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Making Almost Commuting Matrices Commute

M. B. Hastings
Center for Nonlinear Studies and Theoretical Division,
Los Alamos National Laboratory, Los Alamos, NM, 87545

Suppose two Hermitian matrices 4, B almost commute (J|[4, B]l] < 8). Are they close to a
commuting pair of Hermitian matrices, 4, B, with ||A — A'l|,||B — B’|| < €7 A theorem of H.
Lin[3] shows that this is uniformly true, in that for every e > 0 there exists a § > 0, independent
of the size N of the matrices, for which almost commuting implies being close to a commuting
pair. However, this theorem does not specify how ¢ depends on e. We give uniform bounds relating
& and e. The proof is constructive, giving an explicit algorithm to construct A’ and B'. We
provide tighter bounds in the case of block tridiagonal and tridiagonal matrices. Within the context
of quantum measurement, this implies an algorithm to construct a basis in which we can make
a projective measurement that approximately measures two approximately commuting operators
simultaneously. Finally, we comment briefly on the case of approximately measuring three or more
approximately commuting operators using POVMs (positive operator-valued measures) instead of
projective measurements.

The problem of when two almost commuting matrices are close to matrices which exactly commute, or, equivalently,
when a matrix which is close to normal is close to a normal matrix, has a long history. See, for example {1, 2], and
other references in [3] where it is mentioned that the problem dates back to the 1950s or earlier. Finally in 1995,
Lin[3] proved that for any ¢ > 0, there is a § > 0 such that for all N, for any pair of Hermitian N-by-N matrices, A, B,
with [|A]l, | B]| €1, and ||[4, B]|| < 4, there exists a pair A’, B’ with [A", Bl =0 and |A— A'|| <eand ||B- B'|| <e.
This proof was later shortened and generalized by Friis and Rordam[4]. Interestingly, the same is not true for almost
commuting unitary matrices[5] or for almost commuting triplets[6, 7.

The importance of the above results is that the bound is uniform in N. That is, § depends only on €. Unfortunately,
the proofs do not give any bounds on how & depends on e. Further, the proofs of Lin and Friis and Rordam are
nonconstructive, so there is no known way to find the matrices A” and B’. In this paper, we present a construction
of matrices A’ and B’ which enables us to give lower bounds on how small § must be to obtain a given crror e.

Specifically, we prove that

Theorem 1. Let A and B be Hermitian, N-by-N matrices, with |Al}, |B|| < 1. Suppose
exist Hermitian, N-by-N matrices A" and B’ such that

1: |4, B =0.
2: | A = A|| < €(6) and || B’ — B| < €(6), with

[A, Bl <&. Then, there

(8) = B(1/6)5"/%, 1)
where the function E(x) grows slower than any power of z. The function E(z) does not depend on N.

The proof of theorem (1) involves first constructing a related problem involving a block tridiagonal matrix, H,
and a block identity matrix X (we use the term “block identity matrix” to refer to a block diagonal matrix that is
proportional to the identity matrix in each block). For such matrices we prove the theorem

Theorem 2. Let X be a block identity Hermitian matriz and let H be a block tridiagonal matriz, with the j-th block
of X equal to ¢+ jA times the identity matriz, for some constants ¢ and A, Let |H||, | X|| < 1. Then, there exist
Hermitien matrices A’ and B’ such that

1. [A,B']=0.
2: JA'— Hi < {A) and | B — X|| < (A), with
d(A) = E'(1/A)AYV4, (2)
where the function E'{x) grows slower than any power of z. The function F'(z) does not depend on N.

After proving these results, we prove a tighter bound in the case where H is a tridiagonal matrix, rather than a
block tridiagonal matrix:



Theorem 3. Let X be a diagonal Hermitian matriz and let H be a tridiagonal matriz, with the j-th diagonal eniry
of X equal to ¢+ jA, for some constants ¢ and A. Let [|H||,||X|| £ 1. Then, there exist Hermitian matrices A’ and
B’ such that

1: [4, B'] = 0.
2: |4 — H|| < €(A) and |B' - X|| < €(A), with
€(A) = E"(1/A)AV2, ()
where the function E"{x) grows slower than any power of z. The function E”(z) does not depend on N.

The proofs rely heavily on ideas relating to Lieb-Robinson bounds[8-11]. These bounds, combined with appropri-
ately chosen filter functions, have been used in recent years in Hamiltonian complexity to study the dynamics and
ground states of quantum systems, obtaining results such as a higher dimensional Lieb-Schultz-Mattis theorem([9],
a proof of exponential decay of correlations[12], studies of dynamics out of equilibrium[13-15], new algorithms for
simulation of quantum systems|{16-20], an area law for entanglement entropy for general interacting systems[21], study
of harmonic lattice systems[22], a Goldstone theorem with fewer assumption|23], and many others. The present paper
represents a different application, to the study of almost commuting matrices.

