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Abstract—The Cellular Potts Model (CPM) has been widely
used for biological simulations. However, most current imple-
mentations are either sequential or approximated, which can’t
be used for large scale complex 3D simulation. In this paper
we present a hybrid parallel framework for CPM simulations.
The time-consuming PDE solving, cell division, and cell reaction
operation are distributed to clusters using the Message Passing
Interface (MPI). The Monte Carlo lattice update is parallelized
on shared-memory SMP system using OpenMP. Because the
Monte Carlo lattice update is much faster than the PDE solving
and SMP systems are more and more common, this hybrid
approach achieves good performance and high accuracy at the
same time. Based on the parallel Cellular Potts Model, we
studies the avascular tumor growth using a multiscale model.
The application and performance analysis show that the hybrid
parallel framework is quite efficient. The hybrid parallel CPM
can be used for the large scale simulation (~ 108 sites) of complex
collective behavior of numerous cells (~ 10°).

I. INTRODUCTION

The Cellular Potts Model (CPM) [1] is a simple and flexible
framework for cell-oriented models of development. It has
been used for modeling many morphogenesis processes, in-
cluding cell sorting [2], tumor growth [3], vascularization [4],
angiogenesis [5], limb growth [6] and slime mold development
[7]. The underlying of the CPM is a three-dimensional rect-
angular lattice. Every site of the lattice has a value (formally
ID), and the sites with the same ID form a cell, which thus
has a volume and shape. In this approach, cells are deformable
and can interact with each other through the cell boundaries.
The cells can have Type and State as part of their properties.
The cell-cell interactions are described through an effective
total energy (formally Hamiltonian), which typically include
a cell-type dependent surface adhesion energy and a volume
energy:

H = (Z)JT(G{),T(Gj)[—(s(Ui7Uj)]
i,j
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where J.(;,) r(s;) is the adhesive energy between ID o;’s
cell type and ID o;’s cell type. Auorume and Agyrface are
the volume elasticity and membrane elasticity respectively.
In general, the second and third terms make the cells grow
to their target size gradually. The classic CPM employs a
modified Metropolis Monte Carlo algorithm [8] to evolve the

system. In the Metropolis algorithm, a random lattice site is
chosen, and the ID of this site is updated to be one of the other
IDs. Let AH be the change of energy due to this update, the
Metropolis-Boltzmann probability for accepting such update
is:

AH <O

AH >0 @

1
- { exp(—AH/T)

Since the underlying structure of the CPM is a lattice, and
the typical discretization scale is several microns per lattice
site, a realistic biological tissue level simulation means a large
lattice requiring large memory and computing resources. In the
case of tumor growth modeling (III-A), the simulation domain
consists of up to 400? lattice sites, and we need to simulate
the tumor growth for more than 30 days. For such simulations,
parallelization becomes a necessity.

Domain decomposition is widely used in parallelization
for lattice based models. The existing domain-decomposition
methods usually decompose a large domain into a number of
smaller subdomains, each is designated to a separate physical
processor. In addition to the local subdomain information, each
processor also has to maintain some data (ghost zones) from its
neighbouring subdomains. After one calculation step, the data
in the ghost zone are updated, so each processors have current
information for its neighboring subdomains. For most lattice
based models (such as Cellular Autonoma), domain decom-
position method is efficient in parallelization. But because the
CPM has a two layer structure (section II-A and Fig. 1), and
the Monte Carlo operation (section II-D) in the CPM needs
the consistency of the information on cell properties, e.g. cell
volume, the parallelization of Monte Carlo lattice update in
distributed-memory computing system is difficult in order to
achieve accuracy and performance at the same time.

