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Abstract 

A bundle-of-tubes construct is used as a model system to study ensemble averaged 

equations for multiphase flow in a porous material. Momentum equations for the fluid 

phases obtained from the method are similar to Darcy's law, but with additional terms. 

We study properties of the additional terms, and the conditions under which the averaged 

equations can be approximated by the diffusion model or the extended Darcy's law as 

often used in models for multiphase flows in porous media. Although the bundle-of­

tubes model is perhaps the simplest model for a porous material, the ensemble averaged 

equation technique developed in this paper assumes the very same form in more general 

treatments described in Part 2 of the present work (Zhang 2009). Any model equation 

system intended for the more general cases must be understood and tested first using 

simple models. The concept of ensemble phase averaging is dissected here in physical 

terms, without involved mathematics through its application to the idealized bundle-of­

tubes model for multiphase flow in porous media. 

1. Introduction 

Flow of immiscible fluids in various porous materials is of special importance to soil 

science, chemical, environmental, construction, and petroleum industries. In these 
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systems, capillary action plays a crucial role in driving the motion of fluids within the 

porous media.(Alava et al. 2004; Faybishenko 2004; Hassanizadeh and Gray 1993; 

Washburn 1921; Richards 1931; Scheidegger 1974; lanson and Hoff 1986; Hall et al. 

1984; Gray and Hassanizadeh 1991; Liu 1991) Extensive theoretical investigations and 

advanced experimental techniques, such as neutron radiography, have been applied to 

study the motion of the fluids.(El Abd et al. 2005; Lockington and Parlange 2003; 

Gummerson et al. 1979; Shiozawa and Fujimaki 2004; Guen and Kovscek 2006; 

Manthey et al. 2005; Tsakiroglou et al. 2003; Gray et al. 2002; Beliaev and Hassanizadeh 

2001; Hassanizadeh and Gray 1993; Czachor 2007; Hilfer 2006; Hall 2007; Culligan et 

al. 2004; Moseley and Dhir 1996) Despite intensive interrogation, models for such flows 

are still largely empirical. Typically, the motion of fluids in a porous material are 

assumed either to be nonlinear diffusion processes,(Lockington and Parlange 2003; 

Pachepsky et al. 2003; El Abd et al. 2005) or to obey the same Darcy's law as in a single 

phase flow. (Richards 1931; Brooks and Corey 1964) The diffusion approach is based on 

the early work of Washburn (1921) This approach is mainly used to model liquid 

imbibition in porous solids. The main focus for this model is liquid motion, while the 

motion of the other fluid, typically a gas, is not emphasized. In this paper we explain the 

reason why the diffusion approach is more successful in liquid-gas systems than in 

liquid-liquid systems. In the Darcy's law approach, each fluid in the porous material is 

driven by the pressure gradient. The application of Darcy's law to multiphase flows in 

porous materials is a significant extension of Darcy's law originally developed for a 

single phase flow in porous materials. For the cases of two-phase flow, this extension 

requires a closure model to describe the pressure difference between phases. The 

pressure difference is usually taken to be the capillary pressure (Leverett 1941) with an 

implicit assumption that the pressure difference is caused solely by the interfacial surface 

tension between fluids. In liquid-gas two-phase flows, it was originally thought that the 

pressure difference was only a function of the liquid saturation. Later, experimental 

observations found that the pressure difference exhibits more complicated characters. 

The validity of both the diffusion approach and extensions of Darcy's law have been 

questioned. (Shiozawa and Fujimaki 2004; Tsakiroglou et al. 2003; Hillel 1980; 

Hassanizadeh and Gray 1993; Prat 1995; Le Guen and Kovscek 2006; Hilfer 2006; Hall 
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2007; Czachor 2007; Gummerson et al. 1979; Lockington and Parlange 2003; DiCarlo 

2007) 

To develop equations describing the motion of fluids in porous materials, the 

multiphase flows in a porous material are treated as special cases of multi-material 

interactions involving two fluid phases and one porous solid phase using ensemble phase 

averaging method (Zhang 2009; Zhang et al. 2007). The closure relations associated with 

the averaged equations are expressed as averages of the interactions on phase interfaces. 

The averaged equations derived this way are in a form similar to the extended Darcy's 

law, but with additional terms. The presentation of this work is divided into two parts 

appearing as separate papers in this issue of the Journal. In Part 1, we illustrate the 

ensemble phase averaging method using a simple but meaningful example. General 

theory for multiphase flows in porous material is described in Part 2. 

This paper is Part 1, in which we apply the ensemble averaging method to a 

bundle-of-tubes model for two-phase flows in porous materials. The main objective of 

this paper is to understand the additional terms that arise in the averaged equations, and to 

study their properties and the possible closure of the equations using this simple example. 