Before beginning the proof, we give some discussion of physics intuition behind the result. The next few paragraphs
are purcly to motivate the problems from a physics viewpoint. In the last section on quantum measurement and in the
discussion at the end we give additional applications to quantum measurement and construction of Wannier functions.
As mentioned, we begin by relating this problem to the study of block tridiagonal matrices. We then interpret the
matrix as / as a Hamiltonian for a single particle moving in one dimension, and apply the Lieb-Robinson bounds.
The result (2) implies that we can construct a complete orthonormal basis of states which are simultancously localized
in both position { X} and energy (H). 1t is certainly easy to construct an overcomplete basis of states which is localized
in both position and energy, by considering, for example, Gaussian wavepackets. The interesting result is the ability
to construct an orthonormal basis which satisfies this.

Additional physics intuition can be obtained by considering the case where H is a tridiagonal matrix with 0 on
the diagonal and clements just above and below the diagonal equal to 1, and where X is a diagonal matrix with
entries 1/N,2/N, ... We refer to this as a uniform chain. In the uniform chain case, if we define a new matrix H'
by randomly perturbing H, replacing each diagonal element of H with a small diagonal number chosen at random,
the cigenvectors of H’ are localized with high probability[24, 25]. Then, we can construct a matrix X’ which exactly
commutes with H’ as follows: if v is an eigenvector of H', we choose it to have cigenvalue for X’ equal to (v, Xv).
Then, since the eigenvectors are localized, we find that || X — X’|| is small. The difference | X — X'l depends on the
localization length which depends inversely on the amount of disorder, while the difference ||H — H’|| depends on the
amount of disorder. Unfortunately, we do not have a good enough understanding of the effect of disorder for matrices
H which are block tridiagonal, rather than just tridiagonal, to turn this approach into a proof for general i and X,
and thus we rely on an alternative, constructive approach,

I. PROOF OF MAIN THEOREM

We now outline the proof of theorem (1). The proof is constructive, and is described by the following algorithm:

1: Construct H from A as described in section (ITA) and lemma (1). H will be block diagonal in a basis of
cigenvectors of A and ||H — Al will be bounded.

2: Construct X from B as described in section (11 B). We will bound | X — 4]. In a basis of eigenvalues of X, the
matrix H will be block tridiagonal.

3: Construct a new basis as described in section (1II) such that in this basis H is close to a block diagonal matrix.
That is, we will bound the operator norm of the block off-diagonal part of H. The blocks will be different from
the blocks considered in step (2) above and will be larger. Further, we will show that X is close to a block
identity matrix in this basis.

4: Set A’ to be the block diagonal part of H in the basis constructed in step (3) and set B’ to the block identity
matrix constructed in step (3), so that [4’, B'] = 0.

This algorithm involves several choices of constants. In a final section, (V}, we indicate how to pick the constants to
obtain the error bound (1). The key step will be step 3.



II. REDUCTION TO BLOCK TRIDIAGONAL PROBLEM

The first two steps of the proof above (1,2) reduce theorem (1) to theorem (2), while the last two steps (3,4) prove
theorem (2). In this section we present the first two steps.

A. Construction of Finite-Range H

We begin by constructing matrix H as given in the following lemma, where the constant A will be chosen later.

Lemma 1. Given Hermitian matrices A and B, with ||[A, Blll < 8, for any A there erists a matric H with the
Jollowing properties.

1: |[H.B]l| <.

2: For any two vectors vy, ve which are eigenvectors of B with corresponding eigenvalues zy, x4, and with |z, —xs] >
A, we have (v, Hug) = 0.

3 A = Hf| <eyp, with €; = ¢cgb/A, where ¢y is o numeric constant given below.

Proof. We define
H= A/dtexp(iBt)AeXp(—iBt)f(&t} {4)

where the function f(#} is defined to have the Fourier transform

flwy=(1-u?? |l<1 (5)
f@)=0, Jol21,
and hence the Fourier transform of f(At) is supported on the interval [-A, A]. Properties (1) and (2) follow imme-
diately from Eq. (4). Property (3) follows from

lA—H| < /dt” oxp(iBt)Aexp(—iBt) — A||Af(At) (6)
< [aiaBliasan
= Cgé/ﬂ,
where
o = [ aealls o). ()

