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CHAPTER 2

DEVELOPMENT AND VALIDATION OF A TWO-DIMENSIONAL

FAST-RESPONSE FLOOD ESTIMATION MODEL

2.1 Introduction

On average, each year about 196 million people in more than 90 countries are
exposed to catastrophic flooding, resulting in more than 170,000 de.aths (UNDP 2004).
In the United States, flooding is the leading cause of disaster, accounting of nearly two-
thirds of all federal disasters and causing approximately $50 billion in property damage
in the 1990s (Downton et al. 2005). Tropical Storm Allison in June, 2001 was one of the
most damaging tropical storms, spanning thousands of square kilometers across Texas,
Louisiana, and Eastern United States, with losses exceeding $5 billion (Service
Assessment Report 2001). Although flood losses tend to fluctuate from year to year, there
has been an increasing trend over the past century (Pielke and Downtown 2000), which
has been attributed to both change in climate as well as population growth and
development in flood-prone regions (Pielke et al. 2002).

To mitigate the impacts of flooding, the United States instituted the National
Flood Insurance Program (NFIP) to reduce flood damage and costs associated with
disaster assistance (FEMA 2006). The program aims to accomplish this with floodplain

identification and mapping, establishing guidelines and recommendations for floodplain



management, and requiring flood insurance for property located within the identified
floodplain. Although the floodplain maps generated through the program were created
for insurance and floodplain management purposes, it has been found that these maps are
now used for many other purposes, including disaster mitigation, land-use planning, and
emergency response (NRC 2009). There are many inherent problems when using these
maps developed for flood insurance purposes for planning and emergency response, as
well as consequence assessment. First, the maps don’t exist for all locations, and the
maps that do exist may be obsolete. This is because maps have only been developed for
approximately 1 million miles of the Nations 3.5 million miles of river and coast (NRC
2009), and about 75% of the NFIP flood maps Nationwide are more than 10 years old
(FEMA, 2002) and, therefore, do not accurately represent changing hydrological and
environmental features (NRC 2009). As an example, a post-disaster study of Tropical
Storm Allison, which was estimated at near a 500-year storm event, revealed that of the
approximately 45,000 flooded buildings, only 7,000 were actually located within the 100-
year floodplain identified by NFIP flood risk maps (Sinnock 2001).

The second key limitation of using NFIP flood maps in emergency response and
disaster mitigation is that they are developed using hydraulic models that cannot
accurately represent the complex flows in floodplains and urban environments.

The most prevalent and widely used flood estimation models solve the Saint Venant or
Shallow Water equations in one-dimension (Bates and De Roo 2000). Flood inundation
is typically determined by developing cross sections perpendicular to the channel for one-
dimensional flow modeling and using either steady or unsteady modeling approaches

(Hudock 2006). The area of inundation is subsequently determined by connecting water



surface elevations at each cross section and determining the flood area by interpolation
(Bates and De Roo 2000). Although this method does a good job of hydraulically routing
the flood wave for truly one-dimensional flows, these models cannot accurately represent
the complex flows present in floodplains and urban environments (Bousmar et al. 2004).
Despite efforts to represent two-dimens&onal flow with one-dimensional methods (Ervine
and MacCleod 1999; Willems et al. 2002), it is recommended that higher-order models,
such as two-dimensional models, be used for flood inundation modeling (Knight and
Shiono 1996; Bates et al. 1998; NRC 2009).

Two-dimensional models are becoming more widely used (Beffa and Connell
2001; Bradford and Sanders 2002; Lin et al. 2003, Zhou et al. 2004) since these models
have significantly greater ability to determine flow velocity and direction, and thus
inundation area when compared to one-dimensional models (TRB 2006). Additionally,
using 2D models eliminates the need for a secondary process, such as a DEM subtraction
from a water surface, to map flood inundation (Bates and De Roo 2000). However,
without making simplifications to the governing equations, solution of the shallow water
equations can be difficult due to the presence of numerical oscillations near
discontinuities, such as near the wetting/drying front (Toro 2001). Recent success in
preventing spurious oscillations has been through the use of finite volume schemes (Beffa
and Connell 2001; Bradford and Sanders 2002; Lin et al. 2003; Zhou et al. 2004) and
finite difference methods (Fennema and Chaudhry 1990; Jin and Fread 1997; Tinsanchali
and Rattanapitikon 1999) that are total variation diminishing (TVD). One of the most
widely used methods that is TVD is the monotone upstream-centered scheme for

conservation laws (MUSCL) (Mignot et al. 2006; Liao et al. 2007).