Although a typical porous material has a much more complex morphology than that 

captured by the bundle-of-tubes model, the model does possess a unique advantage of 

being conceptually simple and amenable to analytical solution. This porous material 

model has been used by Dahle et a/.(2005) to study the behavior of the capillary pressure. 

By using the bundle-of-tubes model, we hope to explain the physical meaning of the 

closure relationships. 

We will show that, despite of its simplicity, dissecting the averaged equations 

associated with the bundle-of-tubes model provides interesting insight into characteristics 

common to more complex porous materials. From the point view of the averaged 

equations, any theoretical model intended for describing two-phase flows should first be 

validated in a simple system such as this. The study of this simple bundle-of-tubes 

provides a starting point to study more general cases described in Part 2 of the present 

work. 

2. Flow in capillary tubes 
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We consider a one-dimensional two-phase flow in a porous material consisting ofparallel 

capillary tubes with various diameters as shown in Figure 1. Let L be the length of the 

capillary tubes, r/J be the diameters of the capillary tube, and Pbe the contact angle of 

fluid 1 on the solid wall, measured from the solid wall in contact with fluid 1 to the 

interface between fluids 1 and 2. For capillary tubes, the curvature radius a of the fluid 

interface can be calculated as a = <1>/(2 cosfJ). In this example, we suppose that there is a 

reservoir of fluid 1 on the left of the capillary tubes. Initially the capillary tubes are filled 

with fluid 2 and are connected to a reservoir of fluid 2 on the right ends. Let PL and PR 

denote the pressures in left and right reservoirs, respectively, as illustrated in Figure 1. 

Inside a given capillary tube the flow is a Poiseuille flow, except for in the region close to 

the interface between two phases. The momentum equations can be written as 

32JJI - __n _ PL - PI(XI ) 
,/,2 U I - vPI - , (1) 
'I' XI 

and 

(2) 

where J.11 and J.12 are viscosities,PI(x) and pJ(x) are pressures for fluids 1 and 2 within the 

tube, Xl is the interface location as measured from the left end of the capillary tube. 

Because of the curvature of the fluid interface in a capillary tube, the interface location 

can only be determined within an error of order of the diameter of the tube. In this 

example we assume that the length of the tube is much greater than the tube diameter, L 

» cpo As a consequence of this assumption, an error of order cp/L is expected in the 

quantities calculated in this paper. In formulating the equations above we have used the 

fact that the diameter of a tube is independent of location X, and the pressures varies 

linearly within a given tube. Across the fluid interface, the pressure difference caused by 

surface tension is 

(3) 

Continuity of the fluid phases requires u = in a capillary tube. Using this l u2 

relation, we can eliminate the pressures PI and P2 at the interface from (1) and (2), and 

find 
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_ _ fji!lp+4r rpcosp 
ul =U2 = 2I , (4)

32PJxJ +32P2(L-xJ ) 

where f).p = PL - PR is the pressure difference between the reservoirs at the ends of the 

capillary tubes. 

L 

Left I I 
Right

Rn4I. Reservoir 

I 

PL Pa 

lit. 
I I 

!La 

r 
I 
I 

x I 

I 

Figure 1. The illustration ofensemble of capillaries with different diameters. 

For simplicity, we assume f).p cO and III cO, hence the velocity of the invading fluid I 

increases with the capillary diameter. The interface location can be calculated by solving 

dx/dl = ~. The solution is 

(5) 

This solution relates the penetration of fluid I to the diameter of the capillary tube. 

Given a fluid interfacial position x and time t, we can use (5) to find a diameter rp(x, I) of 

the tubes that the fluid interfaces are in. For a capillary tube with a specified diameter rp, 

one can also use (5) to find the location of the fluid interface in the tube, xltAl}. The 

interface location xltA I} is an increasing function of rp. The pressure within a capillary 

tube is found by substituting (4) into (1) and (2) 

"') PJ(!lp+4r2I cosplrp)x (6)PI (x,I,." =PL- ,
PJxJ(rp,t) +P2[L - XJ(rp,/)] 

and 

(7) 
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These results are obtained based on the Poiesuille flow in a circular capillary tube. 

Near a fluid interface the flow is not a true Poiesuille flow and the pressures are different. 

The size of the region where the pressures differ significantly is of the order of the 

diameter of the capillary tube and can be estimated from (6) and (7). When pressures 

derived from (6) and (7) are used to calculate the average pressures, or the phase 

interaction forces, an error of order <\l1L should be expected. 