Note that since the first and second derivatives of f(w) vanish at w = 41, the function f(t) decays as 1/t3 for large
t and hence ¢ is finite. Note also that the precise form of the function f(t) is unimportant: all we requirc is that
f(0) = 1, that f is supported on the interval [~1,1], and that f is sufficiently smooth that f(¢) decays fast enough
for the integral over ¢ (7} to converge. I

Remark: In a basis of eigenvectors of B, property (3) in the above lemma implies that H is “finite-range”, in that
the off-diagonal elements are vanishing for sufficiently large |z; — z2]. The next theorem is a Lieb-Robinson bound
for such finite range Hamiltonians, similar to those proven for many-body Hamiltonians{8-11]

We now introduce some terminology. Given two sets of real numbers, Sy, Sa, we define

dl&t(sl’s‘ﬁ = xleé?,lfzéx% '3‘}1 Q?g]. (8}

Remark: The reason for introducing this “distance function” is that we think of H as defining the Hamiltonian
for a one-dimensional, finite- range quantum system, with different “sites” of the system corresponding to different
cigenvectors of B, and then the distance function is the distance between different sets of sites.

Further, we say that a vector w is “supported on set S for position operator B” if w is a linear combination of
eigenvectors of B whose corresponding eigenvalues are in sct S. Finally, for any set S we define a projection operator
P(S5,B) to be the projector onto eigenvectors of B whose corresponding cigenvalues lie in set .S. We now give the
Licb-Robinson theorem:



Theorem 4. Let H have the properties
1 |H| <1

2: For any two vectors vy, ve which are eigenvectors of B with corresponding eigenvalues x1, zo, and with |z, —xa| >
A, we hove (v, Hug) = 0.

Define
VLR = €2A. (9)

Then, for any vector v supported on o set 8 for position operator B, and for any projection operator P(T, B), we
have

|P(T, B) exp(—iHt)v| < e~ dist51.52/4 (10)
for any
t ﬁdiSt(Sl,Sz)/vLR (11)
Proof. Expand exp(—iHt)v in a power series as v — iHtv — (H?/2)t%v + ... Then, by assumption,
P(T, B){—it)*(H" /n!)v vanishes for n < dist{S,T)/A. However,
| > (=) (H nlyo] < (¢ /nh)o] (12)
nrm nrm
1 ,
< _ n
< =D (et/n)" ]
1 1
< - N
- e(et/m) 1 —et/m
For the given vy p, the result follows. O

Remark: the proof of this Lieb-Robinson bound is significantly simpler than the proofs of the corresponding
bounds for many-body systems considered elsewhere. The power serics technique used here does not work for such
systems.

B. Construction of X

In this subsection, we construct the operator X from B. We define a function Q{z) by
Qz) = Alz/A +1/2]. (13)
Then, we set
X = Q(B). (14)
Note that [Q{z) ~ x| < A/2 for all z, and Q{z)/A is always an integer. Then,
| X - B[ < e (15)
with
2 =A/2. (16)

By (2} in lemma (1}, the matrix H is a block tridiagonal matrix when written in a basis of eigenstates of X, with
cigenvalues of X ordered in increasing order.



III. CONSTRUCTION OF NEW BASIS

In this section we construct the basis to make H close to a block diagonal matrix and X close to a block identity
matrix. This completes step (3) of the construction of A’ and B’. We refer to the basis constructed in this step as
the “new basis” and we refer to the basis in which X is diagonal as the “old basis”.

There will be a total of n.,; different blocks in the new basis, where n¢,; is chosen later. Consider the interval 7,
where I; = |14 2(¢ — 1)/neut, =1 4 2i/meuz) for @ < ngye and Iy = [=1 + 2(i — 1}/ncur, =1 + 2i/ncy] for @ = ngy.
Let J; be the matrix given by projecting H onto the subspace of eigenvalues of X lying in this interval, and call this
subspace B;. Then, in the old basis of eigenvalues of X, H is block tridiagonal with at least L different blocks, where
L = {{2/neu)/A) — 1] blocks.

We claim that:

Lemma 2. Let J be a Hermitian block tridiagonal matriz, with ||J|| < 1 acting on a space B. Let there be L blocks.
Let V, denote the subspace in the j-th block. Then, there exists a space W which is a subspace of B with the following
properties:

1: The projection of any normalized vector v € Vy onto the orthogonal complement of W has norm bounded by €3
where €3 is equal to 1/L'/3 times a function growing slower than any power of L.

2: For any normalized vector w € W, the projection of Jw onto the orthogonal complement of W has norm bounded
by ey, where €, is equal to 1/LY3 times a function growing slower than any power of L.

3: The projection of any normalized vector v € Vi onto W has norm bounded by €3, where €5 is equal to a function
decaying faster than any power of L.

