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Transport Anisotropy as a Probe of the Interstitial Vortex State in Superconductors

with Artificial Pinning Arrays

C. Reichhardt and C.J. Olson Reichhardt
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Dated: November 18, 2008)

We show using simulations that when interstitial vortices are present in superconductors with
periodic pinning arrays, the transport in two perpendicular directions can be anisotropic. The degree
of the anisotropy varies as a function of field due to the fact that the interstitial vortex lattice has
distinct orderings at different matching fields. The anisotropy is most pronounced at the matching
fields but persists at incommensurate fields, and it is most prominent for triangular, honeycomb,
and kagomé pinning arrays. Square pinning arrays can also show anisotropic transport at certain
fields in spite of the fact that the perpendicular directions of the square pinning array are identical.
We show that the anisotropy results from distinct vortex dynamical states and that although the
critical depinning force may be lower in one direction, the vortex velocity above depinning may also
be lower in the same direction for ranges of external drives where both directions are depinned. For
honeycomb and kagomé pinning arrays, the anisotropy can show multiple reversals as a function
of field. We argue that when the pinning sites can be multiply occupied such that no interstitial

vortices are present, the anisotropy is strongly reduced or absent.

PACS numbers: 74.25.Qt

I. INTRODUCTION

Vortices in superconductors interacting with artificial
arrays of periodic pinning exhibit a wide range of com-
mensurability and dynamical effects that can be observed
readily in critical current, transport, and other bulk mea-
surements [1-10]. Advances in lithography techniques
permit the creation of pinning arrays in which the size,
shape, and composition of the individual pinning sites
and the global geometry can be well controlled [2-14].
Commensurability effects in these systems occur when
the number of vortices equals an integer multiple of the
number of pinning sites, resulting in peaks or anoma-
lies in bulk measurements as a function of field. At the
first matching field, there is one vortex per pinning site,
and as the field is further increased, additional vortices
can be located either at the pinning sites in the form
of pinned multi-quanta vortices [3, 4, 15-19], or in the
interstitial regions between the pinning sites. The inter-
stitial vortices can be effectively pinned by the repulsive
interactions from the vortices at the pinning sites, which
create a caging potential [5, 6, 19-24]. It is also possi-
ble for mixed vortex pinning to occur in which the first
few matching fields have only pinned multi-quanta vor-
tices until the pinning sites are saturated, while for higher
matching fields the additional vortices are located in the
interstitial regions. [3, 6, 13, 15, 16, 19]. Conversely,
it is also possible that interstitial vortices appear at the
lower matching fields, but that as the vortex-vortex inter-
actions increase at higher matching fields, multi-quanta
vortices will begin to form at the pinning sites [19].

Interstitial vortex lattice crystals in square periodic
pinning arrays have been observed directly with Lorentz
microscopy, which revealed that there are several dis-
tinct types of interstitial vortex structures that have
symmetries different from that of the triangular vortex

lattice [6]. The same types of vortex structures have
been produced in simulations of square pinning arrays
(20, 21], while simulations have also shown that similar
vortex structures can form in triangular [20], rectangu-
lar [24, 25], honeycomb [26], and kagomé pinning arrays
(26, 27]. Other numerical works indicated that a rich va-
riety of composite lattices with multiple and interstitial
vortex configurations are possible {19, 22] and that new
types of interstitial vortex configurations can occur for
arrays of antipinning sites [28].

Vortex imaging experiments provide direct evidence
for both multi-quanta vortex pinning and the formation
of ordered interstitial vortex lattice structures [15, 16].
Anomalies at matching fields found in bulk measure-
ments occur for both multi-quanta vortex pinning and
interstitial vortex pinning, so without direct imaging it
can be difficult to determine whether multi-quanta or in-
terstitial vortex pinning is occurring [18]. In some cases,
the presence of interstitial vortices can only be inferred
from the shapes and characteristics of the current volt-
age curves or from phase locking experiments [5, 29]. It
would be highly desirable to identify additional clear sig-
natures in transport measurements that can distinguish
between interstitial vortex pinning and multi-quanta vor-
tex pinning and that can also reveal the types of vortex
lattice symmetries that are present.

An anisotropic response was recently measured for the
critical current applied in two perpendicular directions
to a triangular pinning array in recent experiments and
simulations [30, 31]. The experiments were pérformed
on several different samples and the same anisotropic re-
sponse appeared in each one, while the anisotropy ob-
served in the simulations agreed with that seen in the
experiments, suggesting that the behavior is due to dis-
tinct intrinsic features of the vortex dynamics. The sim-
ulations show that the vortex flow patterns are different
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for the two directions of applied current, which could
account for the anisotropic response. The anisotropy is
particularly pronounced at the second matching field but
is absent at the first matching field, which suggests that
depinning of the interstitial vortices is responsible for
the anisotropy. Interestingly, for lower temperatures the
experiments showed that the critical current anisotropy
vanished at both the first and second matching fields
but persisted at the third matching field, suggesting that
multi-quanta vortex pinning occurs at the second match-
ing field at low temperatures. These results indicate that
the presence of anisotropy can be a useful way to probe
the interstitial vortex state and the type of vortex order-
ing that occurs at different matching fields.

The experiments and simulations of Refs. [30, 31] only
examined a triangular pinning array up to the third
matching field. In this work we study anisotropic trans-
port for a much wider range of fields and system pa-
rameters for triangular, square, honeycomb, and kagomé
pinning arrays. For the triangular array we find a vari-
ety of distinct anisotropic behaviors due to the differing
symmetries of the interstitial vortex lattice at different
matching fields. For example, at certain matching fields
the vortex lattice is disordered and the anisotropy van-
ishes. For honeycomb and kagomé pinning arrays, an
even richer anisotropic behavior occurs due to the for-
mation of vortex molecular crystal states [26] with addi-
tional rotational degrees of freedom, resulting in a series
of reversals in the anisotropy as a function of field. Re-
markably, we find that it is also possible for square pin-
ning arrays to show anisotropic transport even though
the two perpendicular directions of the pinning lattice are
identical. This occurs at certain matching fields where a
triangular vortex structure forms, such that one driv-
ing direction is oriented with the easy-shear direction
of the vortex lattice. Anisotropic transport measure-
ments for vortices in periodic pinning arrays have already
been been shown to be experimentally feasible, and ex-
periments have been performed in which the current is
injected in two directions for samples with rectangular
pinning arrays or asymmetric pinning shapes, revealing
anisotropic depinning thresholds [32-34]. Although our
work is focused on superconducting vortices, our results
should be general to the class of systems of particles in-
teracting with periodic substrates where both pinned and
interstitial particles are present. Examples of this type
of system include colloidal particles in periodic pinning
[35, 36] and charged metallic balls [37].

II. SIMULATION AND SYSTEM

We consider a two-dimensional system with periodic
boundary conditions in the z and y-directions of size
L x L. The magnetic field B is applied out of the plane
in the z-direction, while N, vortices and N, pinning
sites are placed within the system for a vortex density of
ny = N,/L? and a pinning density of n, = N,/L?. The
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FIG. 1: The pinning site locations (open circles) for (a) a tri-
angular pinning array, (b) a square pinning array, (c¢) a hon-
eycomb pinning array, and (d) a kagomé pinning array. The
driving force is applied along ¥y to determine the depinning
force FY and along X to determine F7.

matching field By is defined as the field at which the
number of vortices equals the number of pinning sites,
N, = Np. In Fig. 1 we show representative examples of
the triangular, square, honeycomb, and kagomé pinning
geometries used in this work, and indicate the X and y
directions along which current is applied. The initial vor-
tex positions are prepared by simulated annealing with
no applied drive, and then the vortex velocities are mea-
sured in the presence of a driving force that is applied
in the z direction. The driving force corresponds to the
Lorentz force generated by an applied current, while the
vortex velocities are proportional to the voltage response
that would be measured experimentally. We repeat the
simulation from the same initial vortex positions with the
driving force applied in the y direction, and compare the
velocity response (V;) and (V,) and the critical depinning
force FY and F for the two driving directions.

The time evolution of the vortex dynamics is governed
by integrating NV, coupled overdamped equations of mo-
tion. The equation of motion for a single vortex ¢ at
position R,; is given by

% =F? +F{? + Fp + FT. (1)

Here the damping constant = ¢3d/27&%py, where d is
the sample thickness, 7 is the coherence length, py is the
normal-state resistivity, and ¢o = h/2e is the elementary



flux ‘quantum. The vortex-vortex interaction force is

N” P &
F" =) foK, (%) Rij, (2)
i

where K is the modified Bessel function, A is the Lon-
don penetration depth, the unit of force is fo = ¢3/2m\3,
R{j = |R4 3 le, and R«,‘j = (Ri — RJ')/R,ij. The vortex-
vortex interaction force falls off sufficiently rapidly that a
cutoff can be placed at R;; = 6. Use of a longer cutoff of
R;; = 12) produces identical results. An additional short
range cutoff is placed at R;; = 0.1 to avoid a divergence
in the force. The pinning sites are modeled as attrac-
tive parabolic wells of radius R, and strength Fj, with
F? = S0 foFp B 'RPO((R, — RY)/NRY. Here
Rfcp ) is the location of pinning site k, Rijx = |[R; — R;f’ )|,
R? = (R, — R")/Ry, and © is the Heaviside step
function. The pinning sites are arranged in a triangu-
lar, square, honeycomb, or kagomé array. The external
drive Fp = FpXx or Fp = Fpy is a constant force that is
uniformly applied to all of the vortices. The thermal
force FiT is used during the simulated annealing pro-
cedure and has the following properties: (FI(t)) = 0
and (FiT(t)FJT(t')) = 2nkpTé;j6(t — t'). We decre-
ment the temperature by 0.0002 every 1000 simulation
time steps. After the initialization, the applied drive
is imposed in increments of Fp = 0.1 every 10® sim-
ulation time steps. The velocity-force curves are ob-
tained by averaging the velocity every 103 simulation
time steps: (V,) = N, ! EZV” v; - &, where a = z, y.
Here v; = dR,;/dt. The critical depinning forces in the
z and y directions, F¥ and FY, are determined by the
criterion (V) = 0.001.