3. Ensemble Phase Averaged Equations 

With the analytical solutions for pressures and velocities listed above, we can apply the 

ensemble phase averaging method to study properties of the resulting closure quantities 

in this simple geometry. The ensemble phase averaging method has been used previously 

to derive averaged equations for disperse multiphase flows. (Zhang and Prosperetti 1994, 

1997) The method has also been extended for continuous multiphase flows with infinite 

number of degrees of freedom in the system. (Zhang el al. 2007) In the ensemble phase 

averaging method, at a given location x and time I, the average of a quantity pertaining to 

a specified phase is calculated by averaging over all the flows in which the specified 

location is occupied by that phase at the time. Although a general derivation of the 

averaged equations has been developed in Part 2 of this work (Zhang 2009), for the 

simple bundle-of-tubes geometry the derivation of the ensemble phase averaged 

equations can be significant simplified. This simplified derivation illustrates the physical 

interactions on the phase interfaces with much less mathematical steps. In this section we 

present this derivation. For general derivations, readers are referred to the cited work 

(Zhang 2009; Zhang et al. 2007). 

In the ensemble averaging method, the volume fraction 81of fluid 1 at any point is 

calculated as the probability of the point occupied by the fluid. In the simple bundle-of­

tubes model, this probability can be calculated geometrically as the ratio of the cross 

section area of the capillary tubes containing fluid 1 to the total area AT of the cross 

section. Let NT be the total number of tubes in the cross section and P(¢) be the 

probability distribution of the tube diameters. For a specified location x and time I, the 

penetration depth of the invading fluid increases with the diameter of the tube. Thus fluid 

J will only occupy capillary tubes with a diameter larger than the «x,l) calculated from 
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(5) by replacing XI with x. The respective areas occupied by fluids J and 2 in the cross 

section are 

<Xi ¢l ?lx,l) ¢i 
NT J~P(t/J)dt/J. A,.;; NT J~P(t/J)dt/J. (8) 

f(x,l) 4 0 4 

and their volume fractions of fluids J and 2 can be calculated as OJ(x,t) ;; Aj / ~, or 

(9) 

where nA =NT / Ar is the number of the tubes per unit cross section area. The gradient of 

the volume fractions can be calculated as 

(to) 

The degree of saturation for fluid i can be defined as Sj =OJ / (°1 +° 2 ) for i =1,2. Then, 

SI(X,t)= } t/J2 P(t/J)dt/J/}t/J2 P(t/J)dt/J, S2(X,t) = f(ft/J2p(t/J)dt/J/}t/J2P(t/J)dt/J. (11) 
f(x.t) 0 0 0 

For a given position and time, the average of a quantity pertaining to a phase is then 

calculated by averaging over all possible values of that quantity for which the spatial 

position of interest is occupied by the phase at the specified time. In this bundle-of-tubes 

model, the chance of a tube being selected as a sample is proportional to its cross section 

area. Hence in this example, the ensemble phase average of a quantity becomes a cross 

section area weighted average. Again, since the invading fluid only occupies the tubes 

with diameter greater than t/J(x,t) , the average pressure (PI), the average pressure 

gradient, and the average velocity (u1) can be calculated as 

(12) 

(13) 

(14) 
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Similarly the receding fluid occupies the tubes with the diameter less than tP(x,t) , 

the cross section area weighted averages for the pressure, the pressure gradient and the 

velocity are given by 

;(x,t) 2 I;(x,t) 2 

(P2)== J IttP P2(x,t,tP)P(tP)dtP J!!Lp(tP)dtP, (15) 
o 4 0 4 

;(X,I) I;(X,I)vi ¢2 
(Vpz)= J~Vp2(x,t,tP)P(tP)dtP J~P(tP)dtP, (16) 

o 4 0 4 

;(X,I) ¢2 1;('<'/) ¢2 
(uz) = J~~(x,t,tP)P(tP)dtP J~P(tP)dtP. (17) 

o 4 0 4 

The volume fractions and averages defined above, can be used to derive averaged 

equations. Using (9), we find 

(18) 

where we employ the notation (PI)(X,t) = (PI (x,t,tP») . Upon differentiation of (18) with 

respect to x, and using (9), (10), (12), and (13), we find 

(19) 

where (PI)/ == PI (x,t,tP(x,t» is the pressure offluid 1 on the phase interface with fluid 2. 

Using this relation and averaging over the momentum equation (1), we obtain 

ao

J8f.4It~P(tP)dtP=-BIV(PI)+F;2' (20)nA 

;(x,/) 

where 

(21) 

The left hand side of equation (20) represents the viscous drag acting on fluid 1. If we 

write the viscous drag on the left hand side of (20) as B/C/s!-J/(ul) then the drag 

coefficient can be calculated as 

CIS = 132~p(tP)dtPl 1tP2~(x,t,tP)P(tP)dtP (22) 
;(x,t) ;(x,/) 

With this definition, we have the averaged momentum equation for fluid 1 
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(23) 


Similarly, the averaged momentum equation and the drag coefficient for fluid 2 can be 

written in the similar forms, 

(24) 

(25) 

with F21 defined as 

F;, =[P2(X,I,;(X,/»-(P2)]V(}2= -{(P2)/ -(P2)]V~ , (26) 

where(P2)/ P2 (x,t,;(x, I» is the pressure of fluid 2 on the interface. Using (21) and 

(26), and noting that PI (x, I,;(x,t» and P2(X, t,;(x, t» are evaluated at the interface, we 

find 

F;2(X,t) +F;l (x,t) =[(P2)(X,t)-(PI )(x,t) -4r21 cos PI ;(x,/)]V (}I (27) 

after using (3). 