Proof. This lemma is the key step in the proof of the main theorem, and the proof of this lemma is given in the next
section. 0

For a given choice of ¢, we reference to the space W as constructed in lemma (2) as W;. We refer to the subspaces
V; defined in lemma (2) as V;(i). Let B; have dimension Dpg(i) and let W; as constructed dimension Dy (7). Let
Wi denote the Dg(i) — Dw (i)-dimensional space which is the orthogonal complement of W;. By propertics (1,2) in
lemma (2), Dp(i) > d;(4) and Dp{i) < Dw (i) — dp{7).

The new basis has ne,s blocks. For 1 < i < ngy,, we define the i-th block to be the space spanned by W; and Wit |.
For ¢ = 1, the i-th block is the space spanned by W;.

Then, the matrix H is block tridiagonal in this new basis. The block-off-diagonal terms arise from three sources.
First, the matrix J; contains non-vanishing matrix elements between the spaces W; and Wi, and those spaces arc now
in different blocks. However, by property (2) in lemma (2), these matrix elements are bounded by €. Second, there
are non-vanishing matrix clements between the subspace Wit and Vi, and Vi may not be completely contained in
subspace W;. However, by property (1) in lemma (2), these contribute only €3 to the norm of the block-off-diagonal
terms of H in the new basis. of J in the old basis. Third, there are non-vanishing matrix elements between W,
and Vi, and Vi may not be completely contained in subspace Wi+. However, by property (1) in lemma (2), these
contribute only ¢ to the norm of the block-off-diagonal terms of H in the new basis. Therefore, the block-off-diagonal
terms in H are bounded in operator norm by

2(e3 + €4 + €5). (17)

Define B’ to be the block identity matrix (in the new basis) which is equal to —1 + 27 /n,, times the identity matrix
in the i-th block. Since each block 7 in the new basis les within the space spanned by B; and B;_; we have

IB' - BJ| < 2/neu. (18)

IV. PROOF OF LEMMA 2

Let the space V; be M dimensional, with orthonormal basis vectors vy, ...,vp. Let S denote the matrix whose
columns are these basis vectors, so that S is a similarity.

Define a function o(w) as follows. Let o{w) = 1 for w < 0. Let o(w) = 0 for w > 1. Finally, for 0 < w < 1,
choose o{w) to be infinitely differentiable so that the Fourier transform of o(w), which we write &(#), is bounded by
a function which decays faster than any polynomial. We also impose o(w) + o(1 —w) = L.



a) b)
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FIG. 1: Sketch of {a) F(0,0,1,w) and (b} F(0,1,1,w).

Define a function F{wg, r, w,w) by
Flwg,r,w,w) = o{{jw — wo| — r)/w). (19)

Then Fwg,rw,w) = 0 for |w —wg] = 7+ w. and Flwg,r,w,w) = 1 for |w — wp] < 1, and for r > 0 and w > 0,
the function F{wg,r,w,w) is infinitely differentiable with respect to w everywhere. The functions F(0,0,1,w) and
F(0,1,1,w) are sketched in Fig. la,b; the variable » denotes the width of the flat part at the center of the function,
while w denotes the width of the changing part of the function. Since F(w) is infinitely differentiable, there is a
function T(z) which decays faster than any polynomial such that:

/ dtF (wo, w, w, £) < T(wt), (20)
[tz to
/ dtF(wp,0,w,t) < T(wt).

[ti>te

The operator norm of J is bounded by 1. The idea of the proof is to divide the interval of cigenvalues of J, which is
[—1,1], into various small overlapping windows. Then, for each interval centered on a frequency w, we will construct
vectors given by approximately projecting vectors in Vy onto the space spanned by eigenvectors of J with eigenvalues
lying in that interval; we call the spaces of these vectors A&;, where ¢ labels the particular window. Then, each of these
projected vectors @ will have the property that Jz is close to wa. This will be the key step in ensuring property {2)
in the claims of the lemma. The idea of approzimate projection is important here. In fact, we will use the smooth
filter functions F(wg,r,w,w) above. The smoothness will be essential to ensure that the vectors z have most of
their amplitude in the first blocks rather than the last blocks. Because the windows overlap, the vectors may not be
orthogonal to cach other; the overlap between vectors is something we will need to bound (see Eq. (27) below}. To
control the overlap, we choose W to be a subpace of the space spannced by the X as explained below.

Let n,;, be some even integer chosen later. We will choose

Tlpin = L/F(}—;) (21)
where the function F'(L} is a function that grows slower than any power of . and is defined further below. The choice
of function F(L) will depend only on the function T'{z} defined above.