III. ANISOTROPY IN TRIANGULAR PINNING
ARRAYS

We first consider the depinning forces for the z and
y-directions in’ the triangular pinning lattice illustrated
in Fig. 1(a) with F, = 0.85, n, = 0.0833/)\%, and
R, = 0.35)\ In Fig. 2 we plot F* and FY vs B/By along
with a detail of the region from 1.0 < B/By < 5.0. In
general F¥ > F7F at most of the commensurate fields.
The anisotropy at incommensurate fields is most pro-
nounced for 1.0 < B/By < 3.0, as shown in the inset of
Fig. 2. In previous simulations a similar anisotropy was
observed for this range of fields [31]. For B/By > 3.0
both F? and FY are small, so it is difficult to deter-
mine whether the depinning is anisotropic at incommen-
surate fields. At the matching fields B/By = 7, 9, and
12, where the depinning forces are high, F¥ and FY can
be measured accurately. In Fig. 3 we plot representa-
tive velocity-force curves for driving in both the z and
y directions at B/By = 2, 3, 4, and 5. There is a
clear anisotropy in the depinning force with F¥ > F at
B/By = 2, 3, and 4 in Figs. 3(a,b,c), while at B/By = 5.0
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FIG. 2: The depinning forces FZ (light line) and F¥ (dark
lines) vs B/ By for a triangular pinning lattice with F, = 0.85,
R, = 0.35)\, and n, = 0.0833/A%. Inset: the same data
showing a highlight of the region from 1.0 < B/Bs < 5.0.
Open squares: F; filled circles: FY.
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FIG. 3: Velocity-force curves for driving in the z-direction,
(Vz) (open squares), and in the y-direction, (V) (filled circles)
for the triangular pinning lattice system in Fig. 2. (a) At
B/Bg = 2, the slope dV,/dFp < dVz/dFp. (b) At B/By =
3, dVy/dFp = dV;/dFp. (c) At B/By = 4, dV;/dFp <
dVy/dFp, resulting in a crossing in the velocity-force curves
near Fp = 0.1. (d) At B/By = 5, the depinning is isotropic.

in Fig. 3(d), the depinning is isotropic. This can be
seen more clearly in the plot of the anisotropy FY/FZ at
the matching fields, shown in Fig. 4. The anisotropy is
largest for B/By = 2, 4, and 9, weaker for B/By = 3 and
12, and essentially absent at B/By =1, 5, 6, 7, 8, 10, and
11. Corresponding to this, there are no peaks in the de-
pinning force at B/By = 5, 6, 8, 10, and 11 in Fig. 2. At
the fields with isotropic depinning F¥ /F¥ ~ 1, the overall
vortex lattice is disordered, while at the other matching
fields where anisotropic depinning occurs, ordered vor-
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FIG. 4: The ratio F¥/FZ vs B/By obtained from the system
in Fig. 2. The dashed line indicates FY/FZ = 1. The depin-
ning is strongly anisotropic at the matching fields B/By = 2,
3,4, 9, and 12.

tex lattices form. Previous numerical work for triangu-
lar pinning arrays at fields up to B/By = 9 showed the
same features in the critical depinning force as well as
the existence of disordered lattices at the matching fields
B/B4s = 5, 6, and 8 [20]. From a geometric construc-
tion, it can be shown that a triangular vortex lattice can
be placed on a triangular pinning lattice at the integer
matching fields N = m? + n? + nm, where n and m
are integers [20]. This predicts the formation of trian-
gular vortex lattices at fields with N =1, 3, 4, 7, 9,
and 12, in agreement with our observation of a peak in
F. at each of these fields. The geometric construction
does not predict the formation of a triangular lattice at
B/Bg = 2; however, a strong matching peak appears at
this field both in Fig. 2 and in the previous work [20].
The peak at B/ By = 2 occurs due to the formation of an
ordered honeycomb vortex lattice structure, rather than
a triangular vortex lattice. In general, we expect to find
a peak in the critical current at fields where a triangular
or other ordered vortex lattice structure forms. Figures 2
and 4 also show that although there is a peak in F, at
B/By = 7, where a triangular vortex lattice forms, there
is no anisotropy for this field and FY/FF ~ 1.

In order to explain the different degrees of anisotropy
that appear at different fields, we analyze the vortex po-
sitions and trajectories for driving in the x and y direc-
tions. Figure 5(a) shows the ordered honeycomb vortex
lattice structure that forms at Fp = 0 for B/By = 2
on a triangular pinning lattice. When driven in the z-
direction, the vortices can easily form slightly undulat-
ing channels of flow that pass between the filled pinning
sites, as illustrated in Fig. 5(b). For driving in the y-
direction, the pinned vortices act as barriers that prevent
the formation of simple flow channels, and the intersti-
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FIG. 5: Vortex positions (black dots), pinning site locations
(open circles), and vortex trajectories (black lines) for the
triangular pinning lattice system in Fig. 2. (a) The vortices
form a honeycomb configuration at Fp = 0 and B/By = 2.
(b) The vortex trajectories just above depinning for driving in
the z-direction at B/Bs = 2. The vortices channel between
the pinning rows. (c) Vortex trajectories just above depin-
ning for driving in the y-direction at B/Bg = 2. The moving
interstitial vortices wind around the occupied pinning sites.
(d) The vortices form a triangular configuration at Fp = 0
and B/By = 3. (e) The vortex trajectories just above de-
pinning for driving in the z-direction at B/Bg = 3 show an
ordered interstitial flow of vortices between the pinning sites.
(f) Vortex trajectories just above depinning for driving in the
y-direction at B/By = 3. Here the flow is disordered.

tial vortices can only move by making significant excur-
sions into the z-direction, as illustrated in Fig. 5(c) for a
drive just above depinning. As a result, a larger external
force is required to cause depinning in the y-direction,
and FY > FZ?. The onset of motion in the y-direction
is very sharp, as seen by the jump in the velocity-force
curve in Fig. 3(a), and after a brief initial period of disor-
dered motion, the vortex flow quickly organizes into the
pattern shown in Fig. 5(c). We observe similar motions
just above depinning in the z and y-directions at the
incommensurate fields for 1.0 < B/B; < 2.0; however,
the presence of vacancies in the honeycomb vortex lattice
causes certain rows of interstitial vortices to depin at a
lower value of Fp than at the commensurate fields. The
velocity-force curves at B/By = 2.0 shown in Fig. 3(a)
indicate that dV,/dFp < dV,/dFp, meaning that the
vortex velocity has a lower slope as a function of increas-
ing drive in the y-direction than in the z-direction, even
though the same number of vortices are moving for either
direction of drive. This difference is a result of the fact
that the vortex motion for y-direction driving has much
larger excursions transverse to the driving direction since
the interstitial vortices must go out of their way to pass
around the pinned vortices.

At B/By = 3 on a triangular pinning lattice, the over-
all vortex lattice ordering at Fp = 0 is triangular, as
shown in Fig. 5(d). The vortices move in slightly winding



c¢hannels' upon application of a drive in the z-direction,
as seen in Fig. 5(e); these structures are similar to the
channels that form at B/By = 2 in Fig. 5(b). For depin-
ning in the y-direction at B/Byg = 3, the pinned vortices
again create a barrier to the formation of simple channels
of interstitial vortex flow; however, unlike the ordered
and strongly winding channels that form at B/By = 2,
for B/By = 3 the vortices move in a disordered fashion
just above depinning, as illustrated in Fig. 5(f). An or-
dered flow state similar to that shown in Fig. 5(c) does
not occur for B/By = 3 until a much higher value of
Fp is applied. This result indicates that in addition to
the anisotropy in FY/FZ  there are also strongly differ-
ent vortex velocity fluctuation characteristics for driving
along the = and y-directions at B/By = 3. Narrow band
noise signatures should arise from the synchronized vor-
tex motion that occurs for driving along the z-direction,
while for driving in the y-direction the velocities are more
random and a broad band noise signature should appear.
In mode-locking experiments, where an external ac drive
is imposed along with an applied dc drive, Shapiro type
steps would appear for the ordered motion along the z-
direction, while Shapiro steps would be absent for driving
along the y-direction. Shapiro steps could be induced for
both driving directions at B/Bys = 2 since both vortex
flow patterns show synchronized motion; however, some
of the characteristics of the Shapiro steps might differ for
the two directions since the meandering of the vortices is
distinct in the z and y-directions.

