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Abstract 

This paper presents a general iterative bias correc­
tion procedure for non parametric regression smoothers. 
This bias reduction schema is shown to correspond 
operationally to the Lz Boosting algorithm, which 
provides a new statistical interpretation for Lz Boost­
ing. Controlling the number of bias correction steps 
is necessary to avoid over-fitting the data. For mul­
tivariate thin plate spline regression smoother with­

-tlIe the number of iterations is selected using cross­
validation, our bias corrected smoother adapts to 
smoothness of the underlying regression function 
m. We show the excellent finite sample perfor­
mance of our smoother (available as an R package) 
over existing state-of-the-art multivariate regres­
sion procedures on both simulated and real data 
sets. 

1 Introduction 

Regression is a fundamental data analysis tool for relating 
a univariate response variable Y to a multivariate predictor 
X E ~d from the observations , Y;). iI, ... ,n. Tradi­
tional nonparametric regression use the assumption that the 
regression function varies smoothly in the independent vari­
able x to locally estimate the conditional expectation 
E[Y[X xJ. The resulting vector of predicted values Yi at 
the observed covariates Xi is called a regression smoother, 
or simply a smoother, because the predicted values Yi are 
less variable than the original observation~ 

Linear smoothers are linear in the response variable Y 
and are operationally written as 

Fil = SAY' 

where SA is a n x n smoothing matrix. The smoothing matrix 
SA typically depends on a tuning parameter which we denote 
by A, and that governs the tradeoff between the smoothness 
of the estimate and the goodness-of-fit of the smoother to the 
data by controlling the effective size of the local neighbor­
hood over which the responses are averaged. We parameter­
ize the smoothing matrix such that large values of A are asso­
ciated to smoothers that averages over larger neighborhood 
and produce very smooth curves, whlle small A are associ­
ated to smoothers that average over smaller neighborhood to 

produce a more wiggly curve that wants to interpolate the 
data. The parameter A is the bandwidth for kernel smoother, 
the span size for running-mean smoother, bin smoother, and 
the penalty factor A for spline smoother. 

Ideally, we want to choose the smoothing parameter A 
to minimize the expected squared prediction en-or. There 
is a vast literature on how to do this (approximatively) with­
out explicit knowledge ofthe underlying regression function, 
see for example ([Sim96]). This paper takes a different ap­
proach. Instead of optimally selecting the tuning parameter 
A, we fix it to some reasonably large value that ensures that 
the resulting smoothers oversmooths the data so that the re­
sulting smoother will have a relatively small variance but a 
substantial bias, and focus on correcting that bias. Our ap­
proach to bias correction rests on the observation that the 
conditional expectation of the - R (Y - Y), given X, is 
the bias of the smoother. This provides us with the opportu­
nity to estimate the bias by smoothing the residuals R. The 
bias of the original smoother can be partially corrected 
subtracting from it the estimated bias. This bias conection 
can be iteratively appJied, producing a sequence of iterative 
bias corrected smoothers that are formally defined in Section 
2. 

The idea of estimating the bias from residuals to conect 
a pilot estimator of a regression function goes back to the 
concept of twicing introduced by ([Tuk77]) to estimate bias 
from model misspecification in multivariate regression. Ob­
viously, one can iteratively repeat the bias correction step 
until the increase to the variance from the bias conection 
outweighs the magnitude of the reduction in bias, leading to 
an iterative bias correction. 

Another iterative nonparametric function estimation method, 
seemingly unrelated to bias reduction, is Boosting. Boosting 
was introduced as a machine learning algorithm for com­
bining multiple weak learners by averaging their weighted 
predictions ([Sch90, Fre9S]). The good performance of the 
Boosting algorithm on a variety of datasets stimulated statis­
ticians to understand it from a statistical point of view. In 
his seminal paper, [Bre98J shows how Boosting can be inter­
preted as a gradient descent method. This view of Boosting 
was reinforced by [FriOl]. Adaboost, a popular variant of 
the Boosting algorithm, can be understood as a method for 
fitting an additive model ([FHTOOJ) and recently [EHJT04] 
made a connection between L2 Boosting and Lasso for lin­
ear models. But connections between iterative bias reduction 



and Boosting can be made. In the context of non parametric 
density estimation, [DMT04J have shown that one iteration 
of the Boosting algorithm reduced the bias of the initial esti­
mator in a manner similar to the multiplicative bias reduction 
methods ([HG95, JLN95, HML08]). In the follow-up paper 
(lDMT07]), they extend their results to the nonparametric 
regression setting and show that one step of the Boosting al­
gorithm applied to an oversmooth effects a bias reduction. 
As expected, the decrease in the bias comes at the cost of an 
increase in the variance of the corrected smoother. 

