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Abstract

This paper presents a general iterative bias correc-
tion procedure for nonparametric regression smoothers.
This bias reduction schema is shown to correspond
operationally to the Ly Boosting algorithm, which
provides a new statistical interpretation for Ly Boost-
ing. Controlling the number of bias correction steps
is necessary to avoid over-fitting the data. For mul-
tivariate thin plate spline regression smoother with.

the the number of iterations is selected using cross-
validation, our bias corrected smoother adapts to
smoothness of the underlying regression function
m. We show the excellent finite sample perfor-
mance of our smoother (available as an R package)
over existing state-of-the-art multivariate regres-
sion procedures on both simulated and real data
sets.

1 Introduction

Regression 1s a fundamental data analysis tool for relating
a univariate response variable ¥ to a multivariate predictor
X € R?from the observations (X, Y;).7 = 1,...,n. Tradi-
tional nonparametric regression use the assumption that the
regression function varies smoothly in the independent vari-
able z to locally estimate the conditional expectation m(z) =
E[Y|X = x]. The resulting vector of predicted values Y; at
the observed covariates X, 1s called a regression smoother,
or simply a smoother, because the predicted values ¥, are
less variable than the original observations Y;.

Linear smoothers are linear in the response variable Y
and are operationally written as

= S\Y,

where S) is a nxn smoothing matrix. The smoothing matrix
S typically depends on a tuning parameter which we denote
by A, and that governs the tradeoff between the smoothness
of the estimate and the goodness-of-fit of the smoother to the
data by controlling the effective size of the local neighbor-
hood over which the responses are averaged. We parameter-
ize the smoothing matrix such that large values of A are asso-
ciated to smoothers that averages over larger neighborhood
and produce very smooth curves, wiile small A are associ-
ated to smoothers that average over smaller neighborhood to
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produce a more wiggly curve that wants to interpolate the
data, The parameter A is the bandwidth for kernel smoother,
the span size for running-mean smoother, bin smoother, and
the penalty factor A for spline smoother.

Ideally, we want to choose the smoothing parameter A
to minimize the expected squared prediction error. There
is a vast literature on how to do this (approximatively) with-
out explicit knowledge of the underlying regression function,
see for example ([Sim96]). This paper takes a different ap-
proach. Instead of optimally selecting the tuning parameter
A, we fix it to some reasonably large value that ensures that
the resulting smoothers oversmooths the data so that the re-
sulting smoother will have a relatively small variance but a
substantial bias, and focus on correcting that bias. Our ap-
proach to bias correction rests on the observation that the
conditional expectation of the —R = —(Y — V'), given X, Is
the bias of the smoother. This provides us with the opportu-
nity to estimate the bias by smoothing the residuals K. The
bias of the original smoother can be partially corrected by
subtracting from it the estimated bias. This bias correction
can be iteratively applied, producing a sequence of iterative
bias corrected smoothers that are formally defined in Section
o)

-

The idea of estimating the bias from residuals to correct
a pilot estimator of a regression function goes back to the
concept of twicing introduced by ([Tuk77]) to estimate bias
from model misspecification in multivariate regression. Ob-
vicusly, one can iteratively repeat the bias correction step
until the increase to the variance from the bias correction
outweighs the magnitude of the reduction in bias, leading to
an iterative bias correction.

Another iterative nonparametric function estimation method,

seemingly unrelated to bias reduction. is Boosting. Boosting
was introduced as a machine learning algorithm for com-
bining multiple weak learners by averaging their weighted
predictions ({Sch90, Fre95]). The good performance of the
Boosting algorithm on a variety of datasets stimulated statis-
ticians to understand it from a staustical point of view. In
his seminal paper, [Bre98] shows how Boosting can be inter-
preted as a gradient descent method. This view of Boosting
was reinforced by {Fri01]. Adaboost, a popular variant of
the Boosting algorithm, can be understood as a method for
fitting an additive model ({FHTOO0}) and recently {EHITO4]
made a connection between L, Boosting and Lasso for hin-
ear models. But connections between iterative bias reduction



and Boosting can be made. In the context of nonparametric
density estimation, [DMT04] have shown that one iteration
of the Boosting algorithm reduced the bias of the initial esti-
mator in a manner similar to the multiplicative bias reduction
methods ([HG95, JLN95, HMLOS8]). In the follow-up paper
(IDMTOQ7}), they extend their results to the nonparametric
regression setting and show that one step of the Boosting al-
gorithm applied to an oversmooth effects a bias reduction.
As expected, the decrease in the bias comes at the cost of an
increase in the variance of the corrected smoother.

