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'Transport Anisotropy as a Probe of the Interstitial Vortex State in Superconductors 
with Artificial Pinning Arrays 

C. Reichhardt and C.J. Olson Reichhardt 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

(Dated: November 18, 2008) 

We show using simulations that when interstitial vortices are present in superconductors with 
periodic pinning arrays, the transport in two perpendicular directions can be anisotropic. The degree 
of the anisotropy varies as a function of field due to the fact that the interstitial vortex lattice has 
distinct orderings at different matching fields. The anisotropy is most pronounced at the matching 
fields but persists at incommensurate fields, and it is most prominent for triangular, honeycomb, 
and kagome pinning arrays. Square pinning arrays can also show anisotropic transport at certain 
fields in spite of the fact that the perpendicular directions of the square pinning array are identical. 
We show that the anisotropy results from distinct vortex dynamical states and that although the 
critical depinning force may be lower in one direction, the vortex velocity above depinning may also 
be lower in the same direction for ranges of external drives where both directions are depinned. For 
honeycomb and kagome pinning arrays, the anisotropy can show multiple reversals as a function 
of field. We argue that when the pinning sites can be multiply occupied such that no interstitial 
vortices are present, the anisotropy is strongly reduced or absent. 

PACS numbers: 74.25.Qt 

I. INTRODUCTION 

Vortices in superconductors interacting with artificial 
arrays of periodic pinning exhibit a wide range of com­
mensurability and dynamical effects that can be observed 
readily in critical current, transport, and other bulk mea­
surements [1- 10]. Advances in lithography techniques 
permit the creation of pinning arrays in which the size, 
shape, and composition of the individual pinning sites 
and the global geometry can be well controlled [2- 14]. 
Commensurability effects in these systems occur when 
the number of vortices equals an integer multiple of the 
number of pinning sites, resulting in peaks or anoma­
lies in bulk measurements as a function of field. At the 
first matching field, there is one vortex per pinning site, 
and as the field is further increased, additional vortices 
can be located either at the pinning sites in the form 
of pinned multi-quanta vortices [3, 4, 15- 19], or in the 
interstitial regions between the pinning sites. The inter­
stitial vortices can be effectively pinned by the repulsive 
interactions from the vortices at the pinning sites, which 
create a caging potential [5, 6, 19- 24]. It is also possi­
ble for mixed vortex pinning to occur in which the first 
few matching fields have only pinned multi-quanta vor­
tices until the pinning sites are saturated, while for higher 
matching fields the additional vortices are located in the 
interstitial regions. [3, 6, 13, 15, 16, 19]. Conversely, 
it is also possible that interstitial vortices appear at the 
lower matching fields, but that as the vortex-vortex inter­
actions increase at higher matching fields, multi-quanta 
vortices will begin to form at the pinning sites [19]. 

Interstitial vortex lattice crystals in square periodic 
pinning arrays have been observed directly with Lorentz 
microscopy, which revealed that there are several dis­
tinct types of interstitial vortex structures that have 
symmetries different from that of the triangular vortex 

lattice [6]. The same types of vortex structures have 
been produced in simulations of square pinning arrays 
[20, 21], while simulations have also shown that similar 
vortex structures can form in triangular [20], rectangu­
lar [24, 25], honeycomb [26], and kagome pinning arrays 
[26, 27]. Other numerical works indicated that a rich va­
riety of composite lattices with multiple and interstitial 
vortex configurations are possible [19, 22] and that new 
types of interstitial vortex configurations can occur for 
arrays of antipinning sites [28]. 

Vortex imaging experiments provide direct evidence 
for both multi-quanta vortex pinning and the formation 
of ordered interstitial vortex lattice structures [15, 16]. 
Anomalies at matching fields found in bulk measure­
ments occur for both multi-quanta vortex pinning and 
interstitial vortex pinning, so without direct imaging it 
can be difficult to determine whether multi-quanta or in­
terstitial vortex pinning is occurring [18]. In some cases, 
the presence of interstitial vortices can only be inferred 
from the shapes and characteristics of the current volt­
age curves or from phase locking experiments [5, 29]. It 
would be highly desirable to identify additional clear sig­
natures in transport measurements that can distinguish 
between interstitial vortex pinning and multi-quanta vor­
tex pinning and that can also reveal the types of vortex 
lattice symmetries that are present. 

An anisotropic response was recently measured for the 
critical current applied in two perpendicular directions 
to a triangular pinning array in recent experiments and 
simulations [30, 31]. The experiments were p~rformed 
on several different samples and the same anisotropic re­
sponse appeared in each one, while the anisotropy ob­
served in the simulations agreed with that seen in the 
experiments, suggesting that the behavior is due to dis­
tinct intrinsic features of the vortex dynamics. The sim­
ulations show that the vortex flow patterns are different 
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for the two directions of applied current, which could 
account for the anisotropic response. The anisotropy is 
particularly pronounced at the second matching field but 
is absent at the first matching field, which suggests that 
depinning of the interstitial vortices is responsible for 
the anisotropy. Interestingly, for lower temperatures the 
experiments showed that the critical current anisotropy 
vanished at both the first and second matching fields 
but persisted at the third matching field, suggesting that 
multi-quanta vortex pinning occurs at the second match­
ing field at low temperatures. These results indicate that 
the presence of anisotropy can be a useful way to probe 
the interstitial vortex state and the type of vortex order­
ing that occurs at different matching fields. 

The experiments and simulations of Refs. [30, 31] only 
examined a triangular pinning array up to the third 
matching field. In this work we study anisotropic trans­
port for a much wider range of fields and system pa­
rameters for triangular, square, honeycomb, and kagome 
pinning arrays. For the triangular array we find a vari­
ety of distinct anisotropic behaviors due to the differing 
symmetries of the interstitial vortex lattice at different 
matching fields. For example, at certain matching fields 
the vortex lattice is disordered and the anisotropy van­
ishes. For honeycomb and kagome pinning arrays, an 
even richer anisotropic behavior occurs due to the for­
mation of vortex molecular crystal states [26] with addi­
tional rotational degrees of freedom, resulting in a series 
of reversals in the anisotropy as a function of field. Re­
markably, we find that it is also possible for square pin­
ning arrays to show anisotropic transport even though 
the two perpendicular directions of the pinning lattice are 
identical. This occurs at certain matching fields where a 
triangular vortex structure forms, such that one driv­
ing direction is oriented with the easy-shear direction 
of the vortex lattice. Anisotropic transport measure­
ments for vortices in periodic pinning arrays have already 
been been shown to be experimentally feasible , and ex­
periments have been performed in which the current is 
injected in two directions for samples with rectangular 
pinning arrays or asymmetric pinning shapes, revealing 
anisotropic depinning thresholds [32- 34]. Although our 
work is focused on superconducting vortices, our results 
should be general to the class of systems of particles in­
teracting with periodic substrates where both pinned and 
interstitial particles are present. Examples of this type 
of system include colloidal particles in periodic pinning 
[35, 36] and charged metallic balls [37]. 

II. SIMULATION AND SYSTEM 

We consider a two-dimensional system with periodic 
boundary conditions in the x and y-directions of size 
L x L. The magnetic field B is applied out of the plane 
in the z-direction, while Nv vortices and Np pinning 
sites are placed within the system for a vortex density of 
nv = Nv / L2 and a pinning density of np = Np / L2. The 
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FIG. 1: The pinning site locations (open circles) for (a) a tri­
angular pinning array, (b) a square pinning array, (c) a hon­
eycomb pinning array, and (d) a kagome pinning array. The 
driving force is applied along y to determine the depinning 
force FJj and along x to determine F:. 

matching field Bcf> is defined as the field at which the 
number of vortices equals the number of pinning sites, 
N v = N p • In Fig. 1 we show representative examples of 
the triangular, square, honeycomb, and kagome pinning 
geometries used in this work, and indicate the x and y 
directions along which current is applied. The initial vor­
tex positions are prepared by simulated annealing with 
no applied drive, and then the vortex velocities are mea­
sured in the presence of a driving force that is applied 
in the x direction. The driving force corresponds to the 
Lorentz force generated by an applied current, while the 
vortex velocities are proportional to the voltage response 
that would be measured experimentally. We repeat the 
simulation from the same initial vortex positions with the 
driving force applied in the y direction, and compare the 
velocity response (Vx ) and (Vy) and the critical depinning 
force Fg and F: for the two driving directions. 