The major limitation of two-dimensional models is that they are computationally
demanding and require considerable expertise to execute when using complex numerical
schemes (NRC 2009). Compounding the computational cost, many of the already
complex numerical models use a predictor-corrector approach to achieve accuracy
(Fennema and Chaudhry 1990; Tingsanchali and Rattanapitikon 1999; Beffa and Connel
2001; Bradford and Sanders 2002; Lin et al. 2003; Liao et al 2007). This computational
cost limits the ability of two-dimensional models to be used in fast-response flood
analyses.

To decrease computational cost, some models make simplification to the
governing equations (Bates and De Roo 2000; Bradbrook et al. 2004; Chen et al. 2005)
through the elimination of the inertial terms. While these raster-based and diffusion wave
models have advantages in terms of their ease of formulation and computational
efficiency, questions remain over their relatively simple representation of complex flow
processes due to the lack of representation of momentum transfer in complex regions
such as floodplains and urban environments (Yu and Lane 2006).

Flood modeling and simulation can greatly facilitate decision makers in flood
events provided these capabilities can be accomplished rapidly and accurately. The
National Infrastructure Simulation and Analysis Center (NISAC) is a recognized source
of expertise on issues germane to critical infrastructure protection, preparedness, and
continuity of operations. NISAC draws on the modeling, simulation, and analysis
expertise at Los Alamos and Sandia National Laboratories to systematically quantify the
potential consequences of damage to critical infrastructure from natural and manmade

disasters. These analyses help decision makers understand infrastructure protection,



mitigation, response, and recovery options. They also help decision makers prepare for
and respond to the physical, economic, and security implications to our nation if these
infrastructures are disrupted. Due to the nature of some events, modeling and simulation
results and consequence assessment must be completed within a time frame of hours to
days. In 2008, the NISAC Fast-Response Team provided more than 80 as-needed
analysis products, including quick assessment and evaluation of impacts due to flooding
in the Midwest and Hurricanes Gustav, Ike, and Holly.

To meet the objectives of fast-response flood modeling and simulation and
overcome the computational expense limitations of two-dimensional flood modeling, a
two-dimensional model has been developed using the complete shallow water equations
while using a simple, yet accurate upwind finite difference method. The model has been
validated with both laboratory and real-world case studies and shows great accuracy,
even when compared to more complex two-dimensional models. The numerical model

and validation studies are presented in the following sections.

2.2 Methodology

2.2.1 Governing Equations

The shallow water equations are developed from the Navier-Stokes equations by
integrating the horizontal momentum and continuity equations over the depth. Thus, the
shallow water equations are often referred to as the depth-averaged or depth-integrated

shallow water equations. Vreugdenhil (1994), Toro (2001), and Leveque (2002) provide



details on derivation of the equations. The non-conservative form of the equations are
shown in Equations 2.1, 2.2, and 2.3, which consist of a continuity equation and
momentum in the x and y direction, respectively.
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where £ is the water depth, H is the water surface elevation, u is the velocity in the x-
direction, v is the velocity in the y-direction, ¢ is time, g is the gravitational constant, Sg is
the friction slope in the x-direction, and Sy, is the friction slope in the y-direction. The
friction slope terms are estimated based on the Manning formula.

The shallow water equations are non-linear hyperbolic partial differential
equations, which tend to admit discontinuous solutions; therefore, numerical schemes that
are TVD must be used. Perhaps the simplest method which is TVD and will never yield
oscillatory solutions is a first-order upwind method, where stability is achieved through
numerical diffusion (Patankar 1980; Ferziger and Peric 2002). The upwind differencing
scheme uses a backward or forward differencing approximation for the convective terms
in the equations, depending on the direction of the local velocity. The following sections
describe the implementation of the shallow water equations in a flood estimation model

using an upwind finite differencing scheme.



