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Making Almost Commuting Matrices Commute 

M. B. Hastings 
Center for Nonlinear Studies and Theoretical Division, 


Los Alamos National Laboratory, Los Alamos, NAt, 87545 


Suppose two Hermitian matrices A,B almost commute CI[A,B]!I ~ 6). Are they close to a 
commuting pair of Hermitian matrices, A', B', with ilA - A'ii, dB B'll ~ E? A theorem of H. 
Lin[3] shows that this is uniformly true, in that for every E > 0 there exists a 6 > 0, independent 
of the size N of the matrices, for which almost commuting implies being close to a commuting 
pair. However, this theorem does not specify how 6 depends on E. \Ve uniform bounds relating 
8 and E. The proof is constructive, giving an explicit algorithm to construct A' and B'. We 
provide tighter bounds in the case of block tridiagonal and tridiagonal matrices. Within the context 
of quantum measurement, this implies an algorithm to construct a basis in which we can make 
a projective measurement that approximately measures two approximately commuting operators 
simultaneously. Finally, we comment briefly on the case of approximately measuring three or more 
approximately commuting operators using POVMs (positive operator-valued measures) instead of 
projective measurements. 

The problem of when two almost commuting matrices arc close to matrices which exactly commute, or, equivalently, 
when a matrix which is close to normal is close to a normal matrix, has a long history. See, for example [1, 2], and 
other references in [3J where it is mentioned that the problem dates back to the 1950s or earlier. Finally in 1995, 
Lin[3J proved that for any t > 0, there is a 15 > 0 such that for all N, for any pair of Hermitian N -by-N matrices, A, B, 
with IIAII, IIBII ~ 1, and II[A, BJ II ~ 6, there exists a pair A', B' with [A', B'J 0 and IIA Nil Stand liB B'II ~ L 

This proof was later shortened and generalized by Friis and Rordam[4J. Interestingly, the same is not true for almost 
commuting unitary matrices[5J or for almost commuting triplets[6, 7J. 

The importance of the above results is that the bound is uniform in N. That is, 15 depends only on L Unfortunately, 
the proofs do not give any bounds on how 15 depends on E. Further, the proofs of Lin and Friis and Rordam are 
nonconstructive, so there is no known way to find the matrices A' and B'. In this paper, we present a construction 
of matrices A' and B' which enables us to give lower bounds on how small 0 must be to obtain a given error E. 

Specifically, we prove that 

Theorem 1. Let A and B be Hermitian, N-by-N matrices, with IIAII, liB II ::::; L Suppose II[A,BJII ::::; 15. Then, theTe 
exist Herm.itian, N -by-N matrices A' and B' such that 

1: [A', B'J = o. 
2: IIA' All ~ E(t5) and liB' - BII ~ E(t5), with 

(1) 

where the f11nction E(x) g7'OWS slower than any power- of x. The function E(x) does not depend on N. 

The proof of theorem (1) involves first constructing a related problem involving a block tridiagonal matrix, H, 
and a block identity matrix X (we use the term "block identity matrix" to refer to a block diagonal matrix that is 
proportional to the identity matrix in each block). For such matrices we prove the theorem 

Theorem 2. Let X be a block identity Hermitian matrix and let H be a block tridiagonal matri:r., with the j-th block 
of X equal to c + .i.6. times the identity matrix, for some constants c and.6.. Let IIHII, IIXII ::::; L Then, there exist 
Herrnitian matrices A' and B' such that 

1: [A', B'] O. 

2: IIA' - HII ~ (1(.6.) and liB' - XII ~ 1"(.6.), with 

t' (.6.) = E' (1/ .6.).6.1/4, (2) 

where the function E' (x) grows slower- than any power of x. The function E' (x) does not depend on N. 

After proving these results, we prove a tighter bound in the case where H is a tridiagonal matrix, rather than a 
block tridiagonal matrix: 
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Theorem 3. Let X be a diagonal Hermitian matrix and let H be a tridiagonal matrix, with the j-th diagonal entry 
of X equal to c + j6., for some constants c and 6.. Let IIHII, IIX II :5 1. Then, there exist Hermitian mairice8 A' and 
B' 8uch that 

1: 	[A', B'J O. 

2: IIA' - HII :5 1"'(6.) and liB' XII:5 1"'(6.), with 

21"'(6.) E"(1/6.)6.1
/ , 	 (3) 

where the function E"(x) grows slower than any power of x. The function E" (x) does not depend on N. 

The proofs rely heavily on ideas relating to Lieb-Robinson bounds[8~l1J. These bounds, combined with appropri­
ately chosen filter functions, have been used in recent years in Hamiltonian complexity to study the dynamics and 
ground states of quantum systems, obtaining results such as a higher dimensional Lieb-Schultz-Mattis theorem[9J, 
a proof of exponential decay of correlations[12]' studies of dynamics out of equilibrium[13~15J, new algorithms for 
simulation of quantum systems[16-20]' an area law for entanglement entropy for general interacting systems[21J, study 
of harmonic lattice systems[22], a Goldstone theorem with fewer assumption[23J, and many others. The present paper 
represents a different application, to the study of almost commuting matrices. 