The time evolution of the vortex dynamics is governed 
by integrating N v coupled overdamped equations of mo­
tion. The equation of motion for a single vortex i at 
position Ri is given by 

~ FVV FVP F FT (1)rJTt = i + i + D + i' 

Here the damping constant rJ = ¢5d/27rePN, where d is 
the sample thickness, 1] is the coherence length, PN is the 
normal-state resistivity, and ¢o = h/2e is the elementary 
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flux ·qualltum. The vortex-vortex interaction force is 

(2) 


where Kl is the modified Bessel function, ,X is the Lon­
don penetration depth, the unit of force is io = <pfi/27r,X3, 
~j = I~ - Rjl, and Rij = (~- Rj)/~j. The vortex­
vortex interaction force falls off sufficiently rapidly that a 
cutoff can be placed at ~j = 6'x. Use of a longer cutoff of 
~j = 12,X produces identical results. An additional short 
range cutoff is placed at ~j = 0.1A to avoid a divergence 
in the force. The pinning sites are modeled as attrac­
tive parabolic wells of radius Rp and strength Fp with 
F VP = "Np r F: R- 1R(p)e(( R - R(p»/'x)R(p) Here 

t uk J 0 P P ,k ''1J tk ,k . 

R~) is the location of pinning site k, ~k = IRi - R~'I, 
R~~) = (~ - R~»/~k, and e is the Heaviside step 
function. The pinning sites are arranged in a triangu­
lar, square, honeycomb, or kagome array. The external 
drive F D = FDx or F D = FDY is a constant force that is 
uniformly applied to all of the vortices. The thermal 
force F'[ is used during the simulated annealing pro­
cedure and has the following properties: (Ft(t» = 0 
and (F'[(t)FJ(t'») = 2'f}kBTbij b(t - t'). We decre­
ment the temperature by 0.0002 every 1000 simulation 
time steps. After the initialization, the applied drive 
is imposed in increments of bFD = 0.1 every 103 sim­
ulation time steps. The velocity-force curves are ob­
tained by averaging the velocity every 103 simulation 
· t· (11") - N- 1 "Nv 

A h ­t ime s eps. Va - v ui Vi' a, were a - x, y. 
Here Vi = aRddt. The critical depinning forces in the 
x and y directions, F~ and F%, are determined by the 
criterion (Va) = 0.001. 

III. 	 ANISOTROPY IN TRIANGULAR PINNING 
ARRAYS 

/ 
We first consider the depinning forces for the x and 

v-directions id the triangular pinning lattice illustrated 
in Fig. l(a)/ with Fp = 0.85, np = 0.0833/,X2, and 
Rp = 0.35,X! In Fig. 2 we plot F~ and F% vs B / B", along 
with a deiail of the region from 1.0 < B / B", < 5.0. In 
general F% > F~ at most of the commensurate fields. 
The anisotropy at incommensurate fields is most pro­
nounced for 1.0 < B / B ", < 3.0, as shown in the inset of 
Fig. 2. In previous simulations a similar anisotropy was 
observed for this range of fields [31]. For B / B", > 3.0 
both F~ and F% are small, so it is difficult to deter­
mine whether the depinning is anisotropic at incommen­
surate fields. At the matching fields B / B¢ = 7, 9, and 
12, where the depinning forces are high, F~ and F% can 
be measured accurately. In Fig. 3 we plot representa­
tive velocity-force curves for driving in both the x and 
y directions at B / B", = 2, 3, 4, and 5. There is a 
clear anisotropy in the depinning force with F% > F~ at 
B/B", = 2, 3, and 4 in Figs. 3(a,b,c), while at B/B¢ = 5.0 

FIG. 2: The depinning forces F: (light line) and Fl (dark 
lines) vs B / B¢> for a triangular pinning lattice with Fp = 0.85, 
Rp = 0.35>', and np = 0.0833/>.2 

. Inset: the same data 
showing a highlight of the region from 1.0 < B / B¢> < 5.0. 
Open squares: F:; filled circles: Fl. 
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FIG. 3: Velocity-force curves for driving in the x-direction, 
(Vx) (open squares), and in the v-direction, (Vy) (filled circles) 
for the triangular pinning lattice system in Fig. 2. (a) At 
B/ B¢> = 2, the slope dVy/dFD < dVx/dFD. (b) At B/B¢> = 
3, dVy/dFD = dVx/dFD. (c) At B/B¢> = 4, dVx/dFD < 
dVy/dFD, resulting in a crossing in the velocity-force curves 
near FD = 0.1. (d) At B / B¢> = 5, the depinning is isotropic. 

in Fig. 3(d) , the depinning is isotropic. This can be 
seen more clearly in the plot of the anisotropy F% / F~ at 
the matching fields, shown in Fig. 4. The anisotropy is 
largest for B / B¢ = 2, 4, and 9, weaker for B / B¢ = 3 and 
12, and essentially absent at B / B¢ = 1, 5, 6, 7, 8, 10, and 
11. Corresponding to this, there are no peaks in the de­
pinning force at B / B¢ = 5, 6, 8, 10, and 11 in Fig. 2. At 
the fields with isotropic depinning F% / F~ ~ 1, the overall 
vortex lattice is disordered, while at the other matching 
fields where anisotropic depinning occurs, ordered vor­

0.005 
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FIG. 4: The ratio FliF: vs BIB", obtained from the system 
in Fig. 2. The dashed line indicates FliF: = 1. The depin­
ning is strongly anisotropic at the matching fields BIB", = 2, 
3, 4, 9, and 12. 

tex lattices form. Previous numerical work for triangu­
lar pinning arrays at fields up to B / Be/> = 9 showed the 
same features in the critical depinning force as well as 
the existence of disordered lattices at the matching fields 
B / Be/> = 5, 6, and 8 [20j. From a geometric construc­
tion, it can be shown that a triangular vortex lattice can 
be placed on a triangular pinning lattice at the integer 

2matching fields N = m 2 + n + nm, where n and m 
are integers [20j. This predicts the formation of trian­
gular vortex lattices at fields with N = 1, 3, 4, 7, 9, 
and 12, in agreement with our observation of a peak in 
Fe at each of these fields. The geometric construction 
does not predict the formation of a triangular lattice at 
B/Be/> = 2; however, a strong matching peak appears at 
this field both in Fig. 2 and in the previous work [20j. 
The peak at B / Be/> = 2 occurs due to the formation of an 
ordered honeycomb vortex lattice structure, rather than 
a triangular vortex lattice. In general, we expect to find 
a peak in the critical current at fields where a triangular 
or other ordered vortex lattice structure forms. Figures 2 
and 4 also show that although there is apeak in Fe at 
B / Be/> = 7, where a triangular vortex lattice forms, there 
is no anisotropy for this field and F% / F; ~ 1. 

In order to explain the different degrees of anisotropy 
that appear at different fields, we analyze the vortex po­
sitions and trajectories for driving in the x and y direc­
tions. Figure 5(a) shows the ordered honeycomb vortex 
lattice structure that forms at FD = 0 for B / Be/> = 2 
on a triangular pinning lattice. When driven in the x­
direction, the vortices can easily form slightly undulat­
ing channels of flow that pass between the filled pinning 
sites, as illustrated in Fig. 5(b). For driving in the y­
direction, the pinned vortices act as barriers that prevent 
the formation of simple flow channels, and the intersti-
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FIG. 5: Vortex positions (black dots), pinning site locations 
(open circles), and vortex trajectories (black lines) for the 
triangular pinning lattice system in Fig. 2. (a) The vortices 
form a honeycomb configuration at FD = 0 and BIB</> = 2. 
(b) The vortex trajectories just above depinning for driving in 
the x-direction at BIB</> = 2. The vortices channel between 
the pinning rows. (c) Vortex trajectories just above depin­
ning for driving in the y-direction at BIB</> = 2. The moving 
interstitial vortices wind around the occupied pinning sites. 
(d) The vortices form a triangular configuration at FD = 0 
and BIB</> = 3. (e) The vortex trajectories just above de­
pinning for driving in the x-direction at BIB</> = 3 show an 
ordered interstitial flow of vortices between the pinning sites. 
(f) Vortex trajectories just above depinning for driving in the 
y-direction at BIB</> = 3. Here the flow is disordered . 

tial vortices can only move by making significant excur­
sions into the x-direction, as illustrated in Fig. 5( c) for a 
drive just above depinning. As a result, a larger external 
force is required to cause depinning in the y-direction, 
and F% > Fcx. The onset of motion in the y-direction 
is very sharp, as seen by the jump in the velocity-force 
curve in Fig. 3(a), and after a brief initial period of disor­
dered motion, the vortex flow quickly organizes into the 
pattern shown in Fig. 5( c). We observe similar motions 
just above depinning in the x and y-directions at the 
incommensurate fields for 1.0 < B/Be/> < 2.0; however, 
the presence of vacancies in the honeycomb vortex lattice 
causes certain rows of interstitial vortices to depin at a 
lower value of FD than at the commensurate fields. The 
velocity-force curves at B / Be/> = 2.0 shown in Fig. 3( a) 
indicate that dVy/dFD < dVx/dFD , meaning that the 
vortex velocity has a lower slope as a function of increas­
ing drive in the y-direction than in the x-direction, even 
though the same number of vortices are moving for either 
direction of drive. This difference is a result of the fact 
that the vortex motion for y-direction driving has much 
larger excursions transverse to the driving direction since 
the interstitial vortices must go out of their way to pass 
around the pinned vortices. 