It is well known in multivariate data that the dis­
tance between typical covariates increases with mcreaSl 
dimensions d of the covariates X. The 
of the covariates, often called the curse 
forces one to use larger smoothing parameters in 
mensions, which in t¥rlw-Ieads to more biased smoothers. 
Optimally selecting the smoothing parameter does not alle­
viate this problem, and therefore, the common wisdom is 
to avoid general nonparametric smoothing in higher dimen­
sion and focus instead on fitting structurally constrained re­
gression models, such as additive models [HT95, LN95]. In 
this paper, we depart from the classical multivariate struc­
tural regression models, and focus instead on very estimating 
smooth fully nonparametric regression functions. To exploit 
optimally the smoothness of the regression function, we shall 
consider procedures that adapt to the smoothness of the true 
regression function. We show in Section 3 that iteratively 
correcting for the bias, together with a suitable stopping rule, 
leads to smoothers that adapt to the smoothness of the true 
regression function and converge at the minimax rate of con­
vergence. 

Practical considerations leads us to consider kernel based 
smoothers, and its variant, nearest neighbor smoothers. Not 
all kernel smoothers are suitable for the iterative bias reduc­
tion procedure. 

Beyond the nice theoretical properties of our estimator, 
we show in Section 5 using both simulated and real data 
sets, that our iterative bias corrected smoother significantly 
improves on the prediction mean square errors over popu­
lar competing multivariate nonparametric regression models, 
including additive models, projection pursuit regression and 
MARS. For example, prediction mean squared error for the 
Boston housing data [BF85], using our fully nonparametric 
smoother on 13 explanatory variables, is at least 40% smaller 
than the competing current state-of-the-art smoothers. 

2 Iterative bias reduction 

This section presents the general iterative bias reduction frame­
work for linear regression smoothers. 

2.1 Preliminaries 

Suppose that the pairs (X" Yi) E lRd x ffi. are related through 
the non parametric regression model 

Yi +100" i=l, ... ,n, (I) 

where 

is 

is an unknown smooth function, and the distur­
mean zero and variance (12 ran­

ndependent of all the covariates. It 
(l) in vector form 

Y (Y1 •.. , Y,,)t, Tn (m(XJ), ... , m(Xn))t and E 


, .. ,En)t,toget 


Y m+c. 	 (2) 

Linear smoothers can be written as 

where is an n x n smoothing matrix and m = y­

, .. } , denotes the vector of fitted values. 
~ 

virtue that the fitted 
that is IISYII S 

snrznKage smoothers. 
The linear smoother has bias 

m 

and variance 

= SIS~(12) 

respectively. A natural question is "how can one estimate 
the bias?" 	 To answer this question, observe that the residuals 

Y - (/ SdY have expected value E[R1IX] = 
m E[m1IX] (I Sl)m = -B(ihd· This suggests 
estimating the bias by smoothing the negative residuals 

b1 := -S2R1 = -S2(/ - Sl)Y. 

For simplicity, we assume that the same smoother S = SI = 
is used. Note that the resulting estimate for the bias is 

zero whenever the smoothing matrix S is a projection, as is 
the case for linear regression, bin smoothers and regression 
splines. But since most smoothers are not projections, we 
an opportunity to correct for the bias of the pilot smoother 
m1 by subtracting from it bI, which yields a bias corrected 
smoother 

m2 	 SY +S(I - S)Y 
(I - (/ S)2)y' 

Since is itself a linear smoother, it is possible to cor­
rected its bias as well. Repeating the bias reduction step k 
times produces to the linear smoother 

mk 	 SY + S(I S)Y + ... + S(I S)k-1y 

(J (I 	 S)k)y. 