It is well known in multivariate data analysis that the dis-
tance between typical covariates increases with increasing
dimensions d of the covariates X. The resulting sparseness
of the covariates, often called the curse of dimensionality,
forces one to use larggr smoothing parameters in higher di-
mensions, which in t@rx(ﬁ' leads to more biased smoothers.
Optimally selecting the smoothing parameter does not alle-
viate this problem, and therefore, the common wisdom is
to avoid general nonparametric smoothing in higher dimen-
sion and focus instead on fitting structurally constrained re-
gression models, such as additive models [HT95, LN95]. In
this paper, we depart from the classical multivariate struc-
tural regression models, and focus instead on very estimating
smooth fully nonparametric regression functions. To exploit
optimally the smoothness of the regression function, we shall
consider procedures that adapt to the smoothness of the true
regression function. We show in Section 3 that iteratively
correcting for the bias, together with a suitable stopping rule,
leads to smoothers that adapt to the smoothness of the true
regression function and converge at the minimax rate of con-
vergence.

Practical considerations leads us to consider kernel based
smoothers, and its variant, nearest neighbor smoothers. Not
all kernel smoothers are suitable for the iterative bias reduc-
tion procedure.

Beyond the nice theoretical properties of our estimator,
we show in Section 5 using both simulated and real data
sets, that our iterative bias corrected smoother significantly
improves on the prediction mean square errors over popu-
lar competing multivariate nonparametric regression models,
including additive models, projection pursuit regression and
MARS. For example, prediction mean squared error for the
Boston housing data [BF85}, using our fully nonparametric
smoother on 13 explanatory variables, is at least 40% smaller
than the competing current state-of-the-art smoothers.

2 Iterative bias reduction

This section presents the general iterative bias reduction frame-

work for linear regression smoothers.

2.1 Preliminaries

Suppose that the pairs (X,, ¥;) € R¢ xR are related through
the nonparametric regression model

Yi = m{Xy)+e,

where m(-) is an unknown smooth function, and the distur-
bances ¢; are independent mean zero and variance o? ran-
dom variables that are independent of all the covariates. It
is helpful to rewrite Equation (1) in vector form by setting

t=1,....n, (1

Y = (Y1, Yo) m = (m(X1),...,m{X,)) and e =

(€1,.-.,€n) 1o get
Y = m+e (2)
Linear smoothers can be written as
my = 5Y, 3

where S; is an n X n smoothing matrix and m = Y —
(Y1,...,Y,)", denotes the vector of fitted values. Typical
smoothing matrices are contractions, by virtue that the fitted
values have smaller norm than the raw data, that is |SY}] <
IIY'll. We refer to [BHTS89] for in depth discussion of such
shrinkage smoothers.

The linear smoother (3) has bias

B{y) = Elf|X] ~m= (5 - I)m
and variance
V{mi|X) = $18,0%,

respectively. A natural question is “how can one estimate
the bias?” To answer this question, observe that the residuals
Ry =Y —m = (I-8))Y have expected value E[R;|X] =
m — E[MmyX] = (I — Sy)m = —B(Mm;). This suggests
estimating the bias by smoothing the negative residuals

/51 = _SQRI = —SQ(I - Sl)y

For simplicity, we assume that the same smoother S = §; =
S, is used. Note that the resulting estimate for the bias is
zero whenever the smoothing matrix S is a projection, as is
the case for linear regression, bin smoothers and regression
splines. But since most smoothers are not projections, we
an opportunity to correct for the bias of the pilot smoother
My by subtracting from it by, which yields a bias corrected
smoother

My = SY +S(I-8)Y
= (I-({I-9%Y.

Since iy 1s itself a linear smoother, it is possible to cor-
rected its bias as well. Repeating the bias reduction step &
times produces to the linear smoother

Mk = SY+S(UT—-8)Y +---+8SI -85y
= (I-{-8HY.

