
Approved for public release; 
distribution is unlimited. 

Title: 

Author(s): 

Intended for: 

Suppressing Nonphysical Overheating with a Modified 
Implicit Monte Carlo Method for Time-Dependent Radiative 
Transfer (U) 

Ryan G. McClarren, CCS-2 
Todd J. Urbatsch, CCS-2 

Journal of Computational Physics 

QAlamos 
NATIONAL LABORATORY 

--- EST . 194 3 --­

Los Alamos National Laboratory, an aHirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-ACS2-06NA2S396. By acceptance 
of this article, the publ isher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution , or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher'S right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publ ication or guarantee its technical correctness. 

Form 836 (7/06) 



1 

To/MS: Distribution 
From/MS: Ryan G. McClarren/CCS-2 D413 

Todd J. Urbatsch/CCS-2 D409 
Phone/ FAX: (505)665-1397 

~Alamos 
NATIONAL LABORATORY 

Symbol : CCS-2:08-57 (U) 

research note Date: November 20, 2008 

Computer and Computational Sciences Division 


CCS-2:Computational Physics Group 


Subject: Suppressing Nonphysical Overheating with a Modified Implicit Monte 
Carlo Method for Time-Dependent Radiative Transfer 

Executive Summary 

In this note we develop a robust implicit Monte Carlo (IMC) algorithm based on more accurately 
updating the linearized equilibrium radiation energy density. The method does not introduce oscillations 
in the solution and has the same limit as 6t -+ 00 as the standard Fleck and Cummings IMC method. 
Moreover, the approach we introduce can be trivially added to current implementations of IMC by 
changing the definition of the Fleck factor. Using this new method we develop an adaptive scheme that 
uses either standard IMC or the modified method basing the adaptation on a zero-dimensional problem 
solved in each cell. Numerical results demonstrate that the new method alleviates both the nonphysical 
overheating that occurs in standard IMC when the time step is large and significantly diminishes the 
statistical noise in the solution. 

Introduction 

Originally introduced by Fleck and Cummings [1], the implicit Monte Carlo (IMC) method is a stochastic 
means of solving the thermal radiative transfer equations. It manipulates the nonlinear equations describing 
thermal radiative transfer to get a linearized transport equation that can be solved using the standard Monte 
Carlo techniques for linear transport. Whereas for linear transport the Monte Carlo solution is exact modulo 
the statistical noise, IMC has truncation error in the solution. These errors arise from the linearization of 
the material energy equation and from approximately time integrating the material energy equation. Also, 
spatial error is introduced by the necessity of having a spatial grid to describe the material temperature. 

A particularly vexing problem with IMC is the potential for the solution to nonphysically violate the 
maximum principle that solutions to time-dependent radiative transfer physically obey [2]. This maximum 
principle states that if the material and radiation temperatures have initial and boundary data that lie 
within a temperature bounds, then the solution forever will lie between these bounds [3,4]. Both Larsen 
and Mercier [2] and Mosher and Densmore [5] have attempted to develop time step controls. The time step 
limits derived were prohibitively small and are often more restrictive than necessary. 

The violation of the maximum principle by IMC has been shown in infinite medium problems by Dens­
more and Larsen [6] where the material temperature becomes hotter than the maximum initial radiation 
temperature in one time step. On Marshak wave problems with a large time step, the IMC solution can have 
the material temperature higher than the boundary temperature. A more subtle overheating phenomenon in 
IMC solutions occurs when given initial data with the radiation temperature above the material temperature, 
the IMC solution nonphysically "flips" these temperatures [7] . 

In a coupled radiation-hydrodynamics simulations such overheating can cause severe problems. In such 
a calculation if the material temperature non physically overheats, as in the Fleck and Cummings solutions, 
the hydrodynamic solution will incorrectly evolve because of the too large amount of energy deposited in the 
material by the radiation. For example, the incorrect evolution of the hydrodynamics can manifest itself as 
spurious ablation or shock formation. 
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Various methods have attempted to correct certain errors in the IMC method. The Carter-Forest method 
[8] exactly solves the linearized material energy equation through a Monte Carlo procedure, and the symbolic 
implicit Monte Carlo (8IMC) method [9, 10] does not have linearization error but does introduce a time 
discretization error. 