A triangular vortex lattice with a single row of intersti-
tial vortices between each row of pinning sites forms for
B/By4 =4 at Fp = 0, as shown in Fig. 6(a). Just above
the depinning transition for driving in the z-direction,
a portion of the interstitial vortices depin into the one-
dimensional channels illustrated in Fig. 6(b). Here, one-
third of the interstitial vortices remain immobile in the
interstitial regions between pinning sites; these immobile
interstitial vortices depin at a higher value of Fp that
is outside the range of driving forces shown in Fig. 3(c).
For driving in the y-direction, all of the interstitial vor-
tices depin simultaneously and flow in winding channels
around the occupied pinning sites, as shown in Fig. 6(c).
The velocity-force curves shown in Fig. 3(c) indicate that
although FY > F? for B/By = 4, dV;/dFp < dV,/dFp.
As a result, the two velocity-force curves cross near
Fp = 0.1. The slope dV/dFp is steeper for the y-
direction driving since all the interstitial vortices take
part in the motion, whereas for the z-direction driving,
only 2/3 of the interstitial vortices are moving.

At B/By = 5 and Fp = 0, the vortex lattice is
disordered, as seen in Fig. 6(d), and the depinning is
isotropic. Figure 6(d,e) shows that the same type of dis-
ordered vortex motion occurs for depinning in both the x
and y-directions. In general, we observe disordered flow
states in both driving directions at the other matching
fields where a disordered vortex lattice forms, including
B/By4 = 6, 8, 10, and 11.

At B/B, = 9, the depinning thresholds and velocity-

FIG. 6: Vortex positions (black dots), pinning site locations
(open circles), and vortex trajectories (black lines) for the
triangular pinning lattice system in Fig. 2. (a) At Fp =0 and
B/Bg = 4 a triangular vortex lattice forms. (b) The vortex
trajectories just above depinning for driving in the z-direction
at B/Bg = 4. A portion of the interstitial vortices move in
one-dimensional channels between the rows of pinning sites.
(c) The vortex trajectories just above depinning for driving
in the y-direction at B/By = 4. The interstitial vortices flow
in winding channels around the pinning sites. (d) At Fp =0
and B/Bs = 5, the vortex lattice is disordered. (e) The
vortex trajectories just above depinning for driving in the x-
direction at B/By = 5. The vortex flow pattern is disordered.
(f) Vortex trajectories just above depinning for driving in the
y-direction at B/Bs = 5. The same type of disordered flow
pattern seen for z-direction driving appears for y-direction
driving.

force curves are very similar to those found for B/By = 4
since the triangular vortex lattices that form at these two
fields have the same orientation. In Fig. 7(a), the vor-
tex configuration at Fp = 0 for B/Bg = 9 contains two
rows of interstitial vortices between adjacent pairs of pin-
ning rows, whereas at B/By = 4, Fig. 6(a) shows that
there is only one row of interstitial vortices between each
pair of pinning rows. Just above the depinning tran-
sition for z-direction driving at B/By = 9, Fig. 7(b)
indicates that the two rows of interstitial vortices flow
in one-dimensional channels between the pinning rows
while two interstitial vortices remain trapped behind ev-
ery pinning site so that 3/4 of the interstitial vortices
are moving. This is similar to the z-direction depinning
that occurs for B/By = 4, where a single row of inter-
stitial vortices flows between each pair of pinning rows
and a single interstitial vortex is trapped behind each
pinning site. Just above the depinning transition for y-
direction driving at B/Bys = 9, shown in Fig. 7(c), all
of the interstitial vortices are depinned and a combina-
tion of ordered and disordered vortex flow occurs. The
velocity-force curves for driving in the z and y directions
show a similar crossing at B/By = 9 as that illustrated
in Fig. 3(c) for B/By = 4.

For B/B,4 = 12, the vortex configurations and depin-
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FIG. 7: Vortex positions (black dots), pinning site locations
(open circles), and vortex trajectories (black lines) for the
triangular pinning lattice system in Fig. 2. (a) At Fp =0
and B/By = 9, a triangular vortex lattice forms. (b) The
vortex trajectories just above depinning for driving in the
z-direction at B/By = 9. Two rows of interstitial vortices
move in one-dimensional paths between the rows of pinning
sites while a portion of the interstitial vortices remain pinned.
(¢) The vortex trajectories just above depinning for driving
in the y-direction at B/Bs = 9. A combination of ordered
and disordered flow occurs. (d) At Fp = 0 and B/By = 12,
a triangular vortex lattice forms which is aligned with the y
direction. (e) The vortex trajectories just above depinning
for driving in the z-direction at B/By = 12. Three rows of
interstitial vortices move between the rows of pinning sites.
(f) Vortex trajectories just above depinning for driving in the
y-direction at B/By, = 12 show the existence of disordered
flow.

ning dynamics are similar to those seen for B/Bs = 3. In
Fig. 7(d) the Fp = 0 vortex configuration at B/By = 12
consists of a triangular lattice that is aligned with the
y-direction. Since there is now an interstitial column
of vortices that could depin and flow between adjacent
columns of pinning sites, while there are no straight rows
of interstitial vortices, it might be expected that F¥ < F¥
for this field. Instead, Fig. 4 shows that FY/F? ~ 1.13,
so the depinning is still easier in the z-direction than
in the y-direction; however, the depinning anisotropy is
much smaller than that which appears at B/By = 3.
Vortex motion just above depinning at B/By = 12 for
driving in the z-direction occurs in the form of three or-
dered winding rows passing between each pair of pinning
rows, as shown in Fig. 7(e). This is similar to the motion
at B/By = 3 shown in Fig. 5(e) where one winding row
of interstitial vortices moves between the pinning rows.
For depinning in the y-direction at B/By = 12, Fig. 7(f)
shows that the vortex trajectories are disordered in a
manner similar to that found for y-direction depinning
at B/By = 3, as seen in Fig. 5(f).

At B/By =17, a peak in F, occurs as shown in Fig. 2,
but there is almost no anisotropy in the depinning thresh-
olds, as seen in Fig. 4. Figure 8(a) illustrates that at this
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FIG. 8: Vortex positions (black dots), pining site locations
(open circles), and vortex trajectories (black lines) for the tri-
angular pinning lattice system in Fig. 2 at B/By, = 7. (a) At
Fp = 0, a triangular vortex lattice forms that is not aligned
with the z or y axes but is tilted at an angle § ~ —78° to
the x-axis. This ground state is two-fold degenerate since the
vortex lattice could have been tilted at the opposite angle,
0 ~ +78°, to the z-axis. (b) The vortex trajectories just
above depinning for driving in the z-direction. All of the in-
terstitial vortices are moving. (c) The vortex trajectories just
above depinning for driving in the y-direction. In this case a
portion of the interstitial vortices remains pinned.

field for Fy = 0, a triangular vortex lattice forms which
is not aligned with either the z or y directions, unlike the
configurations found at B/By = 3, 4, 9, and 12, but is at
an angle 0 ~ —78° to the z-axis. The vortices flow in or-
dered patterns just above depinning in both the z and y
directions, as shown in Fig. 8(b,c). Since a portion of the
interstitial vortices remain pinned just above depinning
for driving in the y-direction, whereas all of the inter-
stitial vortices are flowing for driving in the z-direction,
dV,/dFp < dV,/dFp at B/By = 7. The absence of the
anisotropy at this field is likely due to the fact that the
main symmetry axis of the triangular vortex lattice is not
aligned with either the z or y directions, as is the case at
the other matching fields which show anisotropy.

