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Coarse-graining stochastic biochemical
networks: adiabaticity and fast simulations
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We propose a universal approach for analysis and fast simulations
of stiff stochastic biochemical kinetics networks, which rests on
elimination of fast chemical species without a loss of informa-
tion about mesascopic, non-Poissonian fluctuations of the slow
ones. Our approach, which is similar to the Born-Oppenheimer
approximation in quantum mechanics, follows from the stochastic
path integral representation of the cumulant generating function
of reaction events. In applications with a small number of chem-
ical reactions, it produces analytical expressions for cumulants
of chemical fluxes between the slow variables. This allows for a
low-dimensional, interpretable representation and can be used for
coarse-grained numerical simulation schemes with a small com-
putational complexity and yet high accuracy. As an example, we
derive the coarse-grained description for a chain of biochemical
reactions, and show that the coarse-grained and the microscopic
simulations are in an agreement, but the coarse-grained simula-
tions are three orders of magnitude faster.

stochastic processes | Monte-Carlo | Michaelis-Menten | Langevin

Abbreviations: MM, Michaelis-Menten; CGF, cumulant generating function; MGF,
moment generating function; SPI, slochastic path integral

Introduction
C omputer simulations are often the method of choice to explore an
agreement between a model and the observed experimental data
in systems biology, especially in the context of single-molecule exper-
iments[1, 2, 3. Unfortunately, even the simplest biochemical simula-
tions often face serious problems, both conceptual and practical. First,
the networks usually involve combinatorially many chemical species
and reaction processes: for example, a single molecule with » mod-
ification sites can exist in 2™ states, with an even larger number of
reactions connecting them [4]. Second, while it is widely known that
some molecules occur in the cell at very low copy numbers (e.g., a sin-
gle copy of the DNA), which give rise to important stochastic effects
[5, 6, 7, 8], it is less appreciated that the combinatorial complexity
makes this true for many molecular species. Indeed, even for a large
total number of molecules, typical abundances of microscopic species
may be small if the number of the species is combinatorially large.
Third, and perhaps the most profound difficulty of the simulations
approach, is that only very few of the kinetic parameters underlying
the networks are experimentally observed or even observable.

While some day computers may be able to tackle the formidable
problem of modeling astronomically complex biochermical processes
as a series of random reaction events, and then performing sweeps
through parameter spaces in search of an agreement with experiments,
these days are still far away. More importantly, even if the computing
power were available, it would not help in building a comprehensi-
ble, tractable interpretation of the modeled system and in identifying
connections between its microscopic and macroscopic features.

Clearly, such an interpretation can be aided by coarse-graining,
that is, by merging or eliminating certain nodes and/for reaction pro-
cesses (this would be called blocking or decimation in statistical
physics, and is in the spirit of the real-space renormalization group).
Ideally, one wants to substitute multiple elementary (that is, single-
step, Poisson-distributed) biochemical reactions with a few complex
processes linking the species that survive the coarse-graining in a way
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that retains predictability of the system, Not incidentally, this would
help with each of the three roadblocks mentioned above by reduc-
ing the number of interacting elements, increasing the copy numbers
of agglomerated hyperspecies, and combining multiple microscopic
rates into a smaller number of effective parameters.

The importance of coarse-graining in biochemistry is long under-
stood [9], and the prime example is the MM kinetic scheme:

Lk IES
E+ 8B o kalCl g p (1]
k_1[C)

Here ki, k2, and k_ are kinetic rates, S, P, E, and C denote the
substrate, the product, the enzyme, and the enzyme-substrate complex
molecules, respectively, and [. . .| represent the abundances. The en-
zyme catalyzesthe § — P transformation by merging with S tocreate
an unstable complex €, which then dissociates either back into E+ .5
or forward into £ + P, leaving £ unmodified. If [S] > [E], then
the enzyme cycles many times before |S] and [ P] change appreciably.
Thus the enzymes equilibrates™quickly, resulting in a coarse-grained,
complex reaction with the decimated enzyme species:

ko[SIE]
[S]+ (ke + k1) /ky

However, this simple reduction is insufficient when stochasticity
is important: each MM reaction consists of multiple elementary steps,
thus the statistics of the number of the reactions per unit time is non-
Poissonian in general. While some attempts have been made to extend
deterministic coarse-graining to the stochastic domain [10, 11, 12}, a
systematic set of such tools for realistic biochemical networks has not
been found yet. In this article, we make a step towards the goal.

We start by noting that, in addition to the three conceptual prob-
lems, a technical difficulty stands in the way of stochastic simulations
in systems biology: molecular species have diverse dynamical time
scales, making the systems stiff and difficult to simulate. We propose
to use this property of multiple time scales to our advantage.

Many related approaches have been explored, differing largerly
by the definition of fast and slow variables. Commonly, regction rates
are used for this purpose [10]. However, if two species of different
typical abundances are coupled by one reaction, then a relatively small
change in the concentration of the high abundance species can have
a dramatic effect on that of the low abundance one. This notion of
species rather than reaction based adiabaticity is at the heart of the
original MM derivation, as well as of our arguments.