2.2.2 Spatial Discretization

The principle dataset in two-dimensional flood modeling is topographic data,
which is readily available from the United States Geological Survey (USGS) for the
United States. Because the grid structure of USGS digital elevation model (DEM) data is
structured, this model is developed using a structured grid such that this data can be
quickly and simply ingested, eliminating the need for a secondary grid generation tool.
There are two methods used for placement of the variables (h,u,v) on a structured grid.
The first method, the colocated arrangement, places all variables at the center of the cell.
The advantage of this approach is its very straightforward implementation. The
disadvantage is that solutions on a colocated grid can give oscillatory solutions, similar to
a checkerboard (Vreugdenhil 1994; Ferziger and Peric 2002). The second method, the
staggered arrangement, does not place all variables in the same location. Fig. 2.1 shows

the variable placement for this numerical model in a staggered arrangement.
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Fig. 2.1. Staggered arrangement of shallow water equation variables.

First, the depth variable, 4, is determined through solution of the continuity
equation. Rearranging the continuity equation as shown in Equation 2.4, it can now be

solved for A.

Buih
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The discretization of the convective terms in the continuity equation is slightly
different than most upwind finite difference approaches. Because the velocity vectors are
already located at the faces of the control volume, there is no need to interpolate them to
the cell center; rather the fluxes can be computed from these faces. Equations 2.5 and 2.6

show the discretized form of the convective terms.
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In this case the variable £ is taken from the direction from the local velocity.
The momentum equation discretization follows a more traditional upwind finite

difference approach. The momentum in the x direction is shown in Equation 2.11.
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The convective terms in the equation are discretized using either a forward difference or
backward difference, depending on the direction of the local velocity, as shown in

Equations 2.12 and 2.13.

—= (2.12)
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Where v, ;is the local velocity in the y direction, taken from the average of the
surrounding cells as shown in Equation 2.14.

v, = Vij T Via,j +:i.j—l Vi, 0 (2.14)

The non-convective term representing the water surface gradient can be discretized using

a second-order accurate central difference scheme, as shown in Equation 2.15.
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The friction term, Sg, is represented using Manning’s equation, as shown in Equation

2.16
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where h,.,, is a small amount of water added to prevent the friction slope from being

overestimated as the depth of water, 4, approaches zero; n, and A, are the average



roughness and depth, respectively, at the location of the velocity vector, u, as shown in

Equations 2.17 and 2.18 below.
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The discretization of the momentum in the y direction follows the same approach
as the discretization for the momentum in the x direction. First, the momentum equation
is arranged such that the velocity, v, may be solved, as shown in Equation 2.19.
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The convective terms are evaluated at the location of the velocity vector, v, using the

upwind differencing scheme, as shown in Equations 2.20 and 2.21.
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where u, ; is the average velocity in the x direction at the location of the velocity in the y

direction, as shown in Equation 2.22.
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Again, the non-convective term representing the water surface gradient in the y
direction is discretized using a second-order accurate central difference scheme, as shown

in Equation 2.23.

H ..—H,.
aH = i,j+1 i,j-1 (223)
dy dx

The representation of the friction slope is the same as in the x direction as shown
in Equation 2.24.
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where ny and hy are the average roughness and depth at the cell location of the velocity in

the y direction, respectively, as shown in Equations 2.25 and 2.26.
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2.2.3 Time Discretization

An implicit discretization of the shallow water equations involves the

simultaneous solution of a large number of nonlinear equations. Additionally, the time



step in these methods cannot be arbitrarily large, making this method impractical (Casulli
1989). Therefore, this model uses an explicit Euler time integration method. The time
discretized form of the continuity and momentum equation are shown in Equations 2.27,

2.28, and 2.29.

ouh vk

Whl=p — +— 2.27
[3) 1] ( ax ay ij ( )

ou _ ou oH t
iy g kT e P G, 2.28
L,] L,] ( L] ax L] y g ax g ﬂl,]ji’j ( )

dv dv  oH ’
Vi =v . —|&, —+y,, —+g—+ gSfy,, 2.29
L) 1,7 ( L] ax 1,)] ay g ay g fyl,] )i,j ( )

where 7, is the time at which the variables are currently being calculated, and 7 is time at
which the variables are previously known.