At B / Be/> = 3 on a triangular pinning lattice, the over­
all vortex lattice ordering at FD = 0 is triangular, as 
shown in Fig. 5(d). The vortices move in slightly winding 
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channels ' upon application of a drive in the x-direction, 
as seen in Fig. 5(e); these structures are similar to the 
channels that form at BIB", = 2 in Fig. 5(b). For depin­
ning in the y-direction at BIB", = 3, the pinned vortices 
again create a barrier to the formation of simple channels 
of interstitial vortex flow; however, unlike the ordered 
and strongly winding channels that form at BIB", = 2, 
for BIB", = 3 the vortices move in a disordered fashion 
just above depinning, as illustrated in Fig. 5(f). An or­
dered flow state similar to that shown in Fig. 5(c) does 
not occur for BIB", = 3 until a much higher value of 
FD is applied. This result indicates that in addition to 
the anisotropy in F%IF;, there are also strongly differ­
ent vortex velocity fluctuation characteristics for driving 
along the x and y-directions at BIB", = 3. Narrow band 
noise signatures should arise from the synchronized vor­
tex motion that occurs for driving along the x-direction, 
while for driving in the y-direction the velocities are more 
random and a broad band noise signature should appear. 
In mode-locking experiments, where an external ac drive 
is imposed along with an applied dc drive, Shapiro type 
steps would appear for the ordered motion along the x­
direction, while Shapiro steps would be absent for driving 
along the y-direction. Shapiro steps could be induced for 
both driving directions at BIB", = 2 since both vortex 
flow patterns show synchronized motion; however, some 
of the characteristics of the Shapiro steps might differ for 
the two directions since the meandering of the vortices is 
distinct in the x and y-directions. 

A triangular vortex lattice with a single row of intersti­
tial vortices between each row of pinning sites forms for 
BIB", = 4 at FD = 0, as shown in Fig. 6(a). Just above 
the depinning transition for driving in the x-direction, 
a portion of the interstitial vortices depin into the one­
dimensional channels illustrated in Fig. 6(b). Here, one­
third of the interstitial vortices remain immobile in the 
interstitial regions between pinning sites; these immobile 
interstitial vortices depin at a higher value of FD that 
is outside the range of driving forces shown in Fig. 3(c). 
For driving in the y-direction, all of the interstitial vor­
tices depin simultaneously and flow in winding channels 
around the occupied pinning sites, as shown in Fig. 6(c). 
The velocity-force curves shown in Fig. 3(c) indicate that 
although F% > F; for BIB¢ = 4, dVxldFD < dVyldFD. 
As a result, the two velocity-force curves cross near 
FD = 0.1. The slope dVldFD is steeper for the y­
direction driving since all the interstitial vortices take 
part in the motion, whereas for the x-direction driving, 
only 213 of the interstitial vortices are moving. 

At BIB", = 5 and FD = 0, the vortex lattice is 
disordered, as seen in Fig. 6(d), and the depinning is 
isotropic. Figure 6(d,e) shows that the same type of dis­
ordered vortex motion occurs for depinning in both the x 
and y-directions. In general, we observe disordered flow 
states in both driving directions at the other matching 
fields where a disordered vortex lattice forms, including 
BIB", = 6,8,10, and 11. 

At BIB", = 9, the depinning thresholds and velocity­

(I " e .. I) .. f) .. f) .. e 
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FIG. 6: Vortex positions (black dots), pinning site locations 
(open circles), and vortex trajectories (black lines) for the 
triangular pinning lattice system in Fig. 2. (a) At FD = 0 and 
B / B", = 4 a triangular vortex lattice forms . (b) The vortex 
trajectories just above depinning for driving in the x-direction 
at B / B", = 4. A portion of the interstitial vortices move in 
one-dimensional channels between the rows of pinning sites. 
(c) The vortex trajectories just above depinning for driving 
in the y-direction at B / B", = 4. The interstitial vortices flow 
in winding channels around the pinning sites. (d) At FD = 0 
and B/B", = 5, the vortex lattice is disordered. (e) The 
vortex trajectories just above depinning for driving in the x­
direction at B/B", = 5. The vortex flow pattern is disordered. 
(f) Vortex trajectories just above depinning for driving in the 
y-direction at ·B / B", = 5. The same type of disordered flow 
pattern seen for x-direction driving appears for y-direction 
driving. 

force curves are very similar to those found for BIB", = 4 
since the triangular vortex lattices that form at these two 
fields have the same orientation. In Fig. 7(a), the vor­
tex configuration at FD = 0 for BIB", = 9 contains two 
rows of interstitial vortices between adjacent pairs of pin­
ning rows, whereas at BIB", = 4, Fig. 6(a) shows that 
there is only one row of interstitial vortices between each 
pair of pinning rows. Just above the depinning tran­
sition for x-direction driving at BIB", = 9, Fig. 7(b) 
indicates that the two rows of interstitial vortices flow 
in one-dimensional channels between the pinning rows 
while two interstitial vortices remain trapped behind ev­
ery pinning site so that 314 of the interstitial vortices 
are moving. This is similar to the x-direction depinning 
that occurs for BIB", = 4, where a single row of inter­
stitial vortices flows between each pair of pinning rows 
and a single interstitial vortex is trapped behind each 
pinning site. Just above the depinning transition for y­
direction driving at BIB", = 9, shown in Fig. 7(c), all 
of the interstitial vortices are depinned and a combina­
tion of ordered and disordered vortex flow occurs. The 
velocity-force curves for driving in the x and y directions 
show a similar crossing at BIB", = 9 as that illustrated 
in Fig. 3(c) for BIB", = 4. 

For B I Bq, = 12, the vortex configurations and depin­
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FIG. 7: Vortex positions (black dots), pinning site locations 
(open circles), and vortex trajectories (black lines) for the 
triangular pinning lattice system in Fig. 2. (a) At FD = 0 
and BIB", = 9, a triangular vortex lattice forms. (b) The 
vortex trajectories just above depinning for driving in the 
x-direction at BIB", = 9. Two rows of interstitial vortices 
move in one-dimensional paths between the rows of pinning 
sites while a portion of the interstitial vortices remain pinned. 
(c) The vortex trajectories just above depinning for driving 
in the y-direction at BIB", = 9. A combination of ordered 
and disordered flow occurs. (d) At FD = 0 and BIB", = 12, 
a triangular vortex lattice forms which is aligned with the y 
direction. (e) The vortex trajectories just above depinning 
for driving in the x-direction at BIB", = 12. Three rows of 
interstitial vortices move between the rows of pinning sites. 
(f) Vortex trajectories just above depinning for driving in the 
y-direction at BIB", = 12 show the existence of disordered 
flow. 

ning dynamics are similar to those seen for BIB", = 3. In 
Fig. 7(d) the FD = 0 vortex configuration at BIB", = 12 
consists of a triangular lattice that is aligned with the 
y-direction. Since there is now an interstitial column 
of vortices that could depin and flow between adjacent 
columns of pinning sites, while there are no straight rows 
of interstitial vortices, it might be expected that Fl < FZ 
for this field. Instead, Fig. 4 shows that Fl I FZ ~ 1.13, 
so the depinning is still easier in the x-direction than 
in the y-direction; however, the depinning anisotropy is 
much smaller than that which appears at BIB", = 3. 
Vortex motion just above depinning at BIB", = 12 for 
driving in the x-direction occurs in the form of three or­
dered winding rows passing between each pair of pinning 
rows, as shown in Fig. 7(e). Tills is similar to the motion 
at BIB", = 3 shown in Fig. 5(e) where one winding row 
of interstitial vortices moves between the 'pinning rows. 
For depinning in the y-direction at BIB", = 12, Fig. 7(f) 
shows that the vortex trajectories are disordered in a 
manner similar to that found for y-direction depinning 
at BIB", = 3, as seen in Fig. 5(f). 

