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Abstract-The Cellular Potts Model (CPM) has been widely 
used for biological simulations. However, most current imple­
mentations are either sequential or approximated, which can't 
be used for large scale complex 30 simulation. In this paper 
we present a hybrid parallel framework for CPM simulations. 
The time-consuming POE solving, cell division, and cell reaction 
operation are distributed to clusters using the Message Passing 
Interface (MPI). The Monte Carlo lattice update is parallelized 
on shared-memory SMP system using OpenMP. Because the 
Monte Carlo lattice update is much faster than the POE solving 
and SMP systems are more and more common, this hybrid 
approach achieves good performance and high accuracy at the 
same time. Based on the parallel Cellular Potts · Model, we 
studies the avascular tumor growth using a multiscale model. 
The application and performance analysis show that the hybrid 
parallel framework is quite efficient. The hybrid parallel CPM 
can be used for the large scale simulation ("" 108 sites) of complex 
collective behavior of numerous cells ("" 106). 

I. INTRODUCTION 

The Cellular Potts Model (CPM) [1] is a simple and flexible 
framework for cell-oriented models of development. It has 
been used for modeling many morphogenesis processes, in­
cluding cell sorting [2], tumor growth [3], vascularization [4], 
angiogenesis [5], limb growth [6] and slime mold development 
[7]. The underlying of the CPM is a three-dimensional rect­
angular lattice. Every site of the lattice has a value (formally 
ID), and the sites with the same ID form a cell, which thus 
has a volume and shape. In this approach, cells are deformable 
and can interact with each other through the cell boundaries. 
The cells can have Type and State as part of their properties. 
The cell-cell interactions are described through an effective 
total energy (formally Hamiltonian), which typically include 
a cell-type dependent surface adhesion energy and a volume 
energy: 

1t 	 2: J T (O'i ) ,T(O'j )[-8(O'i, O'j)] 
(i ,j) 

+Avolume 2:[V(O') - V'target(O')]2 (1) 
0' 

+Asur!ace 2:[5(0') - 5target(0')j2 
0' 

where JT(O';) ,T(O' j) is the adhesive energy between ID O'/s 

cell type and ID O'/s cell type. Avolume and Asur!ace are 
the volume elasticity and membrane elasticity respectively. 
In general, the second and third terms make the cells grow 
to their target size gradually. The classic CPM employs a 

system. In the Metropolis algorithm, a random lattice site is 
chosen, and the ID of this site is updated to be one of the other 
IDs. Let t.1t be the change of energy due to this update, the 
Metropolis-Boltzmann probability for accepting such update 
is: 

t.H ::; 0 
(2)p = { !xp(-t.H/T) t.H > 0 

Since the underlying structure of the CPM is a lattice, and 
the typical discretization scale is several microns per lattice 
site, a realistic biological tissue level simulation means a large 
lattice requiring large memory and computing resources. In the 
case of tumor growth modeling (Ill-A), the simulation domain 
consists of up to 4003 lattice sites, and we need to simulate 
the tumor growth for more than 30 days. For such simulations, 
parallelization becomes a necessity. 

Domain decomposition is widely used in parallelization 
for lattice based models. The existing domain-decomposition 
methods usually decompose a large domain into a number of 
smaller subdomains, each is designated to a separate physical 
processor. In addition to the local subdomain information, each 
processor also has to maintain some data (ghost zones) from its 
neighbouring subdomains. After one calculation step, the data 
in the ghost zone are updated, so each processors have current 
information for its neighboring subdomains. For most lattice 
based models (such as Cellular Autonoma), domain decom­
position method is efficient in parallelization. But because the 
CPM has a two layer structure (section II-A and Fig. 1), and 
the Monte Carlo operation (section II-D) in the CPM needs 
the consistency of the information on cell properties, e.g. cell 
volume, the parallelization of Monte Carlo lattice update in 
distributed-memory computing system is difficult in order to 
achieve accuracy and performance at the same time. 