Our method builds upon the SPI technique from mesoscopic
physics [13, 14, | 5] and provides three major improvements that make
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the approach more applicable to biology. First, we extend the method,
initially developed for large copy numbers, to discrete degrees of free-
dom, such as a single enzyme. Second, we explain how to use the SPI
for a network of multiple reactions, reducing the entire network to a
few complex reaction links. Finally, we show how the procedure can
be turned into an efficient algorithm for coarse-grained simulations,
preserving statistical characteristics of the original dynamics. The
algorithm is akin to the widely used Langevin [16] or 7-leaping [17]
schemes, but it simulates complex reactions in a single step. We be-
lieve that this development of a fast, yet precise numerical algorithm
is the most important practical contribution of our work.

For pedagogical reasons, we develop the method using a model
system that is simple enough for a detailed analysis, yet is complex
enough to support our goals, and we provide a generalization later.

The model. Consider an enzyme attached to a cell membrane, Fig. 1.
&g substrate molecules are distributed over the bulk cell volume. Each
molecule can either be adsorbed by the membrane, forming the species
Swu. or dissociate from it, and the enzyme can interact only with the
membrane-bound substrates. The enzyme-substrate complex € can
split either into E + Sy or into £ + P. Let’s suppose that the latter
reaction is observable; for example, a GFP tag sparks each time a prod-
uct molecule is created [3]. Finally, we assume that C — E 4 P is
irreversible (e.g., the product leaves the membrane). This as a simple
model of receptor signaling, such as in vision or immune system, or a
model of a reaction-diffusion MM enzyme, where the membrane/bulk
play the roles of the nearby/far away regions around the enzyme, and
diffusion takes the molecules between them.
The full set of elementary reactions is

1. adsorption of the bulk substrate, Sp — Sy (rate ¢oSg);
2. reemission of the substrate into the bulk, Sy — Sg (rate ¢Su);
3. Michaelis-Menten conversion of Sy into P, consisting of

(a) complex formation, Syt + E — C, (rate k1 Sw);
(b) complex backward decay, C — Sy + E (rate k_1);
(c) product emission C' — E + P (rate k2).

Note that here and in the rest of the article we don’t make a distinction
between a species name and the number of its molecules.

In this setup, only emission of the product is directly observable.
Our goal is to coarse-grain the ahove system of five reaction processes
into a single complex reaction Sg — P, as in Fig. 2(c). That is, we
want to eliminate all intermediate species and processes, while pre-
serving their effects on the statistics of the complex reaction 5p — P
on time scales appropriate for its dynamics.

We stress again that this model is used for concreteness only, and
the methodology we develop can be applied for other systems as well.

Resuits
There are three effective time scales in our model. One is the scale
7g of the variation of the bulk substrate abundance. We assume that
Sp > Swu. Therefore, this scale is the slowest, and we will be inter-
ested in studying the response of the system to changes in Sp on this
scale. A faster time scale, 7 is given by the dynamics of Sy Finally,
the fastest scale, 7, is set by single reaction events, that is, the charac-
teristic time between enzyme-substrate binding/unbinding. Overall,
TE € ™ <« 7. We emphasize that all species in the problem are
connected by reactions that happen with similar rates, and the sepa-
ration of the time scales is a result of the particle abundances, rather
than the reaction speeds: it takes longer to change a high-abundance
species drastically compared to a low-abundance one. We expect this
to be a generic property of many chemical networks.

The hierarchy of times allows us to coarse-grain the system in
two steps, as in Fig. 2. First, we remove the variable with the fastest
dynamics: the binary substrate-enzyme complex C. This replaces the
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three steps of the MM mechanism with a single reaction Sy — P,
Fig. 2(b). Additionally, we represent the other reactions in the sys-
tem in a more convenient form. In the second step, we eliminate Sy,
which evolves on the scale ny. This results in the characterization
of the average Sg — P flux and its fluctuations, treating Sp as a
time-dependent input parameter, cf. Fig. 2(c).

Preliminaries. Let 4Q,, stand for the number of reaction events for
the reaction type pu (4 = 1,2, 3 corresponds to adsorption, detach-
ment, and the MM reaction, respectively). Then P(6Q,.|T) is the
probability distribution of the number of events of type u during a
time window of length T'. Instead of considering these distributions
directly, we rely on the corresponding MGFs':

OO
2,06 T) =D = 3™ PEQuIT)e %, (3]
6Qu=0

where S,.(x) is the CGF. Then the cumulants of P(6Q,|T") are

aﬂ-
Cue = (—1)* Su(x,T), (4]
14,0 ) a Xa =0 [ )
where a stands for the cumulant order. In particular, the average flux
for the reaction is ¢,,,1, and the corresponding variance is ¢, 2.

Step 1: The generating function representation. This step can be
viewed as a generalization of the r-leaping approximation {17}, which
simulates elementary reactions, for example attachments/detachments
in Fig. 2(a), by choosing a time step é¢, over which the number of the
reactions is much larger than one, yet the slowly varying reaction rates
can be considered stationary. In 7-leaping, one then approximates
P(8Q),.|6t) as Poissons. Similarly, in our case, for 75 < 8t < 7,
we can approximate CGFs of membrane attachement/detachment as
those of Poisson processes, S,{x) = r,(¢)(e'* — 1)8t, and the rates
are r; = ¢goSa(t) and ro = ¢Su{t), respectively.

