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Abstract. The ChemCam instrument on the Mars Science Laboratory (MSL) will include a
laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental
compositions. The traditional analytical chemistry approach to calibration curves for these data
regresses a single diagnostic peak area against concentration for each element. This approach
contrasts with a new multivariate method in which elemental concentrations are predicted by
step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for
each element. The method is tested on LIBS data from igneous and metamorphosed rocks.
Between 4 and 13 partial regression coefficients are needed to describe each elemental
abundance accurately (i.e., with a regression line of R* > 0.9995 for the relationship between
predicted and measured elemental concentration) for all major and minor elements studied.
Validation plots suggest that the method is limited at present by the small data set, and will work
best for prediction of concentration when a wider variety of compositions and rock types has
been analyzed.

1. Introduction

The ChemCam instrument selected for the Mars Science Laboratory (MSL) includes a
Laser-Induced Breakdown Spectrometer (LIBS). The LIBS technique is related to conventional
optical emission spectroscopy, in which the intensities of emission peaks diagnostic of individual
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elements are related to concentration. However, LIBS spectra are sensitive to chemical matrix
effects, which influence the ratio of a given emission line to the abundance of the element
producing that line. The intensity of a given emission line may be affected by laser-to-sample
coupling efficiency, the abundance of other neutral and ionized species within the plasma,
collisional interactions within the plasma, and self absorption (see discussion in Clegg et al.,
2008 and citations therein). Atmospheric composition and pressure also significantly influence
LIBS plasma intensity because the atmosphere is also broken down by the laser, producing
excited atomic species that interact with the ablated surface material. All of these factors make
extracting quantitative elemental concentrations of complex geochemical samples using LIBS a
challenge.

Two existing strategies address these challenges. The traditional analytical chemistry
approach to calibration relates elemental concentration to the area (or intensity) of a single
diagnostic peak (e.g., Buckley et al., 2000; Fabre et al., 2002; Anzano et al., 2006; Thompson et
al., 2006). More recently, Clegg et al. (2008) present a method for analyzing Mars-analog LIBS
spectra using partial least squares analysis (PLS) of the intensity of all channels of each spectrum
collected (see also Fink et al., 2002; Martin et al., 2005; Bousquet et al., 2007). This method
uses the statistical relationship between the LIBS data (the independent variables) and the
elemental composition (dependent variables). The PLS method was tested on a challenging suite
of igneous and metamorphic rocks with very promising results. Its strengths are that it does not
presume to associate any given channel with any particular element and it appears to compensate
for the chemical matrix effects.

In this paper, we test a new method of analyzing LIBS spectra with the potential to yield
analytical results comparable to those produced by the Clegg et al. (2008) method. Itis a
derivative of the traditional approach in that it relates peak areas to concentrations. However, it
uses multiple peaks for each element, such that elemental concentration is described by a
multiple regression equation. For each element, step-wise multiple regression analysis is used to
quantitatively select peaks with areas that correlate with concentration, so an optimized
numerical calibration equation (of the form Y = by + 61X} + b, X5 + b3 X5 +...+ by Xy + bpX,
where X = peak area and b is a partial regression coefficient) can be calculated. This technique
represents an extension of the traditional approach of quantifying elemental abundances based on
single peak areas that uses the more sophisticated possibilities available through multivariate
statistical analysis. The goal of this paper is to describe Peak Area Step-wise Regression
Analysis (PASRA), use it to analyze part of the same spectral data set employed by Clegg et al.
(2008), and contrast it with the traditional analytical chemistry approach.

2. Experimental
2.1. Sample selection and Preparation

Samples for this study are the same as those used in the study of Clegg et al. (2008),
which were analyzed for major and minor elements in the XRF lab at the University of
Massachusetts (under the direction of Michael J. Rhodes) using their standard operating
procedures (Rhodes and Vollinger, 2004). Rock types represent a range of common igneous
compositions and also include a metamorphosed gabbro and basalt (petrogeneses are given in
Clegg et al., 2008). These particular samples were chosen because their broad range of
compositions (Table 1) and rock types would create extended calibration curves for each element.
Because the LIBS line intensities physically respond to the atomic fraction of a given element
rather than its oxide weight percent, it was necessary to recalculate elemental analyses reported



78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

in wt% oxides and parts per million into atomic fractions for subsequent regression analysis (see
Clegg et al., 2008 for more information).
2.2. Experimental Methods