For each 7 = 0, ..., nwin — 1, define

w(i) = =1+ 2i/ (Ruin — 1). (22)

A. Construction of Spaces A,

To construct X;, we define the matrix 7; by
7 o= Flw(i),0,2/n4uin, J)S. (23)
Define

Armin = 1/(nwinL2)- (24)



-1
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FIG. 2: a) Sketch of overlapping windows. b) Re-arrangement of windows as discussed in section on tridiagonal matrices.

Compute the eigenvectors of the matrix TJTL'. For each eigenvector z, with eigenvalue greater than or equal to A,
compute Y, = T;Z4. Let &; be the space spanned by all such vectors y,. Let Z; project onto the eigenvectors z, with
cigenvalue less than A,.;,; the projector Z; will be used later in computing the error estimates.

Remark: To understand this construction, in Fig. 2a we sketch the functions Flw{i — 1),0,2/nyuin,w),
F(w(i},0,2/nyin,w), and Flw(i + 1),0,2/n4m,w), which form partially overlapping windows. Note that the vee-
tors Flw(i},0,2/nyn, JIS and F(w(i £ 1},0,2/nyin. J)S need not be orthogonal.

B. Construction of W

We now construct the space W. Let each space X have dimension D;. In each space X; we can find an orthonormal
basis of vectors, v, 4, for b= 1,...,D;. Note that for even |i — j| > 1, the spaces A; and X; are orthogonal. We define
a block tridiagonal matrix p of inner products of vectors v; , as follows: the i-th block has dimension D;, and on the
diagonal the matrix is equal to the identity matrix. Above the diagonal, the block in the i-th row and 7 + 1-st column
is equal to the matrix of inner products (vip, vip1 o for b=1,...,D; and c =1, ..., Diy;. We define a new vector space
R to be a space of dimension $"/¢"~" D;, and then A is a linear operator from R to B.

This matrix p is Hermitian and positive semidefinite. It is equal to p = AT A, for some matrix A which has entries
only on the block diagonal and on the diagonal above the block diagonal. We define spaces Y, for i = 0, ..., nyx, as
follows, where nyy is equal to [nyin/l;] with the “block length” [, being an integer equal to

b= [y (25)
We pick Y; to be the subspace of R containing the blocks from the 7 = [,-th block to the (i + 2) =, — 1-th block. We
claim that

Lemma 3. There exist spaces N;, for 1 = 0, ..., nyy with the properties that:
1: N; is a subspace of Y.

2: For any vector v € Ny, the quantity (v, pv) is bounded by 1/1? times a function growing slower than any power

of ly.

3: For any vector v which is an eigenvector of p with eigenvalue less than 1/1}, the projection of v onto the space
orthogonal to the space spanned by N; is bounded by a function decaying faster than any negative power of ly.

Proof. ]

For each even i, consider the projector P; which projects onto the subspace of R containing the blocks from the
i#l,-th block to the (¢4 1) *{, —1-th block. By Jordan’s lemma for pairs of projectors|26], we can find an orthonormal
basis for N;, with basis vector n;; such that Pn,; is orthogonal to n,; o for b # ¢. Let Nil‘ be the space spanned by
vectors n; 5 such that [Pin; pl > 1/2, and let N be the space spanned by vectors n, , such that |Pin, ] < 1/2.
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For each odd i, define N/ to be the subspace of N; which is orthogonal to the space spanned by N/, and NX .
Consider the projector P; which projects onto the subspace of R containing the blocks from the 7 * [-th block to the
(24 1) %l — 1-th block. By Jordan’s lemma for pairs of projectors[26], we can find an orthonormal basis for N/, with
basis vector ny, such that Fyn, is orthogonal to n; . for b # ¢. Let N} be the space spanned by vectors n; ; such
that |Pn; 5] > 1/2, and let N2 be the space spanned by vectors n; such that [Pn, ,| < 1/2.

We now define W, for ¢ = 0, ..., npx as follows, Take the space projected onto by P;. Consider the subspace of that
space which is orthogonal to the space spanned by N% and Nﬁl. Act on this space with A. The result is the space
W;. The space W is the space spanned by the W,;. Let P be the projector onto W.