Despite the potential benefits of other methods, IMC is the stochastic method used most often for simu­
lating thermal radiative transfer. Below we derive a method that is similar to the Fleck and Cummings IMC 
method in that it represents the absorption/emission process through effective absorption and scattering, 
but more accurately integrates the linearized material energy equation. This higher order method can be 
easily implemented in current IMC simulations simply by changing the definition of the Fleck factor. With 
the modified IMC method we devise an adaptive scheme to determine how much effective absorption or 
scattering there will be in the problem. This adaptive method takes the beginning of time step radiation 
and material temperatures in each cell and solves a zero-dimensional transport problem via standard IMC. 
If the material temperature in this O-D solution is greater than the equilibrium temperature, the modified 
method is used to suppress this overheating. 

2 Derivation for the Grey Case 

It is useful to introduce the Fleck and Cummings [1] (IMC) method before we derive our modified method. 
After discussing this standard method, we will develop our new approach. 

2.1 Standard IMC Method 

We begin with the equations for grey thermal radiative transfer without scattering [1], 

~ al + n. \l1 + 171 = ~aacT4 (1a)
cat 471" 

a;; = a (1/ dn - aCT4) +S . (1b) 

In these equations the specific intensity of radiation is denoted by l(x, n, t), T is the material temperature, 
Urn is the material energy density, n is the direction of flight, a is the radiation constant, c is the speed of 
light, S is an arbitrary source function, and a(x, T) is the opacity of the material and has units of inverse 
length. Equation (1a) models the transport of the radiation through the material medium, and Eq. (lb) 
governs the change in material temperature as a result of radiation being absorbed and emitted by the 
material as well as the source S. 

To derive an implicit Monte Carlo method for these equations we will define the equilibrium energy 
density variable as 

(2) 

In words U r is the value of the radiation energy density when the material and radiation are in equilibrium. 
As is standard, we also write 

(3) 

In the simple case of constant heat capacity, the material energy density is given by Urn = pCvT and {3 = 4:~3 . 
Using our newly defined variables we can rewrite Eq. (1) as 

1 al . 1 - - + n . \l1 + 171 = -cau (4a)c at 47f r , 

aUr ( r . ) (4b)at = {3a J4/ dn - CUr + {3S . 
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The goal of an implicit Monte Carlo method is to get an implicit definition of U r from Eq. (4b) to linearize 
Eq. (4a) allowing a Monte Carlo solution of the radiation transport. 

The Fleck and Cummings procedure averages Eq. (4b) over a time step as 

n 1 1 

u + 1 ltn [(1 )]un + 
r 6.~ r = 6.t tn dt {3(J 471' I do' - CUr + {3S , (5) 

where the superscripts denote the time level. Then the average value of U r is written as an interpolation 
between the beginning and end of step values 

(6) 


Using the definition of the ur in Eq. (5) gives 

(7) 

where () denotes a properly time-averaged quantity, a E [0,1] is the implicitness factor, and the superscripts 
denote the time level. In practice a is almost always set to unity because smaller values of a can lead to 
oscillatory behavior in the solution although a = 1/2 gives a second-order update. Also,!J and (j are 
generally evaluated at the n time level. A consistent approximation to Eq. (7) is 

U~+l = u~ + 6.t!J(j 1I do' - c6.t!J(j(au~+! + (1 - a)u~) + !J6.tS , (8) 
471' 

where the error in this approximation is O(6.t). 
Equation (7) can be rewritten as 

un+! = fun + (1 - J) (1 I do' + ~S) , (9) 
r r C 471' (J 

with 
f - 1 (10)