Although in this paper we derived momentum equations (23) and (24) in the 

bundle-of-tubes model for a porous material, the functional forms of these momentum 

equations are quite general since similar equations are obtained in a more general 

treatment (see Part 2) after neglecting inertial terms. 

If Darcy's law were assumed to be valid for each fluid phase, the force densities 

F12 and F21 have to vanish simultaneously implying (P2) - (PI) =4r21 cos PI ;(x,t). This 

is in agreement with the original concept of capillary pressure. According to Dahle et al. 

(2005), the quantity 4r21 cos PI ;(x, I) is a static part of the capillary pressure; and 

(P2) (Pl)-4r21 cosp I ;(x,/) is a dynamic part of the capillary pressure. Equations 

(23) and (24) show that the dynamic part of the capillary pressure not only affects the 

pressure difference but also presents itself as a term in the momentum equations. 

These momentum equations together with the continuity equations 

(28) 

and the condition ~ + (}2 =(}p' where (}p is the porosity, form a closed system of 
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equations provided a closure relation for (P2) - (PI) and F;2 or F;I can be found. 

Although this averaging method does not give the functional fonus for these closure 

quantities, it does provide an explicit way to calculate the closure relationship using 

related quantities evaluated at the phase interfaces. This is a significant advantage of the 

averaging method. For this simple bundle-of-tubes model, we have the analytical 

solutions for the quantities needed to specify the closure relationship. For more complex 

pore morphologies, numerical results can be used for this purpose. Of course, calculation 

of closure quantities is not required if the flow details in the pores are already known. It 

is hoped that by explicitly calculating and studying the closure quantities in the selected 

(simple) cases, one can obtain better understanding of the transport process and then 

formulate physically-based closure models for the more complicated cases. 

4. Properties of the closure relationships 

In the bundle-of-tubes model, the key closure quantities, (Le. the pressure difference, the 

drag coefficients, and the force densities FI] and £:11), can be calculated explicitly for a 

specified tube diameters distribution P(tP). In this section, we take this advantage and 

calculate the closure quantities. To facilitate the study of the relative magnitudes of the 

terms in the averaged equations, we non-dimensionalize the key tenus. Length is non­

dimensionalized by the characteristic length L of the capillary tube; force is non­

dimensionalized by r 21L; and time is non-demensionalized by JlIL / r 21' The length of 

the capillary tube, the viscosity of fluid 1 and the surface tension between the fluids are 

thereby set to unity. Table I shows the value of other quantities under this non­

dimensionalization scheme. In the following calculations, we assume that the probability 

distribution for the tube diameters is uniform between the smallest pore size tPs and the 

largest pore size tPL as 

(29) 
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Table 1. Parameters for bundle of tube models. The values of the dimensionless L, f.J, 

and r are equal to 1. 

Parameter Value 

J.lj Viscosity of fluid 1 1 

r Surface tension 1 
Lower cut-off pore diameter 
Upper cut-off pore diameter 

p Contact angle o(radians) 

4.1. Receding fluid with negligible viscosity 

We first study a case in which the viscosity of fluid 2 is negligible and the pressures in 

both reservoirs are set to zero. This case resembles the scenario in which water replaces 

air in the capillary tubes at ambient conditions. Since the fluid 2 is inviscid, we have 

P2 =(P2) 0 and F;I =0 . Using (27) we have 

(30) 


In this case, the interface location x in a specified tube can be solved from (5) and 

is proportional to the square root of time Ji. As a consequence, at a given x and t, the 

pressure PI(X,t) for fluid 1 as calculated in (6) can be expressed in terms of the grouping 

x I Ji. The same is true for the tube diameter ¢ solved from (5), the volume fraction (), 

calculated using (9), the averaged pressure of fluid 1 (PI) calculated using (12), and the 

drag coefficient Cis calculated using (22). The volume fraction, the saturation (defined 

as Sl ~ I(~ + (}2»' the drag coefficient, the average pressure, and the tube diameter can 

all be expressed as a single valued functions of x I Ji for different time t, as shown in 

Figure 2. Similar profiles of Sl versus xl Ji are commonly reported for water 

imbibition in building materials (Hall et al. 1984; Hall 2007; EI Abd et al. 2005; Ridgway 

et al. 2006; Lockington and Parlange 2003). 
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Figure 2. The correlations ofSJ vs. x I Ji (a), ~ vs. x I Ji (b), (PI) vs. x I Ji (c), and CS 1 

vs. x I Ji (d) at different imbibition times. 