Before beginning the proof, we give some discussion of physics intuition behind the result. The next few paragraphs 
are purely to motivate the problems from a physics viewpoint. In the last section on quantum measurement and in the 
discussion at the end we give additional applications to quantum measurement and construction of \Vannier functions. 
As mentioned, we begin by relating this problem to the study of block tridiagonal matrices. We then interpret the 
matrix as H as a Hamiltonian for a single particle moving in one dimension, and apply the Lieb-Robinson bounds. 
The result (2) implies that we can construct a complete orthonormal basis of states which are simultaneously localized 
in both position (X) and energy (H). It is certainly easy to construct an overcomplete basis of states which is localized 
in both position and energy, by considering, for example, Gaussian wavepackets. The interesting result is the ability 
to construct an orthonormal basis which satisfies this. 

Additional physics intuition can be obtained by considering the case where H is a tridiagonal matrix with 0 on 
the diagonal and elements just above and below the diagonal equal to 1, and where X is a diagonal matrix with 
entries 1/N, 2/N, .... We refer to this as a uniform chain. In the uniform chain case, if we define a new matrix H' 
by randomly perturbing H, replacing each diagonal element of H with a small diagonal number chosen at random, 
the eigenvectors of H' are localized with high probability[24, 25J. Then, we can construct a matrix X' which exactly 
commutes with H' as follows: if v is an eigenvector of H', we choose it to have eigenvalue for X' equal to (v,Xv). 
Then, since the eigenvectors are localized, we find that IIX - X'II is small. The difference IIX X'II depends on the 
localization length which depends inversely on the amount of disorder, while the difference IIH Hili depends on the 
amount of disorder. Unfortunately, we do not have a good enough understanding of the effect of disorder for matrices 
H which are block tridiagonal, rather than just tridiagonal, to turn this approach into a proof for general H and X, 
and thus we rely on an alternative, constructive approach. 

1. PROOF OF MAIN THEOREM 

'rVe now outline the proof of theorem (1). The proof is constructive, and is described by the following algorithm: 

1: 	Construct H from A as described in section (II A) and lemma (1). H will be block diagonal in a ba.'3is of 
eigenvectors of A and IIH - All will be bounded. 

2: 	Construct X from B as described in section (II B). We will bound IIX - All. In a basis of eigenvalues of X, the 
matrix H will be block tridiagonal. 

3: 	Construct a new basis as described in section (Ill) such that in this basis II is close to a block diagonal matrix. 
That is, we will bound the operator norm of the block off-diagonal part of H. The blocks will be different from 
the blocks considered in step (2) above and will be larger. Further, we will show that X is close to a block 
identity matrix in this basis. 

4: Set 	A'to be the block diagonal part of H in the basis constructed in step (3) and set B' to the block identity 
matrix constructed in step (3), so that [A',B'] = O. 

This algorithm involves several choices of constants. In a final section, (V), we indicate how to pick the constants to 
obtain the error bound (1). The key step will be step 3. 



3 

II. REDUCTION TO BLOCK TRIDIAGONAL PROBLEM 

The first two steps of the proof above (1,2) reduce theorem (1) to theorem (2), while the last two steps (3,4) prove 
theorem (2). In t.his sect.ion we present the first two steps. 

A. Construction of Finite-Range H 

\Ve begin by constructing matrix H as given in the following lemma, where the constant ~ will be chosen later. 

Lemma L Given Hermitian matrices A and B, with II[A,B]II S 8, for any ~ there exists a matrix H with the 
following properties. 

1: II[H,B]II s 8. 

2: For any two vectors VI, V2 which are eigenvectors of B with corresponding eigenvalues Xl, X2, and with IXI -x21 2: 
~, we have (vJ' HV2) = o. 

3: IIA - HII So E) with El co8/~, where Co is a numeric constant given below. 

Proof. We define 

H ~Jdtexp(iBt)Aexp(-iBt)f(~t), (4) 

where the function f(t) is defined to have the Fourier transform 

j(w) (1- w2)3, Iwl S 1 (5) 

j(w) 0, Iwl 2: 1, 

and hence the Fourier transform of f(~t) is supported on the interval [-~) ~l. Properties (1) and (2) follow imme­
diately from Eq. (4). Property (3) follows from 

IIA - HII < Jdtll exp(iBt)Aexp( -iBt) AII~f(~t) (6) 

< Jdttll[A, B]II~f(~t) 
co8/~, 

where 

Co Jdt8I t lf(t). (7) 

Note that since the first and second derivatives of ](w) vanish at w = ±1, the function f(t) decays as 1/t3 for large 
t and hence Co is finite. Note also that the precise form of the function f(t) is unimportant: all we require is that 
](0) I, that] is supported on the interval 1], and that] is sufficiently smooth that f(t) decays fast enough 
for the integral over t (7) to converge. 0 

Remark: In a basis of eigenvectors of B, property (3) in the above lemma implies that H is "finite-range") in that 
the off-diagonal elements are vanishing for sufficiently large IXI - x21. The next theorem is a Lieb-Robinson bound 
for such finite range Hamiltonians, similar to those proven for many-body Hamiltonians[8-11] 

We now introduce some terminology. Given two sets of real numbers, Sl, S2, we define 

(8) 

Remark: The reason for introducing this "distance function" is t.hat. we think of H as defining the Hamiltonian 
for a one-dimensional, finite- range quantum system, with different "sites" of the system corresponding to different 
eigenvectors of B, and then the distance function is the distance between different sets of sites. 