An interesting feature that we observe at B/By = 7
which does not occur at the other matching fields we have
investigated is a switching dynamics that can be induced
within the pinned phase. This is illustrated in Fig. 9
where in the initial state, shown in Fig. 9(a), the vortex
lattice is tilted at 8 ~ —78° to the z-axis. The ground
state is twofold degenerate since it could also have been
aligned at 0 ~ +78° to the z-axis. When a small driving
force is applied to the ground state shown in Fig. 9(a)
along +45° to the z-axis, a structural rearrangement of
the vortices occurs accompanied by a domain wall that
passes through the system from right to left, as shown in
Fig. 9(b,c). The vortices move by approximately one lat-
tice constant in the y-direction as the domain wall sweeps
past, and in the final state the vortex lattice is tilted at
0 ~ +78° to the z-axis. The system can be switched
back to —78° if an external drive is applied along —45°
to the z-axis. We expect that for higher matching fields
beyond the fields that we consider here, a switching ef-
fect will be present for matching fields containing two or
more degenerate ground states where the vortex lattice
could be arranged in several possible ways. The applica-
tion of an external drive will lower the energy of one of



o.teltel el el el Qo.:e.:elio{{o;.o:
L Il el P S T | R
R P Yl P T - T 0. 0. 01,0156
A S T el oA e g RN R Sk
0.0l el 0 0L 0" .9.19.19120(:9::91
B S T L I P L T Dt o L
Lnelnelleltel el cieLiellerlenle) !
I..l...-...'..‘. .'...'.l’ - A' .‘
0.0\ 0 0. 0. 0" ,o..o.:o{:eg:o::e.
LT, ML T IS
LeLtelieLc e e, ..e._e.:qj:é)(e;.
I..l.--.‘l..l.... ......‘.’ - " --
o."0."0 "0 0.0, | |.0-1 .:e\:e{:e;:e.
I..I..b...----.... .....‘.-...\\-’\\.‘)‘.‘.
@ X ® X
O {(e‘{et,e'.el 0 .0/.0 .0 .0 .0
e S T A Il BT
*u a0l OlnD I 20, il S 4 i T
20 ., r"r‘(r'rv'- LA R B e
ov.eilelleflor 00 ol 0 . 0 0 0! 0]
R ITA N ..;\\)..;\‘.. o Eoerseslusiinils
.',0:.,9,‘0:7‘0,\’9;‘. .-.Q:..O:..:..O:--Q:.
ovr0lle {e(:e::e: ‘o 0 -0 .0 0" 0]
PRt ot L, g, g Rl e g
. r'\‘r\r'\,r . - = N . = . =y
'-o'qe,\s/'\e,\e,! «*9,:6,:.86,.06_-86_.
Sy Ty TS de L L S L
0v.0llefd (:e':e. 0.0 . 0 . 0 0. 0]
TR N L
(c) X (d) X

FIG. 9: Vortex positions (black dots), pinning site locations
(open circles), and vortex trajectories (black lines) for the tri-
angular pinning lattice system in Fig. 2 at B/Bs = 7. A weak
external driving force is applied at an angle in the positive z-y
plane that induces a structural transformation in the vortex
lattice between the two ground states, —78° shown in panel
(a) and +78° shown in panel (d). During the transforma-
tion, illustrated in panels (b) and (c), the interstitial vortices
shift in the positive y-direction by approximately one lattice
constant and a domain wall traverses the system.

the orientations.

A. Effect of Pinning Strength

We next study the effect of varying the pinning
strength F), on the anisotropy at the different fields. In
Fig. 10(a) we plot F¥ and F? versus Fj, for a sample
with a triangular pinning lattice at B/By = 2, and in
Fig. 10(b) we show the corresponding anisotropy ratio
FY/FZ. Since the pinning induces the honeycomb vor-
tex lattice structure shown in Fig. 11(a) at this field, as
F,, decreases the vortices shift into configuration that is
closer to a triangular lattice. To accommodate this shift,
some of the pinning sites are vacated with decreasing
F,. For F, > 0.85, the honeycomb lattice (H) structure
is stabilized, all of the pinning sites are occupied, the
anisotropy is fixed near F¥ /F¥ = 2.5, and the depinning
thresholds F¥ and FY do not change significantly with
F,. For 0.175 < F, < 0.85, the pinning is not strong
enough to stabilize the honeycomb lattice and a partially
pinned (PP) lattice forms in which only some of the pin-
ning sites are occupied, as illustrated in Fig. 11(b) for
F, = 0.5. The depinning in this regime is still plastic

(d): | E——

FIG. 10: (a) Depinning threshold in the z-direction, Fy (open
squares), and y-direction, F¥ (filled circles), vs F}, for the tri-
angular pinning lattice system in Fig. 2 at B/By = 2. (b)
The corresponding anisotropy ratio FY/FY vs F,. H: the
honeycomb ordering illustrated in Fig. 11(a); PP: the par-
tially pinned phase shown in Fig. 11(b) where a portion of
the pinning sites are unoccupied and the depinning is plastic.
DT the distorted triangular phase seen in Fig. 11(c) where
most pinning sites are unoccupied and the depinning is elas-
tic. The three different phases are visible as features in the
anisotropy. (c) The depinning thresholds F7 and F¥ vs F,
for the same system at B/By = 3. (d) The corresponding
anisotropy ratio FY/FZ vs F,.
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FIG. 11: The vortex configurations for the triangular pinning
lattice system at B/By = 2 from Fig. 10(a,b) at Fp = 0.
(a) The pinned honeycomb lattice (H) at F, = 1.0. (b) The
partially pinned lattice (PP) at F, = 0.5. A portion of the
pinning sites are unoccupied and the vortices depin plastically.
(c) The weak pinning regime at F, = 0.075 where a distorted
triangular (DT) lattice forms and the depinning is elastic.

with the interstitial vortices depinning first. There is a
strong enhancement of the anisotropy in the PP phase,
with F¥ /F? reaching values as large as 5. For F}, < 0.175,
the vortices form a distorted triangular (DT) lattice il-
lustrated in Fig. 11(c) which becomes increasingly trian-
gular with decreasing F,. In the DT phase, only a small
fraction of the pinning sites are occupied. Here the de-
pinning transition is elastic and both the interstitial and
pinned vortices depin simultaneously. The anisotropy of
the depinning is lost and the critical depinning forces are
isotropic in the DT phase. In general, F¥ and F? de-
crease with decreasing F}; however, near the transition
between the PP and DT phases, F7 increases with de-
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creasing F}, as the depinning changes from plastic to elas-
tic. We believe that this effect is similar to the peak in the
critical depinning force observed for periodic [38] and ran-
dom arrays [39] above the first matching field when the
vortex-vortex interaction strength is varied. For periodic
pinning, Ref. [38] illustrated that the depinning force de-
creases with increasing vortex-vortex interaction strength
since the system depins elastically and all of the vortices
begin to move at the same time. For weak vortex-vortex
interactions, the interstitial vortices depin easily and flow
plastically past the vortices at the pinning sites, so the
depinning force decreases with decreasing vortex-vortex
interaction strength in this regime. Between these two
extremes, a peak in the depinning force occurs. A simi-
lar effect is observed in vortex systems with very dilute
random pinning arrays [39]. In Fig. 10(a) the vortex-
vortex interaction strength is fixed; however, there is still
a transition from elastic to plastic depinning. The peak
appears only for z-direction driving, and this may be due
to the existence of an easy shear mode in the z-direction
which is absent for y-direction driving.

For B/By4 = 3, Fig. 10(c) shows that FY and F7 sat-
urate at large F),, while Fig. 10(d) indicates that the
anisotropy ratio also saturates at FY/F* = 1.24. For
F, < 0.25, the depinning threshold decreases rapidly
with decreasing F}, as the system enters the elastic de-
pinning regime. We note that since the vortex lattice at
B/Bg = 3 is triangular, there is no elastic energy cost for
occupying the pinning sites and one-third of the vortices
will always be located at the pinning sites for arbitrarily
small F},, unlike the situation at B/By = 2. There is a
very small peak in F' near the plastic-elastic depinning
transition.

Figure 12(a,b) shows the depinning thresholds F¥ and
FY as a function of F, for B/Bs = 4 along with the
anisotropy ratio FY /F7. Both FY and FY saturate with
increasing F},, and the anisotropy for Fj, > 0.25 is fixed
at FY/F? = 1.5. For F, < 0.25, the depinning threshold
decreases rapidly with decreasing Fj,, and at the same
time there is a drop in the anisotropy as the system
passes from the plastic to the elastic depinning regime.
In Fig. 12(c,d) we illustrate F¥, FY, and FY/FZ? for
B/B, =5, where the vortex lattice lattice is disordered.
Here the depinning is isotropic for all values of F,. A
peak in the depinning thresholds occurs for both direc-
tions of driving near F), = 0.25 at the transition between
elastic and plastic depinning.

We observe the same general trends for B/By > 5,
including a saturation of the anisotropy with increasing
F, and a crossover from plastic to elastic depinning at
low F,. For higher values of F}, and R,, multiple vortices
are trapped at each pinning site. In this case, the vor-
tices form vortex molecular crystals within the pinning
sites [40], which changes both the depinning threshold
and the anisotropy. In general, the anisotropy is reduced
when multiple vortex pinning is present. This means that
the anisotropy is only observable in a regime where the
pinning is strong enough to allow for plastic depinning
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FIG. 12: (a) The depinning threshold in the z-direction, F¢
(open squares), and y-direction, FY (filled circles) vs F, for
the triangular pinning lattice system in Fig. 2 at B/By = 4.
(b) The corresponding anisotropy ratio FY/FZ vs Fp. (¢) F&
and FY vs F, for the same system at B/B, = 5. (d) The
corresponding anisotropy ratio FY/FY vs F,. Here the depin-
ning is isotropic and a peak in the depinning thresholds occurs
near the transition from the plastic to the elastic depinning
regime.

or channeling of vortices between the pinning sites, but
not strong enough to permit multiple vortices to occupy
each pinning site.