- 1 + a {3(Jc6.t ' 

and for convenenience we have dropped the overbars from {3 , S, and (J. The expression for U~+l from Eq. (9) 
is then substituted into the transport equation, Eq. (4a), to get the linear transport equation to be solved 
by Monte Carlo: 

1 {)I ' 1 ~ 11
-j'l+O.V'I+(JI= -(1-J)(J IdO+-(c(Jfur +(l-J)S). (11) 
C ut 4n 471' 4n 

This tranport equation has some interesting properties. As a result of the procedure for updating U~+l, 
Eq. (11) has effective scattering and absorption coefficients given by 

(Js =(l-J)(J , (12) 

Equation (11) can be solved with a standard linear Monte Carlo solution technique. We also note that the 
factor f is bounded by 0 :::; f :::; 1 and that as 6.t --+ 00 the value of f goes to zero, such that there is no 
effective absorption and the material energy will not change over a time step. 
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2.1.1 Approximations in IMC 

We now briefly summarize the approximations in the Fleck and Cummings procedure. First, we note that 
the material energy equation was linearized by approximating the value of {3 and a with a single value; 
in reality these values change nonlinearly with the material energy. This approximation is hard to avoid 
because we generally desire a linear transport equation to solve via Monte Carlo. It would be possible to 
define an iterative procedure to remove the linearization error by linearizing Eq. (lb) and solving a linear 
transport equation and updating {3 and a each iteration. Such an iterative method, called a Picard iteration, 
is used in deterministic methods, might be prohibitively expensive because it would involve several Monte 
Carlo solutions per time step. The linearization error is also addressed by the symbolic implicit Monte Carlo 
method (SIMC) [9,10] where Eq. (lb) is not linearized but a . 

The other main approximation in the Fleck and Cummings IMC method is that the instantaneous 
intensity, J, is used in the definition of U~+l in going from Eq. (7) to Eq. (8), which is equivalent to assuming 
that the time dependence of J does not influence the emission process. Under this assumption the re­
emission process is instantaneous, which gives the effective scattering term, and the strength of the emission 
source does not change over the time step. The Carter-Forest method [8] addresses this issue by defining 
time dependent source and re-emission terms that are sampled in the Monte Carlo solution of the tranport 
equation. 

2.2 High-Order Update for U~+l 

Despite its shortcomings, the Fleck and Cummings IMC method is widely used to solve time-dependent 
radiative transfer problems. In this study we do not address the approximations in IMC discussed above 
(linearization and instantaneous absorption/emission). Rather, we will address the temporal truncation error 
in the IMC method. 

The value of U~+l given by Eq. (9) is a first-order in t1t approximation to the solution of Eq. (4b). The 
method we introduce in this study hinges on the fact that it is possible to exactly integrate Eq. (4b) under 
the assumptions of the IMC approach. 

To update U~+l we do not make an approximation to the average value of U r over a time step but instead 
write Eq. (7) as 

(13) 


The exact solution of Eq. (13) is given by 

(14) 

We note that Eq. (14) is equivalent to the time-dependent source and emission terms that the Carter-Forest 
method simulates via a Monte Carlo procedure. 

Rather than solve the Carter-Forest equations, we make a consistent approximation to Eq. (14) by writing 
JdtI(t) ~ J(t) and incurring an O(t1t) error: 

u~+l = e-.B<7C~tu~ + ~ (1 - e-.B<7C~t) (1 J dO + ~s) , (15) 
C 411' a 

or more compactly 

(16) 

with 
(17) 
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As in the Fleck and Cummings method we have introduced an O(L~t) J41J dn error in going from Eq. (14) 
to Eq. (15). 

Substituting the value of U~+l given by Eq. (16) into the the transport equation we get 

181 A Il A 1--8 + O· 'VI + aI = -(1- moo)a I dO + - (camoour + (1- moo)S) . (18) 
c t 4w 4w 4w 

Note the only difference in using the exact update for U~+l is changing f -> moo. We have the same 
definitions for the effective scattering and absorption, only evaluated with moo. The range and limits of moo 
are the same as f; moo is always in [0,1] and limits to zero as 6.t -> 00. 

