt can also be regarded as a single-valued function of

the fluid / saturation S, in the region where the saturation0 < §, <1, as shown in Figure

2(a). In this region, the diameter @(x,r), the averaged pressure (p,) and the drag

13



coefficient Cys can be expressed as single-valued functions of the volume fraction 6,, or

saturation §,. With these relations we can rewrite the momentum equation for fluid 1 as

6,(u,) =-D,(5,)VS,, 0<S <1, (31)
where
__ 5 d(p,)
D, (LS'I)_CIS(SJ#1 [S, = +(p,)(s,)+4r21cosﬁf¢(s,)]. (32)

In this way the volume flux 6§, (u,) per unit cross section area can be expressed in a form

similar to Fick’s law of diffusion with a saturation-dependent diffusion coefficient

D,(S,). This imbibition flow can be described as a diffusion process because the
averaged pressure( p,) , the surface tension term4I,, cos #/¢, and the drag coefficient

C,, depend only on the saturation. This explains the success of the diffusion approach in
modeling imbibition of liquids when gas viscosity is negligible(Washburn 1921).
However, this condition is only satisfied in the cases where the viscosity of the receding
fluid is negligible and in the region where §; is less than one. In cases where S; =/, as

shown in Figure 2(a), we have VS, =0, while the fluid flux 6, (u,) > 0; therefore (31) is

incorrect. In this region, F|, =0 according to (21), and thus the fluid is purely driven by
the pressure gradient term in the momentum equation (23). Indeed, in this region, the

average pressure ( p,) decreases linearly with x as shown in Figure 2(c) while the

saturation remains constant. The derivative d(p, ) / dS, then becomes undefined and the

diffusivity defined by (32) becomes infinity as shown in Figure 3(a). This explains that
many reported experimental values for D, increase significantly (as much as 10* times),
as the saturation approaches unity. (El Abd et al. 2005; Meyer and Warrick 1990) The
fact that the diffusivity becomes undefined in the region of full saturation, highlights a
limitation of the diffusion approach of describing fluid imbibition processes in porous
materials.

This example demonstrates the importance of the additional force density term,

F

1, » in the ensemble averaged momentum equation (23). The force density F,, can be

calculated from the pressure difference (p.),—(p,) by using (21). In Figures 3(b), (c),

14



and (d), the relation between the pressure difference (p,), —(p,), the surface tension, and
the drag coefficient are plotted as functions of the saturation S, of fluid /. In this case of

negligible viscosity of fluid 2, all of these closure quantities for fluid / are single-valued
functions of §;.
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Figure 3. The correlations of D,/6, vs. S; (a), (p,), —(p,) vs. S1 (b), 4T, cos B/ vs. S,
(C), and Csi VS.'S1 (d) .

4.2. Receding fluid with finite viscosity
In this subsection we study a case in which the pressure difference between reservoirs is
still zero, but viscosity 4 of fluid 2 is not negligible. The viscosity ratio, x»/u; between

fluid 2 and fluid 7 is set to be in a range from 0.01 to 1. In this case, surface tension

generates the pressure gradient needed to drive fluid 2, hence p, >0 and ( p2)>0.

Figure 4(a) plots the average pressures as a function of x at different time . We note that

there are kinks in the curves for the average pressure (p,) of fluid 2. The curve for the
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average pressure< p,) stops at the x-coordinate of the kink point for the corresponding
average pressure( pz) . This kink point is the deepest penetration for the invading fluid at

the specified time. After that point, the fluid 1 is not present and the average pressure of

fluid 7 is undefined. After the kink, the average pressure ( pz) varies linearly with x.
To explain this phenomenon, we note that similar to (19), we have
6,V(p,)=6,(Vp,)+[(p,), - (p,)IVE, (33)
where (p,), is the pressure of fluid 2 at the phase interface. When x is larger than the
x -coordinate of the kink point, all the tubes are filled with fluid 2, andVé, =0. In each
tube, according to (2), the pressure gradient Vp, is independent of x, and so is its average
(Vp,). The gradient of the averaged pressure calculated from (33) is then independent of
x;and (p,) varies linearly with x as shown in Figure 4(a). In the coexisting region for