Figure 2(c), the plot of (PI) vs. xl Ji, suggests that the ensemble averaged 

pressure (PI) is not a monotonic function of x I Ji .The response seen in Figure 2( c) can 

be rationalized by referring to Figure I and recalling that in this case both PL and PR are 

zero. For a specified time, ensemble averaging over the tubes at small values of x 

involves tubes (of various diameters) that all contain the invading fluid 1. Within in each 

of these individual tubes the pressure decreases with increasing x. Thus the ensemble 

averaged pressure decreases with increasing x in this regime. However, when the 

ensemble average is performed at larger values of x, the tubes containing the invading 

fluid I are those tubes of larger diameter. This is a consequence of the fact that the 

velocity of invading fluid is slower in the smaller diameter tubes and thus at the specified 

time, and large enough values of x, the small diameter tubes are not yet filled by the 

invading fluid. At even larger values ofx, only the very largest diameter tubes are filled 

with fluid 1. In such tubes the pressure drop due to friction with walls is relatively small 
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compared to that in smaller tubes; and the pressure in forefront of the invading fluid is 

close to the pressure on the fluid interface, which is -4r21 cos PI tP(X,t), an increasing 

function ofx, because tP(x,t) increases with x. Since only the filled tubes are counted in 

the ensemble phase averaging procedure in the calculation of the average pressure of 

fluid 1. The resulting ensemble average then increases with x as shown in Figure 2( c). In 

this case, the extended Darcy's law is invalid in the forefront of the invading fluid since it 

would predict negative velocities for fluid 1, if used. Difficulties associated with direct 

application of Darcy's law to two-phase flows in a porous medium have been recognized 

previously (Hall et al. 1996; Nordbotten et al. 2008). In an attempt to amend Darcy's 

law, a "macroscopic pressure" is sometimes defined as a linear combination of the spatial 

derivatives of the volume averaged pressure of various orders (Nordbotten et al. 2008). 

In the case of this bundle-of-tubes model, the ensemble phase average can be regarded as 

a volume average with the representative volume being a slab perpendicular to the tube 

direction with infinitesimal thickness in the direction of flow. For the case of inviscid 

fluid 2, the "macroscopic pressure" of the fluid vanishes, and flux of fluid 1 is then 

proportional the gradient of the "macroscopic pressure" of fluid 1 according to equation 

(33) of Nordbotten et al. (2008) Since the flux is positive in this example, this requires 

the gradient of the "macroscopic pressure" of fluid 1 to be negative. However, as shown 

in Figure 2(c), the gradient of ensemble phase averaged pressure, which equals to the 

intrinsic volume averaged pressure, is positive. In other words, the gradient of the so­

called "macroscopic pressure" and the gradient of the intrinsic volume averaged pressure 

have different signs; while the lowest order approximation to the "macroscopic pressure" 

is thought to be the intrinsic average pressure (Nordbotten et al. 2008). 

From (11) we find that saturation SI can be written as a single-valued function of 

diameter tP. As mentioned above the diameter tP(x,t) is a single-valued function of 

xlJi. Therefore the variable xlJi can also be regarded as a single-valued function of 

the fluid 1 saturation SI in the region where the saturation 0 < SI < 1 , as shown in Figure 

2(a). In this region, the diameter ¢(x,t), the averaged pressure (PI) and the drag 
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coefficient CIs can be expressed as single-valued functions of the volume fraction 81 , or 

saturation SI' With these relations we can rewrite the momentum equation for fluid I as 

(31) 

where 

(32) 

In this way the volume flux 81 (ul) per unit cross section area can be expressed in a form 

similar to Fick's law of diffusion with a saturation-dependent diffusion coefficient 

DI (SI ) . This imbibition flow can be described as a diffusion process because the 

averaged pressure(PI), the surface tension term4rZlcosPI¢, and the drag coefficient 

Cis depend only on the saturation. This explains the success of the diffusion approach in 

modeling imbibition of liquids when gas viscosity is negligible(Washburn 1921 ). 

However, this condition is only satisfied in the cases where the viscosity of the receding 

fluid is negligible and in the region where SI is less than one. In cases where SI as 

shown in Figure 2( a), we have V SI =0, while the fluid flux '" (u l ) > 0; therefore (31) is 

incorrect. In this region, F;2 =0 according to (21), and thus the fluid is purely driven by 

the pressure gradient term in the momentum equation (23). Indeed, in this region, the 

average pressure (PI) decreases linearly with x as shown in Figure 2( c) while the 

saturation remains constant. The derivative d (PI) / dSI then becomes undefined and the 

diffusivity defined by (32) becomes infinity as shown in Figure 3(a). This explains that 

many reported experimental values for DI increase significantly (as much as 104 times). 

as the saturation approaches unity. (EI Abd et al. 2005; Meyer and Warrick 1990) The 

fact that the diffusivity becomes undefined in the region of full saturation, highlights a 

limitation of the diffusion approach of describing fluid imbibition processes in porous 

materials. 