B. Effect of Changing By

We next examine the depinning thresholds and
anisotropy at different matching fields for the triangular
pinning lattice with fixed F}, = 0.85 but with increasing
By, achieved by increasing the density of pinning sites
np. The vortex-vortex interactions become more impor-
tant for higher values of By. For B/By = 2, illustrated
in Fig. 13(a,b), both F* and FY show a peak feature,
while the anisotropy remains near FY/F* = 2.0. The
depinning thresholds increase with increasing By for low
By due to the fact that the increasing strength of the
vortex-vortex interactions raises the interstitial pinning
barriers. The threshold does not continue to monoton-
ically increase with increasing By since the vortex con-
figuration at B/Byg = 2 is a honeycomb lattice. As a
result, the elastic energy cost of maintaining the hon-
eycomb structure increases with increasing By, and for
By > 0.2¢0/)\?, a portion of the vortices shift out of the
pinning sites to form a distorted triangular lattice similar
to that seen for low F}, in Fig. 11(c). This causes a drop
in the depinning thresholds with increasing By. We ex-
pect similar behavior for other matching fields at which
an ordered but non-triangular vortex lattice forms.

In Fig. 13(c) we plot F¥ and FY versus B for the same
system with B/By = 3, and in Fig. 13(d) we show the
corresponding FY/FZ¥. At this matching field, the vor-



FIG. 13: (a) The depinning threshold in the z-direction,
F? (open squares), and y-direction, F¥ (filled circles) vs By
for a triangular pinning lattice system with F, = 0.85 and
R, = 0.35)\ at B/Bg = 2. The vortex lattice has honey-
comb ordering at low By, but as By increases, the increasing
strength of the vortex-vortex interactions causes some of the
vortices to shift out of the pinning sites. (b) The correspond-
ing anisotropy ratio FY /F¥ vs By. (¢) F¢ (open squares) and
FY (filled circles) vs By for the same system at B/By = 3.
Here the vortex lattice is triangular, as seen in Fig. 5(d), so as
By increases the vortex-vortex interactions become stronger
and increase the value of the interstitial vortex depinning
threshold. (d) The corresponding anisotropy ratio FY/FZ vs
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FIG. 14: (a) The depinning thresholds FF (open squares)
and FY (filled circles) vs By for a triangular pinning lattice
system with F, = 0.85 and R, = 0.35) at B/By = 4. (b) The
corresponding F¥/F7 vs By. (¢) FY (open squares) and FY
(filled circles) vs By for the same system at B/Bg = 5. (d)
The corresponding F¥/F7 vs By showing that the depinning
is isotropic.

tex lattice is triangular as seen in Fig. 5(d). Therefore,
the vortex positions do not shift as By increases, unlike
the case for B/By = 2, and the depinning thresholds in-
crease monotonically with increasing Bys. The anisotropy
does not vary strongly with By. In Fig. 14(a,b) we show
FZ, FY, and FY/F7? versus By for the same system at
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FIG. 15: The depinning thresholds F (open squares) and FY
(filled circles) vs By for the system in Fig. 2 with F, = 0.85.
Lower curves: B/Bs = 0.5, showing that the depinning is
isotropic and monotonically decreasing with increasing Fj.
Upper curves: B/Bg = 1.0, where F, = Fj,.

B/By = 4, where the vortex lattice is triangular as in-
dicated in Fig. 6(a). The depinning thresholds increase
monotonically with increasing By while the anisotropy
remains constant at FY/F¥ ~ 1.54. At B/By = 5, where
Fig. 6(d) shows that the vortex lattice is disordered, the
depinning thresholds are isotropic and increase monoton-
ically with increasing By, as illustrated in Fig. 14(c,d).
For any matching field B/ By, if By is increased above the
range of values considered here, multiple vortex pinning
by the pinning sites eventually occurs when the vortex
lattice constant a becomes of the order of the pinning ra-
dius R, and very little distortion of the vortex lattice is
required to shift the vortices into the pinning sites. The
occurrence of multiple vortex pinning would alter both
the depinning thresholds and the anisotropy.

C. Anisotropy for B/B; <1

For B/By > 1, interstitial vortices are present and the
depinning threshold is determined by the strength of the
vortex-vortex interactions, provided that the pinning is
strong enough to produce a plastic depinning transition.
For B/B, < 1, the depinning threshold is controlled by
a combination of the vortex-vortex interaction strength
and the strength of the pinning sites. For a triangular
pinning array at the matching and submatching fields
of B/By = 1, 1/3, and 1/4, the vortex lattice is tri-
angular and every vortex is trapped by a pinning site.
In this case, the depinning thresholds are determined
by the maximum force exerted by the pinning sites and
are independent of the direction of the external drive,
so the depinning is isotropic. This is in agreement with
previous work, where an isotropic depinning threshold



FIG. 16: (a) The depinning thresholds FY (open squares)
and FY (filled circles) vs T'/Ty, for a triangular pinning lat-
tice system with Fj, = 1.25 and B/By = 2. Here Ty, is the
temperature associated with the onset of vortex diffusion at
Fp = 0. (b) The corresponding anisotropy ratio FY/F7 vs
T/Tm. (c) FY (open squares) and FY? (filled circles) vs T//Ty,
for the same system at B/Bg = 4. (d) The corresponding
F¥/FE vs T/Tp.

was observed for vortices in triangular pinning arrays at
B/By =1 (30, 31]. In Fig. 15 we plot F¥ and FY versus
By at B/Bg = 0.5 and 1.0 for a system with F}, = 0.85.
The depinning thresholds are isotropic for both fields,
and at B/By = 1, F. = F}, as expected. At B/By = 0.5,
the vortex lattice is disordered since a triangular vor-
tex lattice cannot match the pinning array at this fill-
ing, as shown in Fig. 11(c) of Ref. [41]. Although all of
the vortices are pinned, due to the disorder of the vor-
tex structure, some vortices experience stronger vortex-
vortex repulsion from neighboring vortices than other
vortices, and as a result the vortex-vortex interactions
do not cancel at B/Bg = 0.5 as they do at B/By = 1.
This lowers the depinning thresholds and causes both
F? and FY to decrease with increasing By due to the
dependence of the depinning force on the vortex-vortex
interaction strength. In general, we observe little or no
anisotropy in the depinning thresholds for B/Bj < 1. If
multiple vortex pinning occurs at B/By > 1, so that no
interstitial vortices are present, we expect that the same
type of depinning phenomena seen for B/By < 1 will
appear and there will be little anisotropy. This suggests
that the appearance of anisotropic depinning forces and
the existence of voltage-current curves with different val-
ues of dV/dFy in different directions are indicators of the
presence of interstitial vortices in the system.

D. Temperature Effects

We next consider how robust the anisotropy is to ther-
mal fluctuations. We anneal the system down to a finite
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FIG. 17: Vortex positions (black dots), pinning site locations
(open circles), and vortex trajectories (black lines) just above
depinning for a system with a square pinning array at F, =
0.86, R, = 0.35), and By = 0.0625¢0/\* at B/Bs = 2. (a)
y-direction driving. (b) z-direction driving. The same type
of vortex motion occurs for both directions of drive.

FIG. 18: Velocity-force curves (V) vs Fp for a-direction de-
pinning (open squares) and (V) vs Fp for y-direction depin-
ning (filled circles) in the square pinning lattice system from
Fig. 17. (a) B/Bs = 2, where the depinning is isotropic. (b)
B/Bg = 4, with anisotropic depinning. (¢) B/By = 12, with
anisotropic depinning.

temperature and then measure the depinning forces in
the z and y-directions. The temperature is given in terms
of the melting temperature 7}, at which the vortices be-
gin to diffuse significantly and the system is in a molten
state. In Fig. 16(a) we plot F¥ and FY versus T/T,
for a triangular pinning lattice system with F, = 1.25
at B/By, = 2, and in Fig. 16(b) we show the corre-
sponding anisotropy FY/FZ*. Both depinning thresholds
monotonically decrease with increasing temperature and
reach zero at T'/T,, = 1.0. The anisotropy decreases
with increasing temperature for low temperatures; how-
ever, just below the melting temperature, FY/F¥ passes
through a peak. A similar trend is seen for B/By = 4,
as shown in Fig. 16(c,d). These results indicate that the
anisotropy should be robust against temperature. This
agrees with the experiments in Ref. [31], which found that
the anisotropy became more pronounced at higher tem-
peratures. The enhancement of the anisotropy at higher
temperatures could also result from the presence of weak
random intrinsic pinning in the sample, which would re-
duce the magnitude of the anisotropy but which can be
washed out by thermal fluctuations.
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FIG. 19: The vortex positions (black dots), pinning site loca-
tions (open circles), and vortex trajectories (black lines) for
the square pinning lattice system in Fig. 18 at B/By = 4.
(a) The Fp = 0 state where a triangular vortex lattice forms
that is aligned in the y-direction. (b) The vortex trajectories
just above depinning for driving in the y-direction, showing
one-dimensional channels of vortices moving between adja-
cent columns of pinning sites. (c¢) The vortex trajectories just
above depinning for driving in the z-direction. Here, every
other column of vortices shifts in the y-direction so that every
other vortex can join one-dimensional rows of vortices flow-
ing between adjacent pinning site rows, while the remaining
interstitial vortices are trapped between neighboring pinning
sites. (d) The same as panel (c), but at a later time when the
system has reached steady-state flow.