The basis of the CPM, the Potts model, is effectively a
generalized Ising model, which has been the example system
of parallelization implementation. Barkema et al. [9] found
that to reproduce the results obtained from the sequential
algorithm, the number of interprocess synchronizations during
one Monte Carlo step (MCS) should be statistically equal to
Ng, where N is the number of sites located on the border of
adjacent subdomains. They also presented a “smart” algorithm
that reduces the synchronization number to /2N, /7 in two-
dimensions (2D). According to this estimate, for a 4007 lattice,
the processes have to synchronize tens of thousands of times



each MCS, which would severely limit the parallel perfor-
mance in the distributed memory environment. To reduce
the number of synchronizations, a few methods have been
proposed to exchange some accuracy for parallel efficiency.
Wright et al. [10] used a “checkerboard” strategy to parallelize
the Potts Model. In their approach, each subdomain is divided
into four subgrids (in 2D, and eight in 3D) colored with
different colors using the same schema. During the “subgrid”
step, the processors work on subgrids of one color, and
other subgrids are left intact. After each “subgrid” step, the
processors are synchronized. Next, the processors work on
subgrids of another color. The “checkerboard” approach goes
through lattice sites differently than the sequential algorithm.
The parallel algorithm does not pick sites randomly, even
within a subdomain within a processor [10]. Chen et al. [11]
followed the “checkerboard” approach to parallel the Cellular
Potts Model, and they analyzed the relationship between the
subgrid switching frequency, the accuracy, and the efficiency.
Cercato et al. [12] developed a parallel algorithm for the CPM
based on a Random Walker (RW) approach [13]. All of these
approximation algorithm sacrifice some degree of accuracy for
efficiency. The full analysis of Monte Carlo lattice update is
presented in section II-D.

The development of domain decomposition methods is
closely related to the progress of high performance computing.
Because the symmetric multiprocessing (SMP) clusters are
becoming increasingly common in the top computer systems,
it has become desirable for the domain decomposition methods
to take advantage of the memory architecture of modern
distributed computing systems. An important property of a
good parallel domain decomposition method is that it can
integrate with both the scientific problem and the underlying
computing system architecture. The Message Passing Interface
(MPI) [14] is a de facto computer communications standard
for communication among the nodes running a parallel pro-
gram on a distributed memory system. Since MPI has been
implemented for almost every distributed memory architecture
and each implementation is optimized for the hardware on
which it runs, MPI is portable and efficient. OpenMP [15] is
another well-known application programming interface (API)
which supports multi-platform, shared-memory, multiprocess-
ing programming in C/C++ and Fortran on many architectures.
It consists of a set of compiler directives, library routines,
and environment variables that influence run-time behavior.
To achieve both high efficiency and high accuracy, we adopt
a hybrid approach, where the time-consuming PDE solving,
cell division, and cell death operation are distributed to the
SMP cluster, the inter-nodes communication is fast and trivial.
Since the parallelization of Monte Carlo lattice update , the
Monte Carlo lattice update is parallelized on shared-memory
system, through OpenMP. Because the Monte Carlo lattice
update is relatively fast than PDE solving, the OpenMP based
parallelization is a good balance between performance and
accuracy. Section II-A briefly describes the CPM. Section II
discusses the parallelization of various CPM operations, in-
cluding the Monte Carlo lattice update, the advection-diffusion

partial differential equation, cell division, and cell death. Why
the hybrid approach is essential and advantageous is also
analyzed there. The accuracy, performance and productivity
of the parallel CPM is demonstrated in section III through a
tumor growth problem.

II. HYBRID PARALLEL FRAMEWORK
A. Cellular Potts Model

The underlying of the CPM is a three-dimensional lattice.
A “cell” o is a simply-connected domain of lattice sites with
the same ID number o, which could represent a biological cell
or a generalized domain entity, such as extracellular matrix.
Cell attributes include the cell type (tumor vs. endothelial),
cell state (proliferating vs. dead), center of mass, volume,
target volume, etc.. The hierarchical structure of the CPM is
illustrated in Fig. 1.

