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15 Abstract. The ChemCam instrument on the Mars Science Laboratory (MSL) will include a 
16 laser-induced breakdown spectrometer (UBS) to quantifY major and minor elemental 
17 compositions. The traditional analytical chemistry approach to calibration curves for these data 
18 regresses a single diagnostic peak area against concentration for each element. This approach 
19 contrasts with a new multivariate method in which elemental concentrations are predicted by 
20 step-wise multiple regression analysis based on areas ofa specific set of diagnostic peaks for 
21 each element. The method is tested on UBS data from igneous and metamorphosed rocks. 
22 Between 4 and 13 partial regression coefficients are needed to describe each elemental 
23 abundance accurately (i.e., with a regression line of R2 > 0.9995 for the relationship between 
24 predicted and measured elemental concentration) for all major and minor elements studied. 
25 Validation plots suggest that the method is limited at present by the small data set, and will work 
26 best for prediction of concentration when a wider variety ofcompositions and rock types has 
27 been analyzed. 
28 
29 1. Introduction 
30 The ChemCam instrument selected for the Mars Science Laboratory (MSL) includes a 
31 Laser-Induced Breakdown Spectrometer (UBS). The UBS technique is related to conventional 
32 optical emission spectroscopy, in which the intensities of emission peaks diagnostic of individual 



33 elements are related to concentration. However, LIBS spectra are sensitive to chemical matrix 
34 effects, which influence the ratio of a given emission line to the abundance of the element 
35 producing that line. The intensity of a given emission line may be affected by laser-to-sample 
36 coupling efficiency, the abundance ofother neutral and ionized species within the plasma, 
37 collisional interactions within the plasma, and self absorption (see discussion in Clegg et al., 
38 2008 and citations therein). Atmospheric composition and pressure also significantly influence 
39 LIBS plasma intensity because the atmosphere is also broken down by the laser, producing 
40 excited atomic species that interact with the ablated surface material. All of these factors make 
41 extracting quantitative elemental concentrations of complex geochemical samples using LIBS a 
42 challenge. 
43 Two existing strategies address these challenges. The traditional analytical chemistry 
44 approach to calibration relates elemental concentration to the area (or intensity) of a single 
45 diagnostic peak (e.g., Buckley et al., 2000; Fabre et al., 2002; Anzano et al., 2006; Thompson et 
46 al., 2006). More recently, Clegg et al. (2008) present a method for analyzing Mars-analog LIBS 
47 spectra using partial least squares analysis (PLS) of the intensity of all channels of each spectrum 
48 collected (see also Fink et aI., 2002; Martin et al., 2005; Bousquet et al., 2007). This method 
49 uses the statistical relationship between the LIBS data (the independent variables) and the 
50 elemental composition (dependent variables). The PLS method was tested on a challenging suite 
51 of igneous and metamorphic rocks with very promising results. Its strengths are that it does not 
52 presume to associate any given channel with any particular element and it appears to compensate 
53 for the chemical matrix effects. 
54 In this paper, we test a new method of analyzing LIBS spectra with the potential to yield 
55 analytical results comparable to those produced by the Clegg et al. (2008) method. It is a 
56 derivative of the traditional approach in that it relates peak areas to concentrations. However, it 
57 uses multiple peaks for each element, such that elemental concentration is described by a 
58 multiple regression equation. For each element, step-wise multiple regression analysis is used to 
59 quantitatively select peaks with areas that correlate with concentration, so an optimized 
60 numerical calibration equation (of the form Y bo+ b1X1 + b2X2 + bY{3 + ... + bn-1Xn-1 + brXn, 
61 where X = peak area and b is a partial regression coefficient) can be calculated. This technique 
62 represents an extension of the traditional approach ofquantifying elemental abundances based on 
63 single peak areas that uses the more sophisticated possibilities available through multivariate 
64 statistical analysis. The goal of this paper is to describe Peak Area Step-wise Regression 
65 Analysis (P ASRA), use it to analyze part of the same spectral data set employed by Clegg et al. 
66 (2008), and contrast it with the traditional analytical chemistry approach. 
67 2. Experimental 
68 2.1. Sample selection and Preparation 
69 Samples for this study are the same as those used in the study of Clegg et al. (2008), 
70 which were analyzed for major and minor elements in the XRF lab at the University of 
71 Massachusetts (under the direction ofMichael J. Rhodes) using their standard operating 
72 procedures (Rhodes and Vollinger, 2004). Rock types represent a range of common igneous 
73 compositions and also include a metamorphosed gabbro and basalt (petro geneses are given in 
74 Clegg et al., 2008). These particular samples were chosen because their broad range of 
75 compositions (Table 1) and rock types would create extended calibration curves for each element. 
76 Because the LIBS line intensities physically respond to the atomic fraction of a given element 
77 rather than its oxide weight percent, it was necessary to recalculate elemental analyses reported 
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78 in wt% oxides and parts per million into atomic fractions for subsequent regression analysis (see 
79 Clegg et al., 2008 for more information). 
80 2.2. Experimental Methods 
81 Data acquisition is described in Clegg et al. (2008) and will only be briefly summarized 
82 here. Samples were powdered to <45 Ilm grain size and pressed into pellets. Experimental 
83 parameters for acquisition of spectra were selected to replicate those of the ChemCam LlBS 
84 instrument (Maurice et aI., 2007; Wiens et al., 2007) as closely as possible; samples were run in 
85 a chamber filled with -7 Torr CO2 to simulate the martian surface atmosphere. A Spectra­
86 Physics Indi Nd:YAG laser operating at 1064 nm, 10 Hz repetition rate, and a 10 ns pulse width 
87 was focused onto the samples. The laser energy was set to 17±1 mJ/pulse. The plasma emission 
88 was collected with a Questar Field Model Telescope with an 89 mm aperture that is smaller than 
89 the 110 mm telescope on ChemCam. The collected emission was directed into aIm, 300Jlm, 
90 0.22NA, Ocean Optics Solarization Resistant fiber connected to one of three Ocean Optics 
91 HR2000 spectrometers covering 223.40 - 325.97 nm (UV), 381.86 - 471.03 nm (VIS) and 
92 494.93 - 927.06 nm (VNIR). The spectral resolutions for the UV, VIS, and VNIR spectrometers 
93 are 0.1, 0.09 and 0.42 nm, respectively. 
94 The spectrometer exposure time was set to 1 s in order to record the plasma emission for 
95 ten laser shots. The spectrometer software was set to average five of these exposures for each 
96 sample spot probed. Consequently, each probed spot represents 50 laser shots. Five different 
97 spots on each pressed pellet were sampled to account for any heterogeneity in these powdered 
98 samples. 
99 2.3. Data Processing 