both phases, the average pressures are highly nonlinear. Figure 4(b) shows that the
magnitude of (p,) is much larger than that of (p,) because fluid 2 preferentially
occupies small tubes. Figure 4(c) and (d) show the effect of viscosity ratio the average
pressure profiles for the two phases at a specified time. As the viscosity ratio increases,

the non-monotonic behavior of ( pl> disappears (e.g. x> =x; as shown in Figure 4(c)).
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Figure 4. The profiles of the average pressures of two phases (( P > or ( p2> ) vs. x without

the external pressure difference, (a) - (b) imbibition time effect, and (c) - (d) viscosity
ratio effect (arrows in the plot indicate the kinks)

Figure 5(a) shows that the saturation is not a single valued function x/ Jt when
the viscosity ratio of two phases is non-zero. Figure 5(b) and (c) show that the pressure
difference ( pl) ; —( pl) of fluid / at the interface and the pressure difference ( pz) —( p,)

between two phases depend not only on the saturation but also on time ¢. Figure 5(d)'

shows the drag coefficient C; as a weak function of time ¢.
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Figure 5. The correlations of S; vs. x/V (a), (), =(p) vs. S1 ®), {p,)—(p,) vs. 51,
and Cs[ VS. S[ (d)

These results imply that a parameter in addition to the saturation S; is needed to
uniquely determine the closure relationships. In introducing the concept of dynamic
capillary pressure, Hassanizadeh and Gray (1993), assumed that the dynamic part of the
capillary pressure was proportional to the local time derivative 85, /0f. This idea can be
generalized to model the closure quantities as nonlinear functions of the saturation S, and
its local time derivative 0S,/d¢. In the bundle-of-tubes model, for a given pair of S, and
0S,/ot , there is a unique corresponding pair of x and £. With a uniform distribution of
diameters (given by the probability distribution) between ¢; and ¢,, the required

relationship can be found as follows. By differentiating (5) and (11) with respect to ¢,
and then eliminating d¢/0¢, from the resulting relations we find
1=(¢2_¢;)(2M+4r21 cosﬂ)%‘ (34)
t 34’ (pAp +4T,, cos ) ot

Using (11) the diameter ¢ can be expressed in terms of saturation S, as

#S) =3¢, — S, (4 - 45). (35)
With (34) and (35), the time ¢ can then be expressed as a function of saturation S, and its

local time derivative 8S,/0¢. Using (5) and (35), position x can also be expressed as a
function of the saturation S, and &S,/0f. The closure quantities calculated at (x, 7) can
then be expressed as functions of these two primary variables,S, and 0S,/df. These
functions are shown in Figure 6. For a fixed 85, /ot , the relation between( D ) : —( D ) and
S; is non-monotonic as shown in Figure 6(a). At a small 3S,/d¢, this non-monotonic
behavior is more pronounced. For a given &S,/d¢, initially the pressure difference
(p, ), —( p,) decreases with the saturation S, but as the saturation approaches to unity,

the pressure difference starts to increase. This behavior may seem to be in contradiction
to the pressure difference plotted in Figure 5(b). To explain this apparent contradiction,
one needs to recall that these two figures are obtained under different conditions. Figure

5(b) is obtained at a constant time whereas Figure 6(a) is obtained at a fixed 0S, /ot (=
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-38S,/6t). According to (4), flow velocity increases with the tube diameter and the

invading fluid occupies the large tubes first. As the saturation S; approaches unity and
saturation S, approaches zero, the diameters of the tubes containing fluid 2 (and thus the
velocity of fluid 2) becomes small. Thus, the second term in the continuity equation for

fluid 2 becomes small and negligible

%2—+S2V-(u2)+(u2)-VS2=O. (36)