Underlying Lattice Layer

Fig. 1. The hierarchical structure of the Cellular Potts Model

B. Domain Decomposition Method (DDM)

Domain decomposition method generally refers to the split-
ting of problem into coupled problems on smaller subdomains,
which are partitions of the original domain. From section
II-A, we see a classic CPM is composed of two layers.
The underlying is a regular rectangular lattice, each site in
the lattice contains a number identifying which cell this site
belonged to. In the computer implementation of the model,
the sites in the lattice would be represented by one array,
whose indexes correspond to a structure of locations in the
lattice. The top layer is not a lattice, but a collection of
different cells. If every site interacts with every other site,
it is generally hard to divide the computing tasks into a set of
parallel procssors. Fortunately, all the operations in the CPM
have their local effective region. This means that to apply one
specific operation o to the system (at the site S) from the
time ¢ to the time ¢t + At, we need only the information of
the values at time ¢ in the limited surroundings of S. In this
paper, this set of information is defined as the knowledge zone
of site S regarding operation o. In PCPM, different operations
have different kinds of knowledge zones, they are detailed



in section II-D. A natural way to address the parallelization
in the CPM is the domain decomposition method: we divide
the physical domain into several subdomains (one for each
processor); each processor can then model the subsystem,
storing only the data associated with the subdomain, and
exchanging knowledge zone with the processors responsible
for the neighboring subdomains. In PCPM, the data need to
be exchanged may include the underlying sites’ ID numbers
and the cell information associated with these IDs.

#2

#1
PEsc S e s s
T R e e e T S
#2 #4

Fig. 2. The different communication patterns in 1D- decomposition and 2D-
decomposition. In 1D- decomposition, every ghost zone is continuous. In 2D-
decomposition, either ghost zone #1 and #3 or ghost zone #2 and #4 are
non-continuous

We choose a 1D-decomposition scheme in PCPM, based
on two considerations. First, the communication overhead will
influence the performance of PCPM. In a 2D-decomposition in
2D domain, as illustrated in figure 2, each subdomain has four
ghost zones, numbered #1 to #4 respectively. Among those
four ghost zones, there are two are memory-discontinuous.
In MPI, though discrete scatter and gather is possible, the
performance of continuous send and receive is much better
than discrete scatter and gather. So the memory recomposition
is necessary before every neighbour communication. If we
use 1D-decomposition, the ghost memory is a continuous
bulk, we do not need to recomposite memory before every
communication. Second, the CPM is composed of two layers
(section II-A). In the 2D- or 3D- decomposition, synchronize
two layers between different subdomains and implement all the
CPM operations (section II-D) accurately are very difficult,
if not impossible. Especially because of the complexity of
operations in the CPM, complex communication patterns will
decrease the performance of the parallel code. The parallel
implement of these operations is detailed in section II-D, the
difficulties in implementing these operations acurately in 2D-
or 3D- decomposition are also discussed there.

C. Ghost zones

The width of ghost zone is related to the communication
data size, and to the performance of parallel programs. In
general, the narrower the ghost zone, the better the perfor-
mance. To facilitate the analysis of required ghost zone width,
we introduced the concept of Safe Cell Width (SCW). Every
cell in the CPM has a target volume. Most cells do not have
a spherical shape. Safe Cell Width (SCW) is a width large

enough such that every cell, regardless of its shape, can be
contained into a SCW?3 cube. In the parallel CPM, the width

of ghost zone is set to be SCW. A typical value of SCW
may be twice the target radius (y/ mmgi——i’ﬂ'ﬁ). If some

Fig. 3. The local subdomain and ghost zone of domain decomposition
method. The width of the ghost zone is set to be Safe Cell Width (SCW).

subdomain ~+’s local area (dark area in Fig. 3) contains a site
whose ID number is o, the process responsible for subdomain
v is guaranteed to have all the information of cell ¢. That
is, there is enough information for the parallel operations
presented in section II-D.

D. Parallel Cellular Potts Model

A CPM-based simulation is usually composed of several
steps or operations. In the case of tumor growth modeling,
the operations include the Monte Carlo lattice update, the
equation solving, cell growth, division, and cell death. Based
on these operations’ intrinsic properties, they are parallelized
using the shared memory method or the distributed memory
method accordingly.