The basis of the CPM, the Potts model, is effectively a 
generalized Ising model, which has been the example system 
of parallelization implementation. Barkema et al. [9] found 
that to reproduce the results obtained from the sequential 
algorithm, the number of interprocess synchronizations during 
one Monte Carlo step (MCS) should be statistically equal to 
Ns, where Ns is the number of sites located on the border of 
adjacent subdomains. They also presented a "smart" algorithm 
that reduces the synchronization number to J2Ns /1r in two­
dimensions (2D). According to this estimate, for a 4003 lattice, 

modified Metropolis Monte Carlo algorithm [8] to evolve the the processes have to synchronize tens of thousands of times 



each MCS, which would severely limit the parallel perfor­
mance in the distributed memory environment. To reduce 
the number of synchronizations, a few methods have been 
proposed to exchange some accuracy for parallel efficiency. 
Wright et al. [10] used a "checkerboard" strategy to parallelize 
the Potts Model. In their approach, each subdomain is divided 
into four subgrids (in 2D, and eight in 3D) colored with 
different colors using the same schema. During the "subgrid" 
step, the processors work on subgrids of one color, and 
other subgrids are left intact. After each "subgrid" step, the 
processors are synchronized. Next, the processors work on 
subgrids of another color. The "checkerboard" approach goes 
through lattice sites differently than the sequential algorithm. 
The parallel algorithm does not pick sites randomly, even 
within a subdomain within a processor [10]. Chen et al. [11] 
followed the "checkerboard" approach to parallel the Cellular 
Potts Model, and they analyzed the relationship between the 
subgrid switching frequency, the accuracy, and the efficiency. 
Cercato et al. [12] developed a parallel algorithm for the CPM 
based on a Random Walker (RW) approach [13]. All of these 
approximation algorithm sacrifice some degree of accuracy for 
efficiency. The full analysis of Monte Carlo lattice update is 
presented in section II-D. 

The development of domain decomposition methods is 
closely related to the progress of high performance computing. 
Because the symmetric mUltiprocessing (SMP) clusters are 
becoming increasingly common in the top computer systems, 
it has become desirable for the domain decomposition methods 
to take advantage of the memory architecture of modern 
distributed computing systems. An important property of a 
good parallel domain decomposition method is that it can 
integrate with both the scientific problem and the underlying 
computing system architecture. The Message Passing Interface 
(MPI) [14] is a de facto computer communications standard 
for communication among the nodes running a parallel pro­
gram on a distributed memory system. Since MPI has been 
implemented for almost every distributed memory architecture 
and each implementation is optimized for the hardware on 
which it runs, MPI is portable and efficient. OpenMP [IS] is 
another well-known application programming interface (API) 
which supports multi-platform, shared-memory, multiprocess­
ing programming in C/C++ and Fortran on many architectures. 
It consists of a set of compiler directives, library routines, 
and environment variables that influence run-time behavior. 
To achieve both high efficiency and high accuracy, we adopt 
a hybrid approach, where the time-consuming PDE solving, 
cell division, and cell death operation are distributed to the 
SMP cluster, the inter-nodes communication is fast and trivial. 
Since the parallelization of Monte Carlo lattice update , the 
Monte Carlo lattice update is parallelized on shared-memory 
system, through OpenMP. Because the Monte Carlo lattice 
update is relatively fast than PDE solving, the OpenMP based 
parallelization is a good balance between performance and 
accuracy. Section II-A briefly describes the CPM. Section II 
discusses the parallelization of various CPM operations, in­
cluding the Monte Carlo lattice update, the advection-diffusion 

partial differential equation, cell division, and cell death. Why 
the hybrid approach is essential and advantageous is also 
analyzed there. The accuracy, performance and productivity 
of the parallel CPM is demonstrated in section III through a 
tumor growth problem. 

II . HYBRID PARALLEL FRAMEWORK 

A. 	 Cellular Potts Model 

The underlying of the CPM is a three-dimensional lattice. 
A "cell" (7 is a simply-connected domain of lattice sites with 
the same ID number (7, which could represent a biological cell 
or a generalized domain entity, such as extracellular matrix. 
Cell attributes include the cell type (tumor vs. endothelial), 
cell state (proliferating vs. dead), center of mass, volume, 
target volume, etc .. The hierarchical structure of the CPM is 
illustrated in Fig. 1. 