More recently, [DMT07] studied one-step bias correc­
tion of univariate kernel regression smoothers, and showed 
that it conesponded to making on iteration of the L2 boost-

of The correspondence between L 2­

llVVO>lJ115 and our iterative bias correction procedure follows 
from the of the bias corrected smoother 
sented in Section 2 and the found in 
new interpretation for the boosting algorithm as iterative 
bias corrections was alluded to in [RidOO)'s discussion of 

paper on the statistical interpretation of boosting. 
As defined by (3), smoothers predict the conditional ex­

pectation of responses only at the design points. It is useful 
to extend regression smoot hers to enable predictions at ar­
bitrary locations x E lRd of the covariates. Such an exten­
sion allows us to assess and compare the quality of various 



smoothers by how well the smoother predicts new observa­ Given a smoothing parameter A, the thin-plate smoother of 
tions. To this end, write the prediction of the linear smoother degree va minimizes 
S at an arbitrary location :1: as 

S(x:)ty, mjll L 
n 

(Yi )2 + (5) 

where S(.7:) is a vector of size n whose entlies are the weights where
for predicting m(x). The vector S(x) is readily computed 
for many of the smoothers used in practice. 

Next, write the iterative bias conected smoother fih as 

rnk rna +	b1 

(1- S) (1 - S)2 (1 - Sl-l]y 

to conclude that 

rnk -~ S(X)tjjk 	 (4) 

predicts 
The mean squared enor of the kth iterated bias conected 

linear smoother 111k (??) is 

MSE(mk) ((1 - S)k) t (I S)km 

t a 2 (I (I - Sl) ((1 - (1 - S)k))t. 

The qualitative behavior of the sequence of iterative bias cor­
rected smoothers rnk depends on the spectrum of S. it is 
easily shown that the sequence of iteratively bias conected 
smoothers r71k convergent whenever the singular values of 
the smoothing matrix S lie between zero and two. In that 
case, the limit limk--ICXl mk y. Otherwise, 1imk-"Hx, Illhk ii = 
00. 

It follows that iterating the bias conection algorithm un­
til convergence is not desirable. However, since each iter­
ation of the bias conection algorithm reduces the bias and 
increases the variance, often a few iteration of the bias cor­
rection scheme will improve upon the pilot smoother. This 
brings up the important question of how to decide when to 
stop the iterative bias conection process. 

Viewing the latter question as a model selection problem 
suggests stopping rules for the number of iterations based on 
Mallows' CT" Akaike Information Criteria (AIC), Bayesian 
Information Criterion (BIC), cross-validation, L-fold cross­
validation, and Generalized cross validation. Each of these 
data-driven model selection methods estimate an optimum 
number of iterations k of the iterative bias conection algo­
rithm by minimizing estimates for the expected squared pre­
diction error of the smoothers over some pre-specified set 
K. {I, 2, ... , -Mn} for the number of iterations_ We 
on the expansive literature on model selection to provide in­
sight into the statistical properties of stopped bias conected 
smoother. In particular, Theorem 3.2 of [Li87] describes 
the asymptotic behavior of the generalized cross-validation 
(GCV) stopping rule applied to smoothers, 

3 	 Iterative bias reduction of multivariate 
thin-plate splines smoothers 

In this section, we elucidate the statistical properties of the it­
erative bias reduction of multivariate thin-plate spline smoothers. 

L 
 2 dx.
r(va) 1d 1
il,' 0 	

VQ 1 
'('1 + . + .::; VD 

Thin-plate smoothing splines are attractive class of mul­
tivariate smoothers for two reasons: First, the solution of 
(5), once cast within a Reproducing Kernel Hilbert Space 
(RKHS) framework [Gu02], is numerically tractable and sec­
ond, the eigenvalues of the smoothing matrix are approxima­
tively known (d. [Utr88]). 

3.1 Numerical Example 


It is easy to establish that the eigenvalues of the associated 

smoothing matrix lie between zero and one. In light of The­

orem ??, the sequence of bias corrected thin-plate spline 

smoothers starting from a pilot that oversmooths the data, 

will converge to an interpolant of the raw data. As a result, 

we anticipate that after some suitable number of bias cor­

rection steps, the reSUlting bias cOlTected smoother will be a 

good estimate for the true underlying regression function. 


figure 1: True regression function m(xl,x2) (6) on the 
square [-10,10] x [-10,101 used in our numerical exam­
ples. 