1) Monte Carlo lattice update: As stated in section I, the
change of effective energy AFE is related to cells’ current
volume. And if the update is accepted, cells’ current volume
should also be updated. In the domain decomposition method,
the hierarchical structure of the CPM posed a latent perfor-
mance drawback. As illustrated in Fig. 4, there is a cell o
on the boundary of two subdomains. In one specific Monte
Carlo operation, both of the subdomain I and subdomain
II have o’s lattice information and cell attributes (such as
current volume) (Fig. 4 a). Process I chose a trial site (marked
dark), and calculate the system energy change AFE using
equation 1, the probability that this change be accepted is
formulized by equation 2 (Fig. 4 b). If process I accepted
the change, cell ¢’s information can be updated to process
I easily (Fig. 4 c). Meanwhile, since process II may need
the newest information of cell o to employ Monte Carlo
operations in subdomain II, this newest information should
also be transfered to process II immediately. Technically, it is
almost impossible to implement this immediate update in MPI-
1. And the new MPI-2 [16] standard provides some support
for Remote Memory Access (RMA). The implementation of
one-side remote memory access (such as remote read/write)
becomes easier (Fig. 4 d). But the performance issue still exist.
Similar to the common update operation, there are lock/unlock



operations associated with every remote memory update. For
every cells on the boundary, every successful site trial will
induce an expensive remote update. As a result, there will be
a lot of short messages among different processes, and the
performance of the system will decrease significantly.

subdomain I subdomain II subdomain I subdomain IT
process I process II process II
€)) (b)

subdomain I subdomain II subdomain I subdomain II
(Direct (Remote
Memory Memory
Access) Access)

pdate process II process I upda

process I (© (d) process II

Fig. 4. Monte Carlo operation

To avoid these expensive remote memory access, we
adopted OpenMP for Monte Carlo operation. OpenMP is a
parallel approach for shared-memory SMPs. The computation
task is shared by different processes, but the lattice data
and cells’ attributes are stored in shared memory which can
be direct accessed by all the processes. The lock/unlock
of memory accesses are handled in hardware level. In this
approach, before the Monte Carlo lattice update, the mas-
ter node will gather subdomain lattice information and cell
information from slave nodes. Then, the master SMP node
employ Monte Carlo operations parallelly using OpenMP.
Upen accomplishment, master nodel will scatter subdomain
data to corresponding slave nodes for next operation (Fig. 5).

2) Solving the diffusion equations: In the CPM, both tissue
physiology and morphogenesis depend on diffusion of chemi-
cal morphogens in extra-cellular fluid or matrix (ECM). These
natural phenomena can be represented by a general diffusion

equation:

ac :
E—DV C+a 3)

where C is the concentration of chemical, D is the diffusion
coefficient, and a is the production or absorption rate (as
local source or sink). This equation can be solved using a
simple explicit method [17], which is easy to implement and
is independent of the boundary condition. But to reduce the
error, the duration of each Monte Carlo step must be short
(in the order of seconds). This kind of explicit approach is
suitable for short time simulation. To accelerate long time
simulation (e.g. in the order of several months for a tumor

MPI based 5
data transfering , Slave Node 1
Local data 7
Loe - ’ / SNSS—
OpenMP based | oot idind = Lo
parallelization | rase
v Lo e SRS
Master Node Slave Node 2

Fae by et
Slave Node 3

Fig. 5. OpenMP based parallelization in Monte Carlo operation

growth problem), implicit schemes are a better choice for
solving the diffusion equation. In the parallel implementation
of the CPM, from the content of the underlying lattice and
cells’ information, we can get the corresponding chemical
lattices (e.g. chemical concentration, metabolic rate). Since
each particular chemical lattice is monolayer, this diffusion
equation can be solved parallelly using domain decomposition
method togethered with either implicit scheme or explicit
scheme (Fig. 6).