At BIB", = 7, a peak in Fe occurs as shown in Fig. 2, 
but there is almost no anisotropy in the depinning thresh­
olds, as seen in Fig. 4. Figure 8(a) illustrates that at this 
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FIG. 8: Vortex positions (black dots), pining site locations 
(open circles), and vortex trajectories (black lines) for the tri­
angular pinning lattice system in Fig. 2 at BIB", = 7. (a) At 
FD = 0, a triangular vortex lattice forms that is not aligned 
with the x or y axes but is tilted at an angle () ~ -780 to 
the x-axis. This ground state is two-fold degenerate since the 
vortex lattice could have been tilted at the opposite angle, 
() ;::::: +780

, to the x-axis. (b) The vortex trajectories just 
above depinning for driving in the x-direction. All of the in­
terstitial vortices are moving. (c) The vortex trajectories just 
above depinning for driving in the y-direction. In this case a 
portion of the interstitial vortices remains pinned. 

field for Fd = 0, a triangular vortex lattice forms which 
is not aligned with either the x or y directions, unlike the 
configurations found at BIB", = 3, 4, 9, and 12, but is at 
an angle B~ -780 to the x-axis. The vortices flow in or­
dered patterns just above depinning in both the x and y 
directions, as shown in Fig. 8(b,c). Since a portion of the 
interstitial vortices remain pinned just above depinning 
for driving in the y-direction, whereas all of the inter­
stitial vortices are flowing for driving in the x-direction, 
dVyldFD < dVxldFD at BIB", = 7. The absence of the 
anisotropy at this field is likely due to the fact that the 
main symmetry axis of the triangular vortex lattice is not 
aligned with either the x or y directions, as is the case at 
the other matching fields which show anisotropy. 

An interesting feature that we observe at BIB", = 7 
which does not occur at the other matching fields we have 
investigated is a switching dynamics that can be induced 
within the pinned phase. This is illustrated in Fig. 9 
where in the initial state, shown in Fig. 9(a), the vortex 
lattice is tilted at B ~ -780 to the x-axis. The ground 
state is twofold degenerate since it could also have been 
aligned at B~ +780 to the x-axis. When a small driving 
force is applied to the ground state shown in Fig. 9(a) 
along +450 to the x-axis, a structural rearrangement of 
the vortices occurs accompanied by a domain wall that 
passes through the system from right to left, as shown in 
Fig. 9(b,c). The vortices move by approximately one lat­
tice constant in the y-direction as the domain wall sweeps 
past, and in the final state the vortex lattice is tilted at 
B ~ +780 to the x-axis. The system can be switched 
back to -780 if an external drive is applied along -450 

to the x-axis. We expect that for higher matching fields 
beyond the fields that we consider here, a switching ef­
fect will be present for matching fields containing two or 
more degenerate ground states where the vortex lattice 
could be arranged in several possible ways. The applica­
tion of an external drive will lower the energy of one of 
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FIG. 9: Vortex positions (black dots), pinning site locations 
(open circles), and vortex trajectories (black lines) for the tri­
angular pinning lattice system in Fig. 2 at BIB", = 7. A weak 
external driving force is applied at an angle in the positive x-y 
plane that induces a structural transformation in the vortex 
lattice between the two ground states, -780 shown in panel 
(a) and +780 shown in panel (d). During the transforma­
tion, illustrated in panels (b) and (c), the interstitial vortices 
shift in the positive y-direction by approximately one lattice 
constant and a domain wall traverses the system. 

the orientations. 

A. Effect of Pinning Strength 

We next study the effect of varying the pinning 
strength Fp on the anisotropy at the different fields. In 
Fig. 10(a) we plot Fl and F; versus Fp for a sample 
with a triangular pinning lattice at B IBq, = 2, and in 
Fig. lO(b) we show the corresponding anisotropy ratio 
Fl / F;. Since the pinning induces the honeycomb vor­
tex lattice structure shown in Fig. l1(a) at this field, as 
Fp decreases the vortices shift into configuration that is 
closer to a triangular lattice. To accommodate this shift, 
some of the pinning sites are vacated with decreasing 
Fpo For Fp ~ 0.85, the honeycomb lattice (H) structure 
is stabilized, all of the pinning sites are occupied, the 
anisotropy is fixed near Fl / F; = 2.5, and the depinning 
thresholds F; and Fl do not change sigruficantly with 
Fp. For 0.175 < Fp < 0.85, the pinning is not strong 
enough to stabilize the honeycomb lattice and a partially 
pinned (PP) lattice forms in which only some of the pin­
ning sites are occupied, as illustrated in Fig. l1(b) for 
Fp = 0.5. The depinning in this regime is still plastic 
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FIG. 10: (a) Depinning threshold in the x-direction, F: (open 
squares), and y-direction, Fl (filled circles), vs Fp for the tri­
angular pinning lattice system in Fig. 2 at BIB", = 2. (b) 
The corresponding anisotropy ratio Fl I F: vs Fp. H: the 
honeycomb ordering illustrated in Fig. l1(a); PP: the par­
tially pinned phase shown in Fig. l1(b) where a portion of 
the pinning sites are unoccupied and the depinning is plastic. 
DT: the distorted triangular phase seen in Fig. l1(c) where 
most pinning sites are unoccupied and the depinning is elas­
tic. The three different phases are visible as features in the 
anisotropy. (c) The depinning thresholds F: and Fl vs Fp 
for the same system at BIB", = 3. (d) The corresponding 
anisotropy ratio Fl IF: vs Fp. 
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FIG. 11: The vortex configurations for the triangular pinning 
lattice system at BIB", = 2 from Fig. lO(a,b) at FD = O. 
(a) The pinned honeycomb lattice (H) at Fp = 1.0. (b) The 
partially pinned lattice (PP) at Fp = 0.5. A portion of the 
pinning sites are unoccupied and the vortices depin plastically. 
(c) The weak pinning regime at Fp = 0.075 where a distorted 
triangular (DT) lattice forms and the depinning is elastic. 

with the interstitial vortices depinning first. There is a 
strong enhancement of the anisotropy in the PP phase, 
with Fl / F; reaching values as large as 5. For Fp ~ 0.175, 
the vortices form a distorted triangular (DT) lattice il­
lustrated in Fig. l1(c) which becomes increasingly trian­
gular with decreasing Fp. In the DT phase, only a small 
fraction of the pinning sites are occupied. Here the de­
pinning transition is elastic and both the interstitial and 
pinned vortices depin simultaneously. The anisotropy of 
the depinning is lost and the critical depinning forces are 
isotropic in the DT phase. In general, Fl and F; de­
crease with decreasing Fp; however, near the transition 
between thePP and DT phases, F; increases with de­
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creasing Fp as the depinning changes from plastic to elas­
tic. We believe that this effect is similar to the peak in the 
critical depinning force observed for periodic [38] and ran­
dom arrays [39] above the first matching field when the 
vortex-vortex interaction strength is varied. For periodic 
pinning, Ref. [38] illustrated that the depinning force de­
creases with increasing vortex-vortex inteniction strength 
since the system depins elastically and all of the vortices 
begin to move at the same time. For weak vortex-vortex 
interactions, the interstitial vortices depin easily and flow 
plastically past the vortices at the pinning sites, so the 
depinning force decreases with decreasing vortex-vortex 
interaction strength in this regime. Between these two 
extremes, a peak in the depinning force occurs. A simi­
lar effect is observed in vortex systems with very dilute 
random pinning arrays [39]. In Fig. lO(a) the vortex­
vortex interaction strength is fixed; however, there is still 
a transition from elastic to plastic depinning. The peak 
appears only for x-direction driving, and this may be due 
to the existence of an easy shear mode in the x-direction 
which is absent for y-direction driving. 