This behavior is confirmed numerically in the following 
pedagogical example of a bivariate regression problem: 
ure 1 graphs Wendel berger's test function [Wen82] 

!exp { .. ((9x -	 2)2 (9y 2)2)/4} 

~ exp {-((9x + 1)2/49 + (9y + 1)2/10)} 

-I ~ exp { ((9x 7)2 + (9y 3)2)/4)} 

-~ exp {-((9x - + (9y - 7)2)} (6) 
;) 

that is sampled at 100 locations on the regular grid 
{0.05, 0.15, ... ,0.85, 0.95}2. The disturbances are mean zero 
Gaussian with variance producing a signal to noise ratio of 
five. Figure 2 shows the evolution of the bias conected smoother. 
starting from a nearly linear pilot smoother in panel (a). Af­
ter 500 iterative bias reduction steps, the smoother shown in 
panel (b) is visually close to the original regression function. 



Continuing the bias correction scheme will eventually lead to 
a smoother that interpolates the raw data. To illustrate this, 
we show the bias corrected smoother after 50000 iterations 
in panel (c). Notice how noisy that estimator is, compared 
to the one in panel (b). This numerical examples hints to the 
potential gains realizable by suitably selecting the number of 
bias cOlTection steps. 

Figure 2: Thin-plate spline regression smoothers from 100 
observations from 6 (see figure I) evaluated on a reg­

ular grid on [-10,10] x [-10,10]. Panel (a) shows the pilot 
smoother, panel (b) graphs the bias corrected smoother after 
500 iterations and panel (c) graphs the smoother after 50000 
iterations of the bias correction scheme. 

3.2 	 Adaptation to smoothness of the regression 
function 

Let Q be an open bounded subset of lRd and suppose that 
the unknown regression function m belongs to the Sobolev 
space 'H(I/) (Q) = 'H(I/) , where v is an integer such that 
v > d/2. Let S denote the smoothing matrix of a thin­
plate spline of order lJo ~ lJ (in practice we will take the 
smallest possible value lJll rd/2l) and fix the smoothing 
parameter AO > 0 to some reasonably large value. Our next 
theorem states that there exists a number of bias reduction 
steps k = k(n), depending on the sample size, for which 
the resulting estimate achieves the minimax rate of con­
vergence. In light of that theorem, we expect that an itera­
tive bias corrected smoother, with the number of iterations 
selected by GCV, will achieve the minimax rate of conver­
gence. 

Theorem 1 Assume that the design Xi E: z 1, ... , n 
satisfies the following assumption: Define 

= sup Ix Xii, 
xED 

and 
(n) min 

iij 
Xjl, 

and assume that there exists a constant B > 0 such that 

hmaT,(n) B 't:In. 
hmin(n) 

Suppose that the true regression function mE H(I/). 

lfthe initial estimator m1 = SY is obtain with Sa thin­
plate spline ofdegree lJo, with rd/21 ~ lJo < II and a fixed 
smoothing parameter AO > 0 not depending on the sample 
size n, then there is an optimal number of bias reduction 
steps k(n) such that the resulting smoother iih satisfies 

E [ ( ~ t,(mk(Xj ) - m(xj )) '] 0 (n'"I;'"+d») , 

which is the optimal minimax rate of convergence for m 
H(v). 

The proof is postponed to the appendix. 

Remark. Rate optimality of the smoother 'Ink is achieved 
suitable selection of the number of bias correcting itera­

tions, while the smoothing parameter Ao remains unchanged. 
That is, the effective size of the neighborhoods the smoother 
averages over remains constant. 

Theorem 2 Suppose that the error admits a finite moment 
of order 10, than selected by GCVon a grid Kn 
{I, ... , nHQ} where 0' could be bigger than one, then 

'I Tn' - ­
I · I 

A 

kacv " l' b b'l'1m 00. f II [[2 -+ , In pro a I tty.A 

n 	 In kEK.: m,k 771n 

Good approximation properties of the L 2 -boosting algo­
rithm applied to univariate smoothing splines, similarly to 
our Theorem 1, was proven by [BY03]. Theorem 2 states 
that, using cross-validation to select the number of bias cor­
rection steps, we can achieve adaptation to the smoothness 
of the underlying true regression function. 