Underlying Lattice Layer 

Fig. I. The hierarchical structure of the Cellular Potts Model 

B. Domain Decomposition Method (DDM) 

Domain decomposition method generally refers to the split­
ting of problem into coupled problems on smaller subdomains, 
which are partitions of the original domain. From section 
II-A, we see a classic CPM is composed of two layers. 
The underlying is a regular rectangular lattice, each site in 
the lattice contains a number identifying which cell this site 
belonged to. In the computer implementation of the model, 
the sites in the lattice would be represented by one array, 
whose indexes correspond to a structure of locations in the 
lattice. The top layer is not a lattice, but a collection of 
different cells. If every site interacts with every other site, 
it is generally hard to divide the computing tasks into a set of 
parallel procssors. Fortunately, all the operations in the CPM 
have their local effective region. This means that to apply one 
specific operation 0 to the system (at the site S) from the 
time t to the time t + 6 t, we need only the information of 
the values at time t in the limited surroundings of S. In this 
paper, this set of information is defined as the knowledge zone 
of site S regarding operation o. In PCPM, different operations 
have different kinds of knowledge zones, they are detailed 



in section II-D. A natural way to address the parallelization 
in the CPM is the domain decomposition method: we divide 
the physical domain into several subdomains (one for each 
processor); each processor can then model the subsystem, 
storing only the data associated with the subdomain, and 
exchanging knowledge zone with the processors responsible 
for the neighboring subdomains. In PCPM, the data need to 
be exchanged may include the underlying sites' ID numbers 
and the cell information associated with these IDs. 

#1 

# 

#2 

Fig. 2. The different communication patterns in ID- decomposition and 2D­
decomposition. In I D- decomposition, every ghost zone is continuous. In 2D­
decomposition, either ghost zone #1 and #3 or ghost zone #2 and #4 are 
non-continuous 

We choose a ID-decomposition scheme in PCPM, based 
on two considerations. First, the communication overhead will 
influence the performance of PCPM. In a 2D-decomposition in 
2D domain, as illustrated in figure 2, each subdomain has four 
ghost zones, numbered #1 to #4 respectively. Among those 
four ghost zones, there are two are memory-discontinuous. 
In MPI, though discrete scatter and gather is possible, the 
performance of continuous send and receive is much better 
than discrete scatter and gather. So the memory recomposition 
is necessary before every neighbour communication. If we 
use ID-decomposition, the ghost memory is a continuous 
bulk, we do not need to recomposite memory before every 
communication. Second, the CPM is composed of two layers 
(section II-A). In the 2D- or 3D- decomposition, synchronize 
two layers between different subdomains and implement all the 
CPM operations (section II-D) accurately are very difficult, 
if not impossible. Especially because of the complexity of 
operations in the CPM, complex communication patterns will 
decrease the performance of the parallel code. The parallel 
implement of these operations is detailed in section II-D, the 
difficulties in implementing these operations acurately in 2D­
or 3D- decomposition are also discussed there. 

C. Ghost zones 

The width of ghost zone is related to the communication 
data size, and to the performance of parallel programs. In 
general, the narrower the ghost zone, the better the perfor­
mance. To facilitate the analysis of required ghost zone width, 
we introduced the concept of Safe Cell Width (SCW). Every 
cell in the CPM has a target volume. Most cells do not have 
a spherical shape. Safe Cell Width (SCW) is a width large 

enough such that every cell, regardless of its shape, can be 
contained into a SCW3 cube. In the parallel CPM, the width 
of ghost zone is set to be SCW. A tical value of SCW 

may be twice the target radius (\ 3x ( targ:~volume ) . If some 

Fig. 3. The local subdomain and ghost zone of domain decomposition 
method. The width of the ghost zone is set to be Safe Cell Width (SCW). 

subdomain ')" s local area (dark area in Fig. 3) contains a site 
whose ill number is (7, the process responsible for subdomain 
')' is guaranteed to have all the information of cell (7. That 
is, there is enough information for the parallel operations 
presented in section II-D. 