This method is subject to the stability restriction imposed by the Courant-
Friedrich condition. Therefore, the time step in this model is limited as shown in

Equation 2.30.

dn
ymax

At<C (2.30)



where C is the Courant number and must be less than unity, dn is the smallest spatial

dimension for a cell in the X or y direction, and vmax is the maximum velocity.

2.2.4 Model Implementation

The above equations were used to develop a fast-response flood estimation model
implemented within Java. Java has many benefits, such as its object orientation semantics
and cross-platform portability (Moreira et al. 2000), but perhaps the biggest advantage is
the ability of Java to be included in service oriented architectures (SOA) and web-
enabled products such that it can effectively be used in decision analysis tools, facilitating
rapid synthesis of results and consequence assessment. The model architecture is shown

in Fig. 2.2 below.
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Fig. 2.2. Flood model flow chart.



2.3 Model Validation

The ability of the model to accurately estimate flood inundation is illustrated
through three validation studies. The validation studies include comparisons to
laboratory controlled experiments, as well as a real-world flood inundation event to show
the models ability to estimate flood velocities and depths over irregular topography. The
first study is a simulation of a physical experiment conducted by the Waterways
Experiment Station (WES), with a comparison of results to both the measured depths and
velocities as well as published results from a two-dimensional, second-order accurate
model. The second study compares simulation results to measured results gathered from
a laboratory physical model to show the models ability to represent unsteady conditions,
such as reflected waves. Finally, the model is used to simulate the Taum Sauk dam

failure and is compared to published high water mark data.

2.3.1 WES Experiment

Laboratory physical experiments were conducted at the Waterways Experiment
Station and depths and velocities were collected at various locations in the physidal
model (WES 1960). The physical model consisted of a 122 m and 1.22 m wide channel
with a constant bed slope of .005 and a bed roughness of .009. The channel consisted of

a dam located 61 m from the downstream end and at an elevation of 0.305 m with a slot



width of 0.122 m in the center of the channel. The dam height was 0.61 m, as was the
water surface elevation upstream of the dam.

A numerical model of the WES physical model was setup using a constant cell
size of 0.061 m. The velocity perpendicular to walls was set equal to zero, and the outlet
was modeled using a non-reflective boundary condition. The simulation results were
compared to the measured data collected, as well as modeled results taken from Bradford
and Sanders (2002) in which a two-dimensional finite volume method using Roes’s
approximate Riemann solver was used to compute the fluxes and the MUSCL scheme
and predictor-corrector time stepping is used to develop a second-order accurate solution.

The results are compared at 76.25 m, 53.375 m, and 15.25 m from the

downstream end and are shown in Fig. 2.3-2.5, respectively.

0.25 B

Depth (m)

0.1 A

0.05 T T T T T T T =
0 20 40 60 80 100 120 140 160

Time (sec)

Fig. 2.3. Simulated depths at 76.25 m from downstream end compared to WES (squares)
and Bradford and Sanders (2002) (circles).
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Fig. 2.5. Simulated depths and velocities at 15.25 m from downstream end compared to

WES (squares) and Bradford and Sanders (2002)(circles).

Overall, the simulation results compare well with both the measured data and the
model developed by Bradford and Sanders (2002). The simulated depth upstream of the
dam (Fig. 4.3) shows that the arrival of the depression wave was accurately modeled,
though underpredicted depths later in the simulation. Just downstream of the dam
breach (Fig. 4.4) simulated depths and velocities compared well throughout the entire
simulation. In fact, the velocities estimated at this point (taken as the average across the
length of the channel (Bradford and Sanders 2002)) agreed better with the measured data
than the second-order accurate model. Near the outlet (Fig. 4.5) the depths were in good

agreement with both the measured results and the second-order accurate model, though



the arrival of the flood wave was slightly late. The velocities at this location were
significantly overestimated. Bradford and Sanders (2002) reason that the measured
velocity was underestimated. The velocity was estimated by timing the movement of
particles at the surface of the water, and then multiplying this velocity by the depth
average velocity (0.8) determined under steady, uniform flow conditions. Because the
flow in this simulation is not uniform or steady, the depth average velocity is likely closer

to 1.0, and therefore, the estimated velocity is underestimated.