Unfortunately, not all biochemical processes can be treated in this
simple manner. For example, due to the single-copy nature of the MM
enzyme inFig. |, the instantaneous rate of the product creation is afast
varying function of time, switching between zero and k3 every time
the complex forms. Therefore, one cannot treat the product creation,
P(8Q3|4t), as a homogeneous Poisson process and use 7-leaping or
Langevin methods [16, 17]. Still, we would like 1o avoid resorting
to the Gillespie [18] or similar techniques since they are based on
Monte-Carlo simulations of individual reaction events and are slow.

As analternative, we derive an approximation for the non-Poisson
distribution of §Q3 by characterizing its CGF, S3. To this end, we
eliminate the binary substrate-enzyme complex C and reduce the MM
reaction triplet to a single process, whose dynarmics can be consid-
ered stationary over times much longer than a single reaction event.
The details are in Methods: Coarse-graining the Michaelis-Menten
reaction, Eq. (21), and the obtained expression is valid for times 8¢,
TE € 8t € Ty, so that many enzyme turnovers happen, but the
effect on the abundance of Sy is still relatively small.

This completes Step 1 of the coarse-graining in which each re-
action, or a small complex of reactions, is subsumed by a quasi-
stationary CGF &, of the distribution of the number of its events.

Importantly, in this Step, we remove the only species that exists,
at most, in a single copy, thus simplifying analysis of the system.
Additionally, while we don’t focus on this in what follows, in the
MM mechanism, the backward reaction is often a simple dissocia-
tion, whereas the forward one requires crossing an energy barrier and
is exponentially suppressed. As a result, often £_; » k» requir-
ing multiple binding events (and with them the instantaneous rate
changes) for each released product. Thus the effect of replacing the

More precisely, Z is the characteristic function, and the usual definition of the MGF is without
1 in the exponent. Same is true for our CGF, §. We chpaosa this nomenclature o emphasize
that we use the functions for calculations of moments and cumulants, respactively.
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entire MM mechanism with a single complex reaction on the simula-
tion efficiency may be quite dramatic.

To illustrate the simplification, using Eq. (21), we write the first
few cumulants of the number of MM product releases in time 6¢:

€31 = klk;SM 6t, K=kiSu+ks+k-n, {51
a2 = csaF, F=1-2Q/K, Q=cs./6t, [61
cas = c31[l—6Q(K —2Q)/K?], {71
csa = ean[l-2Q(TK? - 36KQ +60Q°)/K°]. [8]

The coefficient F is called the Fano factor (see below). To the ex-
tent that £ # 1, this complex reaction is non-Poisson (cf. Fig. | in
Supporting Information).

Knowing cumulants of P(6Qa|dt) allows for a numerical simu-
lation procedure

6Q3(t) = 7}3(t> 6t)’ [9]
Sult+6t) = Swu(t)-6Qs(t) +J@®),  [10]
P(t+6t) = P(t)+6Qa(t), [11]

where 73{t) is a random variable with the cumulants given by Egs. (5-
8), and J () represents cusrents exogenous to the MM reaction, such
as changes in Sy due to membrane binding/unbinding. Notice that
we are now treating the reaction in a quasi-stationary, 7-leaping or
Langevin-like way by drawing a (random) number of reaction events
over a time &t directly, assuming that all parameters defining the re-
action are constants over this time. The price for the coarse graining
is that, instead of a single-rate Poisson distribution, one is forced to
characterize this reaction by a prescribed sequence of cumulants.

In principle, generation of such random variables is an ill-posed
task since the moments do not define the distribution uniquely. Ad-
ditionally, once we allow for a nonzero third or fourth cumulant, the
remaining higher order cumulants cannot be all zero, and the gen-
erated random variable will depend on the assumptions made about
them. Fortunately. in our case, the situation is simplified because
all c3 & ~ &t. Thus higher cumulants have a progressively smaller
effect, ~ (6t)1/ % on a number drawn from the distribution, and our
random variables are almost Gaussian. Then the Gram-Charlier series
expansion [19] aided either by the importance or rejection sampling
[20, 21] reduces the simulation scheme, Egs. (9-11), to a simple
Gaussian, Langevin simulation with a small penalty, as described in
Methods: Simulations with near-Gaussian distributions; see Fig. 5
in Methods for illustration of the precision provided by these tools.

Step 2: Coarse-graining membrane reactions.In Step 2 of the
coarse-graining, we start with the CGFs 5, ¢ = 1, 2, 3, of the slowly
varying reactions. Using the SPI technique, we then express the CGF
of 8Q2, the number of the entire coarse-grained reactions Sg — P in
Fig. 2(c)overtime T, in terms of the component CGFs, and then sim-
plify the expression to account for the time scale separation between
75 and Ty, see Methods: Coarse-graining all membrane reactions,
Eq. (31). This formally completes the coarse-graining. That is, we
find the CGF of the Sg — P particle flux for times T < 7g, much
longer than 7g and 7, the other time scales in the problem.