L il L z

Underlying lattice Chemical lattice

process | process I1

= > Solved by domain decomposition method,

implicit or explicit

B

pmcc;s 1 process 1V

Fig. 6. Parallel solving of diffusion equation

3) Cell Division: Division is an important stage of cell
evolution. In the CPM, division involves updates in both
the underlying lattice layer and the top information layer. In
the division operation, the volume of parental cell is exactly
the same as the total volume of daughter cells (Fig. 7). In
the PCPM, each cell has an attribute called off-lattice (float
value) Center of Mass (CM). If the CM of a particular cell
o belonged to subdomain v (exclude the ghost zone), we
define that cell o belonged to subdomain +. It is easy to prove
that every cell belongs to one and only one subdomain. For
the division operation, if cell o belongs to subdomain +, the
division of cell o will be computed by the process who is
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Fig. 7. Cell division in the Cellular Potts Model

responsible to subdomain ~ (Fig. 8). If cell ¢’s information
(lattice information & cell information) is required to transfer
to neighbour processes, the sites’ information is copied to a
buffer zone in the format of quadruple structure. The first
three elements of the quadruple structure are the X, Y, and
Z coordinates of the site, and the fourth element is the
ID number o of the site. This strategy is state-of-the-art in
avoiding inter-subdomain data inconsistency (Fig. 8). If we
use the ordinary row updates rather than this quadruple update
scheme, different processes will modify the same site and
introduce data inconsistency (Fig. 8 d).

- Send buffer
J (XLY1Z1.Spin1)
(X2.Y2.22.5pin2)

- Send buffer

o il o | (x5.Y525.5pins)
- u, 1 J [X6.Y6.26.Spin6)
q e . 8 J: P
(2) SubStep | (Befose Division) (b) SubStep 2 (Each process has
computed its own cells)
Buffer - Buffer
’

-4 iXI.\'I].l,SmeX
(X2.Y2.22.Spin2]

Send bufles
[XS.Y5.25.SpinS]
[X6.Y6.26,Spin6]

I

(c) SubStep 3 (After MP communication) If ordinary row update rather than

(d) quadruple update is adopted (wrong resull)

Fig. 8.
strategy

Parallel implementation of division operation and quadruple update

Upon division, the new daughter cells will be assigned new
ID number. In the CPM, the ID number for each cell should
be unique. To avoid the ID number conflict, the algorithm
presented in Fig. 9 is applied when assigning new ID number.

For any ID number (S,) assigned by rank =, S, =
r(modN). Let S; be the set of all the ID numbers assigned
by rank 7, S; be the set of all the ID numbers assigned by

Step 1:Let N be the number of processes. Let 7 be the
rank of current process in the communication
group (r = 0,1,...,N —1). Let S, be the
ID number will be assigned to newest cell. Set
Sn=T,

Step 2:f there is any new-born cell, the ID number for
the new-born cell is set to be S,.

Step 3:Set S, = S, + N, go to step 2.

Fig. 9. The ID assigning algorithm used in cell division operation

rank j. It’s easy to prove that:

For any i # j,

By adopting this ID assigning algorithm, each process can
assign its own ID numbers without any confliction and com-
munication with other processes.

4) Cell Death: In the CPM, cell death may involve lattice
update and cell information update, and unlike Monte Carlo
operation, it does not need to maintain an immediate data
consistent between neighbour processes. Therefore we can
apply the same method applied to cell division to cell death
operation. Every processor is responsible for its own cells,
and inter-subdomain communications use the quadruple format
(section II-D3 and Fig. 8).

5) Exception Handling: Since the width of ghost zone is
closely related with performance, we cannot set the width of
ghost zone (also SCW) to a large value. And because cells may
have all kinds of shapes, no one can guarantee that every cell
can be contained into a SCW? cube. Though the probability
that produce these abnormal shapes (e.g., very slender) is very
low, we still need to consider the exceptions. To handle these