2.3.2 Laboratory Controlled Physical Model

A physical dam break model was built in a laboratory, similar to the model
described by Tinsanchali and Rattanapitikon (1999). The model consists of a reservoir
and a floodplain, separated by a wall with a 0.1 m slot at the centerline. A 0.5 m outlet is
located at the end of the floodplain. Plywood was used to construct the reservoir and

floodplain surfaces. Fig. 2.6 and 2.7 show a plan and profile view of the physical model.
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Fig. 2.6. Plan view of laboratory physical model
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Fig. 2.7. Profile view of laboratory physical model

A gate controls the slot between the reservoir and the floodplain. The near
instantaneous lifting of the gate and the immediate uncontrolled release of water from the
reservoir simulates the dam break. The outflow from the reservoir is measured by the
change in storage in the reservoir.

The water depths in the floodplain are measured using three In-Situ Level TROLL
500 pressure transducers, placed at distances of 0.7 m, 1.4 m, and 3.1 m from the
reservoir along the centerline. In an effort to reduce the effect of measuring the depth on
the flood wave, the sensors were placed underneath the floodplain. The manufacturer-
expected accuracy of the sensors is + .05% of maximum range (3.5 m). The sensor
accuracy was tested in a controlled laboratory exercise and it was found that, in order to
increase the accuracy for the range of depths expected in this experiment, a minimum
depth of near 2 cm on the sensor should be maintained. To accomplish this, the sensors
were lowered ~2 cm below the floodplain then filled with water to the level of the
floodplain.

The laboratory dam break was simulated for three initial heads: 25 ¢cm, 15 cm, and
10 cm. The range of heads were used to determine model performance with over a wide
range of flows. Each initial head was simulated several times to give an indication as to

the consistency of the experiment and provide a range of expected values for each sensor.



From the laboratory exercise, it is observed that the flow releases from the reservoir and
spreads out two-dimensionally over the floodplain and is in the supercritical flow regime
for a distance from the gate. Some flow comes in contact with the side walls and is
reflected back toward the center, forming a hydraulic jump. As the flow reaches the end
of the floodplain, some flow leaves via the 0.5 m outlet, while the remaining flow is
reflected back upstream and stalls near the second sensor. The speed at which the wave
moves and the depths that are obtained range based on the initial reservoir head.

Numerical representation of the physical model was completed by creating a
mesh at 0.02 m resolution consisting of approximately 36,000 cells. Consideration of
boundary conditions included walls and a free outlet. The walls were represented
numerically by forcing no-slip boundary conditions, while the free outlet boundary
condition was governed by the minimum of critical and normal depth.

Because the roughness of the plywood was not known prior to simulation,
multiple simulations were completed for each head using a range of constant roughness
values. From the simulations, it was found that a roughness value of 0.0115 yielded the
most similar results to the measured data, which is similar to published data (Sturm
2001). Fig. 2.8 below shows a snapshot of the 25 cm initial head simulation. The figure
shows the area of supercritical region directly downstream of the breach, as well as the

traveling reflected wave near the outlet.
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Fig. 2.8. Simulation of 25 cm initial head at r = 9.25 sec.

In general, the depths measured by the sensors compared well with the simulated
depths. Fig. 2.9-2.11 below shows the measured depths for the sensors (error bars
representing the range of values, maximum and minimum, obtained from the laboratory

model) and the simulated depths for an initial head of 25 cm.
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Fig. 2.9. Head measurement at sensor 1 for initial head of 25cm.

60

100

50 -

40 -

Depth (mm)
w
o

N
o
L

10

E AR B
0 T T T T T T

Average Measured Data
— Simulated Data

30 40 50 60
Time (sec)

70

Fig. 2.10. Head measurement at sensor 2 for initial head of 25cm.