The application of bias reduction to maximally exploit 
the smoothness of multivariate regression function has not 
been previously exploited. The practical benefits of this 
tat ion is revealed in both our simulation study and our anal­
ysis of classical multivariate test datasets. In both instances, 
our method makes substantially better out of sample pre­
dictions over state-of-the-art structural models that include 
additive regression smoothing, MARS, and projection pur­
suit regression. The statistical properties of the iterative cor­
rected thin-plate splines are tractable, they have several draw­
backs that limit their practical usefulness. An advantage of 
smoothing splines smoothers is that the eigenvalues of the 
smoothing matrix are well known. The matrix S is symmet­
ric and all the eigen values are in [0,1] and the first 

I/o -1 1) eigen values are equal to I see for example [Utr881. 

4 Kernel Based Smoothers 

Our iterative procedure needs a pilot smoother SA with sub­
stantial bias. As our procedure is adaptive (theorem I), we 
use thin plate spline with the lowess possible order lJo which 
must be bigger than d/2. We need to choose the smoothing 
parameter A such as the pilot smoother oversmooths the 
data. The degree of freedom (i.e the trace of SA) of the pilot 
estimator must be small. The minimum degree of freedon 
of the pilot smoother is Mo .•• (v(~:~~l) and regarding to the 

size, the pilot smoother is usually not smooth. For the 
real Los Angeles data set, n = 330 and d 8, one should 
normally take lJo = 5 and the initial ddl will be bigger than 
495. So, for practical used, if the sample size is limited (less 
than 500), it better to use a kernel smoother. 

The smoothing matrix S of Nadaraya kernel type estima­
tors has entries Si] = K(dh(Xi, Xj ))('£k K(dh(Xi, 
where K (.) is typically a symmetric function in lR (e.g., uni­
form, Epanechnikov, Gaussian), and dh(X, is a weighted 



distance between two vectors X, y E Rd. The particular 
choice of the distance d(·,·) determines the shape of the 
neighborhood. For example, the weighted Euclidean norm 

y) ~ ~ t(Xj ,"j)' 
j=l hJ 

where h = (hi, ... , hd ) denotes the bandwidth vector, gives 
rise to elliptic neighborhoods. We will use a Gaussian kernel 
because the corresponding spectrum of I - S is less than 1. 
All kernels do not share that property ([PCML09b)). An im­
portant question is how to chose the bandwidth of smoother. 
We know that for bias reduction to be effective, we want 
to use a large bandwidth that oversmooths the responses, 
as such pilot smoothers will be heavily biased. As a gen­
eral rule, the larger the bandwidth, the more biased the pilot 
smoother will be and the more iterations of the bias reduc­
tion scheme will be required to obtain a "good" smoother. 
Otherwise, the method is generally robust to the choice of 
the bandwidth. 

The bandwidth in each component of the covariate de­
pends on its scale. It is common to first rescale the data 
before selecting the bandwidth. In our numerical experi­
ments, we found it preferable to leave the scales unchanged, 
and to select the bandwidth based on the effective degree 
of freedom (trace of the smoothing matrix) of the univariate 
smoother in each of the components, with typical values for 
the degree of freedom we ranging from 1.05 to 1.2. A fur­
ther advantage of the latter choice is that there is no explicit 
reference to sample size. 

4.1 	 Good behavior of Gaussian kernel smoothers. 

4.2 	 Failure of uniform and Epanechnikov kernel 
smoothers 

Not all kernels smoothers are well behaved under the iter­
ative bias correction scheme. In particular, we can show 
that kernel smoothers based on either the unifonn or the 
Epanechnikov kernel leads to a sequence rlLk whose noml 
diverges with the number of bias correction steps k. 

Theorem 3 Denote by M {Xj: K(dh(X j , Xi)) > O} 
the the set ofdistinctive points in the neighbors of Xi. 

If there exists a set M such that 1M I ~ 3 that cOl1lains 
pointsXj,Xk # Xi such thatd,,(Xi , X j ) < 1,dh(Xi,Xk) < 
1 and d" (Xj, X k) > 1. then the smoothing matrix S for 
the uniform kernel smoother has at least one negative eigen­
value. 