The full expression for CGF is cumbersome and non-illuminating.
Fortunately, we only look for the first few cumulants of P(6Q|T'), and
these are obtained by differentiating the CGF as in Eq. (4). The ex-
pressions for the first three cumulants, ¢1, ¢o, and 3 are in Supporting
Information. Then, similar to the MM reaction, we can simulate the
whole five-reaction network in one Langevin-like step:

6Q() = @, T), [12]
Se(t+T) = Se(t)-Q(t) +J()T. [13]
P(t+T) P(t) + 6Q(4), [14]

where 7 is a random variable with the cumulants as in Egs. (1-4)
in Supporting Information, and J(t} is an external current, such as
production or decay of the bulk substrate in other cellular processes.

Footline Author

Fano factor in a single molecule experiment. In analyses of single
molecule experiments, one often measures the ratio of the variance
of P(8Q|T’) to its mean—the Fano factor [3], F = c2/c;. The fac-
tor is zero for deterministic systems and one for a Poisson process,
providing a quantification of the importance of stochastic effects.

Traditionally, to compare experimental data about F to a math-
ematical model, one would simulate the model using the Gillespie
algorithm [18], which takes a long time to converge to the necessary
accuracy. In contrast, our coarse-grained quasi-stationary approach
yields an analytic expression for the Fano factor of the Sg — P trans-
formation, see Eq. (3) in Supporting Information. Similar analytical
shortcuts should be possible for other kinetic schemes. In Fig. 3, we
compare the analytical expression to stochastic simulations for the
full set of reactions in Fig. 2(a), seeing an excellent agreement.

Note that F* 5 1, which indicates a non-Poissonian nature of the
complex reaction. The backwards decay of C adds extra randomiza-
tion, thus larger values of k- ; increase F'. At the other extreme, when
k_1 = 0, the Fano factor may be as small as 1/2, so that the entire
Sp — P chain is equal to a sequence of two Poisson events with sim-
ilar rates. Finally, when ¢ = 0, i.e., the substrates are removed from
the membrane only via Sy — P, F' = 1. This is because then the
only stochasticity in the problem is from Poisson membrane binding,
and all bound substrates will eventually get converted to P.

Computational complexity of coarse-grained simulations. We ex-
pect the coarse-graining approach to be particularly useful for simula-
tions in systems biology. This is due to an essential speedup provided
by the method over the traditional Gillespie algorithm [18], by which
all approaches are benchmarked. Indeed, for our model, the computa-
tional complexity of a single Gillespie simulation run is O (M T/ 7g),
where M = 5 is the number of reactions in the system, and 7" is
the duration of the simulated dynamics. In contrast, the complexity
of the coarse-grained approachis O [M° (T'/7&)"] since we have re-
moved the internal species and simulate the dynamics in steps of ~ T,
instead of ~ 7£. However, the Gillespie algorithm is (statistically)
exact, while our analysis relies on quasi-stationary assumptions.

To gauge the practical utility of our approach in reducing the
simulation time while retaining a high accuracy, we benchmarked it
against the Gillespie algorithm. All simulations were performed using
Fortran 90, on a single CPU AMD Barton 2500 (1.83 GHz, Windows
2000). In Supporting Information we provide the benchmark results
for the single MM enzyme (reaction 3), where the coarse-graining
approach achieves factor of 40 speedup. Here we focus on the full
five-reaction model system viewed at different coarse-graining levels.
Weuse k1 =0.02, k-1 =2,k = 1,9 =0.01,and g5 = 1.5.

Coarse-grained, Step 1:  Total time of the evolution is T =
1000, and the initial number of the substrates on the membrane is
Su(t = 0) = 120. Then the relaxation time of a typical fluctuation
of Syt is 7 ~ 1/[g + (Okana/85u)] ~ 80, where kary is the rate
of the Michaelis-Menten reaction for a given Sy, and this sets the
scale 6t = 20 €« my ~ B80. We simulate all three reactions that
survive Step | of the coarse-graining (membrane binding/unbinding
and MM transformation) by approximating their distributions with the
Gram-Charlier series with three known cumulants, and we perform
10° simulation runs, which is sufficient for convergence of the third
cumulant of the S — P aggregate reaction. As shown in Thl. I,
the coarse-grained approach speeds simulations 60-fold relative to the
Gillespie one with little apparent accuracy loss.

Coarse-grained, Step 2: We do similar benchmarking for the sys-
tem represented as a single coarse-grained reaction Sg — P. Here
we use the time step T = 1000, mq € T <« 7. The results in
Tbl. 1 show that simulating all five reactions in a single step results
in a dramatic speedup of about 4000. This number relates to the ratio
of the slow and the fast time scales in the problem, but also to leaping
over the futile bindings-unbindings in the coarse-grained scheme.
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For all cumulants, coarse grained simulations and analytic results
differ from exact Gillespie values by, at most, a per cent. It is hard
to imagine a practical situation in modern biology where the kinetic
parameters are known well enough so that such discrepancy matters.
Yet the reduction of the simulation time by the factor of 10%...10*
is certainly a tangible improvement.

Generalizations to a network of reactions. As discussed in detail in
the original literature [14], in the SPI formalism, a network of M re-
actions with N chemical species (cf. Fig. 4) is generally described by
2M N ordinary differential equations specifying the saddle point solu-
tion of the corresponding path integral. Methods: Coarse-graining all
membrane reactions provides a particular example, and we refer the
readers to the original literature for generalizations. Here, we build on
the Ref. [14] and focus on developing a relatively simple, yet general
coarse-graining procedure for more complex reaction networks.

