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We propose a universal approach for analysis and fast simulations 
of stiff stochastic biochemical kinetics networks, which rests on 
elimination of fast chemical species without a loss of informa­
tion about mesoscoplc, non-Poissonian fluctuations of the slow 
ones. Our approach, which is similar to the Born-Oppenhelmer 
approximation in quantum mechanics, follows from the stochastic 
path Integral representation of the cumulant generating function 
of reaction events. In applications with a small number of chem­
Ical reactions, It produces analytical expressions for cumulants 
of chemical fluxes between the slow variables. This allows for a 
low-dimensional, Interpretable representation and can be used for 
coarse-grained numerical simulation schemes with a small com­
putational complexity and yet high accuracy. As an example, we 
derive the coarse-gralned description for a chain of biochemical 
reactions, and show that the coarse-grained and the microscopic 
simulations are in an agreement, but the coarse-gralned simula­
tions are three orders of magnitude faster. 

stochastic processes I Monte-Carlo I Michaelis-Menten I Langevin 

Abbreviations; MM, Michaelis-Menten; CGF, cumulant generating function; MGF, 
moment generating function; SPI, stochastic path integral 

Introduction 

Computer simulations are often the method ofchoice to explore an 
agreement between a model and the observed experimental data 

in systems biology, especially in the context of single-molecule exper­
iments [1,2,3]. Unfortunately, even the simplest biochemical simula­
tions often face serious problems, both conceptual and practical. First, 
the networks usually involve combinatorially many chemical species 
and reaction processes: for example, a single molecule with n mod­
ification sites can exist in 2n states, with an even larger number of 
reactions connecting them [4]. Second, while it is widely known that 
some molecules occur in the cell at very low copy numbers (e.g_, a sin­
gle copy of the DNA), which give rise to important stochastic effects 
[5, 6, 7, 8], it is less appreciated that the combinatorial complexity 
makes this true for many molecular species. Indeed, even for a large 
total number of molecules, typical abundances of microscopic species 
may be small if the number of the species is combinatorially large. 
Third, and perhaps the most profound difficulty of the simulations 
approach, is that only very few of the kinetic parameters underlying 
the networks are experimentally observed or even observable. 

While some day computers may be able to tackle the fonnidable 
problem of modeling astronomically complex biochemical processes 
as a series of random reaction events, and then perfonning sweeps 
through parameter spaces in search ofan agreement with experiments, 
these days are still far away. More importantly, even if the computing 
power were available, it would not help in building a comprehensi­
ble, tractable interpretation of the modeled system and in identifying 
connections between its microscopic and macroscopic features_ 

Clearly, such an interpretation can be aided by coarse-graining, 
that is, by merging or eliminating certain nodes and/or reaction pro­
cesses (this would be called blocking or decimation in statistical 
physics, and is in the spirit of the real-space renonnalization group). 
Ideally, one wants to substitute multiple elementary (that is, single­
step, Poisson-distributed) biochemical reactions with a few complex 
processes linking the species that survive the coarse-graining in a way 
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that retains predictability of the system, Not incidentally, this would 
help with each of the three roadblocks mentioned above by reduc­
ing the number of interacting elements, increasing the copy numbers 
of agglomerated hyperspecies, and combining multiple microscopic 
rates into a smaller number of effective parameters. 

The importance ofcoarse-graining in biochemistry is long under­
stood [9], and the prime example is the MM kinetic scheme: 

E+P. [1] 

Here kI, k2, and k_1 are kinetic rates, S, p. E, and C denote the 
substrate, the product, the enzyme, and the enzyme-substrate complex 
molecules, respectively, and [ ... ] represent the abundances. The en­
zyme catalyzes the S -+ P transformation by merging with S to create 
an unstable complex C, which then dissociates either back into E +S 
or forward into E + P, leaving E unmodified. If [S] » [EI, then 
the enzyme cycles many times . .B9fore [SI and [PI change appreciably. 
Thus the enzymes equilibrates quickly, resulting in a coarse-grained, 
complex reaction with the decimated enzyme species: 

S v P kdSliEj [2]
-; • v = [S] + (k2 + k-d/kl 

However, this simple reduction is insufficient when stochasticity 
is important: each MM reaction consists of multiple elementary steps, 
thus the statistics of the number of the reactions per unit time is non­
Poissonian in general. While some attempts nave been made to extend 
detenninistic coarse-graining to the stochastic domain [10, II, 12], a 
systematic set of such tools for realistic biochemical networks has not 
been found yet. In this article, we make a step towards the goal. 

We start by noting that, in addition to the three conceptual prob­
lems, a technical difficulty stands in the way of stochastic simulations 
in systems biology: molecular species have diverse dynamical time 
scales, making the systems stiff and difficult to simulate. We propose 
to use this property of multiple time scales to our advantage. 

Many related approaches have been explored. differing largeriy 
by the definition of fa';t and slow variables. Commonly, reaction rates 
are used for this purpose [10]. However, if two species of different 
typical abundances are coupled by one reaction, then a relatively small 
change in the concentration of the high abundance species can have 
a dramatic effect on that of the low abundance one. This notion of 
species rather than reaction based adiabaticity is at the heart of the 
original MM derivation, as well as of our arguments. 