D. Parallel Cellular Potts Model 

A CPM-based simulation is usually composed of several 
steps or operations. In the case of tumor growth modeling, 
the operations include the Monte Carlo lattice update, the 
equation solving, cell growth, division, and cell death. Based 
on these operations' intrinsic properties, they are parallelized 
using the shared memory method or the distributed memory 
method accordingly. 

1) Monte Carlo lattice update: As stated in section I, the 
change of effective energy 6.E is related to cells' current 
volume. And if the update is accepted, cells' current volume 
should also be updated. In the domain decomposition method, 
the hierarchical structure of the CPM posed a latent perfor­
mance drawback. As illustrated in Fig. 4, there is a cell (7 

on the boundary of two subdomains. In one specific Monte 
Carlo operation, both of the subdomain I and subdomain 
II have (7'S lattice information and cell attributes (such as 
current volume) (Fig. 4 a). Process I chose a trial site (marked 
dark), and calculate the system energy change 6.E using 
equation 1, the probability that this change be accepted is 
formulized by equation 2 (Fig. 4 b). If process I accepted 
the change, cell (7'S information can be updated to process 
I easily (Fig. 4 c). Meanwhile, since process II may need 
the newest information of cell (7 to employ Monte Carlo 
operations in subdomain II, this newest information should 
also be transfered to process II immediately. Technically, it is 
almost impossible to implement this immediate update in MPI­
1. And the new MPI-2 [16] standard provides some support 
for Remote Memory Access (RMA). The implementation of 
one-side remote memory access (such as remote read/write) 
becomes easier (Fig. 4 d). But the performance issue still exist. 
Similar to the common update operation, there are lock/unlock 



operations associated with every remote memory update. For 
every cells on the boundary, every successful site trial will 
induce an expensive remote update. As a result, there will be 
a lot of short messages among different processes, and the 
performance of the system will decrease significantly. 

subdomaln I subdomain n subdomain I subdomain II 

(a) (b) 

process II 

(e) 

(Remote 

process I 

(d) 

Fig. 4 . Monte Carlo operation 

To avoid these expensive remote memory access, we 
adopted OpenMP for Monte Carlo operation. OpenMP is a 
parallel approach for shared-memory SMPs. The computation 
task is shared by different processes, but the lattice data 
and cells' attributes are stored in shared memory which can 
be direct accessed by all the processes. The lock/unlock 
of memory accesses are handled in hardware level. In this 
approach, before the Monte Carlo lattice update, the mas­
ter node will gather subdomain lattice information and cell 
information from slave nodes. Then, the master SMP node 
employ Monte Carlo operations parallelly using OpenMP. 
Upen accomplishment, master nodel will scatter subdomain 
data to corresponding slave nodes for next operation (Fig. 5). 

2) Solving the diffusion equations: In the CPM, both tissue 
physiology and morphogenesis depend on diffusion of chemi­
cal morphogens in extra-cellular fluid or matrix (ECM). These 
natural phenomena can be represented by a general diffusion 
equation: 

&C = D\l2C +a (3)
&t 

where C is the concentration of chemical, D is the diffusion 
coefficient, and a is the production or absorption rate (as 
local source or sink). This equation can be solved using a 
simple explicit method [17], which is easy to implement and 
is independent of the boundary condition. But to reduce the 
error, the duration of each Monte Carlo step must be short 
(in the order of seconds). This kind of explicit approach is 
suitable for short time simulation. To accelerate long time 
simulation (e.g. in the order of several months for a tumor 
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Fig. 5. OpenMP based parallelization in Monte Carlo operation 

growth problem), implicit schemes are a better choice for 
solving the diffusion equation. In the parallel implementation 
of the CPM, from the content of the underlying lattice and 
cells' information, we can get the corresponding chemical 
lattices (e.g. chemical concentration, metabolic rate). Since 
each particular chemical lattice is monolayer, this diffusion 
equation can be solved parallelly using domain decomposition 
method togethered with either implicit scheme or explicit 
scheme (Fig. 6). 