IV. ANISOTROPY IN SQUARE PINNING
ARRAYS

For square pinning arrays, we find that the depin-
ning thresholds at most fields are isotropic. This is a
result of the fact that the same type of vortex motion oc-
curs in both directions for most fields, as illustrated for
B/By =2 in Fig. 17. In Fig. 18(a) we show the isotropic
velocity-force curves at B/By = 2 for = and y-direction
driving. Since the perpendicular directions of the square
pinning array are identical, unlike the perpendicular di-
rections of the triangular pinning array, it is not surpris-
ing that most matching fields have the same depinning
thresholds in both driving directions for the square ar-
ray. Nevertheless, strongly anisotropic depinning occurs
at B/Bg = 4 and 12, as shown in Fig. 18(b,c).

In Fig. 19(a) we plot the vortex positions and pin-
ning site locations for B/By = 4, where anisotropic de-
pinning occurs. Here a triangular vortex lattice that is
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aligned with the y-axis forms. Under y-direction driving,
the interstitial vortices flow in one-dimensional channels
between adjacent columns of pinning sites, as seen in
Fig. 19(b) where 2/3 of the interstitial vortices have de-
pinned. A simple channeling motion cannot occur for z
direction driving, so F;’ is much higher than FY. Just
above the depinning transition for z-direction driving,
as illustrated in Fig. 19(c), every other column of vor-
tices shifts in the y direction in order to permit every
other vortex to join a one-dimensional flowing channel
passing between adjacent rows of pinning sites. The re-
maining interstitial vortices remain trapped between the
pinning sites. After this rearrangement, 2/3 of the inter-
stitial vortices flow in the steady-state one-dimensional
channels shown in Fig. 19(d), which are similar to the
channels that form for y-direction driving. The ground
state shown in Fig. 19(a) is degenerate, and a state with
the vortex lattice aligned along the z-direction has equal
energy. Thus, the realignment process seen in Fig. 19(c)
is simply a shift of the vortices into the other ground
state prior to the onset of flow. Figure 18(b) shows that
F? is approximately 1.75 times higher than F¥. Due to
the symmetry of the square lattice, either the z or the
y-direction can show a higher depinning threshold de-
pending on the initial configuration of the vortex lattice.
This is distinct from the triangular pinning lattice, where
the higher depinning force always occurs in the same di-
rection at a given field. If the annealing process for the
square pinning lattice is repeated with different initial
conditions, the vortex lattice has a 50% chance of align-
ing with the z-direction, in which case the anisotropy will
be reversed from that shown in Figs. 18, 19. If the driv-
ing force is cycled, the velocity-force curve in the hard
driving direction is hysteretic during the first cycle due
to the realignment effect, while there is no hysteresis for
the easy driving direction or for subsequent cycles in the
initially hard driving direction.

In Fig. 20 we illustrate the effect of changing F}, and
B, on the depinning anisotropy for the square pinning
lattice sample with B/By = 4. We show a case where
the initial vortex lattice orientation is along the y-axis,
as in Fig. 19(a), which gives F¥ > FY. Figure 20(b) in-
dicates that the anisotropy saturates at FY/FZ® ~ 0.57
for F, > 0.075, while Fig. 20(a) shows that the depin-
ning thresholds also saturate above this value of F,. For
F, < 0.075, the depinning is elastic and the anisotropy
is lost. For fixed F, = 0.85 the depinning thresholds
increase monotonically with increasing By, as seen in
Fig. 20(c), while in Fig. 20(d) the anisotropy passes
through a shallow extremum of FY/F¥ = 0.5.

We find a similar anisotropic depinning behavior for
B/By = 12. The vortex configurations for this field at
Fp = 0 are illustrated in Fig. 21(a). The vortex lattice
is aligned in the y direction, but just as at B/By = 4,
there are two degenerate ground states, and a vortex lat-
tice that is aligned in the 2-direction would have the same
energy. There are two columns of interstitial vortices be-
tween adjacent columns of pinning sites. The overall vor-
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FIG. 20: (a) F7 (open squares) and F¥ (filled circles) vs F,
for the system in Fig. 18 at B/By = 4 with the starting
configuration shown in Fig. 19 that produces a higher de-
pinning threshold in the z-direction. (b) The corresponding
anisotropy ratio FY/FZ vs F,. For small F}, the system de-
pins elastically. (c¢) FY (open squares) and FY? (filled circles)
vs B, for the same system at B/By = 4 and F, = 0.85. (d)
The corresponding FY/FT vs Fp.

tex lattice structure is not triangular and there are dis-
locations present in the lattice. Along certain columns,
neighboring interstitial vortices in neighboring columns
lie along a line tilted by —23° with respect to the z-
axis, while along other columns, neighboring interstitial
vortices lie along a line tilted by +23° with respect to
the z-axis. The dislocations in the vortex lattice are
all aligned in the same direction, resulting in a smec-
tic structure. This smectic state for the square pinning
array has not been observed in previous work. There
are two possible low-energy orientations for the vortex
lattice, just as in the B/B, = 4 case: the y-axis ori-
entation shown in Fig. 21(a), or the same state rotated
by 90° and aligned with the z-axis. For depinning in
the y-direction, Fig. 21(b) shows that the two columns
of interstitial vortices depin into flowing one-dimensional
channels, while two interstitial vortices remain trapped
between adjacent pairs of pinning sites. For driving along
the z-direction, the same type of lattice reorientation
found for B/Bs = 4 occurs at B/By = 12, as illus-
trated in Fig. 21(c,d). The columns of interstitial vor-
tices shift in such a way that two one-dimensional rows
of interstitial vortices form, while two interstitial vortices
remain trapped between adjacent pairs of pinning sites.
The final vortex configuration for z-direction driving, in
Fig. 21(d), is a rotated version of the configuration for
y-direction driving seen in Fig. 21(b). The same hys-
teretic voltage-current response should occur for driving
in the hard direction at B/By, = 12 as at B/By = 4.
In Fig. 18(c) the velocity-force curves at B/By = 12
show an anisotropy F¥/F? ~ 0.4. The more pronounced
anisotropy at B/Bs = 12 compared to B/By = 4 is
due to the fact that the overall structure at B/By = 12
is smectic and the dislocations are aligned in the y-
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FIG. 21: The vortex positions (black dots), pinning site loca-
tions (open circles), and vortex trajectories (black lines) for
the system in Fig. 18 at B/By = 12. (a) The partially ordered
vortex configuration at Fp = 0. The vortex structure has a
smectic-type ordering in which all of the topological defects
are aligned in the same direction. (b) The vortex trajecto-
ries just above depinning for driving in the y-direction show-
ing two columns of interstitial vortices moving between each
pair of pinning columns and two interstitial vortices trapped
between adjacent pinning sites. (c¢) The vortex trajectories
just above depinning for driving in the z-direction. A por-
tion of the interstitial vortices shift in the y-direction in or-
der to create ordered rows of flowing vortices and pairs of
trapped interstitial vortices between adjacent pinning sites.
(d) The steady-state channels that form for y-direction driv-
ing. The general structural rearrangement of the interstitial
vortices for depinning in the z-direction is similar to that seen
at B/Bg =4 in Fig. 19(c,d).

direction, further decreasing the depinning force along
this direction.

We expect that the depinning anisotropy in the square
pinning arrays will be more difficult to observe experi-
mentally than the anisotropy in the triangular pinning
arrays due to the existence of twofold-degenerate ground
states for the square system. If other forms of quenched
disorder, such as intrinsic pinning, are present and the
system is large, domains of the two different orientations
could form which would render the depinning thresh-
olds isotropic. On the other hand, we found that an
applied drive can readily align the vortex lattice struc-
tures in the driving direction at B/Bs = 4 and 12.
Therefore, it may be possible to prepare the system in
an aligned state using an external drive, and then mea-
sure the anisotropy of the depinning forces starting from



FIG. 22: (a) F7 (open squares) and FY (filled circles) for a
honeycomb pinning lattice as a function of B/B,;’, the honey-
comb matching field, in a sample with F}, = 0.85, R, = 0.35),
and n, = 0.194/A%. (b) The corresponding F¥/F¥ vs B/Bj
shows that the anisotropy exhibits several reversals as a func-
tion of field. (c¢) F7 (open squares) and FY (filled circles)
for a kagomé pinning lattice as a function of B/B‘f, the
kagomé matching field. (d) The corresponding FY/F7 vs
B/ Bf shows that several reversals of the anisotropy also oc-
cur for the kagomé pinning array.

this aligned state. This procedure should permit the
anisotropy in the square pinning lattice system to be ob-
served experimentally.