Our method builds upon the SPI technique from mesoscopic 
physics [13, 14, 15] and provides three major improvements that make 
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the approach more applicable to biology. First, we extend the method, 
initially developed for large copy numbers. to discrete degrees of free­
dom. such as a single enzyme. Second, we explain how to use the SPI 
for a network of multiple reactions, reducing the entire network to a 
few complex reaction links. Finally. we show how the procedure can 
be turned into an efficient algorithm for coarse-grained simulations, 
preserving statistical characteristics of the original dynamics. The 
algorithm is akin to the widely used Langevin [16] or T-Ieaping [I7J 
schemes, but it simulates complex reactions in a single step. We be­
lieve that this development of a fast, yet precise numerical algorithm 
is the most important practical contribution of our work. 

For pedagogical reasons, we develop the method using a model 
system that is simple enough for a detailed analysis. yet is complex 
enough to support our goals, and we provide a generalization later. 

The model. Consider an enzyme attached to a cell membrane, Fig. I. 
SB substrate molecules are distributed over the bulk cell volume. Each 
molecule can either be adsorbed by the membrane, forming the species 
S),1, or dissociate from it, and the enzyme can interact only with the 
membrane-bound substrates. The enzyme-substrate complex C can 
split either into E + S;;1 or into E + P. Let's suppose that the latter 
reaction is observable; for example, a OFP tag sparks each time a prod­
uct molecule is created [3]. Finally, we assume that C ..... E + P is 
irreversible (e.g., the product leaves the membrane). This as a simple 
model of receptor signaling, such as in vision or immune system, or a 
model ofa reaction-diffusion MM enzyme, where the membranelbulk 
play the roles of the nearby/far away regions around the enzyme, and 
diffusion takes the molecules between them. 

The full set of elementary reactions is 

I. adsorption of the bulk substrate, SB ..... S),j (rate qoSB): 
2. reemission of the substrate into the bulk, S)'1 -+ SB (rate qS..J); 
3. Michaelis-Menten conversion of S),1 into P, consisting of 

(a) complex formation, S:'1 + E C, (rate kl S;;\); 

(b) complex backward decay, C S),1 + E (rate L I); 

(c) product emission C E + P (rate k2 ). 

Note that here and in the rest of the article we don't make a distinction 
between a species name and the number of its molecules. 

In this setup, only emission of the product is directly observable. 
Our goal is to coarse-grain the above system offive reaction processes 
into a single complex reaction SB P, as in Fig. 2(c), That is, we 
want to eliminate all intermediate species and processes, while pre­
serving their effects on the statistics of the complex reaction SB -+ P 
on time scales appropriate for its dynamics. 

We stress again that this model is used for concreteness only. and 
the methodology we develop can be applied for other systems as well. 

Results 
There are three effective time scales in our model. One is the scale 
TB of the variation of the bulk substrate abundance. We assume that 
SB » S),1. Therefore, this scale is the slowest, and we will be inter­
ested in studying the response of the system to changes in SB on this 
scale. A faster time scale, TM is given by the dynamics ofS),1. Finally. 
the fastest scale, TE, is set by single reaction events, that is, the charac­
teristic time between enzyme-substrate binding/unbinding. Overall, 
TE « TM « TB. We emphasize that all species in the problem are 
connected by reactions that happen with similar rates, and the sepa­
ration of the time scales is a result of the particle abundances, rather 
than the reaction speeds: it takes longer to change a high-abundance 
species drastically compared to a low-abundance one. We expect this 
to be a generic property of many chemical networks. 

The hierarchy of times allows us to coarse-grain the system in 
two steps, as in Fig. 2. First, we remove the variable with the fastest 
dynamics: the binary substrate-enzyme complex C. This replaces the 
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three steps of the MM mechanism with a single reaction SM P, 
Fig. 2(b). Additionally, we represent the other reactions in the sys­
tem in a more convenient form. In the second step, we eliminate S),1, 
which evolves on the scale TM. This results in the characterization 
of the average SB ..... P flux and its fluctuations, treating SB as a 
time-dependent input parameter, cf. Fig. 2(c). 

Preliminaries. Let oQf,l. stand for the number of reaction events for 
the reaction type p, (p, 1,2,3 corresponds to adsorption, detach­
ment, and the MM reaction, respectively). Then P(oQf,l.IT) is the 
probability distribution of the number of events of type p, during a 
time window of length T. Instead of considering these distributions 
directly, we rely on the corresponding MGFsl: 

I:00 

P(oQf,l.IT)eioQ",x. [3] 
6Q,.=O 

where Sf,l. (X) is the CGE Then the cumulants of P(oQ/' IT) are 

cf,l.,,, = (_i)" 8" I Sf,l.(X,T), [4] 
x=o 

where a stands for the cumulant order. In particular, the average flux 
for the reaction is cf,l., I, and the corresponding variance is Cf,l.,2. 

Step 1: The generating function representation. This step can be 
viewed as a generalization ofthe T -leaping approximation [17], which 
simulates elementary reactions, for example attachments/detachments 
in Fig. 2(a), by choosing a time step ot, over which the number of the 
reactions is much larger than one, yet the slowly varying reaction rates 
can be considered stationary. In T-Ieaping, one then approximates 
P(oQf,l.lot) as Poissons. Similarly, in our case, forTE «ot« TM, 

we can approximate COFs of membrane attachementldetachment as 
those of Poisson processes, Sf,l.(X) Tf,l.(t)(eiX l)ot, and the rates 
are TI = qOSB(t) and T2 = qS),1(t), respectively. 