Note that for any i, for any v € W;, we have

I(l - P@)J?}i S lb(g/nwin) (26)

Further, by construction, for any vectors v € W, with v = . v; with v; € W) ,we have we have
o 2 (1 — e (/B2 ) fuil?, (27)

where €(l,} is a function decaying faster than any negative power of [,.
We also claim that for any vector v in the space spanned by Aj, that

[Pv—v] < (2/b))v]. (28)

C. Verification of Claims

We now verify the claims regarding the subspace W,
Proof of First Claim— To prove {1), note that for any vector v € B we have

Toin—1

v= Y Fw(i),0, 20, J)v. o0

i=0

For any v € V), with |v| = 1, we can write v = Sz with |z| = 1, and then

Nagin—1 Tapin—1
|’U - Z ’Fi(l - Zi)rclz = ¥ Z 7'12@33;2 (30)
=0 1=0
S nwin/\-min
< 1/L2

Since 31! 7,(1 — Z;)z is in the space spanned by the X;, by Eq. (28), this verifies the first claim, given that FI(L)
is chosen to grow slower than any power of L.
Proof of Second Claim— To prove the second claim (2), consider any vector v € W, with v = 3. v; with v; € W,.

By Eqs. {26,27), and by the fact that W; is orthogonal to W; for |i — j| > 1, we have

(1~ Ppf < 222(1 — Py, [? (31)
QZ (lb(z/nwin))z Dbl

2———1 i
S - 7L
1

Q(I—.Im (lg(Q/nwén))gw[Q,

IA

(lb(Q/nmn})?Mz

verifying the second claim.

Proof of Third Claim— To verify the last claim, we use the Lieb-Robinson bounds. Let F {wo, 7, w,t) denote the
Fourier transform of F{wg,r, w,w) with respect to the last variable w. Then, for any & with (1 —~ Z;)z = z, we find
that y = njz = Flw(i), 0, 2nyin, J)S2 is cqual to

b= / dt?(w(i), 2/371'1111‘7” 2/37%03'?3, t) CXp(th)Sx. (32)



We use the Lieb-Robinson bounds for matrix J, by defining a position matrix which is equal to 7 in the ¢-th block. Using
the Licb-Robinson bounds, for time ¢ < L/2vy R, with vp g = €2, we find that the norm of the projection of exp(iJt)Sx
onto the space Vi, is bounded by exp(—L/2). At the same time, the integral fltlzL/‘van AtF (w(1),2/3Mwins 2/3Mwin, t)
is bounded by T(L/6vy pnwin) = T(F(L)/6€?). Since T(x) decays faster than any negative power of z, we can choose
an F(z) which grows slower than any power of z such that T{F(L)/6¢?) still decays faster than any negative power
of L. Thus, since |y] > Aminlz] by construction, for this choice of F(z) the projection of any vector y € W; onto Vy
is bounded by |y times a function decaying faster than any negative power of L. Using Eq. {27), we find that the
projection of any vector v € W onto Vp is bounded by |v] times a function decaying faster than any negative power
of L, verifying the third claim.

This completes the proof of Lemma {2). After giving the crror bounds in the next section, we explain some of the
motivation behind the above construction, and comment on the casier case in which J is a tridiagonal matrix, rather
than a block tridiagonal matrix.

V. ERROR BOUNDS

We finally give the error bounds to obtains theorems (1,2). To obtain (2), we pick
Teut = A—1/4> (33)

so that L = [(2/neut)/A) — 1] is of order 2/A3/1, Then, from lemma (2) and Eq. (17), in the new basis the block-off-
diagonal terms in H are bounded in operator norm by a constant times A/ times a function growing slower than
any power of 1/A. By Eq. {18), the difference between B and B’ is bounded in operator norm by a constant times
A4 Therefore, theorem (2) follows. To obtain theorem (1), we pick

A =578 (34)

in lemma (1}.

We omit the detailed analysis, but it is possible to choose E(x) to be a polylog as follows. We can pick T(z)
to decay like exp(—z7), for any n < 1[27, 28]. Then we can pick F(L) to equal log(L)?, for & > 1/n, so that
T(F(L)) ~ exp(—(log(L))?/") decays faster than any power.

V1. TRIDIAGONAL MATRICES

In this scction, we present tighter bounds for the case in which H is a tridiagonal matrix, rather than a block
tridiagonal matrix.

Remark: The difficulty we face is that the even and odd space are not orthogonal to each other. If they were
orthogonal, then many of the estimates would be easier. Consider the case in which J is a block diagonal matrix, so
that V) is onc dimensional. Let p(E) be a smoothed density of states at energy E: p(E) = tr{STF(E,1/L,1/L,J)8).
Suppose p(£) is such that it has a peak in the crossing points of Fig. 2a (the points where one function F is decreasing
and the other is increasing and they cross). Then, with the overlapping windows as shown, we find that most of the
smoothed density of states lies in the overlap between the windows, rather than in the windows themselves. The
overlap between the vectors in different windows becomes much larger now. In the case of a tridiagonal matrix, we
can rearrange the windows as shown in Fig. 2b to reduce the overlap; this general idea will motivate the construction
in this scction.