The pressure difference (p,), —(p,) in Figure 6(a) is obtained with fixed 85, /d¢, thus as

velocity (uz) decreases, the magnitude of |VS, |increases. Since the change in the
saturation is caused by moving across the fluid interfaces, the large saturation gradient
indicates a point close to fluid interfaces. Therefore the pressure difference (p,), —(p,)
in Figure 6(a) is calculated with the average pressure ( p,) evaluated at a point close to

the interface; and thus the pressure difference is of lower magnitude as seen in Figure
6(a). The same is true for the pressure difference ( D, ) . —( pz) of fluid 2, however, it is
not shown in Figure 6(b), because the minimum for this pressure difference occurs at
saturation S, ~10™ according to the assumed probability distribution (29) of the tube
diameters. Figure 6(c) shows the average pressure difference between two phases as a

function of S, and 88, /or .
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Figure 6. The effect of 85, /6t on the profile of (p,), —(p,) vs. Si (a), (p,), —(p,) vs.
Si (b), and (p,)—(p,) vs. S (c).

Similar to the observation in Figure 5(d), Figure 7(a) and 7(b) show that C;s and
Cs are functions of S, but are almost independent of 0S,/d¢. This explains why the

permeability (the inverse of these drag coefficients) is often reported not to be rate
dependent, although it is often reported to be dependent on the degree of saturation
(Brooks and Corey 1965; Braun et al. 2005).
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Figure 7. The effect of 85, /0t on the profile of Cs; vs. S; (a) and Cs; vs. S; (b).

In this simple bundle-of-tubes model, the static part of the capillary pressure
(Dahle et al. 2005), 4I",, cos B/ ¢, is only a function of the saturation. This is because

the tube diameter ¢ is only a function of the saturation as shown in (11) and (35). In
Figure 8, we display the dynamic part of the capillary pressure(p,)—(p,)—4T cos B/ ¢.

Initially it was thought (Hassanizadeh and Gray 1993) that the dynamic part of the
capillary pressure was proportional to0S, /¢ . Later Dahle et al. (2005) found that when
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S, /ot =0, the dynamic part of the capillary pressure was not zero. They then modified

the dynamic capillary pressure to contain two terms.” The first term is a function of the

saturation S, only. The second term is proportional to 8S,/0t with a coefficient
depending on S,. For cases with g, <<z, (p,)=0 and (p,) is a function of the

saturation, as explained above. The dynamic part of the capillary pressure is then a
function of saturation only and is independent of 8S, /0t as shown in Figure 8. However,

for the cases where x4, is not negligible, our results show that the capillary pressure
depends on 35S, /&t in a non-linear manner. The strongest response occurs at small values

of 8S,/0t. As 0S,/0t increases, the value of ( pz)—( p,)—41" cos B/¢ approaches a

constant value.
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Figure 8. The correlation between ( pz)— ( p,) —4Tcos B/ ¢ and 88, /ot at targeted S; and
4P = 0.

To study the effects of the viscosity ratio, we fix the value of S; at 0.5 and then
plot (p,)—(p,)—4T cos B/ ¢ as a function of 8S,/d in Figure 9. The dynamic pressure
is sensitive to oS, /0t for a small 8S,/dt and approaches a constant for a large 45, /ot .
When the viscosity ratio between the receding and the invading fluids decreases, the

saturation rate dependent region of ( pz) - ( D ) —4I'cos B/ ¢ expands.
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viscosity at S; = 0.5.

4.3. Effects of reservoir pressure difference

To examine the effects of the pressure difference in the reservoir, we recalculate all the

quantities in Figure 6, 7 and 8 with AP = 10* and plot the results in Figure 10.
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Figure 10. Plots (p, )1 —(p,) vs. S; (a), (Pz), —(pz) vs. 81 (b), Cs; vs. Si (c), Cs2 vs. S;
(d), and ( pz) - ( p,) vs. S; (e) at different S, /0t with AP = 10°. The correlation between
(p,)—(p,)—4T cos B/ ¢ and 85, /ot at different S; is plotted in (f).