100 An IDL (Interactive Data Language) routine was written for preprocessing and analysis 
101 of the LlBS spectra (Schaefer et al., 2008). Each spectrum was normalized to its total integrated 
102 intensity to compensate for experimental fluctuations such as shot-to-shot changes in laser power 
103 and laser-to-sample coupling (cf. Thompson et al., 2006 and Clegg et al., 2008). Normalized 
104 spectra were then multiplied by a common scaling factor to make the normalized spectral 
105 intensities similar to the originally-recorded intensities. For each of the three detectors, this 
106 scaling factor is the double sum ofthe intensities over both the 2048 channels and five spectra, 
107 divided by five. The resultant spectra were the exact same as those used in the analysis of Clegg 
108 et al. (2008), though the latter study used only the intensity at each channel, which was directly 
109 input into the statistical analyses. 
110· Because of the geometry of the crossed Czerny-Turner spectrometers, all three 
111 spectrometers used are spectrally non-linear, such that the wavelength spacing between channels 
112 is not consistent. Therefore, the entire spectral range is linearly interpolated to create a data set 
Il3 with the same number of channels as the initial file, but with the channels replaced by 
114 wavelength values with consistent spacings. 
115 For background subtraction, an adaptation of the fit_background subroutine developed by 
116 Mark Rivers for the MCA analysis library 
117 (http://cars9.uchicago.edulsoftware/idl/mca_ utility _routines.html#FIT _BACKGROUND) was 
118 used. This routine implements an enhanced version of the algorithm published by Kajfosz and 
119 Kwiatek (1987). 
120 Peak characteristics can then be calculated using a subroutine based on the fit-'peaks 
121 subroutine from the MCA analysis library 
122 (http://cars9.uchicago.eduisoftware/idl/mca_utility_routines.html#FIT _PEAKS). This routine 
123 can fit spectra to Gaussian, Lorentzian, or Voigt peaks (Gaussian for this study) and compare 
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124 them to a look-up table containing peak positions for all geologically-reasonable elements. Peak 
125 centroids and areas are saved to an ASCII file, and binned into wavelength increments for use in 
126 regression analyses. 
127 