80 90 100



60

----- Average Measured Data
50 - o | — Simulated Data

40

30

Depth (mm)

20 -

10

40 50 60 70 80 90 100
Time (sec)

Fig. 2.11. Head measurement at sensor 3 for initial head of 25cm.

In general, the agreement between measured and simulated depths for all sensors
is good. The results show that the model agrees best with the physical model once the
reflected waves dampen and the water begins to stabilize. In most cases, the simulated
peak depths from the reflected waves were less than measured, which is expected for an
upwind difference scheme since this method achieves stability through numerical
diffusion. The measured and simulated results at sensor 1 had the best agreement. The
initial wave depth was slightly high, but was within the measured range until the reflected
wave reached the sensor location. The simulated reflected wave arrived slightly earlier
than the measured wave, but afterwards remained within the range of measured values.

Sensor 2 had the largest difference between simulated and measured depths,

though in general the results are acceptable. As stated previously, the observed location



of the hydraulic jump is near this sensor. Simulations showed that the exact location of
the hydraulic jump was sensitive to roughness values selected, and therefore,
significantly different depths could be measured. The initial depth is slightly higher than
the range of measured values, and the reflected wave is slightly lower than the range of
measured values, but again remains within the range of measured values for th_e
remainder of the simulation.

Sensor 3 also shows good agreement. The initial wave arrives slightly later than
the measured wave, and the simulated reflected wave depth is again lower than measured
depth. Once again, when the reflected wave passes, the simulated depths are within the
range of measured depths. Comparison of the other initial heads resulted in similar
results.

The results of this validation exercise show that the model has the ability to
predict the timing and depths of the floodwave resulting from the sudden release of
water. This study also showed the models ability to simulate highly unsteady flow
conditions, as represented by the presence of both supercritical and subcritical flow,
hydraulic jumps, and reflected waves from walls, even though the simulated peak depths

from the resulting reflected waves were generally underestimated by the model.

2.2.3 Taum Sauk Dam Breach

Validation data from actual flood events are rare. While validation studies from
laboratory experiments provide valuable information in terms of model performance,

they cannot represent real-world environments with irregular topography and features.



This section describes a unique opportunity to compare model simulations of a dam
breach to a real-world dam breach.

Taum Sauk is a pump-storage hydroelectric power plant located in Reynolds
County, Missouri, with a storage capacity of near 5.7 million cubic meters. The reservoir
sits approximately 232 m above the floodplain of the East Fork Black River. On
December 14, 2005, a 207 m wide section of the reservoir failed suddenly as a result of
overfilling of the storage facility and emptied within 25 minutes. The resulting flood
wave rushed down Proffit Mountain and into Johnson’s Shut-Ins State Park, and
subsequently into the East Fork Black River and finally into a lower storage reservoir.
Within hours after the failure, field crews began collecting high water marks resulting
from the flood (USGS, 2006). While high water mark data does not provide any |
indication on flood timing, or even the depths of water spatially, they do provide the
ability to determine the models ability to estimate the flood extent which was not shown
in the previous validation studies.

The topography for this study was obtained from a USGS 10 m DEM covering
the extent of the flood event. A hydrograph was obtained from a USGS flood analysis of
the event (USGS, 2006), in which the discharge was developed from a volume analysis of
the embankment failure. The peak discharge in this study was determined to be 58,100
cubic meters per second (cms), peaking approximately six minutes after the breach.
Because the breach discharge was not explicitly measured, it is noted that the uncertainty
of the discharge hydrograph could potentially add to the uncertainty in model estimates.

The estimated discharge hydrograph is shown in Fig. 2.12 below.
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Fig. 2.12. Taum Sauk breach hydrograph (from USGS 2006).

Under flood conditions (e.g. dam break), areas inundated are not typical of
floodplain areas, and distributed roughness values are not typically known. Therefore, it
is common practice to use a constant roughness value to represent the roughness over the
entire flooded area (Lia et al. 2007; Begnudelli and Sanders 2007). Through as series of
simulations, it was determined that a roughness of 0.035 represented the Taum Sauk
failure closest. Fig. 2.13 shows the simulated flood peak (taken as the maximum value
obtained at any location at any time) along with the high water mark data. Note that the
comparison between the high water mark and simulated data is limited in this study to
locations upstream of the lower reservoir. This is due to the lack of data to accurately
model the lower reservoir water levels, as well as the inability of the DEM to represent

the downstream control structures.
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Fig. 2.13. Taum Sauk simulated and observed flooded area.