Data acquisition is described in Clegg et al. (2008) and will only be briefly summarized
here. Samples were powdered to <45 pm grain size and pressed into pellets. Experimental
parameters for acquisition of spectra were selected to replicate those of the ChemCam LIBS
instrument (Maurice et al., 2007; Wiens et al., 2007) as closely as possible; samples were run in
a chamber filled with ~7 Torr CO; to simulate the martian surface atmosphere. A Spectra-
Physics Indi Nd:YAG laser operating at 1064 nm, 10 Hz repetition rate, and a 10 ns pulse width
was focused onto the samples. The laser energy was set to 171 mJ/pulse. The plasma emission
was collected with a Questar Field Model Telescope with an 89 mm aperture that is smaller than
the 110 mm telescope on ChemCam. The collected emission was directed into a 1 m, 300um,
0.22NA, Ocean Optics Solarization Resistant fiber connected to one of three Ocean Optics
HR2000 spectrometers covering 223.40 — 325.97 nm (UV), 381.86 — 471.03 nm (VIS) and
494.93 — 927.06 nm (VNIR). The spectral resolutions for the UV, VIS, and VNIR spectrometers
are 0.1, 0.09 and 0.42 nm, respectively.

The spectrometer exposure time was set to 1 s in order to record the plasma emission for
ten laser shots. The spectrometer software was set to average five of these exposures for each
sample spot probed. Consequently, each probed spot represents 50 laser shots. Five different
spots on each pressed pellet were sampled to account for any heterogeneity in these powdered
samples. :

2.3. Data Processing

An IDL (Interactive Data Language) routine was written for preprocessing and analysis
of the LIBS spectra (Schaefer et al., 2008). Each spectrum was normalized to its total integrated
intensity to compensate for experimental fluctuations such as shot-to-shot changes in laser power
and laser-to-sample coupling (cf. Thompson et al., 2006 and Clegg et al., 2008). Normalized
spectra were then multiplied by a common scaling factor to make the normalized spectral
intensities similar to the originally-recorded intensities. For each of the three detectors, this
scaling factor is the double sum of the intensities over both the 2048 channels and five spectra,
divided by five. The resultant spectra were the exact same as those used in the analysis of Clegg
et al. (2008), though the latter study used only the intensity at each channel, which was directly

‘input into the statistical analyses.

Because of the geometry of the crossed Czerny-Turner spectrometers, all three
spectrometers used are spectrally non-linear, such that the wavelength spacing between channels
is not consistent. Therefore, the entire spectral range is linearly interpolated to create a data set
with the same number of channels as the initial file, but with the channels replaced by
wavelength values with consistent spacings.

For background subtraction, an adaptation of the fit background subroutine developed by
Mark Rivers for the MCA analysis library
(http://cars9.uchicago.edu/software/idl/mea_utility_routines.html#FIT BACKGROUND) was
used. This routine implements an enhanced version of the algorithm published by Kajfosz and
Kwiatek (1987).

Peak characteristics can then be calculated using a subroutine based on the fit_peaks
subroutine from the MCA analysis library
(http://cars9.uchicago.edu/software/idl/meca_utility routines.html#FIT PEAKS). This routine
can fit spectra to Gaussian, Lorentzian, or Voigt peaks (Gaussian for this study) and compare


http://cars9.uchicago.eduisoftware/idl/mca_utility_routines.html#FIT
http://cars9.uchicago.edulsoftware/idl/mca
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them to a look-up table containing peak positions for all geologically-reasonable elements. Peak
centroids and areas are saved to an ASCII file, and binned into wavelength increments for use in
regression analyses.

3. Statistical Analyses

The traditional analytical chemistry approach to calibration uses the area of a single peak
(or a ratioed, normalized peak area) that is highly correlated with the concentration for each
specific element: the choice of which peak to use varies according to the matrix of the material
being studied (Figure 1A). For geological samples with complex compositions and unknown
matrix effects, peak choice is particularly important. To identify which peaks will be useful to
predict concentration in our samples, we regressed the area in each bin (actually, a running sum
of five adjacent 0.1 nm bins to accommodate changes in peak centroid with matrix, and peaks
that fall barely in adjacent bins) against the concentration of each element. A best-fit linear
regression line was calculated using measured atomic fraction as the dependent variable and the
area of the five adjacent summed bins as the independent variable at each wavelength in 0.1 nm
increments. The R” value (the proportlon of the variation in the atomic fraction that is explained
by the regression model) for that regression equation was plotted against wavelength (e.g.,
Figure 2 top for Ca, and Figure 3 for Zr, K, and Fe). For some elements (e.g., K), there are only
a few conspicuous wavelengths that predict concentration with R*>0.5, and some of these lines
may well be emissions from other elements (such as Ca). These correlations with other elements
are important to understanding how the technique compensates for matrix effects. For other
elements (especially transition metals) such as Fe (Figure 3), there are many bins with areas that
correlate strongly to concentration (e.g., R* >0.7). Concentration can thus be qualitatively
predicted by analyzing an individual peak or by using multiple major peaks, analyzed
individually, to determine multiple predicted concentrations that can then be averaged.