128 3. Statistical Analyses 
129 The traditional analytical chemistry approach to calibration uses the area of a single peak 
130 (or a ratioed, normalized peak area) that is highly correlated with the concentration for each 
131 specific element: the choice of which peak to use varies according to the matrix of the material 
132 being studied (Figure IA). For geological samples with complex compositions and unknown 
133 matrix effects, peak choice is particularly important. To identifY which peaks will be useful to 
134 predict concentration in our samples, we regressed the area in each bin (actually, a running sum 
135 of five adjacent 0.1 nm bins to accommodate changes in peak centroid with matrix, and peaks 
136 that fall barely in adjacent bins) against the concentration of each element. A best-fit linear 
137 regression line was calculated using measured atomic fraction as the dependent variable and the 
138 area of the five adjacent summed bins as the independent variable at each wavelength in 0.1 nm 
139 increments. The R2 value (the proportion of the variation in the atomic fraction that is explained 
140 by the regression model) for that regression equation was plotted against wavelength (e.g., 
141 Figure 2 top for Ca, and Figure 3 for Zr, K, and Fe). For some elements (e.g., K), there are only 
142 a few conspicuous wavelengths that predict concentration with R2>0.5, and some of these lines 
143 may well be emissions from other elements (such as Ca). These correlations with other elements 
144 are important to understanding how the technique compensates for matrix effects. For other 
145 elements (especially transition metals) such as Fe (Figure 3), there are many bins with areas that 
146 correlate strongly to concentration (e.g., R2 >0.7). Concentration can thus be qualitatively 
147 predicted by analyzing an individual peak or by using multiple major peaks, analyzed 
148 individually, to determine multiple predicted concentrations that can then be averaged. 
149 For any of these elements at any wavelength, the Yintercept of the regression equation 
150 (predicted concentration) calculated on the basis ofa single peak centroid is usually non-zero 
151 because matrix effects are playing a role in perturbing the relationship between emission and 
152 concentration (Figure 2, bottom). This is apparent in Figure 1 (top), which shows the regression 
153 line calculated between the measured atomic fraction of Ca and the atomic fraction predicted by 
154 a regression based on the "best" wavelength bin at 422.8 nm. 
155 Alternatively, statistical parameters can be used to select multiple peaks suitable for 
156 developing a single multiple regression expression to predict concentration. Using SPSS 
157 (Statistical Package for the Social Sciences), a series of step-wise linear multiple regressions 
158 were run to search for correlations between elemental concentration (using one element at a time 
159 as the dependent variable) and binned peak areas (again using a running sum offive adjacent 0.1 
160 nm) as the independent variables. In this technique, each independent variable is entered into the 
161 regression in order, beginning from the lowest wavelength bin, and then the R2 value is 
162 calculated. All the R2 values for a one-bin model are compared, and the single bin that best 
163 predicts concentration is chosen, as described by an equation of the form Y= bo + b1Xj, where Y 
164 is the atomic fraction of the element being considered, Xn is peak area, bo is the intercept, and bn 
165 is a partial regression coefficient. The procedure then retains the first bin as XI, but repeats the 
166 test by entering into the regression all the remaining independent variables (bins), again one at a 
167 time, to produce an expression of the form Y bo + blXj + b2X2+ ... + brXn. It is important to 
168 note that the effects of the model are subtracted at each step to eliminate multicollinearity. In 
169 other words, the primary bin selected is the one related to the element of interest, and subsequent 
170 bins that co-vary with it (i.e. those arising from lines of the same element) will not be selected by 