Properties of moo 

As noted above, the Fleck and Cummings method gives a first-order in time update of U~+l when a = 1. 
This can be shown by a Taylor expansion of f about 6.t = 0 

(19) 

The same Taylor series for moo is 

(20) 

Comparing terms in these series we see that f approximates moo to O(6.t2 ). This indicates that the Fleck 
and Cummings update for u~+l is first-order in 6.t. The method is first order because the convergence rate 
for a time-integration method is one order less than the order of the error for one time step due to the fact 
that error accumulates over several time steps [11] . 

The total error in a Fleck and Cummings time step is (3acO(6.t2) + O(6.t) J4w I dn because of the ap­
proximation made in the time dependence of I. When f is replaced by moo the error in one step is "just" 
O(6.t) J4wI dn. 

As our numerical results will demonstrate, the factor moo may cause the material temperature to change 
negligibly when large time steps are used. At large values of {3ac6.t the linearization error in IMC is large. 
For large {3ac6.t the change in U r over a time step is negligibly small when moo is used. The errors introduced 
by fallow U r to change over a time step when {3ac6.t is large. Of course it is possible that too much heating 
is allowed, producing nonphysical material temperatures. Our numerical results will show that moo gives 
too little material heating and it is necessary to use a different factor than moo for large time steps. 

One way of constructing other orders of approximation to moo is 

ml == e-f3ac6.t + ~ ({3ac6.t)1 (21)
l (1 + {3ac6.t)l+l 

Each ml for l an integer, gives an lth order approximation to moo. We demonstrate this point by noting that 
the Taylor series about 6.t = 0 of the second term on the RHS of Eq. (21) gives 

1 ({3ac6.t)1 I 
(22)l (1 + (3ac6.t)/+1 = O(6.t ) , 

that is, the rational expression in the definition of ml adds an order l error. 
Notice that the only difference between our IMC method and the Fleck and Cummings IMC method is 

in the difference between f and mi. If these two factors were identical then our method would give the same 
result as standard IMC. The difference between f and m are presented in Figure 1. Also f ::; m/, indicating 
that our modified IMC method always has more effective scattering than standard IMC. The difference in 

http:3acO(6.t2
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Figure 1: A comparison of the Fleck factor, J, and the ml factors from the modified IMC method. 

the amount of effective scattering is more pronounced when the time step is large compared to the time scale 
of the absorption/emission process. 

Figure 1 also shows how the ml values differ from moo and f. The l value determines at which value 
of {3(Jc/:1t the ml approximation breaks away from moo. For higher values of l, ml matches moo to larger 
values of {3(Jc/:1t. After breaking away from the exponential curve of moo, ml goes as ({3(Jc/:1t)-l, the same 
behavior as f. 

As we shall see in our numerical results, in problems where the opacity is a function of the temperature, 
the smaller amount of heating in the ml solutions can affect the evolution of the system, even when standard 
IMC does not cause overheating. In these cases it would be possible to use the standard J factor when 
{3(Jc/:1t is small and overheating is not an issue, and use ml for an appropriate value of l when {3(Jc/:1t is 
large. On the other hand, using J or ml with a small value of l can lead to nonphysical overheating of the 
material. We shall use these ideas to develop an adaptive method where l is chosen dynamically. 

Equilibrium Diffusion Limit Analysis 

The equilibrium diffusion limit of the thermal radiative transfer system, Eqs. (4), occurs when the opacity, (J, 
is large compared to the length scale on which 1 and Urn vary and the time-dependence of 1 and Urn and the 
source S are small compared to that same length scale (this in turn makes (3 large) [6,12]. The equilibrium 
diffusion limit can be arrived at by defining a small , positive parameter £ and scaling Eqs. (4) as 

£ 81 , 1 1 
--8 + n· "VI + -(JI = -C(JUr , (23a) 
C t £ 411'£ 

(23b) 
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and taking the limit as co ---+ 0 away from boundary and initallayers. This limit [12] gives the leading order 
intensity is a Planckian at the local temperature, 