For any of these elements at any wavelength, the Y intercept of the regression equation
(predicted concentration) calculated on the basis of a single peak centroid is usually non-zero
because matrix effects are playing a role in perturbing the relationship between emission and
concentration (Figure 2, bottom). This is apparent in Figure 1 (top), which shows the regression
line calculated between the measured atomic fraction of Ca and the atomic fraction predicted by
a regression based on the “best” wavelength bin at 422.8 nm.

Alternatively, statistical parameters can be used to select multiple peaks suitable for
developing a single multiple regression expression to predict concentration. Using SPSS
(Statistical Package for the Social Sciences), a series of step-wise linear multiple regressions
were run to search for correlations between elemental concentration (using one element at a time
as the dependent variable) and binned peak areas (again using a running sum of five adjacent 0.1
nm) as the 1ndependent variables. In this technique, each independent varlable is entered into the
regression in order, beglnnmg from the lowest wavelength bin, and then the R* value is
calculated. All the R? values for a one-bin model are compared, and the single bin that best
predicts concentration is chosen, as described by an equation of the form ¥ = by + b.X;, where ¥
is the atomic fraction of the element being considered, X, is peak area, by is the intercept, and b,
is a partial regression coefficient. The procedure then retains the first bin as X, but repeats the
test by entering into the regression all the remaining independent variables (bins), again one at a
time, to produce an expression of the form ¥ = by + b1 X; + boX>+ _+ b,X,. It is important to
note that the effects of the model are subtracted at each step to eliminate multicollinearity, In
other words, the primary bin selected is the one related to the element of interest, and subsequent
bins that co-vary with it (i.e. those arising from lines of the same element) will not be selected by
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the regression because their variance is already represented in the equation. As a result,
secondary, tertiary, etc. bins should represent lines arising from other elements contributing to
matrix effects. This capability should prove useful in identifying the chemical relationships that
are causing matrix effects for each element.

We used the SPSS default criteria for removal (£ >0.1) and inclusion (¥ <0.05), where F
is the F statistic. This PASRA method differs from the PLS used by Clegg et al. (2008) because
it uses selected peak areas rather than the intensities at every channel.

As the number of independent variables increases, by definition the R* value also
improves. For each different element, a surprisingly small number of “predictors” (n, the
number of wavelength bins) was needed to achieve an R value of 0.9995, which was arbitrarily
chosen to represent a satisfactory fit. This number varied from 4 to 13 predictor bins per element
over the range of each spectrometer. For this paper, which is intended to demonstrate proof-of-
concept, only results for the visible wavelength range are shown; the analogous analysis can be
done with UV or VNIR spectra as well, or the three ranges can be grouped together into a single
file. The larger the range of wavelengths, the better the results will be because more and better
diagnostic peaks for each element will be selected. Figure 1 (middle) shows the multiple
regression results based on use of ten peak centroids for Ca. A nearly identical plot (with R>>
0.9995 in all cases) could be shown for all the other major and minor elements listed in Table 1.
It is apparent that the expression accurately predicts the concentration of the standards. Note
also that its Y-intercept is almost exactly zero, suggesting that the expression is quite robust and
free of matrix effects.

4. Validation

Validation tests were conducted for Ca as a test case using the running summed, 0.1 nm-
binned data sets, both for 2048 channels in the VIS data alone, and for 6144 channels in the UV-
VIS-NIR data set. One by one, each of the 21 spectra was removed from the data set, and the
remaining 20 spectra were used to predict the composition of the 21% sample. Comparison of the
results shows that although the first bin selected for all regressions is usually either 422.8 or
396.6 nm (both known Ca peaks), the subsequent bins chosen vary greatly according to which
sample was excluded, with greater variation in bin choice when the larger wavelength range is
considered. These validation results are unsurprising because the number of samples (#) in our
data set is relatively small (only 21 “cases™) and so the choice of bins is greatly biased by the
removal of any individual sample. For these reasons, the R* values for a comparison of predicted
vs. analyzed (by XRF) atomic fractions for Ca are only 0.66 for the VIS data alone and 0.58 for
the entire wavelength range (Figure 1C). We anticipate that the validation plot R? values will
improve when the number of samples in the calibration suite (as well as its chemical diversity),
is larger. Increases in n should force the regression to generalize the non-primary bins that are
common to all samples, and lessen the influence of any individual sample; work is in progress to
test this hypothesis. For this technique to work effectively, it is apparent that we will need both a
large number of samples and a wide range of concentrations in the calibration data sets for the
Mars Science Laboratory.