4 



171 the regression because their variance is already represented in the equation. As a result, 
172 secondary, tertiary, etc. bins should represent lines arising from other elements contributing to 
173 matrix effects. This capability should prove useful in identifying the chemical relationships that 
174 are causing matrix effects for each element. 
175 We used the SPSS default criteria for removal (F~O.I) and inclusion (F ::S0.05), where F 
176 is the F statistic. This P ASRA method differs from the PLS used by Clegg et al. (2008) because 
177 it uses selected peak areas rather than the intensities at every channeL 
178 As the number of independent variables increases, by definition the R2 value also 
179 improves. For each different element, a surprisingly small number of "predictors" (n, the 
180 number of wavelength bins) was needed to achieve an R2 value of 0.9995, which was arbitrarily 
181 chosen to represent a satisfactory fit. This number varied from 4 to 13 predictor bins per element 
182 over the range of each spectrometer. For this paper, which is intended to demonstrate proof-of­
183 concept, only results for the visible wavelength range are shown; the analogous analysis can be 
184 done with UV or VNIR spectra as well, or the three ranges can be grouped together into a single 
185 file. The larger the range of wavelengths, the better the results will be because more and better 
186 diagnostic peaks for each element will be selected. Figure 1 (middle) shows the multiple 
187 regression results based on use often peak centroids for Ca. A nearly identical plot (with R2> 
188 0.9995 in all cases) could be shown for all the other major and minor elements listed in Table 1. 
189 It is apparent that the expression accurately predicts the concentration of the standards. Note 
190 also that its Y-intercept is almost exactly zero, suggesting that the expression is quite robust and 
191 free ofmatrix effects. 
192 

193 4. Validation 
194 Validation tests were conducted for Ca as a test case using the running summed, 0.1 nm­
195 binned data sets, both for 2048 channels in the VIS data alone, and for 6144 channels in the UV­
196 VIS-NIR data set. One by one, each of the 21 spectra was removed from the data set, and the 
197 remaining 20 spectra were used to predict the composition of the 21 st sample. Comparison of the 
198 results shows that although the first bin selected for all regressions is usually either 422.8 or 
199 396.6 nm (both known Ca peaks), the subsequent bins chosen vary greatly according to which 
200 sample was excluded, with greater variation in bin choice when the larger wavelength range is 
201 considered. These validation results are unsurprising because the number of samples (n) in our 
202 data set is relatively small (only 21 "cases") and so the choice of bins is greatly biased by the 
203 removal of any individual sample. For these reasons, the R2 values for a comparison ofpredicted 
204 vs. analyzed (by XRF) atomic fractions for Ca are only 0.66 for the VIS data alone and 0.58 for 
205 the entire wavelength range (Figure Ie). We anticipate that the validation plot R2 values will 
206 improve when the number of samples in the calibration suite (as well as its chemical diversity), 
207 is larger. Increases in n should force the regression to generalize the non-primary bins that are 
208 common to all samples, and lessen the influence of any individual sample; work is in progress to 
209 test this hypothesis. For this technique to work effectively, it is apparent that we will need both a 
210 large number of samples and a wide range of concentrations in the calibration data sets for the 
211 Mars Science Laboratory. 
212 

213 5. Summary and Implications 
214 For this size data set, the PLS analysis approach of Clegg et al. (2008) produces a far­
215 superior (R2 = 0.987) validation plot to the PASRA method, but for a logical reason: it uses 
216 variations in 6144 channels to predict concentration, compared with the 5-12 bins used by 
217 PASRA. The PLS approach also has the advantage of being completely without assumptions 
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218 regarding channel statistical selection and peak shape. PASRA is like PLS in that it can be 
219 directly tied to specific peaks known to be related to the elements of interest. However, P ASRA 
220 is more easily understood from a traditional analytical chemistry viewpoint because it is based on 
221 peak areas rather than line intensities. Eventually, it may allow us to gain an understanding of 
222 which elements contribute to the matrix effects for which other elements, and why. Furthermore, 
223 the PASRA method, once fully calibrated, will be far less computationally intensive than the 
224 PLS techniques. 
225 The P ASRA has also been employed to quantify the minor and trace elements in these 
226 samples and the results shown in Table I are very encouraging (e.g., Zr plot in Figure 3). 
227 ChemCam will be the only instrument on Mars Science Laboratory capable ofproducing 
228 quantitative analyses oflight minor elements like H, C, B, Li, 0, and N. The lines from these 
229 elements are apparent in LIBS spectra ofour volcanic rocks, even at very low concentrations, 
230 particularly for Li. It will be critical to ensure that appropriate calibration standards for those 
231 elements are also included in suites of laboratory standards. 
232 It is likely that successful quantification of LIBS data for ChemCam will result from 
233 some combination of the two approaches. Future work will compare the two methods on a 
234 broader range of rock types and elemental concentrations, and explore other multivariate 
235 methods for selecting which peak areas/centroids lead to optimal quantitative analyses. It is 
236 already clear that considerable additional work is needed to develop large, well-characterized 
237 sample suites for laboratory calibration and validation, and to relate spectra of those suites to the 
238 calibration standards on the rover. 
239 For the LIBS technique in laboratory applications, this analysis shows great promise. 
240 Future testing will examine the precision and accuracy ofH, 0, B, Be, Li, C, N, and other light 
241 elements under laboratory conditions using standards with known elemental concentrations (e.g., 
242 samples described in McGuire et aI., 1992; Dyar et al., 2002). Because LIBS can be done at 
243 microscopic scales, the technique may eventually offer the capability of quantitative 
244 microanalysis in many diverse types of materials. 
245 
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302 Table L Compositional Ranges for Major and Minor Elements* 
Species Minimum Maximum 