For B / B", = 3, Fig. 1O(c) shows that F'l and r; sat­
urate at large Fp, while Fig. lO(d) indicates that the 
anisotropy ratio also saturates at F'l / F; = 1.24. For 
Fp < 0.25, the depinning threshold decreases rapidly 
with decreasing Fp as the system enters the elastic de­
pinning regime. We note that since the vortex lattice at 
B / B", = 3 is triangular, there is no elastic energy cost for 
occupying the pinning sites and one-third of the vortices 
will always be located at the pinning sites for arbitrarily 
small Fp, unlike the situation at B / B", = 2. There is a 
very small peak in F; near the plastic-elastic depinning 
transition. 

Figure 12(a,b) shows the depinning thresholds F; and 
F'l as a function of Fp for B / B", = 4 along with the 
anisotropy ratio F'l / F;. Both F; and F'l saturate with 
increasing Fp, and the anisotropy for Fp > 0.25 is fi.'<:ed 
at F'l / F; = 1.5. For Fp < 0.25, the depinning threshold 
decreases rapidly with decreasing Fp, and at the same 
time there is a drop in the anisotropy as the system 
passes from the plastic to the elastic depinning regime. 
In Fig. 12( c,d) we illustrate F;, F'l, and FNF; for 
B / B", = 5, where the vortex lattice lattice is disordered. 
Here the depinning is isotropic for all values of Fl" A 
peak in the depinning thresholds occurs for both direc­
tions of driving near Fp = 0.25 at the transition between 
elastic and plastic depinning. 

We observe the same general trends for B / B", > 5, 
including a saturation of the anisotropy with increasing 
Fp and a crossover from plastic to elastic depinning at 
low Fp- For higher values of Fp and Rp, multiple vortices 
are trapped at each pinning site. In this case, the vor­
tices form vortex molecular crystals within the pinning 
sites [40]' which changes both the depinning threshold 
and the anisotropy. In general, the anisotropy is reduced 
when multiple vortex pinning is present. This means that 
the anisotropy is only observable in a regime where the 
pinning is strong enough to allow for plastic depinning 
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FIG. 12: (a) The depinning threshold in the x-direction, FZ 
(open squares), and y-direction, F% (filled circles) vs F" for 
the triangular pinning lattice system in Fig. 2 at B / B¢ = 4. 
(b) The corresponding anisotropy ratio F% / F; vs Fl" (c) F; 
and F% vs F" for the same system at B / B¢ = 5. (d) The 
corresponding anisotropy ratio F% / F; vs Fl" Here the depin­
ning is isotropic and a peak in the depinning thresholds occurs 
near the transition from the plastic to the elastic depinning 
regime. 

or channeling of vortices between the pinning sites, but 
not strong enough to permit multiple vortices to occupy 
each pinning site. 

B. Effect of Changing B¢ 

We next examine the depinning thresholds and 
anisotropy at different matching fields for the triangular 
pinning lattice with fixed Fp = 0.85 but with increasing 
B"" achieved by increasing the density of pinning sites 
np. The vortex-vortex interactions become more impor­
tant for higher values of B",. For B / B", = 2, illustrated 
in Fig. 13(a,b), both F; and F'l show a peak feature, 
while the anisotropy remains near F'l / F; = 2.0. The 
depinning thresholds increase with increasing B", for low 
B", due to the fact that the increasing strength of the 
vortex-vortex interactions raises the interstitial pinning 
barriers. The threshold does not continue to monoton­
ically increase with increasing B", since the vortex con­
figuration at B / B", = 2 is a honeycomb lattice. As a 
result, the elastic energy cost of maintaining the hon­
eycomb structure increases with increasing B"" and for 
B", > 0.2c/Yo/>..2, a portion of the vortices shift out of the 
pinning sites to form a distorted triangular lattice similar 
to that seen for low Fp in Fig. 11 (c). This causes a drop 
in the depinning thresholds with increasing B",. We ex­
pect similar behavior for other matching fields at which 
an ordered but non-triangular vortex lattice forms. 

In Fig. 13(c) we plot F; and F'l versus B", for the same 
system with B / B", = 3, and in Fig. 13( d) we show the 
corresponding F'l / F;. At this matching field, the vor­



_______ 

.' 
9 

t.." 
." 

'h. 

~ (b) 

r---.--­~ .......................... ......... I 
'h." 2 1::: 
~u 

0.5 t..I .. ..... ............................­

00 O. I 0.2 0.3 0.4 0.5 

0.1 

0.05 

~(d~~-+-r+-~-r~O 

OL->- O,.'-.1,--'--='0.'-0- 0."C"4..L...JO.g2 --'--c0""'.3,-'-.J

B. B. 

FIG. 13: (a) The depinning threshold in the x-direction, 
F; (open squares), and y-direction , Fl (filled circles) vs 8 1> 
for a triangular pinning lattice system with Fp = 0.85 and 
Rp = 0.35A at B I B 1> = 2. The vortex lattice has honey­
comb ordering at low 8 1>, but as 81> increases, the increasing 
strength of the vortex-vortex interactions causes some of the 
vortices to shift out of the pinning sites. (b) The correspond­
ing anisotropy ratio Fl I F; vs B1>' (c) F; (open squares) and 
Fl (filled circles) vs B 1> for the same system at B I 8 1> = 3. 
Here the vortex lattice is triangular, as seen in Fig. 5(d), so as 
B 1> increases the vortex-vortex interactions become stronger 
and increase the value of the interstitial vortex depinning 
threshold. (d) The corresponding anisotropy ratio FNF; vs 
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FIG. 14: (a) The depinning thresholds F; (open squares) 
and Fl (filled circles) vs B 1> for a triangular pinning lattice 
system with Fp = 0.85 and Rp = 0.35'x at B I B 1> = 4. (b) The 
corresponding Fl I F; vs 8 1>' (c) F; (open squares) and Fl 
(filled circles) vs B 1> for the same system at 8181> = 5. (d) 
The corresponding Fl I F; vs B1> showing that the depinning 
is isotropic. 

tex lattice is triangular as seen in Fig. 5(d) . Therefore, 
the vortex positions do not shift as B", increases, unlike 
the case for B / B ", = 2, and the depinning thresholds in­
crease monotonically with increasing B",. The anisotropy 
does not vary strongly with B ", . In Fig. 14(a,b) we show 
F;, Fg, and Fg / F; versus B", for the same system at 
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FIG. 15: The depinning thresholds F; (open squares) and Fl 
(filled circles) vs B 1> for the system in Fig. 2 with Fp = 0.85. 
Lower curves: B 181> = 0.5, showing that the depinning is 
isotropic and monotonically decreasing with increasing Fp . 
Upper curves: BIB1> = 1.0, where Fc = Fp. 

B / B", = 4, where the vortex lattice is triangular as in­
dicated in Fig. 6(a). The depinning thresholds increase 
monotonically with increasing B ", while the anisotropy 
remains constant at Fg / F; :::::: 1.54. At B / B", = 5, where 
Fig. 6(d) shows that the vortex lattice is disordered, the 
depinning thresholds are isotropic and increase monoton­
ically with increasing B"" as illustrated in Fig. 14(c,d). 
For any matching field B / B"" if B", is increased above the 
range of values considered here, multiple vortex pinning 
by the pinning sites eventually occurs when the vortex 
lattice constant a becomes of the order of the pinning ra­
dius Rp and very little distortion of the vortex lattice is 
required to shift the vortices into the pinning sites. The 
occurrence of multiple vortex pinning would alter both 
the depinning thresholds and the anisotropy. 