We prove that

Lemma 4. Let J be an L-by-L Hermitian tridiagonal matriz, with ||J|| <1 acting on a space B. Let V; denote the
vector with a 1 in the j-th entry and zerces elsewhere. Then, there exists a space W which is a subspace of B with the
following properties:

{1): The projection of Vi onto the orthogonal complement of W has norm bounded by €3 where ¢35 is egqual to a
constant times 1/L.

(2): For any normalized vector w € W, the projection of Jw onte the orthogonal complement of W has norm bounded
by €4, where €4 15 equel to 1/L times a function growing slower than any power of L.

{3): The projection of Vi, onto W has norm bounded by €5, where €5 is a function decaying faster than any power of
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This lemma implies theorem (3): we construct A’, B as before, following steps (3) to construct the new basis, but
because of the tighter bounds in lemma (4) we can choose Ny = A~Y? when constructing the new basis. Now, in
step (4), we find that A’, BY are diagonal matrices, rather than just block diagonal matrices.

For cach i = 0,1, ..., nyin — 1, define

wli) = =1+ 2/ (Ruin — 1), (35)
as before. Define
pi = STF(w(i),0,2/Nwin, J)S. ' (36)
Set
Amin = 1/ (RwinL?), (37)
as before with
Tin = L/ F(L) {38)

as before. To prove Lemma (4), we use the following algorithm. There are ny,;, + 1 windows, labelled 0, ..., ny,. We
label various windows as “marked” or “unmarked” as follows.

1: Set i = 0. Initialize a real variable z to Q. Initialize all windows to unmarked.
2: If p; < Apin, increment ¢ by one and go to step 6.
3: Mark window 1.

4:Set ztoxz+p. x> 901 and pign 2 Ain , set 4 to 7+ 2, set z to 0, and go to step 6. If z > 2p;11 and
Pits < Amin, mark window 7+ 1, set i to ¢ -+ 3, set = to 0, and go to step 6.

5: Increment ¢ by onc.

6: If i > nyin, terminate. Otherwise go to step 2.

After running this algorithm, the therc will be a sequences of marked windows, separated by sequences of unmarked
windows. Note that the length of a marked of windows is at most logyg9(1/Amin), since at the start of such a sequence
x is at least A, © grows exponentially along the sequence {otherwise in step 4 the state will eventually change
unless p;41 > 2z) and = can be at most 1.

Let the total number of sequences be n,,,. Note that ngey < 7.

For each sequence of marked windows, from window i to j, construct the vector y = F((w(i) + w(}))/2,(w(j) —
w(4))/2, 2/ Npin, J)Sx. We define y,, for a = 1,..., ngy, to be the vector y constructed from the a-th sequence. By
construction, the norm square of y, when projected onto cigenvectors of J with eigenvalues greater than w(j) is
bounded by 1/9 of the norm square of y,. The veetor y.4; has vanishing projection onto cigenvectors of J with
elgenvalues less than or equal to w(j}. Therefore,

(Was Yar1) < (1/3)Wallyatal- (39)

We define W to be the space spanned by all such vectors y,, and we define P to project onto YW. Consider any vector
v € W, with

Tigeg
o= Vg, {40)
a=1
with v, parallel to y,. By Eq. (39)
2 3 ()
3 = ]

Remark: The function F((w{i) +w(7))/2, (w(f) — w(1))/2,2/nyin, w) is equal to unity for w(i) < w < w(j).
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We now prove the Lemma (4) as follows: to prove the first claim, note that by construction,

lp?}l - Ull S nwin)\mvén (42)
< 1/12.

To prove the second claim, consider the a-th sequence of marked windows, from window ¢ to window j. Let
w(i) = (w (i) +w*(4))/2. Then,

2+ IOgIO/Q(l/Amin)

Noin

I = w(@)val < el (13)

which is bounded by 1/ times a function growing slower than any power of L. Therefore,

2 +10g,6/9(1/ Amin)
(1= P)Jya| < — val (44)
Using the bound Eq. (41}, for any vector v € W,
2+ lo 1 ’}‘m.in
(1= o] < Vol i) (15)

which is bounded by 1/L times a function growing slower than any power of L, verifying the second claim.
The proof of the third claim is identical to the previous case.