--r - , - -, - ~ - 7' 

I I I I 

Underlying lattice Chemical lattice 

Solved by domain decomposition method. 

implicit or c"plici l 

Fig. 6. Parallel solving of diffusion equation 

3) Cell Division: Division is an important stage of cell 
evolution. In the CPM, division involves updates in both 
the underlying lattice layer and the top information layer. In 
the division operation, the volume of parental cell is exactly 
the same as the total volume of daughter cells (Fig. 7). In 
the PCPM, each cell has an attribute called off-lattice (float 
value) Center of Mass (CM). If the CM of a particular cell 
(j belonged to subdomain , (exclude the ghost zone), we 
define that cell (j belonged to subdomain f. It is easy to prove 
that every cell belongs to one and only one subdomain. For 
the division operation, if cell (j belongs to subdomain " the 
division of cell (j will be computed by the process who is 
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Fig. 7. Cell division in the Cellular Potts Model 

responsible to subdomain I (Fig. 8). If cell a's information 
(lattice information & cell information) is required to transfer 
to neighbour processes, the sites' information is copied to a 
buffer zone in the format of quadruple structure. The first 
three elements of the quadruple structure are the X, Y, and 
Z coordinates of the site, and the fourth element is the 
ID number a of the site. This strategy is state-of-the-art in 
avoiding inter-subdomain data inconsistency (Fig. 8). If we 
use the ordinary row updates rather than this quadruple update 
scheme, different processes will modify the same site and 
introduce data inconsistency (Fig. 8 d). 
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Fig. 8. Parallel implementation of division operation and quadruple update 
strategy 

Upon division, the new daughter cells will be assigned new 
ID number. In the CPM, the ID number for each cell should 
be unique. To avoid the ID number conflict, the algorithm 
presented in Fig. 9 is applied when assigning new ID number. 

For any ID number (Sr) assigned by rank r, Sr == 
r(modN) . Let Si be the set of all the ID numbers assigned 
by rank i, Sj be the set of all the ID numbers assigned by 

Step 1:Let N be the number of processes. Let r be the 
rank of current process in the communication 
group (r = 0, 1, ... , N - 1). Let Sr be the 
ID number will be assigned to newest cell. Set 
Sr = r. 

Step 2:If there is any new-born cell, the ID number for 
the new-born cell is set to be Sr. 

Step 3:Set Sr = Sr + N, go to step 2. 

Fig. 9. The ID assigning algorithm used in cell division operation 

rank j. It's easy to prove that: 

Fo r a n y i =1= j, (4)
Si nSj = 0 

By adopting this ID assigning algorithm, each process can 
assign its own ID numbers without any confliction and com­
munication with other processes. 

4) Cell Death: In the CPM, cell death may involve lattice 
update and cell information update, and unlike Monte Carlo 
operation, it does not need to maintain an immediate data 
consistent between neighbour processes_ Therefore we can 
apply the same method applied to cell division to cell death 
operation. Every processor is responsible for its own cells, 
and inter-subdomain communications use the quadruple format 
(section II-D3 and Fig. 8). 

5) Exception Handling: Since the width of ghost zone is 
closely related with performance, we cannot set the width of 
ghost zone (also SCW) to a large value_And because cells may 
have all kinds of shapes, no one can guarantee that every cell 
can be contained into a SCW3 cube. Though the probability 
that produce these abnormal shapes (e.g_, very slender) is very 
low, we still need to consider the exceptions. To handle these 
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Fig. 10. The sites whose distance from Center of Mass are bigger than Safe 
Cell Width (SeW) are treated as medium. These outlay ing sites are deleted 
during cell division 