More recently, [DMT07] studied one-step bias correc-
tion of univariate kernel regression smoothers, and showed
that it corresponded to making on iteration of the Ly boost-
ing algorithm of [BY03]. The correspondence between Lo-
boosting and our iterative bias correction procedure follows
from the representation of the bias corrected smoother pre-
sented in Section 2 and the expression found in [BY03]. This
new interpretation for the Ly boosting algorithm as iterative
bias corrections was alluded to in [Rid0O0}’s discussion of
[FHTO0] paper on the statistical interpretation of boosting.

As defined by (3), smoothers predict the conditional ex-
pectation of responses only at the design points. 1t is useful
to extend regression smoothers to enable predictions at ar-
bitrary locations = € R? of the covariates. Such an exten-
sion allows us to assess and compare the quality of various



smoothers by how well the smoother predicts new observa-
tions. To this end, write the prediction of the linear smoother
S at an arbitrary location z as

m(e) =

where S(x) is a vector of size n whose entries are the weights
for predicting m{x). The vector S(z) is readily computed
for many of the smoothers used in practice.

Next, write the iterative bias corrected smoother 771 as

S(z)'Y,

fie = g+ b1 +... + b
= SI+(T-8)+UT—-8)*+...+(I-8) "y
=SB,
to conclude that
() = S(z) Bk (4)

predicts m(x).
The mean squared error of the k** iterated bias corrected
linear smoother My (22} is

m' (I = $)¥)' (I - S)km
fo2 (I — (I = S)¥) (I = (I = S)%)".

The qualitative behavior of the sequence of iterative bias cor-
rected smoothers My depends on the spectrum of S. it is
easily shown that the sequence of iteratively bias corrected
smoothers My convergent whenever the singular values of
the smoothing matrix S lie between zero and two. In that
case, the limit Himy.., o0 7, = Y. Otherwise, limig.., o0 ||kl =
0.

It follows that iterating the bias correction algorithm un-
til convergence 18 not desirable. However, since each iter-
ation of the bias correction algorithm reduces the bias and
increases the variance, often a few iteration of the bias cor-
rection scheme will improve upon the pilot smoother. This
brings up the important question of how to decide when to
stop the iterative bias correction process.

Viewing the latter question as a model selection problem
suggests stopping rules for the number of iterations based on
Mallows’ C,, Akaike Information Criteria (AIC), Bayesian
Information Criterion (BIC), cross-validation, L-fold cross-
validation, and Generalized cross validation. Each of these
data-driven model selection methods estimate an optimum
number of iterations k of the iterative bias correction algo-
rithm by minimizing estimates for the expected squared pre-
diction error of the smoothers over some pre-specified set
K = {1,2,...,M,} for the number of iterations. We rely
on the expansive literature on model selection to provide in-
sight into the statistical properties of stopped bias corrected
smoother. In particular, Theorem 3.2 of {L.i87] describes
the asymptotic behavior of the generalized cross-validation
(GCV) stopping rule applied to smoothers.

MSE(ry) =

3 Iterative bias reduction of multivariate
thin-plate splines smoothers

In this section, we elucidate the statistical properties of the it-

erative bias reduction of multivariate thin-plate spline smoothers.

Given a smoothing parameter A, the thin-plate smoother of
degree vy minimizes

11;;:1;<n—f'<xi>>2 + AT(w), 5)
where
8“+ Fig 2
T =3 /]R e L
St g g

Thin-plate smoothing splines are attractive class of mul-
tivariate smoothers for two reasons: First, the solution of
(5), once cast within a Reproducing Kernel Hilbert Space
(RKHS) framework [Gu02], is numerically tractable and sec-
ond, the eigenvalues of the smoothing matrix are approxima-
tively known (c.f. [Uu88]).

3.1 Numerical Example

It is easy to establish that the eigenvalues of the associated
smoothing matrix lie between zero and one. In light of The-
orem ??, the sequence of bias corrected thin-plate spline
smoothers starting from a pilot that oversmooths the data,
will converge to an interpolant of the raw data. As a result,
we anticipate that after some suitable number of bias cor-
rection steps, the resulting bias corrected smoother will be a
good estimate for the true underlying regression function.