This example demonstrates the importance of the additional force density term, 

F;2' in the ensemble averaged momentum equation (23). The force density F;z can be 

calculated from the pressure difference (PI) / (PI) by using (21). In Figures 3(b ), (c), 
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Figure 3. The correlations ofD/Bp vs. Sl (a), (PI)/ -(PI) vs. Sl (b), 4r21 cosp / (J vs. Sl 

(c), and CSI vs. Sl (d) . 

4.2. Receding fluid with finite viscosity 

In this subsection we study a case in which the pressure difference between reservoirs is 

still zero, but viscosity P2 of fluid 2 is not negligible. The viscosity ratio, P21pl between 

fluid 2 and fluid J is set to be in a range from 0.01 to 1. In this case, surface tension 

generates the pressure gradient needed to drive fluid 2, hence P2 > 0 and (P2) > O. 

Figure 4(a) plots the average pressures as a function ofx at different time t. We note that 

there are kinks in the curves for the average pressure (P2) of fluid 2. The curve for the 
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average pressure(PI) stops at the x-coordinate of the kink point for the corresponding 

average pressure(p2)' This kink point is the deepest penetration for the invading fluid at 

the specified time. After that point, the fluid 1 is not present and the average pressure of 

fluid 1 is undefmed. After the kink, the average pressure (P2) varies linearly with x. 

To explain this phenomenon, we note that similar to (19), we have 

(33) 


where (P2)/ is the pressure of fluid 2 at the phase interface. When x is larger than the 

x -coordinate of the kink point, all the tubes are filled with fluid 2, and V ()2 =O. In each 

tube, according to (2), the pressure gradientVP2 is independent of x, and so is its average 

(VP2)' The gradient of the averaged pressure calculated from (33) is then independent of 

x; and (P2) varies linearly with x as shown in Figure 4(a). In the coexisting region for 

both phases, the average pressures are highly nonlinear. Figure 4(b) shows that the 

magnitude of (P2) is much larger than that of (PI) because fluid 2 preferentially 

occupies small tubes. Figure 4(c) and (d) show the effect of viscosity ratio the average 

pressure profiles for the two phases at a specified time. As the viscosity ratio increases, 

the non-monotonic behavior of (PI) disappears (e.g. fJ2 =fJ/ as shown in Figure 4(c». 
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Figure 4. The profiles of the average pressures of two phases «(PI) or (P2) ) VS. x without 

the external pressure difference, (a) - (b) imbibition time effect, and (c) - (d) viscosity 
ratio effect (arrows in the plot indicate the kinks) 

Figure 5(a) shows that the saturation is not a single valued function x / Ji when 

the viscosity ratio of two phases is non-zero. Figure 5(b) and (c) show that the pressure 

difference (PI) I - (PI) of fluid J at the interface and the pressure difference (P2) - (PI) 

between two phases depend not only on the saturation but also on time t. Figure 5(d) 

shows the drag coefficient CIs as a weak function of time t . 
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Figure 5. The correlations ofS/ vs. x/Ji (a), (PI)/ -(PI) vs. S/ (b), (P2)-(PI) vs. S/, 
and CS/ vs. S/ (d). 

These results imply that a parameter in addition to the saturation S/ is needed to 

uniquely determine the closure relationships. In introducing the concept of dynamic 

capillary pressure, Hassanizadeh and Gray (1993), assumed that the dynamic part of the 

capillary pressure was proportional to the local time derivative aSI / at. This idea can be 

generalized to model the closure quantities as nonlinear functions of the saturation SI and 

its local time derivative aSI/ at. In the bundle-of-tubes model, for a given pair of SI and 

asi/at, there is a unique corresponding pair of x and t. With a unifonn distribution of 

diameters (given by the probability distribution) between tPs and tPL' the required 

relationship can be found as follows. By differentiating (5) and (11) with respect to t, 

and then eliminating atP/at, from the resulting relations we find 

1 (tPl-tP;)(2~+4r21 cosP) aSI 

t= 3tP3(~+4r21 cosP) at 
(34) 

Using (11) the diameter tP can be expressed in tenns of saturation SI as 

tP(SI) =~tPl-SI(tPl-tP;) . (35) 