Unfortunately, not all biochemical processes can be treated in this 
simple manner. For example, due to the single-copy nature of the MM 
enzyme in Fig. I, the instantaneous rate of the product creation is a fast 
varying function of time, switching between zero and k2 every time 
the complex forms. Therefore, one cannot treat the product creation, 
P(oQ310t), as a homogeneous Poisson process and use T-leaping or 
Langevin methods [16, 17]. Still, we would like to avoid resorting 
to the Gillespie [18J or similar techniques since they are based on 
Monte-Carlo simulations of individual reaction events and are slow. 

As an alternative, we derive an approximation for the non-Poisson 
distribution of OQ3 by characterizing its CGF, S3. To this end, we 
eliminate the binary substrate-enzyme complex C and reduce the MM 
reaction triplet to a single process, whose dynamics can be consid­
ered stationary over times much longer than a single reaction event. 
The details are in Methods: Coarse-graining the Michaelis-Menten 
reaction, Eq. (21), and the obtained expression is valid for times ot, 
TE « ot « TM, so that many enzyme turnovers happen, but the 
effect on the abundance of S),1 is still relatively small. 

This completes Step I of the coarse-graining in which each re­
action, or a small complex of reactions, is subsumed by a quasi­
stationary CGF Sf,l. of the distribution of the number of its events. 

ImportantlY, in this Step, we remove the only species that exists, 
at most, in a single copy, thus simplifying analysis of the system. 
Additionally, while we don't focus on this in what follows, in the 
MM mechanism, the backward reaction is often a simple dissocia­
tion, whereas the forward one requires crossing an energy barrier and 
is exponentially suppressed. As a result, often L 1 » k2 requir­
ing multiple binding events (and with them the instantaneous rate 
changes) for each released product. Thus the effect of replacing the 

,More precisely, Z is the characteristic function, and the usual definition of the MGF is withoul 
i in the exponent Same is true for OUf CGF. S. We choose th,S nomenclature 10 emphasize 
fhat we use the functions for calculations of momenls and cumulanlS. respe<:tively, 
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entire MM mechanism with a single complex reaction on the simula­
tion efficiency may be quite dramatic. 

To illustrate the simplification, using Eq. (21), we write the first 
few cumulants of the number of MM product releases in time M: 

k1k2SM 6t K klSM + k2 + L l , [5]Ca,l K' 

C3,2 C3,IF, F = 1- 2Q/K, Q c3.d6t, [6] 

C3,3 c3,1[1-6Q(K-2Q)/K2 
], [7] 

Ca,4 Ca,l [1 - 2Q(7 K2 - 36KQ + 60Q2)/ K 3 
]. [8] 

The coefficient F is called the Fano factor (see below). To the ex­
tent that F =F 1, this complex reaction is non-Poisson (cf. Fig. I in 
Supponing Information). 

Knowing cumulants of P(6Q316t) allows for a numerical simu­
lation procedure 

6Qs(t) f/s(t,6t), [9] 
SM(t + 6t) SM(t) - 6Q3(t) + J(t)6t, [10] 

P(t+6t) = P(t) + 6Qs(t), [11] 

where T/3 (t) is a random variable with the cumulants given by Eqs. (5­
8), and J(t) represents currents exogenous to the MM reaction, such 
as changes in SM due to membrane binding/unbinding. Notice that 
we are now treating the reaction in a quasi-stationary, T-leaping or 
Langevin-like way by drawing a (random) number of reaction events 
over a time 6t directly, assuming that aU parameters defining the re­
action are constants over this time. The price for the coarse graining 
is that, instead of a single-rate Poisson distribution, one is forced to 
characterize this reaction by a prescribed sequence of cumulants. 

In principle, generation of such random variables is an ill-posed 
task since the moments do not define the distribution uniquely. Ad­
ditionally, once we allow for a nonzero third or fourth cumulant, the 
remaining higher order cumulants cannot be all zero, and the gen­
erated random variable will depend on the assumptions made about 
them. Fortunately. in our case, the situation is simplified because 
all CS,k ~ 6t. Thus higher cumulants have a progressively smaller 
effect, ~ (6t)l/k, on a number drawn from the distribution, and our 
random variables are almost Gaussian. Then the Gram-Charlier series 
expansion [19] aided either by the importance or rejection sampling 
[20,21] reduces the simulation scheme, Eqs. (9-ll), to a simple 
Gaussian, Langevin simulation with a small penalty, as described in 
Methods: Simulations with near-Gaussian distributians; see Fig. 5 
in Methods for illustration of the precision provided by these tools. 

Step 2: Coarse-grainlng membrane reactions. In Step 2 of the 
coarse-graining, we start with the CGFs 8j.L, IL = 1,2,3, of the slowly 
varying reactions. Using the SPI technique, we then express the CGF 
of 6Q, the number of the entire coarse-grained reactions SB -+ P in 
Fig. 2(c) overtime T, in terms of the component CGFs, and then sim­
plify the expression to account for the time scale separation between 
TB and TM, see Methods: Coarse-graining all membrane reactions, 
Eq. (31). This formally completes the coarse-graining. That is, we 
find the CGF of the 8 B -+ P particle flux for times T ;S TB, much 
longer than 1E and 1').1, the other time scales in the problem. 