Figure 1: True regression function m(zy, 2y} (6) on the
square [—10,10] x [—10,10] used in our numerical exam-
ples.

This behavior is confirmed numerically in the following
pedagogical example of a bivariate regression problem: Fig-
ure 1 graphs Wendelberger’s test function { Wen82}
+(9y — 2)%)/4}
+gexp {~((9z + 1)%/49 + (9y + 1)*/10) }
+(9y - 3)%)/4)}

Oz — )+ (9 -7H}  (©)

m{zs,x2) = %exp { -{{9z — 2)¢ +

1 %exp {~((9z —7)?

1

that is sampled at 100 locations on the regular grid
{0.05,0.15,...,0.85,0.95}2. The disturbances are mean zero
Gaussian with variance producing a signal to noise ratio of
five. Figure 2 shows the evolution of the bias corrected smoother,
starting from a nearly linear pilot smoother in panel (a). Af-

ter 500 iterative bias reduction steps, the smoother shown in
panel (b) is visually close to the original regression function.



Continuing the bias correction scheme will eventually lead to
a smoother that interpolates the raw data. To illustrate this,
we show the bias corrected smoother after 50000 iterations
in panel (c). Notice how noisy that estimator 1s, compared
to the one in panel (b). This numerical examples hints to the
potential gains realizable by suitably selecting the number of
bias correction steps.

Figure 2: Thin-plate spline regression smoothers from 100
noisy observations from 6 (see Figure 1) evaluated on a reg-
ular grid on [—10, 10} x [~10, 10]. Panel (a) shows the pilot
smoother, panel (b) graphs the bias corrected smoother after
500 iterations and panel (c) graphs the smoother after 50000
iterations of the bias correction scheme.

3.2 Adaptation to smoothness of the regression
function

Let © be an open bounded subset of R? and suppose that
the unknown regression function m belongs to the Sobolev
space H) () = H™), where v is an integer such that
v > d/2. Let S denote the smoothing matrix of a thin-
plate spline of order 1y < v (in practice we will take the
smallest possible value vy = [d/2]) and fix the smoothing
parameter Ao > ( to some reasonably large value. Our next
theorem states that there exists a number of bias reduction
steps k = k{n), depending on the sample size, for which
the resulting estimate 71y, achieves the minimax rate of con-
vergence. In light of that theorem, we expect that an itera-
tive bias corrected smoother, with the number of iterations
selected by GCV, will achieve the minimax rate of conver-
gence.

Theorem 1 Assume that the design X; € ,i=1,...,n
satisfies the following assumption: Define
Hopaz{n) =sup  inf |z — X,
zehi=l,.n

and
hmin (n) - H]in iX% - X]{,
‘b;‘é 7

and assume that there exists a constant B > ( such that

Pmax

Pmaz()

hmin (n)
Suppose that the true regression function m € H¥).

If the initial estimator iy = SY is obtain with S a thin-
plate spline of degree vy, with [d/2) < vy < v and a fixed
smoothing parameter Ao > 0 not depending on the sample
size n, then there is an optimal number of bias reduction
steps k{n) such that the resulting smoother iy, satisfies

2

1, 1
E - Z(mk(xj) —m(X,) =0 (—————-——ngy oo +d)> ,

=1

which is the optimal minimax rate of convergence for m €
H),

The proof i1s postponed to the appendix.

Remark. Rate optimality of the smoother 1715 is achieved
by suitable selection of the number of bias correcting itera-
tions, while the smoothing parameter A remains unchanged.
That is, the effective size of the neighborhoods the smoother
averages over remains constant.

Theorem 2 Suppose that the error admits a finite moment
of order 10, than kgov selected by GCV on a grid K,, =

{1,...,n***} where a could be bigger than one, then
. NPy — ™I
Him oo- Gey = — 1, inprobability.
n o infxex, ([ — m]?

Good approximation properties of the Ly-boosting algo-
rithm applied to univariate smoothing splines, similarly to
our Theorem 1, was proven by [BY03]. Theorem 2 states
that, using cross-validation to select the number of bias cor-
rection steps, we can achieve adaptation to the smoothness
of the underlying true regression function.