(24) 


where the superscript (0) denotes terms that are zeroth order in co. The leading order temperature satisfies 
the nonlinear diffusion equation, 

~U (T(O)) + a~(T(0))4 = \l . ac \l(T(0))4 (25)at rn at 3a ' 

and the first moment in 0 of the radiation intensity (generally called the radiation flux) is an order co quantity 
given by 

(26) 

To examine how our 1MC method behaves in this limit we first look at ml under the scaling a ---+ a/ f 

and /3 ---+ /3 ---+ /3/ co, 

(27) 

Thus, ml is an O(co2 ) quantity. This implies that the effective scattering will be a to leading order and 
that the effective absorption will be an order co 2 quantity. In their analysis of the Fleck and Cummings 
IMC method, Densmore and Larsen [6] found the same scaling for the effective scattering and absorption. 
Therefore, their results for the equilibrium diffusion limit of the Fleck and Cummings method applies to our 
method as well. 

Using the results of Densmore and Larsen, in the equilibrium diffusion limit our method solves the 
following diffusion equation 

t n +1T(O) ) (T(O)) ",(0) ",(0)(
Urn n+l - Urn n + ~ 'l'n+l - 'l'n = ~1 dt\l. ~\l¢(0), (28)

6.t c 6.t 6.t tn 3a 

where 

¢ = 1dOl, (29) 
4.". 

and we have used subscripts to indicate time level. This equation is similar to Eq. (25) except that it does 
not enforce the equilibrium between ¢ and acT4. This shortcoming of standard IMC in the equilibrium 
diffusion limit is not corrected by using a higher order approximation to U f • Nevertheless, we know that the 
two methods will behave similarly in this limit. 

Frequency Dependent Case 

The frequency dependent case poses no particular problems for developing a high order implicit Monte Carlo 
method. In this case the transport and material energy equations we wish to solve are 

(30a) 

(30b) 

where lv(x, 0, v, t) is the frequency-dependent specific intensity, and bv is the normalized Planck spectrum 
defined by 

_ Bv
bv- , (31)

Uf 
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where the frequency-dependent Planck function is 

E" = 2~~3 (eh"/ kT _ 1)-1 (32) 

with hand k the Planck and Boltzmann constant 's respectively. We have also defined the frequency­
dependent opacity 0'" and the Planck averaged absorption opacity as 

(33) 


We integrate Eq. (30b) as in the grey case to write 

(34) 

where 
(35) 

Upon substituting U~+l from Eq. (34) into Eq. (30a) we get the linear transport equation 

00 

~ all' A. 'MI I - ~ O'vb" (1- )1 d '1 dA, , I' cmO'"bv n ~ O'"b" (1- )8 (36)
V ,,+ 0'1' " - 4 moo v H 0'1' v + 4 u r + 4 moo .at + H 

c 7r 0'P 0 471' 7r 7r 0'P 

In this equation the effective differential scattering cross-section is 

d
2

0' (' ) 1, 0'vbI' ( )- , - v -+ v = -0'1'-- 1 - moo . (37)
dOdv 47r O'p 

The total effective scattering and absorption cross-sections are given by integrating Eq. (36) over nand v 
to get 

(38) 

(39) 

Similarly to Eq. (21) we can definite an approximation to moo 


- {3<7 
p 

cAt 1 ({JO'pct:.t)I

ml =e (40)+ l (1 + {JO'pct:.t)I+1 

Equation (36) compares with the Fleck and Cummings IMC method for multi frequency problems where 
the transport equation solved is 

where 
f = 1 (42)

1+ {JO'pct:.t 

As in the grey case, the only difference between Fleck and Cummings 1MC and our method is the factors f 
and mi. 
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Figure 2: Infinite medium material temperature with initial TR = 0.5 keY, 6.t = 0.01 ns for different factors, 
either f or mI. 
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Figure 3: Infinite medium material temperature with initial TR = 0.5 keY, 6.t = 0.001 ns. 
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6 Comparison on O-D Problems 