Further', we say that a vector w is "supported on set S for position operator B" if w is a linear combination of 
eigenvectors of B whose corresponding eigenvalues are in set S. Finally: for any set S we define a projection operator 
P(S, B) to be the projector onto eigenvectors of B whose corresponding eigenvalues lie in set S. We now give the 
Lieb-Robinson theorem: 
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Theorem 4. Let H have the properties 

1: IIHII :::; 1. 

2: 	For any two vectors VI, V2 which are eigenvectors of B with corresponding eigenvalues x I, X2, and with Ix I - x21 2': 
fl, we have (VI,lIV2) o. 

Define 

VLR 	 (9) 

Then, for any vector V supported on a set S for position operator B, and for any projection operator P(T, B), we 
have 

(10) 

for any 

(11) 

Proof. Expand exp( -iHt)v in a power series as v - iHtv (H2/2)t v 2 + .... Then, by assumption, 
P(T, B)( -it)n(Hn /n!)v vanishes for n < dist(S, T)/ fl. However, 

I L (-itr'(Hn/n!)vl < L (tn /n!)lvl (12) 
n2::m n2::m 

< 	~ L (et/n)l1lvl 
e n;;'m 
1 1 

< (et/m)m 
e 1 

For the given VLR, the result follows. 	 o 
Remark: the proof of this Lieb-Robinson bound is significantly simpler than the proofs of the corresponding 

bounds for many-body systems considered elsewhere. The power series technique used here does not work for such 
systems. 

B. Construction of X 

In this subsection, we construct the operator X from B. We define a function Q(x) by 

Q(x) = fllx/fl + 1/2J. (13) 

Then, we set 

X Q(B). (14) 

Note that IQ(x) xl:::; fl/2 for all x, and Q(x)/fl is always an integer. Then, 

IIX - BII :::; 1:2, (15) 

with 

(16) 

By (2) in lemma (1), the matrix H is a block tridiagonal matrix when written in a basis of eigenstates of X, with 
eigenvalues of X ordered in increasing order. 
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III. CONSTRUCTION OF NEW BASIS 

In this section we construct the basis to make H close to a block diagonal matrix and X close to a block identity 
matrix. This completes step (3) of the construction of AI and BI. We refer to the basis constructed in this step as 
the "new basis" and we refer to the basis in which X is diagonal as the "old basis". 

There will be a total of nettt different blocks in the new basis, where nCttt is chosen later. Consider the interval h 
where Ii = 1 + 2(i - l)/nCtt h -1 + 2i/ncut) for i < ncut and Ii [-1 + 2(i l)/nw t, -1 + 2i/ncutl for i = ncut. 
Let Ji be the matrix given by projecting II onto the subspace of eigenvalues of X lying in this interval, and call this 
subspace B;. Then, in the old basis of eigenvalues of X, II is block tridiagonal with at least L different blocks, where 
L = L(2/ncl1t)/~) IJ blocks. 

We claim that: 

Lemma 2. Let J be a Hermitian block tridiagonal matrix) with IIJII .:::: 1 acting on a space B. Let there be L blocks. 
Let V] denote the subspace in the j-th block. Then, ther-e exists a space W which is a subspace of B with the following 
pmper-ties: 

1: 	The projection of any nor-malized vector v E VI onto the orthogonal complement of W has norm bounded by [:! 
where [3 is equal to 1/Ll/3 times a function gmwing slower- than any power of L. 

2: For any normalized vector w E ~V, the projection of Jw onto the orthogonal complement ofW has norm bounded 
by E4, wher-e E4 is equal to 1/L I /

3 times a function gmwing slower than any power of L. 

3: 	The pmjection of any normalized vector v E VL onto W has norm bounded by eo, where E5 is equal to a function 
decaying faster than any power of L. 

Proof. This lemma is the key step in the proof of the main theorem, and the proof of this lemma is given in the next 
section. 0 

For a given choice of i, we reference to the space W as constructed in lemma (2) as Wi. \iVe refer to the subspaces 
Vj defined in lemma (2) as Vj(i). Let Bi have dimension Dn(i) and let Wi as constructed dimension Dw(i). Let 
W/- denote the Dn(i) Dw(i)-dimensional space which is the orthogonal complement of Wi' By properties (1,2) in 
lemma (2), Dn(i):::: d1(i) and Dn(i) Dw(i) - ddi). 

The new basis has ncut blocks. For 1 < i .:::: ncuh we define the i-th block to be the space spanned by Wi and wLl' 

For i 1, the i-th block is the space spanned by Wi. 
Then, the matrix II is block tridiagonal in this new basis. The block-off-diagonal terms arise from three sources. 