Wt% Si02 43.29 76.58 
Wt% Ti02 0.09 6.22 
Wt:OA> Ah03 4.04 17.46 
Wt:Olo Fe203 1.36 20.24 
Wt:Olo MnO 0.02 0.36 
Wt:OA> MgO 0.14 29.23 
Wt% CaO 0.15 9.89 
Wt:O/o NazO 0.85 5.91 
Wt% K20 0.39 5.60 
Wt% PzOs 0.02 1.36 
Ba, ppm 37 2980 
Ce, ppm 10 195 
Cr, ppm 4 1891 
Ga, ppm 5 25 
La, ppm 4 84 
Nb, ppm 1.5 60.9 
Ni, ppm 0 1183 
Pb,ppm 2 40 
Rb, ppm 3.7 223 
Sr, ppm 16 819 
Th, ppm 1 22 
U,ppm 0 5 
V, ppm 2 374 
Y, ppm 2.4 82.5 
Zn, ppm 27 272 
Zr, ppm 41 914 

303 *Values determined by XRF, given in wt. % oxide or ppm as noted. Total iron is calculated as FeZ03' 
304 
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306 Figure 1. A. Single linear regression using the summed areas of the five 0.1 nm bins centered 
307 on 422.8 nm for all 21 samples; the x axis shows the atomic fraction of Ca measured by XRF, 
308 and the y axis shows the predicted atomic fraction. The non-zero intercept on the y axis implies 
309 that some other element is affecting these peak areas. B. Multiple regression analysis using 
310 summed areas of the five 0.1 nm bins centered on each often centroids; the actual R2 value is 
311 0.9996. Axes as in A. Note that the intercept is very close to zero, suggesting that this method 
312 compensates for matrix effects successfully. C. Validation plot using visible wavelength data 
313 only. One sample at a time was removed for the data set before a multiple regression expression 
314 was calculated and then used to predict the composition of that sample. Axes as in A. As the 
315 number of samples and the chemical diversity represented in the calibration suite is increased 
316 (through work in progress), this correlation should become increasingly better. This plot 
317 underscores the importance of developing predictive equations based on calibration data sets 
318 with as much depth and breadth as possible. 
319 
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323 Figure 2. Graphs showing where there are correlations between the atomic fraction of Ca and 
324 the area of peaks centered at each wavelength measured. Top: R2 values for the summed peak 
325 areas of five adjacent 0.1 nm bins regressed against the atomic fraction of Ca. Note that the 
326 areas of the prominent peaks at 393.3 and 396.6 nm, commonly used for Ca determinations 
327 elsewhere in the literature, do correlate well with Ca; the best correlation is at 422.8 nm. Bottom: 
328 Y intercept values for the regressions shown in A, plotted against the wavelength of the bin 
329 centroid. 
330 

10 



0.7 
400.1 429.6 

427.8
0.6 

II! Zr 
~ 0.5 

438.80.4~ 
c: 
:.c 0.3.;, 
'0 


0:: 
0.1 

K 455.3 

0.2 


II! 396.6 

393.1 422.4~ 
0.5 456.7442.7~ 

c: 0.4:.c.;, 
'0 0.3 

N 
It 

o 

~ 0.6 

N 

It 0.2 

0.0 +U.uu:J..:.J,..J.1.I.Wu.,JJI!WLlL!Jl,.lJJ.JJJ.J1.IJ..IP' 
380 390 400 410 420 430 440 450 460 470 

331 Wavelength of Peak Centroid (nm) 

332 
333 Figure 3. R2 values (y axis) for the summed peak areas of five adjacent 0.1 nm bins regressed 
334 against the atomic fractions ofZr (top), K (middle) and Fe (bottom) as a function ofwavelength. 
335 Note that some of the observed peaks with high correlations may be due to emissions from 
336 compatible elements. 
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