We now compare methods using an infinite medium problem first explored by Densmore and Larsen [6]. In 
this problem there is a temperature-independent opacity of a = 100 cm -1 and a temperature-independent 
heat capacity of pCy = 0.01 GJ/cm3-keV (1 GJ = 1 gigajoule = 109 J) and an initial material temperature 
of T = 0.4 keY. For units of time we use the nanosecond (10-9 s) and keY for temperature. Expressing 
physical constants in these units gives the speed of light, c, as 29.98 cm/ns, and the radiation constant, a 

as 0.01372GJ/cm3-keV4
• For this problem, the mean-free time of a photon, (ca)-1, is 3.34 x 10-4 ns. The 

Fleck and Cummings results we obtain for this problem mirror those obtained by Densmore and Larsen. 
In figures 2 and 3 the problem has the initial material temperature given by T = 0.4 keV and the initial 

radiation temperature as TR = 0.5 keY, where 

(43) 

Figure 2 gives results obtained with a time step of 6.t = 0.01 ns. In this figure, the time step size is much 
larger than the mean-free time, therefore we desire that the numerical results go to the equilibrium value 
of the material and radiation temperatures after one time step. At one extreme, the Fleck and Cummings 
solution, denoted in the figure by I, has the material temperature exceeding the equilibrium temperature 
after one time step. Successive time steps have the Fleck and Cummings solution non physically oscillating 
about the equilibrium value. These results for Fleck and Cummings indicate that it is allowing too much 
absorption in the first time step, causing the material to heat up too much. At the other extreme, the moo 
solution only slightly heats up over the entire simulation time. For moo there is too much effective scattering 
so there is no heating in the problem. The mlO solution is similar to the moo solution in that there is not 
enough heating and the solution does not reach the equilibrium solution in the simulated time. The m3 and 
m4 solutions do not overshoot the equilibrium value and approach the equilibrium solution monotonically 
from below. 

The consequences of decreasing the time step are shown in figure 3. Here the time step is 6.t = 0.001 ns 
and TR = 0.5 keY. This time step is still several mean-free times long. The Fleck and Cummings solution still 
overshoots the equilibrium temperature in the first time step and oscillates about the equilibrium thereafter. 
All of the ml solutions for l finite approach the equilibrium solution from below and reach the equilibrium 
solution monotonically from below. The moo solution remains near the initial material temperature. 

Figure 4 shows results where the initial values of TR and T are further out of equilibrium, TR = 0.7 keY. 
In this problem the Fleck and Cummings solution overshoots the equilibrium value by about 17% and then 
oscillates about the equilibrium solution. The m3 and m4 solutions give a solution below the equilibrium 
value and take several time steps to reach the equilibrium. The mlO and moo solutions never reach the 
equilibrium value in the length of time simulated. 

Results for a large disparity in the initial material and radiation temperature are shown in figure 5. 
Here TR = 1.0 keY. In this figure the Fleck and Cummings solution overshoots the equilibrium value by 
about 100% and does not get near the equilibrium value until the fourth time step. The m3 solution also 
overheats in the first time step and then cools to the equilibrium solution. However, compared to the Fleck 
and Cummings solution it takes longer for the m3 solution to reach the equilibrium temperature. The m4 
solution is within 1% of the equilibrium solution in the first time step. Finally, the mlO and moo solutions 
underpredict the material temperature. 

7 Adaptive Method for Choosing l 

The O-D results presented above show the benefits to the modified method, and the drawbacks to standard 
IMC. The question of how to pick l is still open; in the O-D cases, no single selection of l was ideal for every 
problem. However, we can a priori decide which l will work best for a given infinite medium problem. 