First, the matrix Ji contains non-vanishing matrix elements between the spaces Wi and lrV/-, and those spaces arc now 
in different blocks. However, by property (2) in lemma (2), these matrix elements are bounded by E4. Second, there 
are non-vanishing matrix elements between the subspace WL I and V:, and V{ may not be completely contained in 
subspace Wi. However, by property (1) in lemma (2), these contribute only E3 to the norm of the block-off-diagonal 
terms of H in the new ba..'3is. of J in the old basis. Third, there are non-vanishing matrix elements between Wi 
and VL and vi may not be completely contained in subspace Wi-. However, by property (1) in lemma (2), these 
contribute only E5 to the norm of the block-ofl'-diagonal terms of H in the new basis. Therefore, the block-off-diagonal 
terms in H are bounded in operator norm by 

(17) 

Define B' to be the block identity matrix (in the new basis) which is equal to -1 +2i/ncut times the identity matrix 
in the i-th block. Since each block i in the new basis lies within the space spanned by Bi and Bi - 1 we have 

liB' - BII .:::: 2/ncut. 	 (18) 

IV. PROOF OF LEMMA 2 

Let the space VI be 1\1 dimensional, with orthonormal basis vectors VI, ... , tiM' Let S denote the matrix whose 
columns are these basis vectors, so that S is a similarity. 

Define a function O'(w) as follows. Let O'(w) 1 for W .:::: O. Let O'(w) 0 for W 1. Finally, for a .:::: W :::; 1, 
choose O"(w) to be infinitely differentiable so that the Fourier transform of O'(w), which we write &(t), is bounded by 
a function which decays fa..ster than any polynomial. We also impose O'(w) + 0'(1 - w) = 1. 
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a) b) 


FIG. 1: Sketch of (a) .:F(O,O,I,w) and (b) .:F(O,I,I,w). 

Define a function F(WO,T,W,W) by 

F(WO,T,W,W) a«lw wol- T)/W). (19) 

Then F(wo, T, w,w) 0 for Iw - wol ::::: T + w. and F(wo, T, W, = 1 for Iw wol S T, and for T ::::: 0 and W > 0, 
the function F(wo, T, W, w) is infinitely differentiable with respect to w everywhere. The functions F(O, 0,1, w) and 
F(O, 1, l,w) are sketched in Fig. 1a,b; the variable T denotes the width of the flat part at the centor of the function, 
while w denotes the width of the changing part of the function. Since F(w) is infinitely dift"erentiable, there is a 
function T(x) which decays faster than any polynomial such that: 

1 dtF(wo, w, w, t) S T(wt), (20) 
Itl ::0: to 

1 dtF(wo,O,w,t) S T(wt). 
It!::O:to 

The operator norm of J is bounded by 1. The idea of the proof is to divide the interval of eigenvalues of J, which is 
[-1, 1J, into various small overlapping windows. Then, for each interval centered on a frequency w, we will construct 
vectors given by approximately projecting vectors in VI onto the space spanned by eigonvectors of J with eigenvalucs 
lying in that interval; we call the spaces of these vectors Xi, where i labels the particular window. Then, each of these 
projected vectors x will have the property that J x is close to wx. This will be the key step in ensuring property (2) 
in the claims of the lemma. The idea of approximate projection is important here. In fact, we will use the smooth 
filter functions F(wo,r,w,w) above. The smoothness will be essential to ensure that the vectors x have most of 
their amplitude in the first blocks rather than the last blocks. Because the windows overlap, the vectors may not be 
orthogonal to each other; the overlap between vectors is something we will need to bound (see Eq. (27) below). To 
control the overlap, we choose W to be a subpace of the space spanned by the Xi as explained below. 

Let nwin be some even integer chosen later. \Ve will choose 

nwin L/F(L), (21) 

where the function F(L) is a function that grows slower than any power of L and is defined further below. The choice 
of function F(L) will depend only on the function T(x) defined above. 

For each i 0, ... , nwin 1, define 

w(i) -1 + 2i/(nw in 1). (22) 

A. Construction of Spaces X, 

To construct Xi, we define the matrix T; by 

T; F(w(i), 0, 2/nw in, J)S. (23) 

Define 

(24) 
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a) 


b) 

/X~ 
FIG. 2: a) Sketch of overlapping windows. b) Re-arrangement of windows as discussed in section on tridiagonal matrices. 

Compute the eigenvectors of the matrix For each eigenvector Xa with eigenvalue greater than or equal to .Amin 

compute Yo. TiXa' Let Xi be the space spanned by all such vectors Yo.' Let Zi project onto the eigenvectors Xa with 
eigenvalue less than .Amin; the projector Zj will be used later in computing the error estimates. 

Remark: To understand this construction, in Fig. 2a we sketch the functions F(w(i - I),0,2/nwin,w), 
F(w(i),0,2/nwin,W), and F(w(i + I),0,2/nw in,w), which form partially overlapping windows. Note that the vec­
tors F(w(i), 0, 2/nwin) J)S and F(w(i ± 1), 0, 2/nw in, J)S need not be orthogonal. 

B. Construction of W 

We now construct the space W. Let each space Xi have dimension Di. In each space Xi we can find an orthonormal 
basis of vectors, Vi,b, for b = 1, ... , Di . Kote that for even Ii jl > 1, the spaces Xi and Xj are orthogonal. We define 
a block tridiagonal matrix p of inner products of vectors Vi,b as follows: the i-th block has dimension D i , and on the 
diagonal the matrix is equal to the identity matrix. Above the diagonal, the block in the i-th row and i + 1-st column 
is equal to the matrix of inner products (Vi,b) for b = 1, ... , Di and c = 1, ... , D H1 . vVe define a new vector space 
n to be a space of dimension L~,:~n-l Di , and A is a linear operator from n to B. 