At intermediate time scales, §t, many fast species connecting
slow ones can be considered statistically independent. Therefore, in
the SPI, every separate chain of such species simply adds to the ef-
fective Hamiltonian. Namely, we enumerate slow chemical species
by p, v, . ... Fast chains connecting them can be marked by pairs of
indexes, e.g., uv {cf. Fig4). An entire such chain will contribute
a single effective Hamiltonian term, H..{({N}, {x}, {xc}). to the
full CGF of the slow fluxes, where {N'}, {x}.and {xc} are the slow
species abundances and the conjugate counting variables. If neces-
sary, the geometric correction to the CGF, S0 ({N}, {x}, {xc}).
can be written out as well [15]. Overall,

St{xchT) =3 StonINWO} XD} {xc}. 1)+

By

T
/Odz [Zixum+ZHW({N(t)}’{x(t)}e{xf:}). (15]

u<v

This provides for the following coarse-graining procedure. First,
one finds a time scale §¢, small enough for the slow species to be con-
sidered stationary, and yet fast enough for the fast ones to equilibrate.
If the fast species consist only of a few degrees of freedom, like in the
case of a single enzyme, one derives the CGF of the transformations
mediated by these species similar 10 Methods: Coarse-graining the
Michaelis Menten reaction. If instead the fast species are mesoscopic,
one uses the SPI technique to derive the CGF by analogy with Step 2.

At the next step, the CGFs of the fast species are incorporated
into the SPI over the abundances of the slow ones. For this, one
writes down the the full effective Hamiltonian, Eq. (15), assumes adi-
abatic evolution, and solves the ensuing saddle point equations. The
extremum of the effective Hamiltonian determines the CGF of the
coarse-grained process. For hierarchies of time scales, this reduction
procedure is then repeated.

Discussion
Rigorous mathematical techniques developed in physics, chemistry,
and engineering are finding applications in the biological domain.
This article represents one such example, wherd*adiabatic approach,
paired with the SPI formalism of statistical physics, allows)(fgoarse—
grain stochastic biochemical kinetics systems. For a system with a
separation of time scales, we eliminate fast variables and reduce the
network to a handful of slow species coupled by complex interactions
with properties that account for the decimated nodes. The simplified
system is smaller, non-stiff, and easier to analyze, resulting in orders
of magnitude improvement in the computational complexity of its
simulations. This has a potential for a wide impact on simulations in
systems biology, at least for systems with diverse time scales.
Fortunately, such systems occur more often in Nature than one
would expect naively. Consider, for example, the system briefly men-
tioned in the Introduction: a molecule must be modified on n sites
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in an arbitrary order to get activated. The kinetic diagram for this
system is an n-dimensional hypercube, and the number of states of
the molecule with m modified sites is (7). Therefore, if the to-
tal number of molecules is N, then a typical state with m modi-
fications will have Ny = N/() molecules in it. This number
may be small, ensuring the need for a stochastic analysis. More
importantly, it is quite different from either Ny 1 or Ny, €.g.,
N [Nig1 = {m+1)/(n—m), and, as we discussed at length, the
different abundances result in different time scales.

The adiabatic SPI coarse-graining simplifies interpretation of bi-
ological systems. For example, the Fano factor of the Sg — P
reaction, Fig. 3, may approach unity, suggesting a simple, yet rig-
orous, replacement of the entire reaction by a simple Poisson step.
Then the list of relevant parameters becomes smaller than suggested
by the ab initio description, improving interpretability and decreasing
the effective number of biochemical features that must be measured
experimentally. Recent analysis suggests that this may be a common
property of biochemical networks {22, 23], and our methods may
prove helpful in determining the relevant kinetic features.

While orders of magnitude improvement in simulation speed is
certainly impressive, we are still far from coarse-graining cellular-
scale reaction networks. However, the following properties of our
approach suggest that we may be on the right track:

* We reduce a system of stochastic differential equations to a similar
number of deterministic ones, which is a substantial simplification.

* We can operate with arbitrarily long series of cumulants of the
number reaction events, keeping track of even rare fluctuations.

¢ Standard adiabatic approximations, well developed in classical and
quantum pbysics, can be applied easily in the SPI context.

¢ Unlike some other coarse-graining techniques, the SPI approach
can deal with copy numbers of order unity.

* Finally, the SPI is rigorous, mathematically justifiable, and allows
for controlled approximations.

In the forthcoming publications, we expect to show how these ad-
vantageous properties of the adiabatic SPI technique allow to coarse-
grain many standard biochemical network motifs.

Materials and Methods
Coarse-graining the Michaelis-Menten reaction.

Consider the Sy ~— P reaction, described mathematically as in Eq. (1):

Su+EZ2M ok gl p [16]

-1
The probabilities of transitions between bound, P, andunbound, Py = 1— P4,
states of the enzyme are given by a two slate Markov process

g Pu — klsM _k—l - k? Pu 7
dat | Po | T —k18u k_y+ ks F N 71

Using Eq. (17) and the definition of Z,. Eq. (3), one can show that
Z3(x, dt) satisties a Schradinger-iike equation with a x-dependent Hamifto-
nian, leading to a formal solution [2, 24, 11, 15]

Z3(x,6t) = 1% (e"qMM‘X’”“) plto), (18]

where 11 = (1, 1) is the unit vector, p{to) is the probability vector of the initial
enzyme states, and

kle

}}’MM(X) = [ —kle

_ — £y
kul kz(f :| [19]

k_y+ ko

Similar Hamiltonians can be derived for a wide class of kinetic schemes
[24, 11, 25, 15, 28], allowing for a straightiorward extension of our methods.