The application of bias reduction to maximally exploit
the smoothness of multivariate regression function has not
been previously exploited. The practical benefits of this adap-
tation is revealed in both our simulation study and our anal-
ysis of classical multivariate test datasets. In both instances,
our method makes substantially better out of sample pre-
dictions over state-of-the-art structural models that include
additive regression smoothing, MARS, and projection pur-
suit regression. The statistical properties of the iterative cor-
rected thin-plate splines are tractable, they have several draw-
backs that limit their practical usefuiness. An advantage of
smoothing splines smoothers is that the eigenvalues of the
smoothing matrix are well known. The matrix S is symmet-

ric and all the eigen values are in [0, 1] and the first Mg =

(”‘fj‘:i; 1) eigen values are equal to 1 see for example [Utr88).

4 Kernel Based Smoothers

Our iterative procedure needs a pilot smoother S with sub-
stantial bias. As our procedure is adaptive (theorem 1), we
use thin plate spline with the lowess possible order 14 which
must be bigger than d/2. We need to choose the smoothing
parameter A such as the pilot smoother 5 oversmooths the
data. The degree of freedom (i.e the trace of 5)) of the pilot
estimator must be small. The minimum degree of freedon

of the pilot smoother is My = (”‘j}g’f;l) and regarding to the
sample size, the pilot smoother is usually not smooth. For the
real Los Angeles data set, n = 330 and d = 8, one should
normally take vy = 5 and the initial ddl will be bigger than
495. So, for practical used, if the sample size is limited (less
than 500), it better to use a kernel smoother.

The smoothing matrix .S of Nadaraya kernel type estima-
tors has entries Si; = K(dn (X4, X;))/ >3-, K(dn{Xi, X5)).
where K {.) is typically a symmetric function in R (e.g., uni-
form, Epanechnikov, Gaussian), and d,(x, y) is a weighted



distance between two vectors z,y € R?. The particular
choice of the distance d(-,-) determines the shape of the
neighborhood. For example, the weighted Euclidean norm

where i = (hy, ..., hg) denotes the bandwidth vector, gives
rise to elliptic netghborhoods. We will use a Gaussian kernel
because the corresponding spectrum of I — S is less than 1.
All kernels do not share that property ([PCMLOSb}). An im-
portant question is how to chose the bandwidth of smoother.
We know that for bias reduction to be effective, we want
to use a large bandwidth that oversmooths the responses,
as such pilot smoothers will be heavily biased. As a gen-
eral rule, the larger the bandwidth, the more biased the pilot
smoother will be and the more iterations of the bias reduc-
tion scheme will be required to obtain a “good” smoother.
Otherwise, the method is generally robust to the choice of
the bandwidth.

The bandwidth in each component of the covanate de-
pends on its scale. It is common to first rescale the data
before selecting the bandwidth. In our numerical experi-
ments, we found it preferable to leave the scales unchanged,
and to select the bandwidth based on the effective degree
of freedom (trace of the smoothing matrix) of the univariate
smoother in each of the components, with typical values for
the degree of freedom we ranging from 1.05 to 1.2. A fur-
ther advantage of the latter choice is that there is no explicit
reference to sample size.

4.1 Good behavior of Gaussian kernel smoothers.

4.2 Failure of uniform and Epanechnikov kernel
smoothers

Not all kernels smoothers are well behaved under the iter-
ative bias correction scheme. In particular, we can show
that kernel smoothers based on either the uniform or the
Epanechnikov kernel leads to a sequence rn; whose norm
diverges with the number of bias correction steps k.

Theorem 3 Denote by N; = {X; : K{dn(X;,X,)) > 0}
the the set of distinctive points in the neighbors of X;.

If there exists a set N; such that |IN;| > 3 that contains
points X, Xy # X, such thatdp (X, X;) < 1 di(Xi, Xi) <
1 and dp(X;, Xi) > 1, then the smoothing matrix S for
the uniform kernel smoother has at least one negative eigen-
value.