The full expression forCGF is cumbersome and non-illuminating. 
Fortunately, we only look for the first few cumulants of P(8QIT), and 
these are obtained by differentiating the CGF as in Eq. (4). The ex­
pressions for the first three cumulants, CI , C2, and C3 are in Supporting 
Information. Then, similar to the MM reaction, we can simulate the 
whole five-reaction network in one Langevin-like step: 

6Q(t) T/( t, T), [12] 


SB(t +T) SB(t) 6Q(t) + J(t)T, [13] 


pet + T) pet) +6Q(t), [14] 


where T/ is a random variable with the cumulants as in Eqs. (1-4) 

in Supporting Information, and J(t) is an external current, such as 
production or decay of the bulk substrate in other cellular processes. 

Footline Author 

Fano factor in a single molecule experiment. In analyses of single 
molecule experiments, one often measures the ratio of the variance 
of P(aQIT) to its mean-the Fano factor [3], F = C2/CI. The fac­
tor is zero for deterministic systems and one for a Poisson process, 
providing a quantification of the importance of stochastic effects. 

Traditionally, to compare experimental data about F to a math­
ematical model, one would simulate the model using the Gillespie 
algorithm [18], which takes a long time to converge to the necessary 
accuracy. In contrast, our coarse-grained quasi-stationary approach 
yields an analytic expression for the Fano factor of the SB -+ P trans­
formation, see Eq. (3) in Supporting Information. Similar analytical 
shortcuts should be possible for other kinetic schemes. In Fig. 3, we 
compare the analytical expression to stochastic simulations for the 
full set of reactions in Fig. 2(a), seeing an excellent agreement. 

Note that F =F I, which indicates a non-Poissonian nature of the 
complex reaction. The backwards decay of C adds extra randomiza­
tion, thus larger values of k_1 increase F. At the other extreme, when 
k-l 0, the Fano factor may be as small as 112, so that the entire 
SB -+ P chain is equal to a sequence oftwo Poisson events with sim­
ilar rates. Finally, when q = 0, i.e., the substrates are removed from 
the membrane only via 8M -- P, F 1. This is because then the 
only stochasticity in the problem is from Poisson membrane binding, 
and all bound substrates will eventually get converted to P. 

Computational complexity of coarse-grained simulations. We ex­
pect the coarse-graining approach to be particularly useful for simula­
tions in systems biology. This is due to an essential speedup provided 
by the method over the traditional Gillespie algorithm [18J, by which 
all approaches are benchmarked. Indeed, for our model, the computa­
tional complexity ofa single Gillespie simulation run is 0 (MT/ TE), 
where M = 5 is the number of reactions in the system, and T is 
the duration of the simulated dynamics. In contrast. the complexity 
of the coarse-grained approach is 0 [MO (T/TE)O] since we have re­
moved the internal species and simulate the dynamics in steps of rv T, 
instead of rv TE. However, the Gillespie algorithm is (statistically) 
exact, while our analysis relies on quasi-stationary assumptions. 

To gauge the practical utility of our approach in reducing the 
simulation time while retaining a high accuracy, we benchmarked it 
against the Gillespie algorithm. All simulations were performed using 
Fortran 90, on a single CPU AMD Barton 2500 (1.83 GHz, Windows 
2000). In Supponing Information we provide the benchmark results 
for the single MM enzyme (reaction 3), where the coarse-graining 
approach achieves factor of 40 speedup. Here we focus on the full 
five-reaction model system viewed at different coarse-graining levels. 
We use kl = 0.02, k-l = 2, k2 = I, q = 0.01, and q08B = 1.5. 

Coarse-grained. Step 1: Total time of the evolution is T 
WOO, and the initial number of the substrates on the membrane is 
SM(t = 0) 120. Then the relaxation time of a typical llucLUation 
of 8 M is TM ~ I/[q + (akM:v:/a8M)] ~ 80, where k:V1M is the rate 
of the Michaelis-Menten reaction for a given S"h and this sets the 
scale at = 20 « TM rv 80. We simulate all three reactions that 
survive Step I of the coarse-graining (membrane binding/unbinding 
and MM transformation) by approximating their distributions with the 
Gram-Charlier series with three known cumulants, and we perform 
106 simulation runs, which is sufficient for convergence of the third 
cumulant of the Sa -- P aggregate reaction. As shown in Tbl. I, 
the coarse-grained approach speeds simulations 60-fold relative to the 
Gillespie one with little apparent accuracy loss. 

Coarse-grained, Step 2: We do similar benchmarking for the sys­
tem represented as a single coarse-grained reaction Sa -+ P. Here 
we use the time step T = 1000, TM « T « TB. The results in 
Tbl. I show that simulating all five reactions in a single step results 
in a dramatic speedup of about 4000. This number relates to the ratio 
of the slow and the fast time scales in the problem, but also to leaping 
over the futile bindings-unbindings in the coarse-grained scheme. 
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For all cumulants, coarse grained simulations and analytic results 
differ from exact Gillespie values by, at most, a per cent. It is hard 
to imagine a practical situation in modem biology where the kinetic 
parameters are known well enough so that such discrepancy matters. 
Yet the reduction of the simulation time by the factor of 103 

.•. 104 

is certainly a tangible improvement. 