V. ANISOTROPY IN HONEYCOMB AND
KAGOME PINNING ARRAYS

We next examine anisotropy in honeycomb and kagomé
pinning arrays. Since the honeycomb and kagomé arrays
can be constructed by removing selected pinning sites
from a triangular array, it might be expected that the
anisotropy would follow the same trend found for the tri-
angular pinning arrays. In particular, one could expect
that the depinning threshold would always be higher in
the y-direction. Instead, we find that the honeycomb
and kagomé pinning arrangements show an anisotropy
that undergoes reversals as a function of the applied
magnetic field. In Fig. 22(a) we plot F¥ and FY as a
function of B/ Bg for a honeycomb pinning system with
F, = 0.85, R, = 0.35), and n, = 0.194/)2. Here,
Bf is the matching field for a honeycomb lattice con-
structed from a triangular lattice with matching field
By, and we have Bf = 2/3By [26]. Figure 22(b) shows
FY/FZ¥ versus Bg for the honeycomb pinning array. For
1 < B/BY < 3, FY/F* < 1 and the depinning thresh-
old is higher for z-direction driving. This anisotropy is
reversed from that seen in the triangular pinning arrays.
The reversal can be understood by examining the vortex
positions at Bf = 1.5 in Fig. 23(a). Each interstitial
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FIG. 23: Vortex positions (black dots), pinning site locations
(open circles), and vortex trajectories (black lines) for the
honeycomb pinning array in Fig. 22. (a) At B/Bg =15
and Fp = 0 there is one vortex per large interstitial site. (b)
Vortex trajectories just above depinning for driving in the
y-direction at B/Bf = 1.5 showing one-dimensional paths
between the pinning sites. At this field, F¥/F7 < 1. (c)
Vortex trajectories just above depinning for driving in the -
direction at B/Bg’ = 1.5. The interstitial vortices flow in
winding paths around the occupied pinning sites. (d) The
vortex configurations at B/Bf = 4 for Fp = 0. Here a
portion of the interstitial vortices align in the z-direction. (e)
Vortex trajectories just above depinning for driving in the z-
direction at B/Bj}' = 4. In addition to moving channels of
interstitial vortices, there are some interstitial vortices that
remain pinned between adjacent occupied pinning sites. (f)
Vortex trajectories just above depinning for driving in the y-
direction at B/B,f = 4 show a complex periodic pattern with
all of the interstitial vortices moving.

vortex is located at the position where the pinning site
was removed from the triangular lattice in order to create
the honeycomb lattice. There is a pin-free channel of mo-
tion which the interstitial vortices can follow for driving
in the y-direction, as seen in Fig. 23(c). For z-direction
driving, the path of the interstitial vortex is blocked by
pinned vortices, creating a much stronger barrier for de-
pinning, and once the vortices begin to move, they follow
the winding paths illustrated in Fig. 23(b).

In Fig. 24 we plot (V;) and (V},) versus Fp for driving
in the x and y-directions, respectively. The depinning
in the honeycomb pinning array is anisotropic at both
B/Bj = 1.5, shown in Fig. 24(a), and at B/Bj = 4,
shown in Fig. 24(b). For 2.5 < B/B‘ff < 4 the anisotropy
is reversed compared to the lower fields. This is due
to the formation of n-mer states in the large interstitial
spaces of the honeycomb lattice which permit a portion
of the interstitial vortices to be aligned in the z-direction
between the pinning rows. In Fig. 23(d) we illustrate the
Fp = 0 vortex configuration at B/B} = 4, where the in-
terstitial vortices form triangular shapes within the large
interstitial sites. The vortex at the top of each intersti-
tial triangle forms a nearly one-dimensional channel in
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FIG. 24: The velocity-force curves from the system in Fig. 22.
Open squares: (Vz) vs Fp; filled circles: (V;) vs Fp. (a) The
honeycomb pinning array at B/Bf = 1.5 where FY/F? < 1.
(b) The honeycomb pinning array at B/Bf = 4 showing that
the anisotropy has reversed and FY/F7 > 1. (c¢) The kagomé
pinning array at B/Bf =4/3. (d) The kagomé pinning array
at B/Bj = 10/3. Here dV,/dFp < dV;/dFp, so there is a
crossing of the velocity-force curves.

the z-direction with the vortices at the base of the ad-
jacent interstitial triangles, permitting easy depinning in
the z-direction into the flow pattern shown in Fig. 23(e).
For depinning in the y-direction, where the threshold is
higher, the complex but ordered flow pattern in Fig. 23(f)
appears. For Bg = 4.5, the anisotropy reverses again, as
seen in Fig. 22.

Figure 22(c,d) shows that similar anisotropy reversals
occur for depinning in kagomé pinning arrays, where Béf
is the kagomé matching field for a pinning lattice con-
structed from a triangular lattice with matching field B,
and Bf = 3/4B. For B/ij < 5/3, Fig. 22(d) indicates
that FY/F¥ < 1, but that this pattern reverses several
times for increasing B/Bg . Just as in the honeycomb
pinning array, in the kagomé pinning array the reversals
originate from the formation and alignment of intersti-
tial vortex n-mer states in the large interstitial sites. In
general, the anisotropy is smaller for the honeycomb and
kagomé pinning arrays than for the triangular or square
pinning arrays.

We illustrate the Fp = 0 state for B/Bg = 4/3 in
Fig. 25(a), where there is one vortex per large intersti-
tial site. In Fig. 25(b) we show the vortex trajectories
just above depinning for driving in the y-direction at
B/BX = 4/3. Each interstitial vortex diverts to the right
or left around a pinned vortex, forming large asymmetric
patterns of vortex flow around trios of occupied pins. The
flow is slightly disordered, since in some cases two mov-
ing interstitial vortices approach the same pinned vor-
tex simultaneously, causing one of the vortices to move
outside of the flow pattern temporarily. For z-direction
driving at B/Bg = 4/3, shown in Fig. 25(c), the intersti-

14

- = —
200000000000 ©0000000000OCO
-9 -0 -0 <00~ <

©00000000000
-9 -0-~0-~0=~0
20000000000
“0 +0 -0 -0 -0 ~
200000000000
-0 +0-0-0=-0
2000000600000
~9 -0 -0-90 -0«
o00000000000

000000000000
000000000000
;oooooooooo.
000000000000

000000000000

900000000 O0CO0CO
©) X

°
D e i
900000000000
<, X

FIG. 25: Vortex positions (black dots), pinning site locations
(open circles), and vortex trajectories (black lines) for the
kagomé pinning array. (a) The Fp = 0 state at B/BJ = 4/3,
where there is one vortex per large interstitial site. (b) The
vortex trajectories just above depinning for driving in the
y-direction at B/Bf = 4/3 shows the formation of an asym-
metric pattern that encircles groups of three pinning sites.
(c) The vortex trajectories just above depinning for driving
in the z-direction at B/BJ = 4/3 shows a winding chan-
nel of interstitial vortices between the pinning rows. (d) The
Fp = 0 state at B/Bf = 10/3. (f) The vortex trajecto-
ries just above depinning for driving in the z-direction at
B/Bf = 10/3 shows that a portion of the interstitial vor-
tices move continuously through the system. (e) The vortex
trajectories just above depinning for driving in the y-direction
at B/BJ = 10/3 shows a winding pattern of interstitial vor-
tices. Here the vortex motion occurs in intermittent pulses
rather than as a continuous flow.

tial vortices flow around individual pinning sites in the
sparse pinning rows, creating an asymmetric sinusoidal
channel pattern. Figure 24(c) indicates that at this field,
FY/F¥ < 1 and depinning is easiest along the y-direction.
A similar anisotropy occurs for B/B¥ = 10/3, as shown
in Fig. 24(d). In Fig. 25(d) we illustrate the Fp = 0 state
at B/BX = 10/3, where the large interstitial sites cap-
ture five vortices which form a pentagon structure. For
depinning in the z-direction at this field, only a portion
of the interstitial vortices move in winding channels be-
tween the pinning rows while the large interstitial sites all
capture three vortices, as seen in Fig. 25(e). The intersti-
tial vortices which are not part of the channeling flow still
undergo a small circular motion as the flowing interstitial
vortices move past. At higher drives, all of the intersti-
tial vortices depin and a step appears in the velocity-force
curve. For depinning in the y-direction at B/Bf =10/3,
shown in Fig. 25(f), the trajectories of the moving in-
terstitial vortices are much more tortuous. Although a
larger number of interstitial vortices spend at least part
of the time flowing for depinning in the y-direction than
for depinning in the z-direction, Fig. 24(d) shows that
dV,/dFp < dV,/dFp. This is because the vortex motion
in Fig. 25(f) is not continuous. Instead, the interstitial



vortices hop by one lattice constant and then repin so
that a pulse of motion passes though the system. For
depinning in the z-direction, shown in Fig. 25(e), the
vortices are continuously moving through the system.