This matrix p is Hermitian and positive semidefinite. It is equal to pAtA, for some matrix A which has entries 
only on the block diagonal and on the diagonal above the block diagonal. We define spaces :ti, for i = 0, ... , nblk> as 
follows, where nblk is equal to Inwin/ lb1with the "block length" h being an integer equal to 

(25) 


\Ve pick :ti to be the subspace of n containing the blocks from the i * lb-th block to the (i + 2) * h - I-th block. We 
claim that 

Lemma 3. There exist spaces N i ) for i 0, ... , nblk with the properties that: 

1: N; is a subspace of Yi. 

2: For any vector v E N i , the quantity (v, pv) is bounded by 1/it times a function growing slower than any power 
of lb. 

3: 	For any vector v which is an eigenvector of p with eigenvalue less than l/i~) the projection of v onto the space 
orthogonal to the space spanned by Ni is bo'unded by a function decaying faster than any negative power of to. 

Proof· 	 o 
For each even i, consider the projector Pi which projects onto the subspace of n containing the blocks from the 

i *h-th block to the (i +1) *h -l-th block. By Jordan's lemma for pairs of projectors[26], we can find an orthonormal 
basis for Ni , with basis vector ni,b such that Pini,b is orthogonal to ni,e for b =f c. Let Np be the space spanned by 
vectors ni,b such that IP(ni,b i ~ 1/2, and let Nl be the space spanned by vectors ni,b such that Ign"bl < 1/2. 
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For each odd i, define Nf to be the subspace of Ni which is orthogonal to the space spanned by N[!_l and N!+l' 
Consider the projector Pi which projects onto the subspace of 1? containing the blocks from the i * lb-th block to the 
(i + 1) * lb -1-th block. By Jordan's lemma for pairs of projectors[26], we can find an orthonormal basis for Nf, with 
basis vector ni,b such that PiTli,b is orthogonal to ni,c for b # c. Let Nl be the space spanned by vectors ni.b such 
that IPini,bl ~ 1/2, and let Ni 

R be the space spanned by vectors ni,b such that IPini,bl < 1/2. 
We now define Wi) for i = 0, ... , T1blk as follows. Take the space projected onto by Pi. Consider the subspace of that 

space which is orthogonal to the space spanned by NF and N{!-!. Act on this space with A. The result is the space 
Wi. The space W is the space spanned by the Wi. Let P be the projector onto W. 

Note that for any i, for any v E Wi, we have 

(26) 

Further, by construction, for any vectors v E W, with V I:i Vi with Vi E W) ,we have we have 

(27) 

where E(h) is a function decaying faster than any negative power of h. 
We also claim that for any vector v in the space spanned by Xi, that 

IPv vi::; (2/h))lvl· 	 (28) 

C. Verification of Claims 

We now verify the claims regarding the subspace W. 
Proof of First Clairn~- To prove (1), note that for any vector v E B we have 

n'wtn- 1 

v 	 I:: F(w(i), 0, 2nw in, J)v. (29) 
i=O 

For any v E VI, with Ivl = 1, we can write v = Sx with Ixl = 1, and then 

Iv - I:: 7i(1 - Zi)xl 2 	 (30) 
i=O 

< nWinAmin 

< 1/£2. 

Since 17;(1_ Z;)x is in the space spanned by the Xi, by Eq. (28), this verifies the first claim, given that F(£) 
is chosen to grow slower than any power of £. 

Proof of Second Cla'irn- To prove the second claim (2), consider any vector v E W, with v = I:i Vi with Vi E Wi' 
By Eqs. (26,27), and by the fact that Wi is orthogonal to Wj for Ii - jl > 1, we have 

1(1 - p)v.;j2 	 (31) 

< 2I:: (lb(2/nw i n )) 2 I:: IVil2 

< -:-:--~-;--;-::-:-:: (lb(2jnw in )) 21vl2 

verifying the second claim. 
Proof of Thir'd Clairn- To verify the last claim, we use the Lieb-Robinson bounds. Let :F(wo, r, w, t) dcnote the 

Fourier transform of F(wo, r, w, w) with respect to the last variable w. Then, for any x with (1 Zi)X = x, we find 
that y = 7iX = F(w(i),O, 2nw in, J)Sx is equal to 

y = JdtF(w(i), 2/3nw ir" 2j3nw inl t) exp(iJt)Sx. 	 (32) 
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We use the Lieb-Robinson bounds for matrix J, by defining a position matrix which is equal to i in the i-th block. Using 
the Lieb-Robinson bounds, for time t ::; L/2vLRl with VLR = , we find that the norm of the projection of exp(iJt)8x 
onto the space VL is bounded by exp( -L/2). At the same time, the integral ~tl~L/2vLll dtF(w{i), 2/3nw inl 2/3nw in, t) 
is bounded by T{L/6vLRnw in) T(F{L)/6e 2

). Since T{x) decays faster than any negative power of x, we can choose 
an F(x) which grows slower than any power of x such that T(F(L)/6e2) still decays faster than any negative power 
of L. Thus, since Iyl 2:': Aminlxl by construction, for this choice of F(x) the projection of any vector y E Wi onto VL 
is bounded by Iyl times a function decaying faster than any negative power of L. Using Eq. (27), we find that the 
projection of any vector v E W onto VL is bounded by Ivi times a function decaying faster than any negative power 
of L, verifying the third claim. 