Generalizations to a network of reactions. As discussed in detail in 
the original literature [14], in the SPI formalism, a network of M re­
actions with N chemical species (cf. Fig. 4) is generally described by 
2MN ordinary differential equations specifying the saddle point solu­
tion of the corresponding path integral. Methods: Coarse-graining all 
membrane reactions provides a particular example, and we refer the 
readers to the original literature for generalizations. Here, we build on 
the Ref. (14] and focus on developing a relatively simple, yet general 
coarse-graining procedure for more complex reaction networks. 

At intermediate time scales, at, many fast species connecting 
slow ones can be considered statistically independent. Therefore, in 
the SPI, every separate chain of such species simply adds to the ef­
fective Hamiltonian. Namely, we enumerate slow chemical species 
by /1, v, .. " Fast chains connecting them can be marked by pairs of 
indexes, e.g., /1V (cf. Fig.4). An entire such chain will contribute 
a single effective Hamiltonian term, HI''' ({N}, {X}, {Xc}), to the 
full CGF of the slow fluxes, where {N}, {X}, and {Xc} are the slow 
species abundances and the conjugate counting variables. If neces­
sary, the geometric correction to the CGF, S,r'::'m ({N}, {X}, {Xc}), 
can be written out as well [15]. Overall, 

S({Xc},T) = LS:'::'m({N(t)},{x(t)},{Xc},'T)+ 

This provides for the following coarse-graining procedure. First, 
one find~ a time scale at, small enough for the slow species to be con­
sidered stationary, and yet fast enough for the fast ones to equilibrate. 
If the fast species consist only of a few degrees of freedom, like in the 
case of a single enzyme, one derives the CGF of the transformations 
mediated by these species similar to Methods: Coarse-graining the 
Michaelis Menten reaction. If instead the fast species are mesoscopic, 
one uses the SPI technique to derive the CGF by analogy with Step 2. 

At the next step, the CGFs of the fast species are incorporated 
into the SPI over the abundances of the slow ones. For this, one 
writes down the the full effective Hamiltonian, Eq. (15), assumes adi­
abatic evolution, and solves the ensuing saddle point equations. The 
extremum of the effective Hamiltonian determines the CGF of the 
coarse-grained process. For hierarchies of time scales, this reduction 
procedure is then repeated. 

Discussion 
Rigorous mathematical techniques developed in physics, chemistry, 
and engineering are finding applications in the biological domain. 
This article represents one such example, where~iabatic ~roach, 
paired with the SPI formalism of statistical physics, allowsJO coarse­
grain stochastic biochemical kinetics systems. For a system with a 
separation of time scales. we eliminate fast variables and reduce the 
network to a handful ofslow species coupled by complex interactions 
with properties that account for the decimated nodes. The simplified 
system is smaller, non-stiff, and easier to analyze, resulting in orders 
of magnitude improvement in the computational complexity of its 
simulations. This has a potential for a wide impact on simulations in 
systems biology, at least for systems with diverse time scales. 

Fortunately, such systems occur more often in Nature than one 
would expect naively. Consider. for example, the system briefly men­
tioned in the Introduction: a molecule must be modified on n sites 
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in an arbitrary order to get activated. The kinetic diagram for this 
system is an n-dimensional hypercube, and the number of states of 
the molecule with m modified sites is (;:'). Therefore, if the to­
tal number of molecules is N, then a typical state with m modi­
fications will have Nm N/(;:') molecules in it. This number 
may be small, ensuring the need for a stochastic analysis. More 
importantly, it is quite different from either N m -lor N m+ I, e.g., 
Nm/Nm+1 (m + l)/(n - m), and, as we discussed at length, the 
different abundances result in different time scales. 

The adiabatic SPI coarse-graining simplifies interpretation of bi­
ological systems. For example, the Fano factor of the SB ..... P 
reaction, Fig. 3, may approach unity, suggesting a simple, yet rig­
orous, replacement of the entire reaction by a simple Poisson step. 
Then the list of relevant parameters becomes smaller than suggested 
by the ab initio description, improving interpretability and decreasing 
the effective number of biochemical features that must be measured 
experimentally. Recent analysis suggests that this may be a common 
property of biochemical networks [22, 23], and our methods may 
prove helpful in determining the relevant kinetic features. 

While orders of magnitude improvement in simulation speed is 
certainly impressive, we are still far from coarse-graining cellular­
scale reaction networks. However, the following properties of our 
approach suggest that we may be on the right track: 

• 	 We reduce a system of stochastic differential equations to a similar 
number ofdeterministic ones, which is a substantial simplification. 

• 	 We can operate with arbitrarily long series of cumulants of the 
number reaction events, keeping track of even rare fluctuations. 

• 	 Standard adiabatic approximations, well developed in classical and 
quantum pbysics, can be applied easily in the SPI context. 

• 	 Unlike some other coarse-graining techniques, the SPI approach 
can deal with copy numbers of order unity. 

• 	 Finally, the SPI is rigorous, mathematically justifiable, and allows 
for controlled approximations. 

In the forthcoming publications, we expect to show how these ad­
vantageous properties of the adiabatic SPI technique allow to coarse­
grain many standard biochemical network motifs. 

Materials and Methods 
Coarse-graining the Michaelis-Menten reaction. 