C. Anisotropy for B I B1> ::; 1 

For B/B", > 1, interstitial vortices are present and the 
depinning threshold is determined by the strength of the 
vortex-vortex interactions, provided that the pinning is 
strong enough to produce a plastic depinning transition. 
For B / B ", :S 1, the depinning threshold is controlled by 
a combination of the vortex-vortex interaction strength 
and the strength of the pinning sites. For a triangular 
pinning array at the matching and submatching fields 
of B/B", = 1, 1/3, and 1/4, the vortex lattice is tri­
angular and every vortex is trapped by a pinning site. 
In this case, the depinning thresholds are determined 
by the maximum force exerted by the pinning sites and 
are independent of the direction of the external drive, 
so the depinning is isotropic. This is in agreement with 
previous work, where an isotropic depinning threshold 
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FIG. 16: (a) The depinning thresholds F: (open squares) 
and Fl (filled circles) vs T ITm for a triangular pinning lat­
tice system with Fp = 1.25 and BIB", = 2. Here Tm is the 
temperature associated with the onset of vortex diffusion at 
FD = O. (b) The corresponding anisotropy ratio Fli F: vs 
TITm. (c) F: (open squares) and Fl (filled circles) vs TITm 

for the same system at BIB", = 4. (d) The corresponding 
FlIF: vs TITm. 

was observed for vortices in triangular pinning arrays at 
BIB", = 1 [30,31]. In Fig. 15 we plot F~ and F% versus 
B", at BIB", = 0.5 and 1.0 for a system with Fp = 0.85. 
The depinning thresholds are isotropic for both fields, 
and at BIB", = 1, Fe = Fp as expected. At BIB", = 0.5, 
the vortex lattice is disordered since a triangular vor­
tex lattice cannot match the pinning array at this fill­
ing, as shown in Fig. ll(c) of Ref. [41]. Although all of 
the vortices are pinned, due to the disorder of the vor­
tex structure, some vortices experience stronger vortex­
vortex repulsion from neighboring vortices than other 
vortices, and as a result the vortex-vortex interactions 
do not cancel at BIB", = 0.5 as they do at BIB", = 1. 
This lowers the depinning thresholds and causes both 
F~ and F% to decrease with increasing B", due to the 
dependence of the depinning force on the vortex-vortex 
interaction strength. In general, we observe little or no 
anisotropy in the depinning thresholds for BIB", < 1. If 
multiple vortex pinning occurs at BIB", > 1, so that no 
interstitial vortices are present, we expect that the same 
type of depinning phenomena seen for BIB", ::::: 1 will 
appear and there will be little anisotropy. This suggests 
that the appearance of anisotropic depinning forces and 
the existence of voltage-current curves with different val­
ues of dVIdFd in different directions are indicators of the 
presence of interstitial vortices in the system. 

D. Temperature Effects 

We next consider how robust the anisotropy is to ther­
mal fluctuations. We anneal the system down to a finite 
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FIG. 17: Vortex positions (black dots), pinning site locations 
(open circles), and vortex trajectories (black lines) just above 
depinning for a system with a square pinning array at Fp = 
0.86, Rp = 0.35'\, and B", = 0.0625</>0 1,\2 at B I B¢ = 2. (a) 
y-direction driving. (b) x-direction driving. The same type 
of vortex motion occurs for both directions of drive. 
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FIG. 18: Velocity-force curves (Vx) vs FD for x-direction de­
pinning (open squares) and (Vy) vs FD for y-direction depin­
ning (filled circles) in the square pinning lattice system from 
Fig. 17. (a) BIB", = 2, where the depinning is isotropic. (b) 
BIB", = 4, with anisotropic depinning. (c) BIB", = 12, with 
anisotropic depinning. 

temperature and then measure the depinning forces in 
the x and y-directions. The temperature is given in terms 
of the melting temperature Tm at which the vortices be­
gin to diffuse significantly and the system is in a molten 
state. In Fig. 16(a) we plot F~ and F% versus TITm 
for a triangular pinning lattice system with Fp = 1.25 
at BIB", = 2, and in Fig. 16(b) we show the corre­
sponding anisotropy F%I F~. Both depinning thresholds 
monotonically decrease with increasing temperature and 
reach zero at TITm = 1.0. The anisotropy decreases 
with increasing temperature for low temperatures; how­
ever, just below the melting temperature, F%IF~ passes 
through a peak. A similar trend is seen for BIB", = 4, 
as shown in Fig. 16(c,d). These results indicate that the 
anisotropy should be robust against temperature. This 
agrees with the experiments in Ref. [31], which found that 
the anisotropy became more pronounced at higher tem­
peratures. The enhancement of the anisotropy at higher 
temperatures could also result from the presence of weak 
random intrinsic pinning in the sample, which would re­
duce the magnitude of the anisotropy but which can be 
washed out by thermal fluctuations. 
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FIG. 19: The vortex positions (black dots), pinning site loca­
tions (open circles), and vortex trajectories (black lines) for 
the square pinning lattice system in Fig. 18 at B / B", = 4. 
(a) The FD = 0 state where a triangular vortex lattice forms 
that is aligned in the y-direction. (b) The vortex trajectories 
just above depinning for driving in the y-direction, showing 
one-dimensional channels of vortices moving between adja­
cent columns of pinning sites. (c) The vortex trajectories just 
above depinning for driving in the x-direction. Here, every 
other column of vortices shifts in the y-direction so that every 
other vortex can join one-dimensional rows of vortices flow­
ing between adjacent pinning site rows, while the remaining 
interstitial vortices are trapped between neighboring pinning 
sites. (d) The same as panel (c), but at a later time when the 
system has reached steady-state flow. 

IV. ANISOTROPY IN SQUARE PINNING 

ARRAYS 


For square pinning arrays, we find that the depin­
ning thresholds at most fields are isotropic. This is a 
result of the fact that the same type of vortex motion oc­
curs in both directions for most fields, as illustrated for 
B / B", = 2 in Fig. 17. In Fig. 18(a) we show the isotropic 
velocity-force curves at B / B", = 2 for x and y-direction 
driving. Since the perpendicular directions of the square 
pinning array are identical, unlike the perpendicular di­
rections of the triangular pinning array, it is not surpris­
ing that most matching fields have the same depinning 
thresholds in both driving directions for the square ar­
ray. Nevertheless, strongly anisotropic depinning occurs 
at B / B ", = 4 and 12, as shown in Fig. 18(b,c). 

In Fig. 19(a) we plot the vortex positions and pin­
ning site locations for B / B", = 4, where anisotropic de­
pinning occurs. Here a triangular vortex lattice that is 
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aligned with the y-axis forms. Under y-direction driving, 
the interstitial vortices flow in one-dimensional channels 
between adjacent columns of pinning sites, as seen in 
Fig. 19(b) where 2/3 of the interstitial vortices have de­
pinned. A simple channeling motion cannot occur for x 
direction driving, so F: is much higher than Fl. Just 
above the depinning transition for x-direction driving, 
as illustrated in Fig. 19(c), every other column of vor­
tices shifts in the y direction in order to permit every 
other vortex to join a one-dimensional flowing channel 
passing between adjacent rows of pinning sites. The re­
maining interstitial vortices remain trapped between the 
pinning sites. After this rearrangement , 2/3 of the inter­
stitial vortices flow in the steady-state one-dimensional 
channels shown in Fig. 19(d), which are similar to the 
channels that form for y-direction driving. The ground 
state shown in Fig. 19(a) is degenerate, and a state with 
the vortex lattice aligned along the x-direction has equal 
energy. Thus, the realignment process seen in Fig. 19(c) 
is simply a shift of the vortices into the other ground 
state prior to the onset of flow. Figure 18(b) shows that 
F: is approximately 1.75 times higher than Fl. Due to 
the symmetry of the square lattice, either the x or the 
y-direction C;ln show a higher depinning threshold de­
pending on the initial configuration of the vortex lattice. 
This is distinct from the triangular pinning lattice, where 
the higher depinning force always occurs in the same di­
rection at a given field. If the annealing process for the 
square pinning lattice is repeated with different initial 
conditions, the vortex lattice has a 50% chance of align­
ing with the x-direction, in which case the anisotropy will 
be reversed from that shown in Figs. 18, 19. If the driv­
ing force is cycled, the velocity-force curve in the hard 
driving direction is hysteretic during the first cycle due 
to the realignment effect, while there is no hysteresis for 
the easy driving direction or for subsequent cycles in the 
initially hard driving direction. 

In Fig. 20 we illustrate the effect of changing Fp and 
B", on the depinning anisotropy for the square pinning 
lattice sample with B / B", = 4. We show a case where 
the initial vortex lattice orientation is along the y-axis, 
as in Fig. 19(a), which gives F: > Ft Figure 20(b) in­
dicates that the anisotropy saturates at Fl /F: ~ 0.57 
for Fp > 0.075, while Fig. 20(a) shows that the depin­
ning thresholds also saturate above this value of Fp. For 
Fp < 0.075, the depinning is elastic and the anisotropy 
is lost. For fixed Fp = 0.85 the depinning thresholds 
increase monotonically with increasing B"" as seen in 
Fig. 20(c), while in Fig. 20(d) the anisotropy passes 
through a shallow extremum of Fl /F: = 0.5. 