With (34) and (35), the time t can then be expressed as a function of saturation SI and its 

local time derivative asJat. Using (5) and (35), position x can also be expressed as a 

function of the saturation SI and aSI/ at. The closure quantities calculated at (x, t) can 

then be expressed as functions of these two primary variables, SI and aSI/ at. These 

functions are shown in Figure 6. For a fixed aSI / at , the relation between (PI) I - (PI) and 

Sl is non-monotonic as shown in Figure 6(a). At a small asJat, this non-monotonic 

behavior is more pronounced. For a given aSJat, initially the pressure difference 

(PI)/ -(PI) decreases with the saturation S/, but as the saturation approaches to unity, 

the pressure difference starts to increase. This behavior may seem to be in contradiction 

to the pressure difference plotted in Figure 5(b). To explain this apparent contradiction, 

one needs to recall that these two figures are obtained under different conditions. Figure 

5(b) is obtained at a constant time whereas Figure 6(a) is obtained at a fixed aSJat (= 
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-as2/at). According to (4), flow velocity increases with the tube diameter and the 

invading fluid occupies the large tubes first. As the saturation SI approaches unity and 

saturation S2 approaches zero, the diameters of the tubes containing fluid 2 (and thus the 

velocity of fluid 2) becomes small. Thus, the second term in the continuity equation for 

fluid 2 becomes small and negligible 

aS2 +S2V.(U2)+(U2)·VS2 =0. (36)at 
The pressure difference (PI)/ -(PI) in Figure 6(a) is obtained with fixed as2 /at, thus as 

velocity (u2) decreases, the magnitude of IVS2 Iincreases. Since the change in the 

saturation is caused by moving across the fluid interfaces, the large saturation gradient 

indicates a point close to fluid interfaces. Therefore the pressure difference (PI) / - (PI) 

in Figure 6(a) is calculated with the average pressure (PI) evaluated at a point close to 

the interface; and thus the pressure difference is of lower magnitude as seen in Figure 

6(a). The same is true for the pressure difference (P2)/-(P2) of fluid 2, however, it is 

not shown in Figure 6(b), because the minimum for this pressure difference occurs at 

saturation S2::::: 10--1! according to the assumed probability distribution (29) of the tube 

diameters. Figure 6(c) shows the average pressure difference between two phases as a 

function of SI and aSJat . 
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Figure 6. The effect of aS2/al on the profile of (P.)/-(P.)vs. S, (a), (P2), -(P2) vs. 

S. (b), and (P2)-(P.) vs. SJ(c). 

Similar to the observation in Figure 5(d), Figure 7(a) and 7(b) show that CIS and 

C2S are functions of S. but are almost independent of aS2/al. This explains why the 

penneability (the inverse of these drag coefficients) is often reported not to be rate 

dependent, although it is often reported to be dependent on the degree of saturation 

(Brooks and Corey 1965; Braun el aI. 2005). 
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Figure 7. The effect of 8S2/81 on the profile ofCs, vs. S, (a) and CS2 vs. S, (b). 

In this simple bundle-of-tubes model, the static part of the capillary pressure 

(Dahle el al. 2005), 4r2. cos /3 I ,p, is only a function of the saturation. This is because 

the tube diameter t/J is only a function of the saturation as shown in (11) and (35). In 

Figure 8, we display the dynamic part of the capillary pressure(P2)-(p.)-4rcos/3I,p. 

Initially it was thought (Hassanizadeh and Gray 1993) that the dynamic part of the 

capillary pressure was proportional to as. 101. Later Dahle et aI. (2005) found that when 
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aSI / at =0, the dynamic part of the capillary pressure was not zero. They then modified 

the dynamic capillary pressure to contain two terms. The first term is a function of the 

saturation SI only. The second term is proportional to aSJat with a coefficient 

depending on SI' For cases with 1i2« lit, (P2) =0 and (PI) is a function of the 

saturation, as explained above. The dynamic part of the capillary pressure is then a 

function of saturation only and is independent of aSI / at as shown in Figure 8. However, 

for the cases where Ii2 is not negligible, our results show that the capillary pressure 

depends on asi/at in a non-linear manner. The strongest response occurs at small values 

of aSJat. As aSJat increases, the value of (P2)-(PI)-4rcosplrp approaches a 

constant value. 
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Figure 8. The correlation between (P2)-(PI)-4rcosp Irp and aSJat at targeted Sf and 

L1P = O. 

To study the effects of the viscosity ratio, we fix the value of Sf at 0.5 and then 

plot (P2)-(PI)-4rcosp Irp as a function of aSJat in Figure 9. The dynamic pressure 

is sensitive to asi/at for a small asi/at and approaches a constant for a large aSJat. 
When the viscosity ratio betWeen the receding and the invading fluids decreases, the 

saturation rate dependent region of (P2)-(PI) -4rcosp I rp expands. 
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Figure 9. The correlation between (p2)-(pt)-4rcosp / f/J and ast/at at different 

viscosity at Sj = 0.5. 