With the positive pressure difference Ap, there is a larger velocity increase in

large tubes than that in small tubes as one would expect. The increase in the penetration
of fluid / is also more significant in larger tubes than that in small tubes, resulting in a
larger spread in the co-existence regions of fluids. This leads to an increase in the
average distance from a point x (where the average pressure is evaluated) to the interface

where (p,), and (p,) are evaluated. This results in more significant pressure
differences (p.),—(p) and (p,),—(p,) in Figures 10(a) and (b) than the pressure
differences in Figures 6 (a) and (b). The difference in the pressure difference ( pz) —( pl)

between phases shown in Figure 10(e), however, is almost the same as in Figure 6(c),
because they are not directly related to external pressures. The drag coefficients of Cs;
and Cs; in Figures 10(c) and (d) are almost the same as those in Figures 7(a) and (b).
Again, the behavior of dynamic part of the capillary pressure shows a nonlinear

dependence on 85, /ot in Figure 10(f).
The average pressure difference (p,)—(p,)between phases is commonly called

the capillary pressure implying an assumption that it is a result of surface tension. We

now calculate a case without the surface tension. We keep all other parameters the same

as in the last case except we set ' =0. The results of ( pl) , —( p,) are plotted in Figure

11(a). The curves behave similarly to the case plotted in Figure 6(a), but with smaller
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magnitude due to the zero surface tension. The results of ( P, ) ! -—( pz) are plotted in
Figure 11(b). The pressure difference (p,), —(p,) approaches zero as the saturation S,

approaches unity. This property is also true for Figure 6(b) and Figure 11(b), but was not
shown in those figures since the minimum value of the pressure difference occurs at the

saturation S, too close to unity. As shown in Figure 11(c), the average pressure difference
(p,)—(p,) is not zero. In this case, this difference in average pressures is caused by the
viscosity difference between the fluids, not by surface tension. If the viscosity is the
same as the cases studied by Dahle ef al. (2005), then the average pressures of the two
phases are in fact the same. In other words, not only the surface tension, but also

viscosity difference contributes to the pressure difference, or the “capillary pressure”.
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5. Conclusions

In this paper, an ensemble phase averaging technique for continuous multi-material
interactions is applied to derive averaged equations for multiphase flows in porous media.
The ensemble averaged equations are found to have terms in addition to those commonly

used in Darcy’s law. Based on the bundle-of-tubes model, we studied properties of these
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additional terms. We find these new terms are in principle capable of correcting many
deficiencies in models based on the straightforward extensions of Darcy’s law. We also
studied the relations between these new terms and several recent models for two-phase
flows in porous media.

Closure relationships were derived for the simple bundle-of-tubes model. The
closure can be written as functions of saturation and the local time derivative of the
saturation. The drag coefficients were found to be almost independent of the local time
derivative of the saturation. Despite the name “capillary pressure”, the difference in the
average pressures of two fluids is not necessary related to surface tension effects. Without
surface tension, the average pressures of the two phases are not necessary the same. If the
pressure difference can be decomposed into a static part, representing surface tension
effects, and a dynamic part, as suggested by Dahle ef al. (2005), then the dynamic part of
the capillary pressure not only affects the pressure difference, but also appears as terms in
the averaged momentum equations.

Although it is commonly assumed that a fluid imbibition process can be modeled as

a diffusion process, in the example we show that this is not generally true. It is not

necessary that the velocity of the invading fluid decreases as 1/~ . If the fluid being
displaced is more viscous than the invading fluid, the velocity can even increase with
time as fluid in the pores is replaced by the less viscous invading fluid.

The results and conclusions obtained in this paper are based on the simple geometry
of the bundle-of-tubes model. Although we have reason to believe that the closure
relations obtained here share many common features and trends in more complicated

systems, more work is needed before these conclusions can be generalized.
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