We find a similar anisotropic depinning behavior for 
B / B", = 12. The vortex configurations for this field at 
FD = 0 are illustrated in Fig. 21(a). The vortex lattice 
is aligned in the y direction, but just as at B / B", = 4, 
there are two' degenerate ground states, and a vortex lat­
tice that is aligned in the x-direction would have the same 
energy. There are two columns of interstitial vortices be­
tween adjacent columns of pinning sites. The overall vor­
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FIG. 20: (a) Fe" (open squares) and F~ (filled circles) vs Fp 
for the system in Fig. 18 at BIB", = 4 with the starting 
configuration shown in Fig. 19 that produces a higher de­
pinning threshold in the x-direction. (b) The corresponding 
anisotropy ratio F~ IF; vs Fp. For small Fp the system de­
pins elastically. (c) F; (open squares) and F~ (filled circles) 
vs B", for the same system at BIB", = 4 and Fp = 0.85. (d) 
The corresponding FJ! IF; vs Fp. 

tex lattice structure is not triangular and there are dis­
locations present in the lattice. Along certain columns, 
neighboring interstitial vortices in neighboring columns 
lie along a line tilted by -230 with respect to the x­
axis, while along other columns, neighboring interstitial 
vortices lie along a line tilted by +230 with respect to 
the x-axis. The dislocations in the vortex lattice are 
all aligned in the same direction, resulting in a smec­
tic structure. This smectic state for the square pinning 
array has not been observed in previous work. There 
are two possible low-energy orientations for the vortex 
lattice, just as in the BIB</> = 4 case: the y-axis ori­
entation shown in Fig. 21(a), or the same state rotated 
by 900 and aligned with the x-axis. For depinning in 
the y-direction, Fig. 21(b) shows that the two columns 
of interstitial vortices depin into flowing one-dimensional 
channels, while two interstitial vortices remain trapped 
between adjacent pairs of pinning sites. For driving along 
the x-direction, the same type of lattice reorientation 
found for BIB</> = 4 occurs at BIB</> = 12, as illus­
trated in Fig. 21(c,d). The columns of interstitial vor­
tices shift in such a way that two one-dimensional rows 
of interstitial vortices form, while two interstitial vortices 
remain trapped between adjacent pairs of pinning sites. 
The final vortex configuration for x-direction driving, in 
Fig. 21(d), is a rotated version of the configuration for 
y-direction driving seen in Fig. 21(b). The same hys­
teretic voltage-current response should occur for driving 
in the hard direction at BIB</> = 12 as at BIB</> = 4. 
In Fig. 18( c) the velocity-force curves at BIB</> = 12 
show an anisotropy F% IF: ~ 0.4. The more pronounced 
anisotropy at B I B¢ = 12 compared to BIB</> = 4 is 
due to the fact that the overall structure at B I B¢ = 12 
is smectic and the dislocations are aligned in the y-
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FIG. 21: The vortex positions (black dots), pinning site loca­
tions (open circles), and vortex trajectories (black lines) for 
the system in Fig. 18 at BIB", = 12. (a) The partially ordered 
vortex configuration at FD = O. The vortex structure has a 
smectic-type ordering in which all of the topological defects 
are aligned in the same direction. (b) The vortex trajecto­
ries just above depinning for driving in the y-direction show­
ing two columns of interstitial vortices moving between each 
pair of pinning columns and two interstitial vortices trapped 
between adjacent pinning sites. (c) The vortex trajectories 
just above depinning for driving in the x-direction. A por­
tion of the interstitial vortices shift in the y-direction in or­
der to create ordered rows of flowing vortices and pairs of 
trapped interstitial vortices between adjacent pinning sites. 
(d) The steady-state channels that form for y-direction driv­
ing. The general structural rearrangement of the interstitial 
vortices for depinning in the x-direction is similar to that seen 
at BIB", = 4 in Fig. 19(c,d). 

direction, further decreasing the depinning force along 
this direction. 

We expect that the depinning anisotropy in the square 
pinning arrays will be more difficult to observe experi­
mentally than the anisotropy in the triangular pinning 
arrays due to the existence of twofold-degenerate ground 
states for the square system. If other forms of quenched 
disorder, such as intrinsic pinning, are present and the 
system is large, domains of the two different orientations 
could form which would render the depinning thresh­
olds isotropic. On the other hand, we found that an 
applied drive can readily align the vortex lattice struc­
tures in the driving direction at BIB</> = 4 and 12. 
Therefore, it may be possible to prepare the system in 
an aligned state using an external drive, and then mea­
sure the anisotropy of the depinning forces starting from 
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FIG. 22: (a) F: (open squares) and Fl (filled circles) for a 
honeycomb pinning lattice as a function of B / B::, the honey­
comb matching field, in a sample with Fp = 0.85, Rp = 0.35A, 
and np = 0.194/A2

• (b) The corresponding Fl/F: vs B/B:: 
shows that the anisotropy exhibits several reversals as a func­
tion of field. (c) F: (open squares) and Fl (filled circles) 
for a kagome pinning lattice as a function of B / B~(, the 
kagome matching field. (d) The corresponding Fl/F: vs 
B / B: shows that several reversals of the anisotropy also oc­
cur for the kagome pinning array. 

this aligned state. This procedure should permit the 
anisotropy in the square pinning lattice system to be ob­
served experimentally. 

V. ANISOTROPY IN HONEYCOMB AND 

KAGOME PINNING ARRAYS 


FIG. 23: Vortex positions (black dots), pinning site locations 
(open circles), and vortex trajectories (black lines) for the 
honeycomb pinning array in Fig. 22. (a) At B / B:: = 1.5 
and Fo = 0 there is one vortex per large interstitial site. (b) 
Vortex trajectories just above depinning for driving in the 
y-direction at B / B;I = 1.5 showing one-dimensional paths 
between the pinning sites. At this field, Fl/F: < 1. (c) 
Vortex trajectories just above depinning for driving in the x­
direction at B / B:: = 1.5. The interstitial vortices flow in 
winding paths around the occupied pinning sites. (d) The 
vortex configurations at B / B:: = 4 for Fo = O. Here a 
portion of the interstitial vortices align in the x-direction. (e) 
Vortex trajectories just above depinning for driving in the x­
direction at B / B:: = 4. In addition to moving channels of 
interstitial vortices, there are some interstitial vortices that 
remain pinned between adjacent occupied pinning sites. (f) 
Vortex trajectories just above depinning for driving in the y­
direction at B/B:: = 4 show a complex periodic pattern with 
all of the interstitial vortices moving. 

We next examine anisotropy in honeycomb and kagome 
pinning arrays. Since the honeycomb and kagome arrays 
can be constructed by removing selected pinning sites 
from a triangular array, it might be expected that the 
anisotropy would follow the same trend found for the tri­
angular pinning arrays. In particular, one could expect 
that the depinning threshold would always be higher in 
the y-direction. Instead, we find that the honeycomb 
and kagome pinning arrangements show an anisotropy 
that undergoes reversals as a function of the applied 
magnetic field. In Fig. 22(a) we plot F; and Fg as a 
function of B / B!/ for a honeycomb pinning system with 
Fp = 0.85, Rp = 0.35A, and np = 0.194/ A2. Here, 
B!/ is the matching field for a honeycomb lattice con­
structed from a triangular lattice with matching field 
B"" and we have B!/ = 2/3B", [26]. Figure 22(b) shows 

Fg / F; versus B!/ for the honeycomb pinning array. For 

1 < B / BH < 3, Fg / F; < 1 and the depinning thresh­
old is higher for x-direction driving. This anisotropy is 
reversed from that seen in the triangular pinning arrays. 
The reversal can be understood by examining the vortex 
positions at B!/ = 1.5 in Fig. 23(a). Each interstitial 

vortex is located at the position where the pinning site 
was removed from the triangular lattice in order to create 
the honeycomb lattice. There is a pin-free channel of mo­
tion which the interstitial vortices can follow for driving 
in the y-direction, as seen in Fig. 23(c). For x-direction 
driving, the path of the interstitial vortex is blocked by 
pinned vortices, creating a much stronger barrier for de­
pinning, and once the vortices begin to move, they follow 
the winding paths illustrated in Fig. 23(b). 