To choose the appropriate value of l we first determine if TR > T. If so, then the material temperature 
could overshoot the equilibrium temperature. If T > TR, then material overheating cannot occur and we 



To Distribution 
CCS-2:08-57 (U) -11- November 20, 2008 

o.7.----.----.----.----,----.----,----.----,----,,---, 

0.65 

0.6 

~ 
~E0.55 

& 
E 
v 

E- 0.5 

0.45 

0.4~0::.----!11-----*----.....--0~.0....4-.......--0-.1.0...6--1I---0-.1I=08==I11===:*0.1 


Time (ns) 

Figure 4: Infinite medium material temperature with initial TR = 0.7 keY, b..t = 0.01 ns. 

Time (ns) 

Figure 5: Infinite medium material temperature with initial TR = 1.0 keY, b..t = 0.01 ns. 

1.75,------,--,-----,,---,---,----,---,---.----,--, 

0.08 0.1 



8 

To Distribution 
CC8-2:08-57 (U) -12- November 20, 2008 

can use standard IMC. When TR > T, we then determine if this overshoot occurs by solving a O-D problem. 
For a O-D problem, IMC has the solution for the material energy given by [5] 

(44) 


We can determine Tn+! from Urn via the equation of state and compare it to the equilibrium temperature, 
T eq , which is found by solving 

(45) 

If Tn+l is greater than T eq , then we recompute Tn+! using m2 instead of f. If m2 overshoots the equilibrium 
temperature, then we increase l until Tn+! ::; Teq. 

We use a similar procedure for multidimensional problems. In this case we solve a O-D problem in each 
computational cell. The O-D problem we solve has the radiation temperature given as the maximum of 
the radiation temperature in the cell and the temperatures (both radiation and material) in its neighboring 
cells. This takes into account the fact that energy can move between cells. Using data from neighboring 
cells should be effective when the cells are optically thick. It is precisely in the case of optically thick cells 
that overheating can be a problem; thin cells will most likely not have too much absorption in a time step. 
Also, for multidimensional problems we set a user specified maximum value for l. We allow such a maximum 
because the O-D solution can be too restrictive in suppressing material heating and force l to be larger than 
needed for multidimensional problems. 

Multidimensional Results 

Our adaptive scheme for choosing the integration order was implemented in the Milagro implicit Monte 
Carlo code developed at Los Alamos National Laboratory [13]. To demonstrate the effectiveness of the 
adaptive scheme we solve a problem relevant to inertial confinement fusion using an indirect drive, hohlraum 
configuration. The layout of the problem is due to Brunner [14], though we have changed the problem from 
planar geometry to cylindrical r - z geometry. The layout of the problem is shown in Fig. 6. 

In Fig. 7 we compare the solutions from standard IMC with our adaptive scheme with a maximum 
integration order of 3 with fixed time step sizes. All problems used 5 x 105 particles per time step initially, 
ramping up to 106 particles per time step by the end of the simulation; the computational mesh has uniform 
spacing of 65 cells in the r direction and 260 cells in the z direction. In Fig. 7 there is noticeably less noise 
in the adaptive solution than in standard IMC. The reduced noise is a result of there being more effective 
scattering in those regions of the problem where the integration order is increased. Also, we notice that in 
the 6.t = 0.01 ns solution the temperature wave has propagated slightly farther into the central block in the 
standard IMC solution. 

The effect of the adaptive scheme on the maximum material temperature as a function of time is shown 
in Fig. 8. This figure demonstrates that standard IMC has the maximum temperature above the 1 keY drive 
temperature for most of the problem. The adaptive scheme does not completely eliminate this overheating, 
but the maximum nonphysical temperatures with the adaptive scheme are smaller than standard IMC. 

The differences in the initial heating transient are demonstrated by the plots of the temperature as a 
function of time at the fiducial points in Figs. 9 and 10. At (r, z) = (0.005,0.i05), a point that is directly 
irradiated by the boundary source, the standard IMC solution overshoots the drive temperature in its early 
transient. The adaptive scheme solution has a monotonic transient, with both sizes of time step. At the 
point (r, z) = (0.44,0.56) the transient from 0 to 1 ns has the same behavior for the different methods but 
different rise times. The adaptive scheme's results heat up more slowly than standard IMC for a given time 
step. We do note that in terms of the entire solution time, this slight change in transient behavior is a minor 
effect. Outside the transient region all methods converge to the same temperature. 