Consider the S:Vl ..... P reaction, described mathematically as in Eq. (1): 

k S
SM+E~C~ E+P. [16)

k_l 

The probabilities oftransitlons between bound, Ph, and unbound, P u 1-Ph, 
states of the enzyme are given by a two state Markov process 

[17) 

Using Eq. (17) and the definition of Z", Eq. (3), one can show that 
Z3(X, bt) satisfies a SchrOdinger-like equation with a X-dependent Hamilto· 
nian, leading to a formal solution [2, 24, 11, 15] 

Z3(X, at) = 1+ (e- HMM (X,t)6t) p(to), (18) 

where (1, 1) is the unit vector, p( to) is the probability vector of the initial 
enzyme states, and 

[19) 

Similar Hamiltonians can be derived for a wide class 01 kinetic schemes 
[24, 11,25, 15,26], allowing lor a straightforward extension of our methods. 

The solution, Eq. (18), can be simplffied if the MM reaction is considered in 
a quasi-steady state approximation, thai is Pu is equilibrated at a current value 
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of the other parameters. This means that the time scale of interest. ot "" TM. is 
much larger than a characteristic time of a single enzyme turnover, TE. so we can 

consider ot -+ 00 in Eq. (18). Then only the eigenvalue.>..o (X) of HMM (X) 
with the smallest real part is relevant. and Z3(X, at) e->'o(x)6t. 

It is possible to incorporate a slow time dependence of the parameters into 
this answer. By analogy with the quantum mechanical Berry phase [12. 15. 26J, 
the lowest order non-adiabatic correction can be expressed as a geometric phase 

Z3(X) = eS3 (X) = e fc A·dk- f dt>'o(x,t) , [20] 

where A = (uO(X)IOkUO(X», k is the vector in the parameter space that 
draws a contour C during the parameter evolution. and (uo(x)1 and luo(x)} 
are the left and the right eigenvectors of ftMM (X, t) corresponding to the in­
stantaneous eigenvalue '>"0 (X, t). The first term in Eq. (20) is the geometric 
phase. which is responsible for various ratchet-like fluxes [12, 27, 28]. 

The geometric phase gives rise to magnetic field·like corrections to the evo­
lution of the slow variables. However, since these corrections depend on (small) 
time derivatives of these variables, they often are small and can be neglected, un­
less they break some important symmetry (such as the detailed balance [15, 28)). 
or the leading, non-geometric term is zero. In our model. the geometric effects are 
negligible when TE /7YJ "" 1 / S)'1 « 1. and we deemphasize them. However, 
we keep the geometric terms in several formal expressions for completeness, and 
the reader should be able to track their effects if desired. 

Reading the value of .>..O(X) from Ref. [121, we write the CGF of 
P(aQ318t), TE « r5t ;:S 7YJ in the adiabatic limit: 

. at 
S3(X,at) = Sgeom(X,SM,S:vd + 2" [-(LI + k2 +SMkd 

+J(k-l + k2 + SMkd 2 + 4S).lk l k 2 (eix - 1)]. [21] 

Simulations with near-Gaussian distributions. A probability distribution 
P(oQ) with known cumulants Cl, C2. C3, ... , can be approximated as a lim­
ited Gram-Charlier expansion [191 

P(aQ);:,;; W(aQ,cl,c2) [1 + C3(y3 y) + C4(y4 246?( + 3)
3/26c2 (''2 

c~(y6 ISy4 + 4Sy2 15) ]+ 72c~ + ... , [22] 

where y (aQ cl)/vICi and W(r5Q,CI, C2) is the Gaussian density 
with the mean CI and the variance C2. The leading term in Eq. (22) is a stan­
dard Gaussian approximation, and the subsequent terms account for skewness, 
kurtosis, etc. If all cumulants scale similarly (the near-Gaussian case), then the 
terms in the series become progressively smaller, ensuring rapid convergence. 

Generation of random samples from the non-Gaussian Gram-Charlier series 
is still a difficult task. However, if, instead of the random numbers per se, the 
goaf is to calculate the expectation of some function f (aQ) over the distribution 
P, (f(aQ)}p, then the importance sampling [20] can be used. Specifically, 
we generate a Gaussian random number i)Q from W (aQ, CI, C2) and define 
its importance factor according to its relative probability in the normal distribution 
and the conSidered Gram-Charlier series 1'/ = P(6Q)/'l!(aQ, cl, C2). After 
generating N such random numbers aQ". 1/ = 1, ... ,N, we get 

[23] 

II a current random number draw represents just one reaction in a larger reac­
tion network, then the overall importance factor of a Monte Carlo realization is a 
product of the factors for each of the random numbers drawn within it. 

This reduces the complexity of simulations to that of a simple Gaussian, 
Langevin process with a small burden of (a) evaluating an algebraiC expression 
for the Gram-Charlier series, and (b) keeping track of the importance lactor. Yet 
this small computational investment allows to account for an arbitrary number 
01 cumulants of the involved variables. To illustrate this, in Fig. 5, we compare 
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the Gram-Charlier, importance-sampling simulations of the MM reaction flux to 
the exact results in Results: Step 1. IntrodUCing just the third and the fourth 
cumulant makes the simulations almost indistinguishable from the exact results. 