4.3. Effects of reservoir pressure difference 

To examine the effects of the pressure difference in the reservoir, we recalculate all the 

quantities in Figure 6, 7 and 8 with LiP = 104 and plot the results in Figure 10. 
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Figure 10. Plots (PI)/ -(PI) vs. S} (a), (P2)/ -(P2) vs. S} (b), CS1 vs. SI (c), CS2 vs. S} 

(d), and (P2) -(PI) vs. S} (e) at different 8SJ8t with L1P = 104
• The correlation between 

(P2)-(PI) -4rcosp / tP and 8SJ8t at different Sds plotted in (t). 

With the positive pressure difference !!p, there is a larger velocity increase in 

large tubes than that in small tubes as one would expect. The increase in the penetration 

of fluid 1 is also more significant in larger tubes than that in small tubes, resulting in a 

larger spread in the co-existence regions of fluids. This leads to an increase in the 

average distance from a point x (where the average pressure is evaluated) to the interface 

where (PI)/ and (P2) /are evaluated. This results in more significant pressure 

differences (PI)/ -(PI) and (P2)/ -(P2) in Figures lO(a) and (b) than the pressure 

differences in Figures 6 (a) and (b). The difference in the pressure difference (P2) - (PI) 

between phases shown in Figure 10(e), however, is almost the same as in Figure 6(c), 

because they are not directly related to external pressures. The drag coefficients of CS} 

and CS2 in Figures lO(c) and (d) are almost the same as those in Figures 7(a) and (b). 

Again, the behavior of dynamic part of the capillary pressure shows a nonlinear 

dependence on 8SJ8t in Figure 1O(t). 

The average pressure difference (P2) - (PI) between phases is commonly called 

the capillary pressure implying an assumption that it is a result of surface tension. We 

now calculate a case without the surface tension. We keep all other parameters the same 

as in the last case except we set r = O. The results of (PI) / - (PI) are plotted in Figure 

II(a). The curves behave similarly to the case plotted in Figure 6(a), but with smaller 
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magnitude due to the zero surface tension. The results of (P2)/ - (P2) are plotted in 

Figure I I (b). The pressure difference (P2)/ -(P2) approaches zero as the saturation S} 

approaches unity. This property is also true for Figure 6(b) and Figure I I (b), but was not 

shown in those figures since the minimum value of the pressure difference occurs at the 

saturation S} too close to unity. As shown in Figure ll(c), the average pressure difference 

(P2) - (PI) is not zero. In this case, this difference in average pressures is caused by the 

viscosity difference between the fluids, not by surface tension. If the viscosity is the 

same as the cases studied by Dahle et al. (2005), then the average pressures of the two 

phases are in fact the same. In other words, not only the surface tension, but also 

viscosity difference contributes to the pressure difference, or the "capillary pressure". 
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Figure 11. Plots (PI)f - (PI) ,(Pz)f - (pz) , and (pz) - (PI) VS. Sf at different aSJat in 

the case ofnl = O. 

5. Conclusions 

In this paper, an ensemble phase averaging technique for continuous multi-material 

interactions is applied to derive averaged equations for multiphase flows in porous media. 

The ensemble averaged equations are found to have terms in addition to those commonly 

used in Darcy's law. Based on the bundle-of-tubes model, we studied properties of these 
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additional terms. We find these new terms are in principle capable of correcting many 

deficiencies in models based on the straightforward extensions of Darcy's law. We also 

studied the relations between these new terms and several recent models for two-phase 

flows in porous media. 

Closure relationships were derived for the simple bundle-of-tubes model. The 

closure can be written as functions of saturation and the local time derivative of the 

saturation. The drag coefficients were found to be almost independent of the local time 

derivative of the saturation. Despite the name "capillary pressure", the difference in the 

average pressures of two fluids is not necessary related to surface tension effects. Without 

surface tension, the average pressures of the two phases are not necessary the same. If the 

pressure difference can be decomposed into a static part, representing surface tension 

effects, and a dynamic part, as suggested by Dahle et al. (2005), then the dynamic part of 

the capillary pressure not only affects the pressure difference, but also appears as terms in 

the averaged momentum equations. 

Although it is commonly assumed that a fluid imbibition process can be modeled as 

a diffusion process, in the example we show that this is not generally true. It is not 

necessary that the velocity of the invading fluid decreases as 1/ Ji . If the fluid being 

displaced is more viscous than the invading fluid, the velocity can even increase with 

time as fluid in the pores is replaced by the less viscous invading fluid. 

The results and conclusions obtained in this paper are based on the simple geometry 

of the bundle-of-tubes model. Although we have reason to believe that the closure 

relations obtained here share many common features and trends in more complicated 

systems, more work is needed before these conclusions can be generalized. 
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