rare events, we assume that for a normal cell, the distances 
from the sites to the Center of Mass should not be more than 
SCW. In our implementation, there is a sphere, whose radius 
is SCW and center is the Center of Mass of the cell. Any sites 
outside this sphere are abnormal sites and treated as exception 
in the implementation. Fig. 10 gives an example of how these 
exceptions are handled. Cell a has its Center of Mass in 



subdomain I, so according to section II-D3, the division of 
cell (j will be calculated by process I. The SCW is equal to 
3 lattice sites (Fig. lOa). If cell (j is very long, in process I, 
the top sites and bottom sites are marked as abnormal sites 
(Fig. 10 b). The division is conducted in normal area, and 
cell (j is divided into two daughter cells (cell (jl and (j2). 

Abnormal sites are deleted from lattice (converted to medium 
ID), and new cell information is updated to process II (Fig. 10 
c). At last, the exception is handled and both processes have 
the correct new cell information (Fig. 10 d). 

III. ApPLICATION, VALIDATION AND ANALYSIS 

A. Avascular Tumor Growth 

The cellular Potts model is very suitable for studying the 
principles of collective behavior of cells, i.e. phenomena which 
can not be explained at the single cell level but is arised a: 
the result of the interactions of a population of cells. Witt 
the hybrid parallelized cellular Potts model (section II), W( 

can simulate larger scale physical systems using much les: 
time. Here we show as an example, we use the hybrid paralle 
approach to simulate the avascular tumor growth. 

Typically, tumor growth is divided into three stages: avas 
cular tumor growth, angiogenesis, and vascular tumor growth 
In the avascular stage, the tumor develops in the absence 0: 

blood supply (hence the name). All the nutrients are supplie( 
by diffusion from surrounding tissues. Since these tumor cell: 
can not acquire sufficient nutrients to ensure uncontrolle( 
multiplication, the tumor undergo a quasi-exponential growtt 
phase followed by a saturation phase [18]. The avascular 
tumors typically grow into a size about I to 2 mm. 

The tumor growth is not the result of a single cell growth, 
but the result of the interactions of a population of cells. 
To model the tumor growth naturally, we need to take into 
account the subcellular cell cycle, the internal protein reg­
ulatory network, the intercellular repulsion, the cell growth, 
and the reaction-diffusion of chemicals (e.g. oxygen, nutrients, 
and etc.). The intrinsic multiscale properties of tumor growth 
demand a multiscale model. Following the multi scale model 
proposed by [3], and using our hybrid parallelization of CPM, 
we model the the growth dynamics of the EMT61R0 mouse 
mammary tumor spheroid [19], [20]. 

For each cell (j, the cell type T ((j) refers to the proliferating 
status of the cell. It can be proliferating, quiescent, necrotic, 
or medium. To solve the reaction-diffusion equations presented 
in section II-D2, a full implicit scheme is adopted. The 
discretization of PDEs is presented below. 

{)~ = "V . (D"VC) + S 
8k ±l-Ck - Dt:72C + S=> t:..t - v k+l 
C k ± l-

C
k - D"C + S (5)=> t:..t - L., k+l 

=> (J - b.tDC)Ck+l = Ck + Sb.t 
=> ACk+l = b 

where C is the matrix corresponding to the discrete Laplace 
operator. After discretization on the structured rectangular 
grids, these equations are solved using the parallel BoxMG 

solver (Parallel Black Box Multigrid solver for 3D Symmetric 
Problems) [21]. 

We use a simplified Boolean network to model the regula­
tion of cell cycle from G I to S phase transition. The expres­
sions of these proteins are controlled by the concentrations of 
growth factor and growth inhibitor factor. Volume checkpoints 
are placed at the end of every phase. If the cell has not 
grown proportional to the time it has lived in the cell cycle, it 
will become quiescent because of stress. Detailed information 
about the simulation conditions and settings can be found in 
[3]. 

1) Results: We use the hybrid parallelized approach to sim­
ulate the avascular tumor growth for 40 days. The simulated 
layered morphology of avascular tumor spheroids at the 18th 
day is illustrated in Fig. II. Because of the spherical symmetry 

","" spherical shape and 2D 

600' -400 -200 0 200 400 ~ 
X(.m) 

(a) 3D (b) Cross-section 

Fig. I I. The simulated layered morphology of avascular tumor spheroids at 
the 18th day. 