VI. SUMMARY

We have shown that when interstitial vortices are
present for fields beyond the first matching field in reg-
ular artificial pinning arrays, the transport response is
anisotropic. For triangular pinning arrays, we find that
the depinning thresholds are always higher in the y-
direction, defined to be perpendicular to a symmetry axis
of the pinning lattice. This is in general agreement with
previous numerical and experimental studies up to the
third matching field for triangular pinning arrays. We
show that the anisotropy also occurs for higher matching
fields and that at certain matching fields the depinning
is isotropic. The degree of anisotropy can be controlled
by changing the strength of the pinning. For weak pin-
ning, when the depinning transition is elastic and all of
the vortices depin simultaneously, the anisotropy is re-
duced or destroyed. For strong pinning, the depinning is
isotropic for matching fields at which the vortex lattice
does not order. We find that the velocity-force curves
can have different slopes for driving in the different di-
rections depending on the number of interstitial vortices
that initially depin. In some cases, although the depin-
ning threshold is lower in one direction, the slope of the
velocity-force curve is also lower in that direction, pro-
ducing a crossing in the velocity-force curves for the two
directions of driving. For fields at or below the first
matching field, the anisotropy is strongly reduced, imply-
ing that the anisotropy should disappear if multiple vor-
tex pinning rather than interstitial vortex pinning occurs

above the first matching field. The vortex dynamics can
be distinctly different for the two driving directions, with
ordered flow states occurring for driving in one direction
and disordered flow states appearing for driving in the
other direction. The anisotropy is robust against tem-
perature fluctuations and can be enhanced near the vor-
tex lattice melting transition. For square pinning arrays,
the two perpendicular driving directions are symmetric;
nevertheless, at certain matching fields where triangu-
lar or smectic vortex structures form, a strong depinning
anisotropy can occur. The easy-flow direction for square
lattices is not fixed but depends on which of the two de-
generate ground states is formed by the initial vortex lat-
tice. A sufficiently large applied drive realigns the vortex
lattice and sets the easy-flow direction in the direction
of the drive. If the initial vortex lattice formed with do-
mains of the two degenerate ground states, the domains
can be eliminated and a pure ground state formed simply
by sweeping the driving force. The anisotropic depinning
behavior of this pure state can then be probed with small
drives. Honeycomb and kagomé pinning arrays have a
smaller anisotropy than that seen for the triangular and
square arrays. The anisotropy for the honeycomb and
kagomé arrays shows a series of reversals as a function of
field due to the formation of vortex molecular crystals,
which have orientational degrees of freedom that can lock
to different angles.

Acknowledgments

This work was carried out under the auspices of the
National Nuclear Security Administration of the U.S. De-
partment of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396.

(1] A.T. Fiory, A.F. Hebard, and S. Somekh, Appl. Phys.
Lett. 32, 73-(1978).

[2] V.V. Metlushko, M. Baert, R. Jonckheere, V.V.
Moshchalkov, and Y. Bruynseraede, Solid State Com-
mun. 91, 331 (1994).

[3] M. Baert, V.V. Metlushko, R. Jonckheere, V.V.

Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett. 74,

3269 (1995); M. Baert, V.V. Metlushko, R. Jonck-

heere, V.V. Moshchalkov, and Y. Bruynseraede, Euro-

phys. Lett. 29, 157 (1995).

A. Bezryadin and B. Pannetier, J. Low Temp. Phys. 102,

73 (1996).

[5] E. Rosseel, M. Van Bael, M. Baert, R. Jonckheere,
V.V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. B
53, R2983 (1996); L. Van Look, E. Rosseel, M.J. Van
Bael, K. Temst, V.V. Moshchalkov, and Y. Bruynser-
aede, Phys. Rev. B 60, R6998 (1999).

(6] K. Harada, O. Kamimura, H. Kasai, T. Matsuda,
A. Tonomura, and V.V. Moshchalkov, Science 274, 1167
(1996).

[4

[7] V. Metlushko, U. Welp, G.W. Crabtree, Z. Zhang,
S.R.J. Brueck, B. Watkins, L.E. DeLong, B. Ilic,
K. Chung, and P.J. Hesketh, Phys. Rev. B 59, 603 (1999).

[8] U. Welp, Z.L. Xiao, J.S. Jiang, V.K. Vlasko-Vlasov, S.D.
Bader, G.W. Crabtree, J. Liang, H. Chik, and J.M. Xu,
Phys. Rev. B 66, 212507 (2002).

[9] J.I. Martin, M. Vélez, J. Nogués, and LK. Schuller,
Phys. Rev. Lett. 79 , 1929 (1997); A.Hoffmann, L. Fu-
magalli, N. Jahedi, J.C. Sautner, J.E. Pearson, G. Mi-
hajlovic, and V. Metlushko, Phys. Rev. B 77, 060506(R)
(2008).

[10] D.J. Morgan and J.B. Ketterson, Phys. Rev. Lett. 80,
3614 (1998).

[11] A.A. Zhukov, P.A.J. de Groot, V.V. Metlushko, and
B.Ilic, Appl. Phys. Lett. 83, 4217 (2003).

[12] A.V. Silhanek, S. Raedts, M.J. Van Bael, and
V.V. Moshchalkov, Phys. Rev. B 70, 054515 (2004).

[13] G. Karapetrov, J. Fedor, M. Iavarone, D. Rosenmann,
and W.K. Kwok, Phys. Rev. Lett. 95, 167002 (2005).

[14] Y. Fasano and M. Menghini, Supercond. Sci. Technol.



31, 023001 (2008).

[15] S.B. Field, S.S. James, J. Barentine, V.V. Metlushko,
G. Crabtree, H. Shtrikman, B. Ilic, and S.R.J. Brueck,
Phys. Rev. Lett. 88, 067003 (2002).

[16] A.N. Grigorenko, G.D. Howells, S.J. Bending, J. Bekaert,
M.J. Van Bael, L. Van Look, V.V. Moshchalkov,
Y. Bruynseraede, G. Borghs, II. Kaya, and R.A.
Stradling, Phys. Rev. B 63, 052504 (2001); A.N. Grig-
orenko, S.J. Bending, M.J. Van Bael, M. Lange,
V.V. Moshchalkov, H. Fangohr, and P.A.J. de Groot,
Phys. Rev. Lett. 90, 237001 (2003).

(17] C. Reichhardt and N.
Phys. Rev. Lett. 85, 2372 (2000).

[18] C. Reichhardt, G.T. Zimanyi, R.T. Scalettar, A. Hoff-
mann, and [.LK. Schuller, Phys. Rev. B 64, 052503 (2001).

[19] G.R. Berdiyorov, M.V. Milosevic, and F.M. Peeters,
Phys. Rev. Lett. 96, 207001 (2006); Phys. Rev. B 74,
174512 (2006).

[20] C. Reichhardt, C.J. Olson, and F. Nori, Phys. Rev. B 57,
7937 (1998).

[21] Q.H. Chen, G. Teniers, B.B. Jin and V.V. Moshchalkov,
Phys. Rev. B 73, 014506 (2006).

[22] G.R. Berdiyorov, M.V. Milosevic, and F.M. Peeters, Eu-
rophys. Lett. 74, 493 (2006).

[23] C. Reichhardt, C.J. Olson, R.T. Scalettar, and
G.T. Zimanyi, Phys. Rev. B 64, 144509 (2001).

[24] C.J. Olson Reichhardt, A. Libal, and C. Reichhardt,
Phys. Rev. B 73, 184519 (2006).

[25] C. Reichhardt, G.T. Ziményi, and N. Grgnbech-Jensen,
Phys. Rev. B 64, 014501 (2001).

[26] C. Reichhardt and C.J. Olson Reichahrdt, Phys. Rev. B
76, 064523 (2007).

[27] MLF. Laguna, C.A. Balseiro, D. Dominguez, and F. Nori,
Phys. Rev. B 64, 104505 (2001).

Grgnbech-Jensen,

16

[28] G.R. Berdiyorov, V.R. Misko, M.V. Milosevic, W. Es-
coffier, I.V. Grigorieva, and F.M. Peeters, Phys. Rev. B
77, 024526 (2008).

[29] L. Van Look, E. Rosseel, M.J. Van Bael, K. Temst, V.V.
Moshchalkov, and Y. Bruynseraede, Phys. Rev. B 60,
R6698 (1999).

[30] T.C. Wu, P.C. Kang, L. Horng, J.C. Wu, and T.J. Yang,
J. Appl. Phys. 95, 6696 (2004).

[31] R. Cao, T.C. Wu, P.C. Kang, J.C. Wu, T.J. Yang, and
L. Horng, Sol. St. Commun. 143, 171 (2007).

[32] L. Van Look, B.Y. Zhu, R. Jonckheere, B.R. Zhao,
7.X. Zhao, and V.V. Moshchalkov, Phys. Rev. B 66,
214511 (2002).

[33] M. Velez, D. Jaque, J.I. Martin, M.Il.Montero,
[.LK. Schuller, and J.L. Vicent, Phys. Rev. B 65, 104511
(2002).

[34] J.E. Villegas, E.M. Gonzalez, M.1. Montero, I.LK. Schuller
and J.L. Vicent, Phys. Rev. B 72, 064507 (2005).

[35] K. Mangold, P. Leiderer, and C. Bechinger,
Phys. Rev. Lett. 90, 158302 (2003).

[36] P. Tierno, T.H. Johansen, and T.M. Fischer,
Phys. Rev. Lett. 99, 038303 (2007).

[37] G. Coupier, M. Saint Jean and C. Guthmann,
Phys. Rev. B 75, 224103 (2007).

[38] C. Reichhardt, K. Moon, R. Scalettar, and G. Ziményi,
Phys. Rev. Lett. 83, 2282 (1999).

[39] M.-C. Cha and H.A. Fertig, Phys. Rev. Lett. 80, 3851
(1998).

[40] C. Reichhardt and N. Grgnbech-Jensen, Phys. Rev. Lett.
85, 2372 (2000).

[41] C. Reichhardt and N. Grgnbech-Jensen, Phys. Rev. B
63, 054510 (2001).