This completes the proof of Lemma (2). After giving the error bounds in the next section, we explain some of the 
motivation behind the above construction, and comment on the easier case in which J is a tridiagonal matrix, rather 
than a block tridiagonal matrix. 

V. ERROR BOUNDS 

We finally give the error bounds to obtains theorems (1,2). To obtain (2), we pick 

6. -1/", (33) 

so that L = l(2/ncut)/6.) -lJ is of order 2/6.3
/ 

4
• Then, from lemma (2) and Eq. (17), in the new basis the block-off­

diagonal terms in H are bounded in operator norm by a constant times 6. 1/ 4 times a function growing slower than 
any power of 1/6.. By Eq. (18), the difference between Band B' is bounded in operator norm by a constant times 
6.1/ 4 . Therefore, theorem (2) follows. To obtain theorem (I), we pick 

(34) 

in lemma (I). 
We omit the detailed analysis, but it is possible to choose E(x) to be a polylog as follows. We can pick T(x) 

to decay like exp(-x1)), for any T/ < 1[27, 28]. Then we can pick F(L) to equallog(L)I1, for e > 1/T/, so that 
T(F(L)) '" exp( -(log(L))I1/1)) decays faster than any power. 

VI. TRIDIAGONAL MATRICES 

In this section, we present tighter bounds for the case in which H is a tridiagonal matrix, rather than a block 
tridiagonal matrix. 

Remark: The difficulty we face is that the even and odd space are not orthogonal to each other. If they were 
orthogonal, then many of the estimates would be easier. Consider the case in which J is a block diagonal matrix, so 
that VI is one dimensional. Let p{E) be a smoothed density of states at energy E: p{ E) = tr{8t:F(E, 1/L, 1/L, J)8). 
Suppose p(E) is such that it has a peak in the crossing points of Fig. 2a (the points where one function :F is decreasing 
and the other is increasing and they cross). Then, with the overlapping windows as shown, we find that most of the 
smoothed density of states lies in the overlap between the windows, rather than in the windows themselves. The 
overlap between the vectors in different windows becomes much larger now. In the case of a tridiagonal matrix, we 
can rearrange the windows as shown in 2b to reduce the overlap; this general idea will motivate the construction 
in this section. 

We prove that 

Lemma 4. Let J be an L-by-L Hermitian tridiagonal matrix, with IIJII ::::: 1 acting on a space B. Let Vj denote the 
vector- with a 1 in the j-th entry and zeroes elsewher-e. Then, there exists a space W which is a subspace of B with the 
following properties: 

(1): 	The projection of VI onto the oTthogonal complement of W has norm bounded by (3 where E3 is equal to a 
constant times 1/L. 

(2): 	For any nor-malized vector w E W, the projection of Jw onto the oTthogonal complement of W has norm boundcd 
by (4, where E4 is equal to 1/L times a function growing slower than any power of L. 

(3): 	The projection of VL onto W has norm bounded by E51 where "5 is a function decaying faster than any power of 
L. 
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This lemma implies theorem (3): we construct AI, B' as before, following steps (3) to construct the new basis, but 
because of the tighter bounds in lemma (4) we can choose ncut = when constructing the new basis. Now, in 
step (4), we find that AI, B' are diagonal matrices, rather than just block diagonal matrices. 

For each i 0,1, "', nwia - 1, define 

w(i) = -1 + 2i/(nw ia - 1), 	 (35) 

as before. Define 

Pi = st:F(w( i), 0, 2/nw in, J)S. 	 (36) 

Set 

(37) 

as before with 

nwin LIF(L) 	 (38) 

as before. To prove Lemma we use the following algorithm. There are nwin + 1 windows, labelled 0, ... , nwin. \Ve 
label various windows as "marked" or "unmarked" as follows. 

1: 	Set i O. Initialize a real variable x to O. Initialize all windows to unmarked. 

2: If Pi < Amia, increment i by one and go to step 6. 

3: 	Mark window 'i. 

4: Set 	x to x + Pi. If x 2:: 9Pi+1 and Pi+2 2:: Amin , seti to i + 2, set x to 0, and go to step 6. If x 2:: 2Pi+l and 
Pi+2 < Amin, mark window i + 1, set i to i + 3, set x to 0, and go to step 6. 

5: 	Increment i by one. 

6: If i > nwin, terminate. Otherwise go to step 2. 

After running this algorithm, the there will be a sequences of marked windows, separated by sequences of unmarked 
windows. Note that the length of a marked of windows is at most loglOj9(11 Amin), since at the start of such a sequence 
:r is at least Amin, x grows exponentially along the sequence (otherwise in step 4 the state will eventually change 
unless {Ji+l > 2x) and x can be at most 1. 

Let the total number of sequences be n ..e'l' Note that nseq nw;n. 