If there exits a set Ny such that N3} > 3 that contains
points X;, Xy # X; that satisfy

dn( Xy, Xi) > min{dp (X, X;), dn (X5 X0},
then the smoothing matrix S for the Epanechnikov kernel
smoother has at least one negative eigenvalue.
5 Real example : Los Angeles Ozone Data

We consider the classical data set of ozone concentration in
the Los Angeles basin which has been previously considered
by many authors ([Bre96, BY03, BY06]). The sample size

of the data is n = 330 and the number of explanatory vari-
ables d = 8. We use here a multivariate Gaussian kernel and
select each individual bandwidth in order to have the same
degree of freedom by variable. These are chosen equal to
1.05, 1.1, 1.2 and 1.5 in order to investigate the influence
of such parameter. We compare our iterative bias procedure,
freely available as an R package IBR [PCML.09a], with Mars
using R package mda, with additive models estimation using
R package mgcey, projection pursuit regression using R func-
tion ppr and L,-Boosting proposed by [BYO03], which we
recall here. Multivariate Lo-Boosting proposed by [BYO03]
leads to component-wise additive model

d
5,}20051 — ﬂ,;_zjffﬂ,(j)(xj)?
jee 1

where the component f*1) is obtained by choosing the
univariate smoother Sy, (X;) which leads to the best im-
provement in smoothing the residuals of previous iteration
k— 1

The estimate mean squared prediction error is obtain by
randomly splitting the data into 297 training and 33 test ob-
servations and averaging 50 times over such random parti-
tions. We are in the configuration as [BY03] and reporting
theirs results we obtain the following table :

Table 1: Predicted Mean Squared Error on test observations
of ozone data for different methods.

Method | PMSE
LBoost with component-wise spline 17.78
additive model (backfitted with R) 17.44
Projection pursuit (with R) 16.89
MARS (with R) 17.49
iterative bias reduction with GCV stopping rule

and multivariate Gaussian kernel with

1.05 initial DDL per variable and 297 iterations | 14.85
1.1 initial DDL per variable and 64 iterations 14.83
1.2 initial DDL per variable and 15 iterations 14.86
1.5 initial DDL per variable and 3 iterations 14.98

We can see (1able 1) that, as in univariate setting, the
smoother the pilot estimator is, the better the final estimation
is, at the cost of increasing computation time. The combi-
nation of iterated of GCV and bias corrected estimator leads
to a diminution of more than 12% over other multivariate
methods.

We will also present the Boston housing data and others..”
classical data sets during the presentation.

6 Discussion

In this paper, we make the connection between iterative bias
correction and the Ly boosting algorithm, thereby providing
a new interpretation for the latter. A link between bias re-
duction and boosting was suggested by [Rid00] in his discus-
sion of the seminal paper [FHT0O], and explored in [DMT04,



DMTO7] for the special case of kernel smoothers. In this pa-
per, we show that this interpretation holds for general linear
smoothers.

It was surprising to us that not all smoothers were suit-
able to be used for boosting. Many weak learners, such as the
k-nearest neighbor smoother and some kernel smoothers, are
not stable under iterated bias estimation. Our results extend
and complement the recent resuits of [DMTO7].

Iterating the bias correction scheme until convergence is
not desirable. Better smoothers result if one stops the iter-
ative scheme. Our simulations and application to real data
show that our method performs well in higher dimensions,
even for moderate sample sizes.

As a final remark, note that one does not need to keep
the same smoother throughout the iterative bias correcting
scheme. We conjecture that there are advantages to using
weaker smoothers later in the iterative scheme, and shall in-
vestigate this in a forthcoming paper.

A Appendix

Proof of Theorem 1 Let vy < v and fix the smoothing pa-
rameter Ap. Define § = S, »,. The eigen decompostion of
S (Utreras, 1988) gives

1

)\1: :)\Mozl and )\]%W,
where Mo = CJ%,1_,. Let us evaluate the variance:
V(ﬁlk‘: >‘0) VO)
M,
= 0'2—(1 -+ AMO
n
where
9 n k+1 2
o 1
Ave=— Y (1”(1” ) }
;2vg/d
i 14 Ag2vo/

Choose J, in j = Mjy,...,n, and split the sum in two
parts. Then bound the summand of the first sum by one to
get