In Fig. 24 we plot (Vx) and (Vy) versus FD for driving 
in the x and y-directions, respectively. The depinning 
in the honeycomb pinning array is anisotropic at both 
B/B!/ = 1.5, shown in Fig. 24(a), and at B/B!/ = 4, 
shown in Fig. 24(b) . For 2.5:<:::: B/B!/ :<:::: 4 the anisotropy 
is reversed compared to the lower fields. This is due 
to the formation of n-mer states in the large interstitial 
spaces of the honeycomb lattice which permit a portion 
of the interstitial vortices to be aligned in the x-direction 
between the pinning rows. In Fig. 23(d) we illustrate the 
FD = 0 vortex configuration at B / B!/ = 4, where the in­
terstitial vortices form triangular shapes within the large 
interstitial sites. The vortex at the top of each intersti ­
tial triangle forms a nearly one-dimensional channel in 
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FIG. 24: The velocity-force curves from the system in Fig. 22. 
Open squares: (Vx ) vs Fo; filled circles: (Vy) vs Fo. (a) The 
honeycomb pinning array at B / B!/ = 1.5 where Fl / F: < l. 
(b) The honeycomb pinning array at B/B!/ = 4 showing that 
the anisotropy has reversed and Fl / F: > 1. (c) The kagome 
pinning array at B / B~( = 4/3. (d) The kagome pinning array 
at B/B~( = 10/3. Here dVy/dFo < dVx/dFo, so there is a 
crossing of the velocity-force curves. 

the x-direction with the vortices at the base of the ad­
jacent interstitial triangles, permitting easy depinning in 
the x-direction into the flow pattern shown in Fig. 23(e). 
For depinning in the y-direction, where the threshold is 
higher, the complex but ordered flow pattern in Fig. 23(f) 
appears. For B/! = 4.5, the anisotropy reverses again, as 
seen in Fig. 22. 

Figure 22(c,d) shows that similar anisotropy reversals 
occur for depinning in kagome pinning arrays, where B!! 
is the kagome matching field for a pinning lattice con­
structed from a triangular lattice with matching field B,p 
and B!! = 3/4B,p. For B/B!! ~ 5/3, Fig. 22(d) indicates 
that F! / F; < 1, but that this pattern reverses several 
times for increasing B/B!!. Just as in the honeycomb 
pinning array, in the kagome pinning array the reversals 
originate from the formation and alignment of intersti­
tial vortex n-mer states in the large interstitial sites. In 
general, the anisotropy is smaller for the honeycomb and 
kagome pinning arrays than for the triangular or square 
pinning arrays. 

We illustrate the FD = 0 state for B / B!! = 4/3 in 
Fig. 25(a), where there is one vortex per large intersti­
tial site. In Fig. 25(b) we show the vortex trajectories 
just above depinning for driving in the y-direction at 
B / B!! = 4/3. Each interstitial vortex diverts to the right 
or left around a pinned vortex, forming large asymmetric 
patterns of vortex flow around trios of occupied pins. The 
flow is slightly disordered, since in some cases two mov­
ing interstitial vortices approach the same pinned vor­
tex simultaneously, causing one of the vortices to move 
outside of the flow pattern temporarily. For x-direction 
driving at B / B!! = 4/3, shown in Fig. 25(c), the intersti­
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FIG. 25: Vortex positions (black dots), pinning site locations 
(open circles), and vortex trajectories (black lines) for the 
kagome pinning array. (a) The Fo = 0 state at B/B/! = 4/3, 
where there is one vortex per large interstitial site. (b) The 
vortex trajectories just above depinning for driving in the 
y-direction at B/B/! = 4/3 shows the formation of an asym­
metric pattern that encircles groups of three pinning sites. 
(c) The vortex trajectories just above depinning for driving 
in the x-direction at B / B/! = 4/3 shows a winding chan­
nel of interstitial vortices between the pinning rows. (d) The 
Fo = 0 state at B/B~( = 10/3. (f) The vortex trajecto­
ries just above depinning for driving in the x-direction at 
B/B/! = 10/3 shows that a portion of the interstitial vor­
tices move continuously through the system. (e) The vortex 
trajectories just above depinning for driving in the y-direction 
at B / B/! = 10/3 shows a winding pattern of interstitial vor­
tices. Here the vortex motion occurs in intermittent pulses 
rather than as a continuous flow. 

tial vortices flow around individual pinning sites in the 
sparse pinning rows, creating an asymmetric sinusoidal 
channel pattern. Figure 24(c) indicates that at this field, 
F! / F; < 1 and depinning is easiest along the y-direction. 
A similar anisotropy occurs for B / B~ = 10/3, as shown 
in Fig. 24(d). In Fig. 25(d) we illustrate the FD = 0 state 
at B / B~< = 10/3, where the large interstitial sites cap­
ture five vortices which form a pentagon structure. For 
depinning in the x-direction at this field, only a portion 
of the interstitial vortices move in winding channels be­
tween the pinning rows while the large interstitial sites all 
capture three vortices, as seen in Fig. 25(e). The intersti­
tial vortices which are not part of the channeling flow still 
undergo a small circular motion as the flowing interstitial 
vortices move past. At higher drives, all of the intersti­
tial vortices depin and a step appears in the velocity-force 
curve. For depinning in the y-direction at B / B!! = 10/3, 
shown in Fig. 25(f), the trajectories of the moving in­
terstitial vortices are much more tortuous. Although a 
larger number of interstitial vortices spend at least part 
of the time flowing for depinning in the y-direction than 
for depinning in the x-direction, Fig. 24(d) shows that 
dVy/dFD < dVx/dFD • This is because the vortex motion 
in Fig. 25(f) is not continuous. Instead, the interstitial 
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vortices hop by one lattice constant and then repin so 
that a pulse of motion passes though the system. For 
depinning in the x-direction, shown in Fig. 25(e), the 
vortices are continuously moving through the system. 

VI. SUMMARY 

We have shown that when interstitial vortices are 
present for fields beyond the first matching field in reg­
ular artificial pinning arrays, the transport response is 
anisotropic. For triangular pinning arrays, we find that 
the depinning thresholds are always higher in the y­
direction, defined to be perpendicular to a symmetry axis 
of the pinning lattice. This is in general agreement with 
previous numerical and experimental studies up to the 
third matching field for triangular pinning arrays. We 
show that the anisotropy also occurs for higher matching 
fields and that at certain matching fields the depinning 
is isotropic. The degree of anisotropy can be controlled 
by changing the strength of the pinning. For weak pin­
ning, when the depinning transition is elastic and all of 
the vortices depin simultaneously, the anisotropy is re­
duced or destroyed. For strong pinning, the depinning is 
isotropic for matching fields at which the vortex lattice 
does not order. We find that the velocity-force curves 
can have different slopes for driving in the different di­
rections depending on the number of interstitial vortices 
that initially depin. In some cases, although the depin­
ning threshold is lower in one direction, the slope of the 
velocity-force curve is also lower in that direction, pro­
ducing a crossing in the velocity-force curves for the two 
directions of driving. For fields at or below the first 
matching field, the anisotropy is strongly reduced, imply­
ing that the anisotropy should disappear if multiple vor­
tex pinning rather than interstitial vortex pinning occurs 

above the first matching field. The vortex dynamics can 
be distinctly different for the two driving directions, with 
ordered flow states occurring for driving in one direction 
and disordered flow states appearing for driving in the 
other direction. The anisotropy is robust against tem­
perature fluctuations and can be enhanced near the vor­
tex lattice melting transition. For square pinning arrays, 
the two perpendicular driving directions are symmetric; 
nevertheless, at certain matching fields where triangu­
lar or smectic vortex structures form, a strong depinning 
anisotropy can occur. The easy-flow direction for square 
lattices is not fixed but depends on which of the two de­
generate ground states is formed by the initial vortex lat­
tice. A sufficiently large applied drive realigns the vortex 
lattice and sets the easy-flow direction in the direction 
of the drive. If the initial vortex lattice formed with do­
mains of the two degenerate ground states, the domains 
can be eliminated and a pure ground state formed simply 
by sweeping the driving force. The anisotropic depinning 
behavior of this pure state can then be probed with small 
drives. Honeycomb and kagome pinning arrays have a 
smaller anisotropy than that seen for the triangular and 
square arrays. The anisotropy for the honeycomb and 
kagome arrays shows a series of reversals as a function of 
field due to the formation of vortex molecular crystals, 
which have orientational degrees of freedom that can lock 
to different angles. 
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