The solution, Eq. {18}, can be simplified f the MM reaction is considered in
a quasi-steady state approximation, that is P, is equilibrated al a current value
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of the other parameters. This means that the time scale of interest, 8t ~ T, is
much larger than a characteristic time of a single enzyme turnover, T, So we can
consider 6t —+ 00 in Eq. (18). Then only the sigenvalue Ao (x) of Hym{x)

with the smallest real part is relevant, and Z3(Xx, 8¢) = g~ rolx)t

It is possible to incorporate a slow time dependence of the parameters into
this answer. By analogy with the quantum mechanical Berry phase [12, 15, 26},
the lowest order non-adiabatic correction can be expressed as a geometric phase

Zs(x) = 5300 efc A‘dk‘f‘iﬂofx’i), (207

where A = (uo(Xx)|Okuo{X)). k is the vector in the parameter space that
draws a contour ¢ during the parameter evolution, and {uo(x)| and |uo(x)}
are the left and the right eigenvectors of Fimm(Xx, t) corresponding to the in-
stantaneous eigenvalus Ag{X,t). The first tlerm in Eq. (20) is the geometric
phase, which is responsible for various ratchet-ike fluxes [12, 27, 28]

The geometric phase gives rise to magnetic field-like corrections to the evo-
lution of the slow variables. However, since these corrections depend on (smal)
time derivatives of these variables, they often are small and can be neglected, un-
less they break some important symmetry (such as the detailed balance [15, 28]),
or the leading, non-geometric termis zero. In our model, the geometric effects are
negligivle when Te /7y ~ 175y < 1, and we deemphasize them, However,
we keep the geometric terms in several formal expressions for completeness, and
the reader should be able to track their effects if desired.

Reading the value of Ao(X) from Ref. [12}, we write the CGF of
P({§Q3|dt}, T8 < 01 < T in the adiabatic imit:

. 8t
SS(X’ ‘53) = Sgeom (X> SM, S.\d) + E [—(k_1 + ko + SMkl)

+v/(hoi T ka + Skt + 48ukika(en — )| f21]

Simulations with near-Gaussian distributions. A probabifity distribution
P{8Q2) with known cumulants ¢1, €z, €3, ..., can be approximated as a lim-
ited Gram-Charlier expansion [13]

L‘a(y4 - 6y2 + 3)
24c2

3.
P(3Q) = ¥(6Q.c1.c2) |1 + 63((?3/2 dl +
Cy

Ay’ ~ 15y + 45" —15)

22

-+

where y = (8Q) — ¢1)/+/C2 and W(84Q, c1, ¢2) is the Gaussian density
with the mean ¢ and the variance c2. The leading term in Eq. (22} is a stan-
dard Gaussian approximation, and the subsequent terms account for skewness,
kurtosis, etc. If all cumulants scale similarly (the near-Gaussian case), then the
terms in the series become progressively smaller, ensuring rapid convergence.

Generation of random samples from the non-Gaussian Gram-Charfier series
is stilt a difficult task. However, if, instead of the random numbers per se, the
goal is to calculate the expectation of some function f{8(2) over the distribution
P, (f(6Q)}p, then the importance sampling [20] can be used. Specifically,
we generate a Gaussian random number 04 from W(64Q2, ¢1, ¢2) and define
its importance factor according to its relative probability in the normat distribution
and the considered Gram-Charlier series 77 = P(6Q) /¥ (8Q, ¢1, ¢2). Atter
generating N such random numbers 6CJ,, v = 1,..., N, we get

N
EV:I n"f<5QV)
N N
Zi/:l v
it a current random number draw represents just one reaction in a larger reac-

tion network, then the overall importance factor of a Monte Carlo realization is a
product of the factors for each of the random numbers drawn within it.

{(f6@))p = {23)

This reduces the complexity of simulations to that of a simple Gaussian,
Langevin process with a small burden of (a) evaluating an algebraic expression
for the Gram-Charlier series, and (b) keeping track of the importance factor. Yet
this small computational investment allows to account for an arbitrary number
of cumulants of the invoived variables. To illustrate this, in Fig. 5, we compare

Footiine Author

+{, ongakrandom numbe

the Gram-Charlier, importance-sampling simuiations of the MM reaction fiux to
the exact results in Resuits: Step 1. introducing just the third and the fourth
cumulant makes the simulations almast indistinguishable from the exact results.