M,
Vi, o, vo) < o022 + Ay

Jn — M
2Yn o
to 7

As the function 1 — (1 — u)* < ku for u € [0, 1], we have

k3

23

1
. 2
V(g do,0) € o +(k+1) Z (l+)\j2u@/d
j'~7 +1
< 4 (k4 1) Z er Fri
Ju=Jn k1

Bounding the sum by the integral and evaluate the latter, one
has
2Jn

n

(k+1)2"

V(s’?%}c ,X(),UO) < (22

)\2(41/0/d — 1) ”

:

1 —4ug/d+1

If we want to balance the two terms of the variance, one has

to choose the following number of iterations K, = O(J2°/4).
For such a choice the variance is of order

V(rg, Ao,ve) = O (fﬁ)
n

Let us evaluate the squared bias of 7i;. Recall first the
decomposition of 5, », = P,,OA and denote by u; ., =

[Py, ];m the coordinate of m in the eigen vector space of
vg, A0
. 1< )22
b(mk:AO) I/O) = E 1{}"_’; g
j=1
Jn
_ )22
- Z Hjvo
J =Mp+1
1 2k+2 2
+_rr; Z (1 - A ) ijVO
J=Jjn+1

If m belongs to H™) it belongs to and H ) and we have
the following relation

1 « s
Dve/d 2
- E j""/ By <M < 0.
Je=Mo+1

0]

and with the following bound A; > 0, we obtain that the first
term if bounded by say A":

1 n _
< 1\/1/%_g Z j 2uid Zufd}uiyo

j=Jn+1
2v/d, 2
Z ‘7 “3:1/0
.—3“+1

b(ﬁlk, )\0, f/())

b(rhg, Ao, o) < M’+J"2”/d

Using the same type of bound as in equation (7) we get

g}{J(hk?)\O?VO) < M’ +j;2u/dM”.

Thus the bias is of order O (jr, 2"’!‘5)
Balancing the squared bias and the variance lead to the
choice
Jn - O(n]/(1+2u/d))

and we obtain the desired optimal rate.

Proof of Theorem 3. Let each component h; of the vector h
be larger than the minimum distance between three consecu-
tive points, and denote by dy (X, X;) the distance between
two vectors related to the vector chosen by the user. For ex-
ample, if the usual Euclidean distance is used, we have

) 2

The multivariate kernel evaluated at X, X; can be written
as K{dn(X,, X;)) where K is univariate. We are interested
in the sign of the quadratic form u*Ku (see proof of Theo-

rem 22). Recall that if & is semidefinite then all its principal
minor are nonnegative. In particular, we can show that A

d
X, — X
2 _ il gl
di(X:, X;) = E (——w}”

{z=1



is non-positive definite by producing a 3 x 3 principal mi-
nor with negative determinant. To this end, take the prin-
cipal minor K[3] obtained by taking the rows and columns
(i1, 12, %s). The determinant of K [3} is readily computed for
the Uniform and Epanechnikov kernels.

Uniform kernel. Choose 3 points in {X;}}", with index
i1, 12,13 such that

dh(X?I17X?Z2) <1, dk<XizyXi3) <1, and dh(X“,Xi.J) > 1.

With this choice, we readily calculate
det(K[3]) = 0- Kp(0)[Kn(0)*—0] ~0<0.

Since a principal minor of K is negative, we conclude that
K and A are not semidefinite positive.

Epanechnikov kernel. Choose 3 points {X;}7 | with in-
dex 14,12, 13, such that

d:‘a(XinX?Lg) > min(dh(Xil,Xiz);d;&(X?;z,X?;a))

and set dp(X;,, Xip) =2 <land dp (X, X)) =y < L
Using triangular inequality, we have

det(K[3]) = 0.75(0.75% — K(y)*)
=K (z)(0.75K (z) — K{y)K (min(z,y))
—K(min(z, y)) K (2)K (y) — 0.75K (z + y)*

The right hand side of this equation is a bivariate function of
z and y. Numerical evaluations of that function show that
small = and y leads to negative value of this function, that is
the determinant of K'[3] can be negative.

Figure 3: Contour of an upper bound of det(K[3]) as a func-
tion of (z,y).

Thus a principal minor of K is negative, and as a result,
K and A are not semidefinite positive.
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