For each sequence of marked windows, from window i to j, construct the vector y = :F((w('i) + w(j))/2, (w(j) 
w(i))/2, 2/nwin, J)Sx. \Ve define Ya, for a = 1, ... , nseq , to be the vector y constructed from the a-th sequence. By 
construction, the norm square of Ya. when projected onto eigenvectors of J with eigenvalues greater than w(j) is 
bounded by 1/9 of the norm square of Ya' The vector Ya+l has vanishing projection onto eigenvectors of J with 
eigenvalues less than or equal to w(j). Therefore, 

(39) 

We define W to be the space spanned by all such vectors Ya, and we define P to project onto W. Consider any vector 
v E W, with 

(40)V= Lv(J.' 
a=1 

with Va parallel to y". By Eq. (39) 

(41) 


Remark: The function F«w(i) + w(j))/2, (w(j) w(i))/2, 2/nw in, w) is equal to unity for w(i) :; w :; w(j). 
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We now prove the Lemma (4) as follows: to prove the first claim, note that by construction, 

(42) 

To prove the second claim, consider the a-th sequence of marked windows, from window i to window j. Let 
w(i) (i) +w+(j))/2. Then, 

2+ l/Amin)
I(J w(i))Yal ~ ---'-----IVal (43) 

nwin 

which is bounded by IlL times a function growing slower than any power of L. Therefore, 

(44) 

the bound Eq. (41), for any vector v E W, 

1(1 - P)Jvl ( 45) 

which is bounded by IlL times a function growing slower than any power of L, verifying the second claim. 
The proof of the third claim is identical to the previous case. 

VII. QUANTUM MEASUREMENT 

The constructions above can be applied to operators which arise in various physical quantum systems. For example, 
consider a quantum spin for a large spin S. Then, the operators Sx ISand Sy I S have operator norm 1 and have a 
commutator that is of order 11S. Thus, we can find a basis in which both operators are almost diagonal. \Vhile it 
is well known that one can use a POVM (positive operator-valued measure) to approximately measure and Sy at 
the same time, the existence of the given basis implies that one can approximately measure Sx and Sy simultaneously 
with a single pm.iective measurement. Interestingly, while the operator is also almost diagonal in this basis (since 
it equals S(S + 1) S; - S;), it is not possible to find a basis in which , Sy, and Sz are all almost diagonal (this 
obstruction is similar to that in [6]). Therefore, to approximately measure Sx, Sy, and Sz simultaneously will require 
a POVM, rather than a projective measurement. 

For completeness, we now briefly show how to construct a POVM to approximately measure several almost commut­
ing operators simultaneously. Consider any number N of Hermitian matrices, labelled AI, "'j AN, with II [Ail Ajlll ~ J 
for all i, j and with IIAi II ~ 1 for alIi. We now construct a POVM to approximately measure all N operators 
simul taneously. 

For i = 1, ... , Nand n = 0, ... , nmax , define 

A1(i, n) (46) 

Define 

(M (1, nl)M(2, n2) ... l'v1 (N, nN)) (M(N, nN ) ... M (2, n2)lvl( 1, n l ))' ( 47) 

Then, 

n max

L O(nl, n2, ... ,nN) n, (48) 
nl,n2l.,.=1 

and all of the operators 0 are positive semidefinite by construction. Therefore, the operators 0(711,712, ... , nN) form 
a POVM. 

\Ve now show that this approximately measures all operators simultaneously. That is, we show that for any density 
matrix p, if the outcome of the measurement is nl, nz, ... , nN, then if we perform a subsequent measurement of any 
operator Ai, the outcome will be close to -1 + 2n;jnmax with high probability. \Ve show this by computing the 
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expectation value (Ai - (-1 + 2ni/nmnx))2 averaged over all measurement outcomes. For any density matrix p, for 
any i, the average over all outcomes of (A.i - ( -1 + 2n;jnTn(Lx? is equal to 

tv

I: tr«A i - (-1 + 2ndnmax))2]\;J(l, ndA1(2, n2) ... p ... M(2, n2)M(1, nd) (49) 
nl l n2, ..=1 

Note that for i > j 

lv 
2 -2 2I: IIM(j,nj)(Ai (-1 + 2n;jnmax )2M(j,nj) - (Ai 1 + 2n;jnma2:) II :::; const. x 0 nmax ' (50) 

7l J =1 

To show Eq. (50), write 

(51) 

where J:F(., .,., t) denotes the Fourier transform of the square-root of :F. Then, since :F(., ., ., w) is infinitely differen­
tiable, the Fourier transform decays faster than any power of t. Then since II exp(iAjt)Ai - Ai exp(iAj )t-it[Aj , Adll :::; 
const. x (t2 82 ), we find that 

Ili"I(j,nj)Ai AiM(j,nj)11 < II Jdtit[Aj,Ai]exp(iAjt) 

+const. x 

< const. x n~!in82
, 

where the last line follows from the symmetry of J:F(.,.,., t) in t. Also, 

N 

n;=l 

Therefore, 

N

I: tr( (Ai - (-1 + 2n;jnrna.,.,))21\1(1, ndM(2, n2) ... p ... A1(2, n2)}\;J(1, nt)) :::; const. x (N82n;nax + l/n;,wx)' 
nj,n2, ...=1 

Choosing 

(55) 

we find that we measure all operators to within a mean-square error of order 8VN. 

VIII. DISCUSSION 

The main result is an explicit construction of a pair of exactly commuting matrices which are close to a pair of 
almost commuting matrices. The construction of the matrix is explicit and can be handled easily on a computer for 
modest N. We have in fact implemented the construction in Lemma (2) for the uniform chain. 