5. Summary and Implications

For this size data set, the PLS analysis approach of Clegg et al. (2008) produces a far-
superior (R% = 0.987) validation plot to the PASRA method, but for a logical reason: it uses
variations in 6144 channels to predict concentration, compared with the 5-12 bins used by
PASRA. The PLS approach also has the advantage of being completely without assumptions
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regarding channel statistical selection and peak shape. PASRA is like PLS in that it can be
directly tied to specific peaks known to be related to the elements of interest. However, PASRA
is more easily understood from a traditional analytical chemistry viewpoint because it is based on
peak areas rather than line intensities. Eventually, it may allow us to gain an understanding of

- which elements contribute to the matrix effects for which other elements, and why. Furthermore,

the PASRA method, once fully calibrated, will be far less computationally intensive than the
PLS techniques.

The PASRA has also been employed to quantify the minor and trace elements in these
samples and the results shown in Table 1 are very encouraging (e.g., Zr plot in Figure 3).
ChemCam will be the only instrument on Mars Science Laboratory capable of producing
quantitative analyses of light minor elements like H, C, B, Li, O, and N. The lines from these
elements are apparent in LIBS spectra of our volcanic rocks, even at very low concentrations,
particularly for Li. It will be critical to ensure that appropriate calibration standards for those
elements are also included in suites of laboratory standards.

It is likely that successful quantification of LIBS data for ChemCam will result from
some combination of the two approaches. Future work will compare the two methods on a
broader range of rock types and elemental concentrations, and explore other multivariate
methods for selecting which peak areas/centroids lead to optimal quantitative analyses. It is
already clear that considerable additional work is needed to develop large, well-characterized
sample suites for laboratory calibration and validation, and to relate spectra of those suites to the
calibration standards on the rover.

For the LIBS technique in laboratory applications, this analysis shows great promise.
Future testing will examine the precision and accuracy of H, O, B, Be, Li, C, N, and other light
elements under laboratory conditions using standards with known elemental concentrations (e.g.,
samples described in McGuire et al. ,1992; Dyar et al., 2002). Because LIBS can be done at
microscopic scales, the technique may eventually offer the capability of quantitative
microanalysis in many diverse types of materials. '
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302  Table 1. Compositional Ranges for Major and Minor Elements*

Species Minimum Maximum
Wit% 8i0, 43.29 76.58
Wt% TiO, 0.09 6.22
Wi% ALO, 4.04 17.46
Wi% Fe,0;4 1.36 20.24
Wi% MnO 0.02 0.36
Wi% MgO 0.14 29.23
Wit% CaO 0.15 9.89
Wit% Na,O 0.85 591
Wt% K,0 0.39 5.60
Wit% P,0s 0.02 1.36
Ba, ppm 37 2980
Ce, ppm 10 195
Cr, ppm 4 1891
Ga, ppm 5 25
La, ppm 4 84
Nb, ppm 1.5 60.9
Ni, ppm 0 1183
Pb, ppm 2 40
Rb, ppm 3.7 223
Sr, ppm 16 819
Th, ppm 1 22
U, ppm 0 5
V, ppm 2 374
Y, ppm 24 82.5
Zn, ppm 27 272
Zr, ppm 41 914

303  *Values determined by XRF, given in wt. % oxide or ppm as noted. Total iron is calculated as Fe,Os.
304
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Figure 1. A. Single linear regression using the summed areas of the five 0.1 nm bins centered
on 422.8 nm for all 21 samples; the x axis shows the atomic fraction of Ca measured by XRF,
and the y axis shows the predicted atomic fraction. The non-zero intercept on the y axis implies
that some other element is affecting these peak areas. B. Multiple regression analysis using
summed areas of the five 0.1 nm bins centered on each of ten centroids; the actual R* value is
0.9996. Axesasin A. Note that the intercept is very close to zero, suggesting that this method
compensates for matrix effects successfully. C. Validation plot using visible wavelength data
only. One sample at a time was removed for the data set before a multiple regression expression
was calculated and then used to predict the composition of that sample. Axes asin A. As the
number of samples and the chemical diversity represented in the calibration suite is increased
(through work in progress), this correlation should become increasingly better. This plot
underscores the importance of developing predictive equations based on calibration data sets
with as much depth and breadth as possible.
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325  areas of five adjacent 0.1 nm bins regressed against the atomic fraction of Ca. Note that the

326  areas of the prominent peaks at 393.3 and 396.6 nm, commonly used for Ca determinations

327  elsewhere in the literature, do correlate well with Ca; the best correlation is at 422.8 nm. Bottom:
328  Yintercept values for the regressions shown in A, plotted against the wavelength of the bin

329  centroid.

330
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333 Figure 3. R? values (y axis) for the summed peak areas of five adjacent 0.1 nm bins regressed

334  against the atomic fractions of Zr (top), K (middle) and Fe (bottom) as a function of wavelength.
335  Note that some of the observed peaks with high correlations may be due to emissions from
336  compatible elements.
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