VI, QUANTUM MEASUREMENT

The constructions above can be applied to operators which arise in various physical quantum systems. For example,
consider a quantum spin for a large spin S. Then, the operators S;/S and S, /S have operator norm 1 and have a
comnmutator that is of order 1/S. Thus, we can find a basis in which both operators are almost diagonal. While it
is well known that one can use a POVM (positive operator-valued measure) to approximately measure S, and S, at
the same time, the existence of the given basis implies that one can approximately measure S, and S, simultancously
with a single projective measurement. Interestingly, while the operator $2 is also almost diagonal in this basis (since
it equals S(S + 1) — 52 — 52), it is not possible to find a basis in which S,,5,, and S, are all almost diagonal (this
obstruction is similar to that in [6]). Therefore, to approximately measure S, Sy, and S, simultaneously will require
a POVM, rather than a projective measurement.

For completeness, we now briefly show how to construct a POVM to approximately measure several almost commut-
ing operators simultancously. Consider any number N of Hermitian matrices, labelled Ay, ..., Ay, with |[[4;, A4;]]] <6
for all 4,7 and with [J4;|] < 1 for all i&. We now construct a POVM to approximately measure all N operators
simultaneously.

Fori=1,..,Nand n =0, ..., %nas, define

M@i,n) = V/F(=14 20/ Nmaz. 2/3%maz, 2/ 3mas, Ai). (46)
Define
O(n1,ng, .ny) = (M(l,nl)]\/!(Q,ng)...M(f\’, nN)) (M(N, nN)...M’(Q,ng)zW(l,nl)). (47)
Then,
ix O(ny,na,yny) =1, {48)
ny,ng,... ==l

and all of the operators O are positive semidefinite by construction. Therefore, the operators O(ny, na, ..., ny) form
a POVM.

We now show that this approximately measures all operators simultaneously. That is, we show that for any density
matrix p, if the outcome of the measurement is nq,ne, ..., nn, then if we perform a subsequent measurement of any
operator A;, the outcome will be close to —1 + 2n;/Nma, With high probability. We show this by computing the
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expectation value (A; — (=1 + 2n;/Nmaz))? averaged over all measurement outcomes. For any density matrix p, for

any 1, the average over all outcomes of (4; — (=1 + 2n;/Nmaz)? is equal to
N
> (A = (=14 2n/nmaz)) M (L, n0)M(2,12).p.. M(2,n2) M (1,71)) (49)
n;,nz,mzl

Note that for i >

N
Z WM (7, n5) (A — (-1 + QTL,-/nmm)gM'(j, n;) — (A — (=14 2ni/Nmaz) 2|l < const. x 8%n2, . (50)

n;=1

To show Eq. (50}, writc

M(j,n;) = /dt CXp(iAjt)\/j—F(_l + 2§/ Pmazs 2/ 30 maz: 2/3mas, L), (51)

where \/F{., ., ., t} denotes the Fourier transform of the square-root of F. Then, since F{.,.,.,w) is infinitely differen-
(ZA}t)AZ _Ai OXP(?,A})t—ﬂ[AJ, Az“[ S

const. x (£26%), we find that

M {G,n;)A; — AiM{G,ny)| < H/dtzt [4;, A exp(iAjt)\/f(—l+2j/n.ma;5;3nmw,2/3nmm,,t)[[ (52)

2 52
“+const. x nwmc‘i

< const. x n2,. &2,

win

where the last line follows from the symmetry of «/F(,,.,..t) in t. Also,

N
Z M (i, 73) (As ~ (=1 + 27 /Tmar )2 MG 1) — (Ai = (=1 + 204 /Tmaz)? || < const. x (1/n2,..). (53)
=]
Thercfore,
N
z tr((A; = (= 1427 /Mmar )2 M (1, R )M (2, n2)...p.. M(2,m2) M (1,n1)) < const. x (N&2n2, . +1/n2 ). (54)
ny,ny,...=1
Choosing
Nmaz = 5_1/2]\,—1/43 (55)

we find that we measure all operators to within a mean-square crror of order v/ N.

VIII. DISCUSSION

The main result is an explicit construction of a pair of exactly commuting matrices which are close to a pair of
almost commuting matrices. The construction of the matrix is explicit and can be handled easily on a computer for
modest N. We have in fact implemented the construction in Lemma (2) for the uniform chain.

We gave above applications to quantum measurcment. Another application of this result is to construct Wannier
functions for any two dimensional quantum system for a spectral gap. In [29], it was pointed out that given a two
dimensional quantum system with a gap between bands, one could define an operator G which projected onto the
bands below the gap. Then, define the operator X and Y to measure X and Y position of particles, and define
GXG and GYG as projections of X and Y into the lowest band. Let ||X||, ||Y|| = L, where L is the linear size of
the system. Since the operator G was constructed in [29] as a short-range operator, the commutator |[|[GXG, GY G|
is small compared to L2, and thus we can use the results here to construct a basis of Wannier functions which is
localized in both the x- and y-directions.
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