@ b

Fig. 10. The sites whose distance from Center of Mass are bigger than Safe
Cell Width (SCW) are treated as medium. These outlaying sites are deleted
during cell division

rare events, we assume that for a normal cell, the distances
from the sites to the Center of Mass should not be more than
SCW. In our implementation, there is a sphere, whose radius
is SCW and center is the Center of Mass of the cell. Any sites
outside this sphere are abnormal sites and treated as exception
in the implementation. Fig. 10 gives an example of how these
exceptions are handled. Cell o has its Center of Mass in



subdomain I, so according to section II-D3, the division of
cell o will be calculated by process 1. The SCW is equal to
3 lattice sites (Fig. 10 a). If cell o is very long, in process I,
the top sites and bottom sites are marked as abnormal sites
(Fig. 10 b). The division is conducted in normal area, and
cell o is divided into two daughter cells (cell o; and 02).
Abnormal sites are deleted from lattice (converted to medium
ID), and new cell information is updated to process II (Fig. 10
c). At last, the exception is handled and both processes have
the correct new cell information (Fig. 10 d).

III. APPLICATION, VALIDATION AND ANALYSIS
A. Avascular Tumor Growth

The cellular Potts model is very suitable for studying the
principles of collective behavior of cells, i.e. phenomena which
can not be explained at the single cell level but is arised a:
the result of the interactions of a population of cells. Witl
the hybrid parallelized cellular Potts model (section II), we¢
can simulate larger scale physical systems using much les:
time. Here we show as an example, we use the hybrid paralle
approach to simulate the avascular tumor growth.

Typically, tumor growth is divided into three stages: avas
cular tumor growth, angiogenesis, and vascular tumor growth
In the avascular stage, the tumor develops in the absence o:
blood supply (hence the name). All the nutrients are suppliec
by diffusion from surrounding tissues. Since these tumor cell
can not acquire sufficient nutrients to ensure uncontrollec
multiplication, the tumor undergo a quasi-exponential growtt
phase followed by a saturation phase [18]. The avascular
tumors typically grow into a size about 1 to 2 mm.

The tumor growth is not the result of a single cell growth,
but the result of the interactions of a population of cells.
To model the tumor growth naturally, we need to take into
account the subcellular cell cycle, the internal protein reg-
ulatory network, the intercellular repulsion, the cell growth,
and the reaction-diffusion of chemicals (e.g. oxygen, nutrients,
and etc.). The intrinsic multiscale properties of tumor growth
demand a multiscale model. Following the multiscale model
proposed by [3], and using our hybrid parallelization of CPM,
we model the the growth dynamics of the EMT6/Ro mouse
mammary tumor spheroid [19], [20].

For each cell o, the cell type 7(o) refers to the proliferating
status of the cell. It can be proliferating, quiescent, necrotic,
or medium. To solve the reaction-diffusion equations presented
in section II-D2, a full implicit scheme is adopted. The
discretization of PDEs is presented below.

% =V-(DVC) +5§
Sett=Ck — DV2Cjy1 + S

Cret1Ck = DLCk41 + 8 (%)
(I - AtDL)Cryq1 = Cr + SAL

ACri1 =0

oCc _

44l

where £ is the matrix corresponding to the discrete Laplace
operator. After discretization on the structured rectangular
grids, these equations are solved using the parallel BoxMG

solver (Parallel Black Box Multigrid solver for 3D Symmetric
Problems) [21].

We use a simplified Boolean network to model the regula-
tion of cell cycle from GI to S phase transition. The expres-
sions of these proteins are controlled by the concentrations of
growth factor and growth inhibitor factor. Volume checkpoints
are placed at the end of every phase. If the cell has not
grown proportional to the time it has lived in the cell cycle, it
will become quiescent because of stress. Detailed information
about the simulation conditions and settings can be found in
[3].

1) Results: We use the hybrid parallelized approach to sim-
ulate the avascular tumor growth for 40 days. The simulated
layered morphology of avascular tumor spheroids at the 18th
day is illustrated in Fig. 11. Because of the spherical symmetry

" o ** "™ gpherical shape and 2D

-400 -200 200 400 600

x(g m)
(a) 3D

(b) Cross-section

Fig. 11. The simulated layered morphology of avascular tumor spheroids at
the 18th day.

The saturation is got on about the 30th day. According
to the simulation, the saturation is achieved when there isn’t
any proliferating cells left. This may not be the only way of
saturation. Another possible situation is when the cell division
rate balances the shedding rate. We fit the simulation data
to the Gompertz function, y = aexp(—bexp(—cz)), and the
adjuncted R? is 0.9848.