Here we sound a note of caution: the Gram-Charlier series produces ap-
proximations that are not necessarily positive and hence are not, strictly speaking,
probability distributions. However, the leading Gaussian term decreases so fast
that this may not matter in practice. Infact, in our simulations, we simply rejected
any random number that had a negative importance correction. However, this
simplistic solution is inadequate for lengthy simulations, where the probability that
in a long chain of events falls into a badly approximated
region A the distribution appraaches one. Then other means of generating ran-
dom numbers, such as the well-known acceptance-rejection method [21] should
be used. Since the true distributions of interest are near-Gaussian, a Gaussian
with a slightly farger variance will be an envelope function for the Gram-Charlier
approximation to the true distribution, Then the average random nurmber accep-
tance probability will be similar to the ratio of the true and the envelope standard
deviations, and it can be almost one. Then the rejection approach will require
just a bit more than one normal and one uniform random numbers 1o generate a
sample from the Gram-Charlier series. Importantly, in this case, the negativity of
the series is not a problem since it will lead to an incorrect rejection of a single,
highly improbable sample, rather than an entire sampling trajectory.

Coarse-graining all membrane reactions.

To perform the coarse-graining that connects Figs. 2(b) and 2(c), we look
for the MGF of the total aumber of products (Jp produced over time 7" ~ 13-

Z(XC) — es(xc) = Z P(QP!T)eiQPXC_ [24]
Qp=0

For this, we discretize the time into intervals £x of duration 81, and we introduce

random variables 8Q , (tr.) (i« = 1,2, 3), which denote the numbers of each of

the three different reactions in Fig. 2(b) (membrane binding, unbinding, and MM

conversion) during each time interval. The probability distributions of Q. (£x)

are given by inverse Fourier transforms of the corresponding MGFs:

1 i

POQu(t) = o= / ()™ X0 (818 Qu i)+ H (x84, Sa 143t
[25]

where the CGF are S).(x, Sg) = H.{x, Sg)dt.

Following (13, 14, 29, 15|, and recalling that Qp = 3>, 8Qa(ts), we
write the MGF of the total number of products created during time interval (0, 7}
as the path integral over all possible trajectories of $Q2,, (L1) and Sy(Lx):

Xt = (excy = | DSy(tk) DSQu(tk) x

P[JQM (tk>]8ixc PIPNLISEICTS «
8[Sm(te+1) — Sulte) — 6Qi(te) + 3Q2(tk) + 6Qa(tk)].  [26]

The d-function in Eq.(26) exprasses the conservation law for the slowly
changing number of substrate molecules Sy, We rewrite it as

5y = L ]”dmek)exp{imm)-~-}, (271

:% .

and we substitute the expression together with Eq. (25) into Eq. (26). Then the
integration over 82, (t) produces new §-functions over ., which, in turn, are
removed by integration over X, (% ). This leads to an expression for the MGF:

£Sxe 1) =/DSMDXMBIOTd"vf*XMSM'FH{SMsXMocc}I’ (28]

H =Hi(~xzm, Su, t) + Ha(xu, Sm.t) + Halxm + xc, Sv.t)

1
=q0Sme—xy + Sy + 5 [ — (k1 + ko + Suikr)+

Vk—1 + kz + Suk1)? + 4Sukika(exmixc — 1)] . [29]

where .44, = XM 1 The original SPI work [13] assumed all com-
ponent reactions fo be Poisson. However, here F3 is the CGF of the entire
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complex, non-Poisson MM reaction, which we read as the coefficient in front of
8t in Eq. (21). This ability to include subsystems with small number of degrees
of frsedom, such as the MM enzyme, opens doors 1o application of the method
to a wide variety of coarse-graining problems.

Since Sy > 1, this path integral is dominated by the classical solution of

the equations of motion (i, e, the saddle point), which, near the steady slate, are

10.

11.

12.

Let xa(xc) and SM,CI(XC) solve Eq. (30). Then the cumulants gener-

ating function in the quasi-steady state approximation is

S{xc,T) = T H(Sma(xc), xalxe) xc) [31]

This completes the last step of the coarse-graining by deriving the CGF for the
number of complex Sg — P transformation over long times.
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Table 1. Comparison of cumulants of the product flux for
the full system calculated using the Gillespie simulations,
the coarse-grained simulations at Step 1 and Step 2, and
the analytical predictions; numbers in parentheses are the

estimated errors In the last significant digits

cumulant  Gillespie CG (step 1)

Analytics

c1 418.7(1) 420.0(1)
c2/c 0.771(1) 0.764(2)
c3/ca 0.50(3) 0.46(8)
time 1h 14min 1min 17s

418.9
0.767
0.472

N/A

Membrane ;
i Substrate :

Fig. 1. The model system. Circles represent molecules and are labeled in the figure.
Arrows stand for reactions: (1,2) adsorption and dissociation of S (orange); (3) multi-step
MM conversion S — P (red).

@ [ inital set of reactions | ™1 Step 1 ‘°’§
S0 ‘
s.:q"‘—s-" Su - Se— Su
9Su : X i
Su— S J’ | Su S5, () Se }
S IR |
Su+E ==SE —* P+E g : :

Fig. 2. Coarse-graining of the model system. Pane! (a) shows the original set of reactions.
Panel (b) represents the reactions after the first coarse-graining step: the MM mechanism
has been replaced by a single complex reaction, and all the remaining reactions are now
characterized by their slowly varying CGFs. Panel (c) shows the final reaction that describes
the system at time scales §t > my;. The wavy line corresponds to a spark of the tracer
molecule [3], which counts the number of Sg — P transformations.