If there exits a set M such that > 3 that contains 
points X J' X k # Xi that sati::,fy 

Xj), ,Xk)},(XJ,Xk) > 

then the smoothing matrix S for the Epon('chnikol' kernel 
smoother has at least one negative eigenvalue. 

5 Real example: Los Angeles Ozone Data 

We consider the classical data set of ozone concentration in 
the Los Angeles basin which has been previously considered 
by many authors ([Bre96, BY03, BY06]). The sample size 

of the data is 11. 330 and the number of explanatory vari­
ables d := 8. We use here a multivariate Gaussian kernel and 
select each individual bandwidth in order to have the same 
degree of freedom by variable. These are chosen equal to 
1.05, 1.1, 1.2 and 1.5 in order to investigate the influence 
of such parameter. We compare our iterative bias procedure, 
freely available as an R package IBR [PCML09a], with Mars 
using R package mda, with additive models estimation using 
R package mgcv, projection pursuit regression using R func­
tion ppr and L 2 -Boosting proposed by [BY03], which we 
recall here. Multivariate L2-Boosting proposed by [BY03J 
leads to component-wise additive model 

d 

iiiboost 


k fJ·+ L 
j,,,,l 

where the component f lk ),\]) is obtained by choosing the 
univariate smoother S Aj (Xj) which leads to the best im­
provement in smoothing the residuals of previous iteration 
k-l. 

The estimate mean squared prediction error is obtain by 
randomly splitting the data into 297 training and 33 test ob­
servations and averaging 50 times over such random parti­
tions. We are in the configuration as [BY03] and repOlting 
theirs results we obtain the following table: 

Table 1: Predicted Mean Squared Error on test observations 
of ozone data for different methods. 

Method PMSE 

L2Boost with component-wise spline 17.78 
additive model (backfitted with R) 17.44 
Projection pursuit (with R) 16.89 
MARS (with R) 17.49 
iterative bias reduction with GCV stopping rule 

-­

and multivariate Gaussian kernel with 
1.05 initial DDL per variable and 297 iterations 14.85 

14.831.1 initial DDL per variable and 64 iterations 
14.861.2 initial DDL per variable and 15 iterations 

1.5 initial DDL per variable and 3 iterations 14.98 

We can see (table 1) that, as in univariate setting, the 
smoother the pilot estimator is, the better the final estimation 
is, at the cost of increasing computation time. The combi­
nation of iterated of GCV and bias corrected estimator leads 
to a diminution of more than 12% over other multivariate 
methods. 

We will also present the Boston housing data and others..> 
classical data sets during the presentation. 

6 Discllssion 

1n this paper, we make the connection between iterative bias 
correction and the L2 boosting algorithm, thereby providing 
a new interpretation for the latter. A link betwt':en bias re­
duction and boosting was suggested by [RidOOj in his discus­
sion of the seminal paper [FHTOO], and explored in [DMT04, 



for the special case of kernel smoothers. In this pa­
per, we show that this interpretation holds for general linear 
smoothen;. 

It was surprising to us that not all smoothers were suit­
able to be used for boosting. Many weak learners, such as the 
k-nearest neighbor smoother and some kernel smoothers, are 
not stable under iterated bias estimation. Our results extend 
and complement the recent results of 

the bias correction scheme until convergence is 
not desirable. Better smoothers result if one stops the iter­
ative scheme. Our simulations and application to real data 
show that our method performs well in higher dimensions, 
even for moderate sample sizes. 

As a final remark, note that one does not need to keep 
the same smoother throughout the iterative bias correcting 
scheme. We conjecture that there are advantages to using 
weaker smoothers later in the iterative scheme, and shall in­
vestigate this in a forthcoming paper. 