\Ve gave above applications to quantum mea.'3urement. Another application of this result is to construct V/annier 
functions for any two dimensional quantum system for a spectral gap. In [29], it was pointed out that given a two 
dimensional quantum system with a gap between bands, one could define an operator G which projected onto the 
bands below the gap. Then, define the operator X and Y to measure X and Y position of particles, and define 
GXG and GYG as projections of X and Y into the lowest band. Let IIXII,IIVII L, where L is the linear size of 
the system. Since the operator G was constructed in [29] as a short-range operator, the commutator II[GXG,GYGlll 
is small compared to L2, and thus we can use the results here to construct a basis of Wannier functions which is 
localized in both the x- and y-directions. 

(52) 

I: IIA1(i, ni)(Ai (53) 



13 

Acknowledgments- I thank D. Poulin for suggesting Jordan's lemma. This work was supported by U. S. DOE 
Contract No. DE-AC52-06NA25:396. 

)j 	P. R. Rosenthal: Are almost commuting matrices near commuting pairs? AMS Monthly 76, 925 (1969). 
[2] 	 P. R. Halmos: Some unsolved problems of unknown depth about operators on Hilbert space. Proc. Roy. Soc. Edinburgh 

A 76, 67 (1976). 
[3] 	 H. Lin: Almost commuting self-adjoint matrices and applications. Fields. Inst. Commun. 13, 193 (1995). 
[4] 	 P. Friis and M. Rordam: Almost commuting self-adjoint matrices-a short proof of Huaxin Lin's theorem. J. Reine Angew. 

Math. 479, 121 (1996). 
[5] 	 D. Voiculescu: Asymptotically commuting finite rank unitaries without commuting approximants. Acta Sci. Math. 451, 

429 (1983). 
[6] 	 D. Voiculescu: Remarks on the singular extension in the C* -algebra of the Heisenberg group. J. Op. Thy. 5, 147 (1981). 
[7] 	 K. R. Davidson: Almost commuting Hermitian matrices. Math. Scand. 56, 222 (1985). 
[8] 	 E. H. Lieb and D. W. Robinson: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972). 
[9] 	 M. B. Hastings: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69 104431 (2004). 

[10] 	 M. B. Hastings and T. Koma: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006). 
[11] 	 B. Nachtergaele and R. Sims: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 

119 (2006). 
[12] 	 YI. B. Hastings: Locality in Quantum and Markov Dynamics on Lattices and Networks. Phys. Rev. Lett. 93, 140402 

(2004). 
[13] 	 M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne: Exact relaxation in a class of nonequilibrium lattice systems. 

Phys. Rev. Lett. 100, 030602 (2008). 
[14] 	 J. Eisert and T. J. Osborne: General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006). 
[15] 	 S. M. B. Hastings, and F. Verstraete: Lieb-Robinson Bounds and the Generation of Correlations and Topological 

Quantum Order. Phys. Rev. Lett. 97, 050401 (2006). 
[16J T. J. Osborne: A Renormialization-Group Algorithm for Eigenvalue Density Functions of Interacting Quantum Systems. 

arXiv:cond-mat/06051 94. 
[17J T. J. Osborne: Efficient Approximation of the Dynamics of One-Dimensional Quantum Spin Systems. Phys. Rev. Lett. 

97, 157202 (2006). 
[18] 	 M. B. Hastings: Quantum Belief Propagation. Phys. Rev. B Rapids 76, 201102 (2007). 
[19] 	 T. J. Osborne: Efficient approximation of the dynamics of one-dimensional quantum spin systems. Phys. Rev. A 75, 042306 

(2007). 
[20J M. B. Hastings: Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States. Phys. Rev. 

B 77, 144302 (2008). 
[21J M. B. Hastings: An Area Law for One Dimensional Quantum Systems. J. Stat. Mech., P08024 (2007). 
[22] 	 B. Nachtergaele, H. Raz, B. Schlein, and R. Sims: Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems. 

arXiv:0712.3820. 
[23] 	 M. B. Hastings: Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux 

Periodicity. J. Stat. Mech., P05010 (2007). 
[24] 	 R. Carmona, A. Klein, and F. Martinelli: Anderson localization for Bernoulli and other singular potentials. Commun. 

Math. Phys. 108, 41 (1987). 
H. von Dreifus and A. Klein: A new proof of localization in the Anderson tight binding model. Commlln. Math. Phys. 
124,28.') (1989). C. Shubin, R. Vakilian, and T. Wolff, Some harmonic analysis questions suggested by Anderson-Bernoulli 
models. Geom. Funct. Anal. 8, 932 (1998). 

[26] 	 C. Jordan: Essai sur la a n dimensions. Bulletin de la S. M. F. 3, 103 (1875). 
[27] 	 R. Gervais, Q. I. Rahman, and G. Schmeisser: A bandlimited function simulating a duration-limited one, Anniversary 

volume on approximation the.ory and functional analysis, Schiftenreihe Numer. Math., 355 (1984). 
T. Strohmer and J. Tanner: Implementations of Shannon's sampling theorem, a time-frequency approach. Sampling Thy. 
in Signal and Processing, 4, 1 (2005); Fritz John, Partial Differential Equations, Springer-Verlag, New York, 1991. 

[29] 	 M. B. Hastings: Topology and Phases in fermionic Systems. J. Stat. Mech., 1,01001 (2008). 