Here we sound a note of caution: the Gram-Charlier series produces ap­
proximations that are not necessarily positive and hence are not, strictly speaking. 
probability distributions. However. the leading Gaussian term decreases so last 
that this may not matter in practice. In fact, in our simulations. we simply rejected 
any random number that had a negative importance correction. However, this 
simplistic solution is inad~uate for lengthy simulations, where the probability that 

,L ~~ndom numbeJri; a long chain of events falls into a badly approximated 
region)!' the distribution approaches one_ Then other means of generating ran­
dom numbers, such as the well-known acceptance-rejection method [21] should 
be used. Since the true distributions of interest are near·Gaussian, a Gaussian 
with a slightly larger variance will be an envelope function for the Gram-Charlier 
approximation to the true distribution. Then the average random number accep­
tance probability will be similar to the ratio of the true and the envelope standard 
deviations, and it can be almost one. Then the rejection approach will require 
just a bit more than one normal and one uniform random numbers to generate a 
sample from the Gram-Charlier series. Importantly, in this case, the negativity of 
the series is not a problem since it will lead to an incorrect rejection of a single, 
highly improbable sample. rather than an entire sampling trajectory. 

Coarse-graining all membrane reactions. 

To perlorm the coarse-graining that connects Figs. 2(b) and 2(c), we look 
for the MGF of the total number of products Qp produced over time T "" TB: 

Z(xc) eS(xc) = L P(QpIT)e'Qpxc. (24) 

Qp=O 

For this, we discretize the time into intervals tk of duration {;t, and we introduce 
random variablesaQ" (tk) (M = 1,2,3), which denote the numbers of each of 
the three different reactions in Fig. 2(b) (membrane binding, unbinding, and MM 
conversion) during each time interval. The probability distributions of aQ" (tk) 
are given by inverse Fourier transforms of the corresponding MGFs: 

P(eSQ" (tk» = ..!... JdX" (tk)e -iX" (tkloQ" (tk)+H,.(X,.(tk),S[I(tk»Jt. 
27f 

125) 

Following [13, 14, 29, 151. and recalling that Qp Lk JQ3(td, we 

write the MGF of the total number of products created during time interval (0, T) 
as the path integral over aI/ possible trajectories of r5QfJ (ld and SM (lk): 

Se (xc,1') (eiXcQp) = JDS)'1(tk) IIJDaQ,,(tk)X 
k,,, 

P[eSQ," (tk)]eiXC iiQ3(tcl x 

J[S:Vl(tk+I) SM(tk) - r5QI(tk) + JQ2(tk) + 6Q3(tk)]. 126] 

The r5-function in Eq:(26) expresses the conservation law for the slowly 
changing number of substrate molecules SM. We rewrite it as 

1 j+"6(- .. ) 21f _" dX:\I(tk)exp{iX:\l(tk)" }. [27] 

and we substitute the expression together with Eq. (25) into Eq. (26). Then the 
integration over JQ" (t) produces new a-functions over XI"' which, in turn, are 
removed by integration over X" (tk). This leads to an expression for the MGF: 

[28] 

H =HI ( -X)'I, SM, t) + H2(X).I, S~1, t) + H 3(XM + Xc, SM, t) 

=qOSBe- XM + SMqeu ., + ~ [ - (LI + k2 + SMkt)+ 

J(k- l + k2 + SMk1)2 + 4SMklk2(eiXM+Xc -1)]. [29] 

where e±XM e±iXM L The original SPI work [13] assumed all com· 
ponent reactions to be Poisson. However, here H 3 is the CGF of the entire 
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complex, non-Poisson MM reaction, which we read as the coefficient in front of 
cSt in Eq. (21). This ability to include subsystems with small number of degrees 
oflreedom, such as the MM enzyme, opens doors to application of the method 
to a wide variety of coarse-graining problems. 

Since S:v1 » I, this path integral is dominated by the classical solution 01 
the equations of motion (i. e., the saddle point), which, near the steady state, are 
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Table 1. Comparison of cumulants of the product flux for 
the full system calculated using the Gillespie simulations, 
the coarse-gralned simulations at Step 1 and Step 2, and 
the analytical predictions; numbers In parentheses are the 
estimated errors In the last significant digits 

eumulant Gillespie CG (step 1) CG (step 2) AnaJytics 

Cl 418.7(1) 420.0(1) 418.9(1) 418.9 

C2/Cl 0.771(1) 0.764(2) 0.768(1) 0.767 

C3/C1 0.50(3) 0.46(8) 0.48(3) 0.472 
time 1h 14min 1min 17s 1s N/A 

: Product ~ 
: .... .•... .... .,\ 


\ • 
Enzyme : 

•!•
• i•• 

: 
, ... . ... l• 

i 

• Bulk• 
i 

: substrate : 

: Membrane 
: substrate 
~. _. -_. ---_. _.... . --: 

Fig. 1. The model system. Circles represent molerules and are labeled in the figure. 
Arrows stand for reactions: (1 .2) adsorption and dissociation of S (orange); (3) multi-step 
MM conversion S -> P (red) . 
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Ag. 2. Coarse-graining of the model system. Panel (a) shows the original set of reactions. 
Panel (b) represents the reactions after the first coarse-graining step: the MM mechanism 
has been replaced by a single complex reaction. and all the remaining reactions are now 
characterized by their slowly varying CGFs. Panel (e) shows the final reaction that describes 
the system at time scates 8t » 'T'M. The wavy line corresponds to a spark of the tracer 
molecule [31. which counts the number of S8 -> P transformalions. 
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Fig. 3. Comparison of the analytically calculated Fano lactor for the S8 -> P reaction to 
Monte Carlo simulations with the Gillespie algorithm [181. We use q =0.02. kl = 0.05. 
k2 = 1. and T = 10000. Each numerical data point averages 10000 simulation runs. 
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(a) 