The saturation is got on about the 30th day. According 
to the simulation, the saturation is achieved when there isn't 
any proliferating cells left. This may not be the only way of 
saturation. Another possible situation is when the cell division 
rate balances the shedding rate. We fit the simulation data 
to the Gompertz function, y = a exp( -b exp( -ex)) , and the 
adjuncted R2 is 0.9848. 

The oxygen and nutrient supply as well as the accumulation 
of wastes and growth inhibitor factor in avascular tumor 
spheroids may greatly influence the cell reaction both in vitro 
and in vivo. Hence, the quantitative knowledge of chemical 
profiles may help the understanding of avascular tumor growth. 
A few investigations have studied the distribution of O2 , H+ 
ions or nutrients in multicellular tumor spheroids. Figure 13 
illustrates the O2 profiles produced by our simulation. They fit 
other experimental measurement [22] and theoretical analysis 
[23] quite well. 

B. Performance analysis 

To evaluate the performance of the hybrid parallelization 
approach, we collected the communication traffic of the paral­
lel avascular tumor growth simulation. The computation was 
run on a SMP cluster that is composed of 4 computational 
nodes connected with I Gb Ethernet. Each node has quad 
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Xeon 2.4GHz processors, 8GB physical memory and RHEL 
operating system installed. In the application, eight processes 
are initialized into the four nodes. The lattice size is 4003 , 

and the system contains around 105 cells. The communication 
traffic of the master node and the one of the slave node are 
illustrated in Fig. 14 and Fig. 15 respectively. Here, data of 
three sub-steps in the step 218 (see Fig. 12) are presented. In 
the simulation, each sub-step costs about 90 seconds. 

As presented in section II-D, each sub-step is composed of 
several operations, the time line of which is illustrated in Fig. 
14 and Fig. 15. In the time interval 1, the Monte Carlo lattice 
update (see section II-D 1) is processed. In the time interval 2, 
necessary data for chemical equation solving are initialized. 
The actual advection-diffusion equation solving (see section 
U-D2) is conducted in the time interval 3. The time interval 4 
is for data scattering, cell reacting, and cell division. At last, 
the data gathering is conducted in the time intervalS . The 
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equation solving step consumes almost 2/5 of the computation 
time, and the Monte Carlo lattice update is relatively fast even 
if it's only computed in the master node. Actually, this property 
holds for most CPM simulations. Because in the Monte Carlo 
lattice update, most operations are integer addtion, subtraction 
and comparison. And the equation solving is much more 
complex and CPU-intensive. This inherent property confirms 
the advantage of the hybrid approach further. 

To demonstrate the capability of the hybrid parallel ap­
proach, we have also tested a "uncontrolled" case, in which 
cells can grow and divide without limit. In the "uncontrolled" 
case, the lattice size is 5003 and the final number of cells 
exceed 106 . Our system can handle them effectively, which 
once more proved the ability of the hybrid approach for 
handling large scale systems. 

IV. CONCLUSION 

In this paper, we have presented a hybrid parallelization 
method for cellular Potts model. In this hybrid approach, the 
time-consuming PDE solving, cell division , and cell reaction 



operation are distributed to clusters. The Monte Carlo lattice 
update is parallelized on shared-memory SMP system using 
OpenMP. Because the Monte Carlo lattice update is much 
faster than the PDE solving and SMP systems are more and 
more common, this hybrid approach achieves good perfor­
mance and high accuracy at the same time. 

Based on the parallel CPM, we have studied the avascular 
tumor growth using a multiscale model and compared the 
chemical profiles with other experiments and theoretical stud­
ies. We have also measured the interprocess communication 
traffic, and the performance analysis confirmed that CPM 
applications are very suitable for hybrid parallelization. The 
hybrid parallel framework can be used for efficient paralleliza­
tion of large scale CPM applications. 
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