Turning to geometric comparisons of the solutions, Figs. 11 and 12 show the material and radiation 
temperatures at t = 10 ns and r = 0.005 cm. The material temperatures in Fig. 11 are in general agreement 
between the two methods. The largest discrepancy is near r = 0.6 cm where the standard IMC solution with 
6.t = 0.01 ns. This could be attributed to solution noise. The radiation temperature solutions are also mostly 
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Figure 6: Layout for the hohlraum problem: the shaded regions have a = 300T-3 cm-1 with T in keY, 
pCy = 0.3 GJ/cm3-keVj the white regions are vacuum. There is a 1 keY boundary source at z = 0, and the 
problem is initially cold. The lines at r = 0.05, 0.44 and the dots at (r, z) = (0.005, .105) and (0.44,0.56) 
indicate areas were we look at the solution in detail in later figures. 
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(c) Material Temperature, t:.t = 0.01 ns (d) Radiation Temperature, t:.t = 0.01 ns 

Figure 7: Results for the hohlraum problem at t = 10 ns. The top and bottom halves of each subfigure are, 
respectively, the standard IMC solution and the adaptive solution with the maximum l set to 3. 
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Figure 8: Comparison of the maximum material temperature for the adaptive scheme and standard IMC. 
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Figure 9: The material temperature as a function of time at (r, z) = (0.005,0.105). 
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Figure 10: The material temperature as a function of time at (r, z) = (0.44,0.56). 
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Figure 12: The radiation temperature at r = 0.05 cm, t = 10 ns. 

in agreement, though the small time step solution with standard IMC is plagued by noise. Finally, along 
the line at r = 0.44 cm the material temperatures are in general agreement across all solutions (c.f. Fig.13). 

Conclusions 

We have presented a new implicit Monte Carlo method, in both gray and multifrequency treatments, that 
provides a framework to suppress the nonphysical overheating that can occur in the standard Fleck and 
Cummings IMC method when large time steps are used. The method we have presented has the same 
properties in the diffusion limit as standard IMC. In its implementation this new method differs from Fleck 
and Cummings IMC method only in the changing of the f factor to an ml factor. 

Infinite medium numerical results demonstrated how the choice of the integration order, l, effects the 
amount of heating as a function of time. Where standard IMC nonphysically overheated the material and 
then had the material temperature oscillate around the equilibrium temperature, the modified IMC solutions 
with the Fleck factor replaced by ml approached the equilibrium temperature monotonically. For large 
initial differences in the radiation and material temperatures, the ml solution did overshoot the equilibrium 
temperature for l = 3. 

Inspired by the infinite medium results, we developed an adaptive scheme to suppress the overheating 
that can be present in standard IMC. The adaptivity is based on solving a O-D problem in each computational 
cell; where the solution to the O-D problem indicates that overheating could occur, we adjust the integration 
order to prevent the overheating. 

On a multidimensional problem, we showed that using the adaptive method suppressed most of the 
overheating that was found in the standard IMC solution. Moreover, the adaptive solutions had less noise 
than standard IMC for the same number of particles, an effect due to the added scattering in the problem. 
Though the behavior in transients was changed and the amount of noise differed, both the adaptive scheme 
and standard IMC gave solutions that were mostly in agreement at late times. 

In the future we will investigate combining our method with semi-implicit ideas of Gentile [7] that include 
the variation of the opacity with temperature in the linearization. Including the opacity in the linearization 
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is compatible with our method and should enhance the method's robustness. We also plan on exploring the 
idea of solving a O-D problem in each cell to prescribe a time step control rather than changing the integration 
order. Beyond these extensions we hope to apply our method to radiation-hydrodynamics simulations of 
astrophysical phenomena and interial confinement fusion. 
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