Fig. 4. Schematiccoarse-graining of a network of reactions. (a) This network has "'1 = 10 
reactions (red arrows) and N = 8 species, of which three are slow (large circles), and 
five are fast (small circles). (b) Dynamics of each fast node can be integrated out, leaving 
effective, pailWise fluxes among the slow nodes (blue arrows), which are labeled by the 
corresponding effective Hamiltonians H!-'v. Note that. for reversible pathways, the flux 
may be positive or negative (two-sided arrow), and it is strictly non-negative othelWise 
(one-sided arrows)_ 
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rig. 5. Comparison of the exact discrete distribution of product molecules generated by 
the MM enzyme (points) with the continuous approximations by the Gram-Charlier series 
(lines). Left column compares the exact result 10 the Gaussian approximation. Central 
column shows improvements due to inclusion of the third cumulant correction. Including 
the fourth cumulant (right) makes the approximation and the exact result virtually indistin­
guishable. We used Sy! = 140 const. kl 0.02, k-l = 2. k2 = 1. q = 0.01. 
and rSt 35. 
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Cumulants of the coarse-grained reaction 

As described in the main text and Methods, the first three cumulants for the 
coarse-grained SB --> P reaction can be obtained by differentiating the corre­
sponding CGF. This gives 

Cl T 2~1 [k1(ko + k2) +q(k2 + k-d 

- k2)2 + 2klq(ko + k2)(k2 + k-d + q2(k2 + k-l (1) 

FCl, (2) 
1 _ __q_(2klkok2+ kj (ko + k2)k_l + qL j (k2 + k-d) +

F 
kr(ko k2)2 + 2klq(ko + k2)(k2 + L 1) + q2(k2 + k_d 2 

+ 	 qk-l (3) 
vkr(ko - k2 )2 + 2klq(ko + k2)(k2 + k-d + q2(k2 + k_ 1)2 

-T ( kK 2)S{K5kr plO+/'O,p7[5krk2+q(llk1+6q).5] 
p -/'0, 'I + P 

-K2k't,ktp2 [5k?k~ + 6k2 (k1 2q) q.5 + 24q2S2] 
+2K2koki p3 [5kfk~ + k2q (14ki - 9klq - 6l) .5 + 6q2 (5k l + 3q) 8

2] 

-2KkOklP4 [5ktk~ + 19krk~qs + 9kik2q2.52 + 6k2q4.52+ 

3k1q3s(-2k~ + 8k2.5 + .5
2
)]} , (4) 

where 8 k1 (SM)+k2 +k_ 1, (SM) = {kokl-klk2-k2Q-k_lq+[4kjkoq(k2+ 

k-l) + (klk2 - klko + k2q + Llq?ll/2} is the average number of membrane­

bound substrates, ko = qOSB, K koklk2, P klk2 + qs, and, finally, T is 
the time step over which SB changes by a relatively small amount, but many 
membrane reactions happen. 
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2 Simulating the Michaelis-Menten enyme 

We consider a MM enzyme with SM = 140 = const, kl = 0.01, k-l = 2.0, 
k2 1.0. We analyze the number of product molecules produced by this enzyme 
over time at 35, with the enzyme initially in the (stochastic) steady state. To 
strain both Gillespie and our coarse-grained methods, we require a very high 
simulation accuracy, namely convergence of the fourth moment of the product 
flux distribution to two significant digits. For both methods, this means over 
10 millions realizations of the same evolution. 

In Tbl. 1 we report the results of our simulations. We see that the analytical 
coarse-grained results differ from the exact Gillespie simulations by, at most, two 
per cent, which is an expected deviation given the quality of the steady-state 
approximation. Further, the Langevin-like coarse-grained simulations, which 
accounted for the first four cumulants of the reaction events distribution, as in 
Methods: Simulations with near-Gaussian distributions, produce results nearly 
indistinguishable from the analytical expressions, and, at most two per cent 
different from the Gillespie rUllS. Yet coarse-grained simulations require only 
1/40th the time of their Gillespie analogue since the time step is large, at 35. 

Table 1: Comparison of the Gillespie and the coarse-grained simulation algo­
rithms. The numbers are reported for 12 million realizations of the same evo­
lution for each of the methods. To highlight deviations from the Poisson and 
the Gaussian statistics, we provide ratios of the higher order cumulants to the 
mean of the product flux distribution. In the last colulIlll, we report allalytical 
predictions obtained from the quasi-steady state approximation to the CGF. 
Numbers in parentheses are the estimated errors of the last significant digits. 
Cumulants Gillespie Coarse-grained Analytics 
Cl 11.24(1) 11.14(1) 11.14 
C2/Cl 0.843(1) 0.855(1) 0.855 
C3/ Cl 0.613(4) 0.628(4) 0.628 
q/Cl 0.32(2) 0.32(2) 0.319 
time 8 min 45 s 12 s 
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3 Supporting figures 

Figure 1: Distribution of the number of MM reactions over a time 8t 35 with 
8M 140, kl = 0.01, k-l = 1, and k2 = 1 vs. the Poisson distribution with 
the same mean. The distribution for the MM process is obtained using the 
Gram-Charlier expansion with four known cumulants, see Methods in the main 
article. The MM process is clearly non-Poissonian. 
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