A Appendix 

Proof of Theorem 1 Let Vo < v and fix the smoothing pa­
rameter Ao. Define 8 8"0,Ao' The eigen decompostion of 
8 (Utreras, 1988) gives 

= ... = AMo 1 and A ~ -----,--,
) 1+ 

where Mo C~°l--;-;~_l' Let us evaluate the variance: 

V (rhk, AO, 
M2 O A

(J - + Mo 
n 

where 

2 

AMo n t [(1- (1- 1+ A~2VO/d)
J=Mo+l 

Choose I n in j Mo, ... , n, and the sum in two 
parts. Then bound the summand of the sum by one to 
get 

< 2 ""'0 2 J - M(J +(J n 0+V(1hk' n n 

As the function 1 (1 u)k ~ ku for u 1], we have 

n ( 1 )2< (J2 un + (k + 1)2 . L. 1 + Ap'/old 
n )c~JnTl 

n 

< (J 
2Jn + + 1)2 A2 . n 

j=Jn+1 . 

Bounding the sum by the integral and evaluate the latter, one 
has 

< 
n 

2 
+(k + 1)2~~_· 

n 

If we want to balance the two terms of the variance, one has 
to choose the following number of iterations K n 

For such a choice the variance is of order 

V(171k' o 

Let us evaluate the squared bias of'rhk . Recall first the 
decomposition of 8 vo ,Ao = PvoAP~o and denote by Pjpo = 
[p,~okm the coordinate of m in the eigen vector space of 
8vo ,Ao' 

1 n 


, AO) vo) - L(l

n 

j=l 

1 
(1 - A'

11 ) 
j=Mo+l 

+~ ~ (1 _ A)2k+2 2 n L...., ) p),VO 
j=jn+ 1 

If m belongs to 1-{(v) it belongs to and 1-{(vo) and we have 
the following relation 

1 n • 
n j2vo/d pJ,vo ~ M < 00. 

j=Mo+l 

and with the following bound Aj > 0, we obtain that the first 
term if bounded by say M': 

b(rnk' < M'+~ t 
n 

j=jn+ 1 

, AO) vo) < M' + 1 ~ j2v/dp2 
11 L...., ),Vo 

j=jn+l 

Using the same type of bound as in equation we get 

A(], vo) < + j;;2v/d Mil. 

Thus the bias is of order o (j;;21//d). 
Balancing the squared bias and the variance lead to the 

choice 

O(n l /(I+2v/d»I n 

and we obtain the desired rate. 

Proof of Theorem 3. Let each component hj of the vector h 
be larger than the minimum distance between three consecu­
tive points, and denote by dh(Xi , X j ) the distance between 
two vectors related to the vector chosen by the user. For ex-

if the usual Euclidean distance is used, we have 

d 2 

,XJ ) L 

1=1 

The multivariate kernel evaluated at Xi, Xj can be written 
as K (dh (X,) X j ») where K is univariate. We are interested 
in the sign of the quadratic form 'UtI<u proof of Theo­
rem ??). Recall that if K is semidefinite then all its principal 
minor are nonnegative. In particular, we can show that A 



is non-positive definite by producing a :3 x ~{ principal mi­
nor with negative determinant. To this end, take the prin­
cipal minor K[3] obtained by taking the rows and columns 

,i2 , The determinant of K[:3] is readily computed for 
the Uniform and Epanechnikov kernels. 
Uniform kernel. Choose 3 points in {Xi with index 
iI, h, i3 such that 

,Xi2 ) < 1, dh(Xi21 ) < 1, and dh(X,jlXiJ > l. 

With this choice, we readily calculate 

o Kh(O) -oj 0<0. 

Since a principal minor of K is negative, we conclude that 
K and A are not semidefinite positive. 

Epanechnikov kernel. Choose 3 points } n with in-
t=l 

dex i], i21 i", such that 

dh(Xil'Xi3 ) > min(dh(Xil'Xi2);dh(Xi2,Xi3)) 

andsetdh(Xill ) x:S:.1anddh(Xi2,Xia) y:S:l. 
Using triangular inequality, we have 

= 0.75(0.752 _ K(y)2) 

-K(x)(0.75K(x) - K(y)K(min(x, y))) 

-K(min(x, y))K(x)K(y) 0.75K(x + y)2 

The right hand side of this equation is a bivariate function of 
x and y. Numerical evaluations of that function show that 
small x and y leads to negative value of this function, that is 
the determinant of K [3] can be negative. 

Figure 3: Contour of an upper bound of det(K[3]) as a func­
tion of (x. y). 

Thus a principal minor of K is negative, and as a result, 
K and A are not semidefinite positive. 
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