As Figure 2.11 shows, the simulated results compare well with the measured high
water mark data, with an exception near the formation of the breach. This location
experienced extensive erosion, or sediment transport, resulting in changes in the local
topography. This model does not include sediment transport, thus it does not simulate the

change in channel location.



Two metrics are used to determine how well the simulated data fits the high water
mark data. First a measure of fit, shown in Equation 2.35, is used to give an overall

assessment on how the two datasets relate.

A(S mod(M Sobs)

Fir=1-
A(S mod\UJ Sobs)

(100) (2.35)

where Spoa and Seps are the inundation extents of the modeled and observed data,
respectively. While Equation 2.35 gives an indication of the overall difference between
the two datasets, it does not indicate any overestimation or underestimation. To
accomplish this, a second metric is used. A statistical comparison between the two
datasets can be made by rasterizing the two datasets with a cell size equal to the DEM
and creating an error matrix. The error matrix consists of a comparison of flooded areas,
assigned a value of 1, and non-flooded areas, assigned a value of 0. Using the error
matrix shown in Table 2.1, errors of commission (overestimation) and errors of omission

(underestimation) may be calculated, as shown in Equations 2.36 and 2.37 below.

Table 2.1. Taum Sauk flooded area error matrix.
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Commission Difference = (l - % )100 (2.36)

Omission Difference = (l - % )100 (2.37)

where P, is the number of common flooded cells, P; is the total number of modeled wet
cells, and P, is the total number of observed wet cells. Table 2.2 shows the results using

both metrics, and Fig. 2.14 visualizes the error matrix results.

Table 2.2 Taum Sauk Flooded Area Statistical Comparison Results

Metric Percentage

Fit 76.3

Commission Error 16.6
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Fig. 2.14. Taum Sauk flooded area error matrix visualization.

As observed previously, the majority of the underestimation is near the formation

of the breach. At the same location, there is some overestimation as a result of the



model’s inability to represent the sediment transport. The majority of the error located
near the state park is an overestimation on the north end. Overall, the model agreed well
with the observed high water mark data.

Since the non-conservative and a finite difference formulation of the equations are
used, it is important to check the models ability to conserve mass. Unlike the previous
two validation studies, this validation study represents a closed system simulation,
meaning that all flow entering the system specified by the hydrograph should remain in
the system, a check can be made on mass conservation of the numerical model. Mass

conservation for the Taum Sauk simulation is shown in Figure 2.13 below.
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Figure 2.13 Mass conservation check of the Taum Sauk dam breach simulation



The figure shows both the mass that enters the domain specified by the
hydrograph and the mass that is computed by the model throughout the simulation.
Clearly from the results the numerical model is adequately conserving mass, with a

maximum error of .15%.

2.3 Conclusions

A finite difference formulation of the shallow water equations using an upwind
differencing method was developed maintaining computational efficiency and accuracy
such that it can be used as a fast-response flood estimation tool. The model was validated
using both laboratory controlled experiments and an actual dam breach. Through the
laboratory experiments, the model was shown to give good estimations of depth and
velocity when compared to the measured data, as well as when compared to a more
complex two-dimensional model. Additionally, the model was compared to high water
mark data obtained from the failure of the Taum Sauk dam. The simulated inundation
extent agreed well with the observed extent, with the most notable differences resulting

from the inability to model sediment transport. The results of these validation studies



show that a relatively simple numerical scheme used to solve the complete shallow water
equations can be used to accurately estimate flood inundation.

Future work will focus on further reducing the computation time needed to
provide flood inundation estimates for fast-response analyses. This will be accomplished
through the efficient use of multi-core, multi-processor computers coupled with an
efficient domain-tracking algorithm, as well as an understanding of the impacts of grid
resolution on model results.
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