T 7 T —— QySg

Fig. 3. Comparison of the analytically calculated Fano factor for the Sg — P reaction to
Monte Carlo simulations with the Gillespie algorithm [18]. We use ¢ = 0.02, k3 = 0.05,
k2 = 1,and T" = 10000. Each numerical data point averages 10000 simulation runs.
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Fig. 4. Schematic coarse-graining of a network of reactions. (a) This network has A = 10
reactions {red arrows) and N = 8 species, of which three are slow (large circles), and
five are fast (small circles). {b) Dynamics of each fast node can be integrated out, leaving
effective, pairwise fluxes among the siow nodes (blue arrows), which are labeled by the
corresponding effective Hamiltonians H ... Note that, for reversible pathways, the flux
may be positive or negative (lwo-sided arrow), and it is strictly non-negative otherwise

{one-sided arrows).
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Fig. 5. Comparison of the exact discrete distribution of product molecules generated by
the MM enzyme (points) with the continupus approximations by the Gram-Charlier series
(lines). Left column compares the exact result to the Gaussian approximation. Central
column shows improvements due to inclusion of the third cumulant correction. including
the fourth cumulant (right) makes the approximation and the exact result virtually indistin-
guishable. We used Sy = 140 = const, k; = 0.02, k-1 = 2, kp = 1,9 = 0.01,

and 8t = 35.
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1 Cumulants of the coarse-grained reaction

As described in the main text and Methods, the first three cumulants for the
coarse-grained Sg — P reaction can be obtained by differentiating the corre-
sponding CGF. This gives

1
€ = e kl(kg + kz) +q(k2 + ;’)‘Chlj
%,

—\/’Cf(ko = k2)? + 2k1g(ko + ko) (k2 + k1) + ¢®(ka + k-1)% |, (1)

g = Fe, (2)
q(?klkgkg + ky (ko + kg)k-l + qk-l(kg + }5_1>)

F o= 1-
K2(ko — k)2 + 2kvqlko + ka2) (ks + k1) + @(ka + k12 |
gk_1
— L®
Vi (ko — k2)? + 2kig(ko + ka) (k2 + k_1) + ¢* (k2 + k_1)?
- K 515 _ 10 4 . 7 (el .
£y = —TW {K, }\,1 - P+ Rp [5k1 ’CQ + q (11}»1 + 6(]) S]

— k2 k2Kt p? [5kikE + 6ko (k1 — 2q) g5 + 249757

+262kokip® [SkikS + kagq (14k% — 9kiq — 6¢°) s + 6¢* (5k1 + 3q) 57
~2ukokypt [5kik] + 19k3k2gs + 9kZkoq?s?® + Gkagts®+

3k1q®s (—2k2 + 8kas + s7)] }, (4)

where s = ky (Sm)+ka+k_1, {Sm) = 2%”{}60&14;\?1&2‘—}62(]—}6_1(}4— {4k1koq(k2+

k1) + (kiko — kiko + kog + k_1Q)2} 1{/2} is the average number of membrane-
bound substrates, kg = gpS, & = kokike, p = kiks + ¢s, and, finally, T is
the time step over which Sg changes by a relatively small amount, but many
membrane reactions happen.
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2 Simulating the Michaelis-Menten enyme

We consider a MM enzyme with Sy = 140 = const, k; = 0.01, k-, = 2.0,
ko = 1.0. We analyze the number of product molecules produced by this enzyme
over time 8t = 35, with the enzyme initially in the (stochastic) steady state. To
strain both Gillespie and our coarse-grained methods, we require a very high
simulation accuracy, namely convergence of the fourth moment of the product
flux distribution to two significant digits. For both methods, this means over
10 millions realizations of the same evolution.

In Thl. 1 we report the results of our simulations. We see that the analytical
coarse-grained results differ from the exact Gillespie simulations by, at most, two
per cent, which is an expected deviation given the quality of the steady-state
approximation. Further, the Langevin-like coarse-grained simulations, which
accounted for the first four cumulants of the reaction events distribution, as in
Methods: Simulations with near-Gaussian distributions, produce results nearly
indistinguishable from the analytical expressions, and, at most two per cent
different from the Gillespie runs. Yet coarse-grained simulations require only
1/40th the time of their Gillespie analogue since the time step is large, 8t = 35.

Table 1: Comparison of the Gillespie and the coarse-grained simulation algo-
rithms. The numbers are reported for 12 million realizations of the same evo-
lution for each of the methods. To highlight deviations from the Poisson and
the Gaussian statistics, we provide ratios of the higher order cumulants to the
mean of the product flux distribution. In the last colummn, we report analytical
predictions obtained from the quasi-steady state approximation to the CGF,
Numbers in parentheses are the estimated errors of the last significant digits.

Cumulants Gillespie Coarse-grained Analytics
. 11.24(1) 11.14(1) 11.14
c2/c 0.843(1) 0.855(1) 0.855
cs/ey 0.613(4) 0.628(4) 0.628
cafer 0.32(2) 0.32(2) 0.319
time 8 min 45 s 12 s N/A
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Figure 1: Distribution of the number of MM reactions over a time 8t = 35 with
Sy = 140, ky = 0.01, k.; = 1, and ky = 1 vs. the Poisson distribution with
the same mean. The distribution for the MM process is obtained using the
Gram-Charlier expansion with four known cumulants, see Methods in the main
article. The MM process is clearly non-Poissonian.