The oxygen and nutrient supply as well as the accumulation
of wastes and growth inhibitor factor in avascular tumor
spheroids may greatly influence the cell reaction both in vitro
and in vivo. Hence, the quantitative knowledge of chemical
profiles may help the understanding of avascular tumor growth.
A few investigations have studied the distribution of Oy, H*
ions or nutrients in multicellular tumor spheroids. Figure 13
illustrates the O profiles produced by our simulation. They fit
other experimental measurement [22] and theoretical analysis
[23] quite well.

B. Performance analysis

To evaluate the performance of the hybrid parallelization
approach, we collected the communication traffic of the paral-
lel avascular tumor growth simulation. The computation was
run on a SMP cluster that is composed of 4 computational
nodes connected with 1Gb Ethernet. Each node has quad
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Fig. 12. Number of tumor cells as a function of simulation steps. At the end
of simulation, there isn’t any proliferating cells left, hence the saturation.

g
g
g
g

0.09 1 L

0.08

0.07

0.06

0.05 -

0.04

0, Concentration (mM)

0.03

0.02 4

0.01

-1000 -500 o 500 1000
Distance from the the center (um)

Fig. 13.  Profiles of Oz produced by our model at different time steps. d
indicates days, arrows indicates the boundary between the tumor spheroids
and the diffusion-depleted zones.

Xeon 2.4GHz processors, 8GB physical memory and RHEL
operating system installed. In the application, eight processes
are initialized into the four nodes. The lattice size is 4002,
and the system contains around 10° cells. The communication
traffic of the master node and the one of the slave node are
illustrated in Fig. 14 and Fig. 15 respectively. Here, data of
three sub-steps in the step 218 (see Fig. 12) are presented. In
the simulation, each sub-step costs about 90 seconds.

As presented in section II-D, each sub-step is composed of
several operations, the time line of which is illustrated in Fig.
14 and Fig. 15. In the time interval 1, the Monte Carlo lattice
update (see section II-D1) is processed. In the time interval 2,
necessary data for chemical equation solving are initialized.
The actual advection-diffusion equation solving (see section
II-D2) is conducted in the time interval 3. The time interval 4
is for data scattering, cell reacting, and cell division. At last,
the data gathering is conducted in the time interval 5. The
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Fig. 14. The communication traffic of the master node.
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Fig. 15. The communication traffic of the slave node.

equation solving step consumes almost 2/5 of the computation
time, and the Monte Carlo lattice update is relatively fast even
if it’s only computed in the master node. Actually, this property
holds for most CPM simulations. Because in the Monte Carlo
lattice update, most operations are integer addtion, subtraction
and comparison. And the equation solving is much more
complex and CPU-intensive. This inherent property confirms
the advantage of the hybrid approach further.

To demonstrate the capability of the hybrid parallel ap-
proach, we have also tested a “uncontrolled” case, in which
cells can grow and divide without limit. In the “uncontrolled”
case, the lattice size is 500% and the final number of cells
exceed 105, Our system can handle them effectively, which
once more proved the ability of the hybrid approach for
handling large scale systems.

IV. CONCLUSION

In this paper, we have presented a hybrid parallelization
method for cellular Potts model. In this hybrid approach, the
time-consuming PDE solving, cell division, and cell reaction



operation are distributed to clusters. The Monte Carlo lattice
update is parallelized on shared-memory SMP system using
OpenMP. Because the Monte Carlo lattice update is much
faster than the PDE solving and SMP systems are more and
more common, this hybrid approach achieves good perfor-
mance and high accuracy at the same time.

Based on the parallel CPM, we have studied the avascular
tumor growth using a multiscale model and compared the
chemical profiles with other experiments and theoretical stud-
ies. We have also measured the interprocess communication
traffic, and the performance analysis confirmed that CPM
applications are very suitable for hybrid parallelization. The
hybrid parallel framework can be used for efficient paralleliza-
tion of large scale CPM applications.
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