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Abstract—Several scenarios exist in the modern inter-
connected world which call for efficient network in-
terdiction algorithms. Applications are varied, including
computer network security, prevention of spreading of In-
ternet worms, policing international smuggling networks,
controlling spread of diseases and optimizing the operation
of large public energy grids. In this paper we consider some
natural network optimization questions related to the bud-
get constrained interdiction problem over general graphs.
Many of these questions turn out to be computationally
hard to tackle. We present a particularly interesting prac-
tical form of the interdiction question which we show to be
computationally tractable. A polynomial time algorithm is
then presented for this problem.

1. INTRODUCTION

In today’s inter-connected world, it is often necessary
to maintain open communication and transportation net-
works. However in the interest of fair use, it is also
important to keep these networks safe and prevent abuse,
and to achieve this in the most non-intrusive manner
possible. This has to be done using minimal additional
infrastructure in a robust as well as distributed manner,
and in addition has to meet budget constraints for the
the cost of installation and operation.

Examples of scenarios which require such interdiction,
include policing drug and nuclear smuggling networks,
computer network security applications where firewalls
need to be setup to control the spread of Internet worms
as well as future smart energy grids where dynamic load
balancing will be crucial. Applications also include quar-
antine planning for controlling the spread of diseases.

A formal model for this practical problem is a network
interdiction model, where interdiction is performed along
the edges or on the nodes of a graph which represents the
communication or transportation network in sufficient
detail. In this paper, without loss of generality we will
be considering an edge interdiction model on a directed
network graph. Throughout the paper, whenever a con-
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crete example is called for, we will use a representative
transportation network used by smugglers. It should
be noted that this serves only as an example and our
approach is in fact quite general.

On various edges € on the network graph, let us model
the probability of a smuggler evading detection from
the surveillance equipment installed on that edge by a
parameter called the edge evasion probability, m,. The
detection probability 6, is naturally related to the evasion
probability as 6, = 1 — 71,. In most natural cases, the
evasion probabilities on various edges can be modeled
to be statistically independent, which means that on any
path p on the network, the effective evasion probability
Ttp is given by the product, 71, = [ee, 7Te. It should be
noted that statistical independence is perhaps not always
a good assumption to make, for example when various
enforcement devices/agencies are in constant communi-
cation, it invariably induces some inter-dependencies in
their decision making.

The interdiction problem is not new. ln fact, several
researchers have in the past considered interdiction in
various forms [2], [3], [7], [8]. However many of these
formulations are known to be computationally intractable
for even modestly sized networks [6]. Some of the
suggested solution methods involve some form of integer
linear programming which is usually computationally
costly. Cutting plane methods and sub-optimal linear
programming relaxations have also been proposed in the
literature.

A common-cbjective in interdiction problems is to
determine an optimal allocation of budgets for instal-
lation of interdiction apparatus on individual edges such
that the effective evasion probability is minimized while
simultaneously satisfying some total budget constraints.
In the next section, we give a formal definition of the
budget constrained network interdiction problem.


mailto:fpan@lanl.gov
mailto:nsanthi@lanl.gov

III. A POLYNOMIAL TIME ALGORITHM FOR
BC-SE-INT

Algorithm 1 Budget Constrained Single Edge Interdic-
tion Algorithm (BC-SE-INT-ALGO)

INPUT:

A network graph G(V,€) to be interdicted
along with the local functions f. for all

e € £, a total budget B and a tolerance
value ¢ > 0.
STEPS:

1. set !+ 1 and 7%« 0.
Augment the original network graph
to obtain a new graph G¢'(V,£') in the
following way:
Create a new node § and connect it
to all nodes 5; € & with new directed
edges ¢q,,). Similarly, create a new
node d and connect it to all nodes
di € D with new directed edges ey ).
All newly created edges ¢ are marked
non-interdictable, that is fl(x) — o
for x € [0,1).

2. while (n'—7%>¢) do {
3. Set m« Az,
4. for all e€ &', compute b, = f7Yn').
5. Solve the linear program:
Minimize, Y,ceb,-x. subject to,
xe 2 (yi — Yj)i xe 2. (Y — ¥i)
ys=1, ya=0; 0<yuxe<1
Let B’ be the minimum attained.
Let £ 2C% {e:x, =1}.
6. if (B'>B) set % — ',
7. else if (B’ < B) set #l 7.
8. }
9. Set m«— mt.

For all e€(C, set b, « b, and for all e¢€
ENC, set b, 0.
OUTPUT:
The solution 71 and an associated set of
edge budgets {b.:e€ £}

In order to derive an algorithm for BC-SE-INT, we will
assume that the local functions are efficiently invertible
- that is, f,"}(-) can be computed in polynomial-time.
There is no loss in generality due to this assumption,
since in virtually all practical scenarios this is true
- moreover in the event of there being no analytical
form for the inverse function, a table look-up based
approach can be easily implemented. A pseudo-code for
the proposed algorithm BC-SE-INT-ALGO is listed as

Algorithm 1.

IV. CORRECTNESS AND COMPLEXITY OF
BC-SE-INT-ALGO

To seec that the algorithm BC-SE-INT-ALGO produces
the correct result to an accuracy of better that an additive
factor of €, we can note the following. Since SND = @,
any (s, d)—path should contain at least one interdictable
edge. Moreover, since the local functions are monotonic
non-decreasing, an increased local budget will not in-
crease the edge’s evasion probability.

Now the linear program in step 5 is well known to
have an integral polyhedra, so that at the solution, x, €
{0,1}. This can be easily seen considering the following
probabilistic argument: If ¥; is a fractional point in the
solution, let us use the following randomized procedure
- generate a uniform random variable «, then set y; — 0
if 7; < u and set y; < 1 otherwise. Now,

E (Z b, - xe)
ect

) b Pr(ue [min{y;, 5}, max{y;y;}])
e={1,j)
= Y b lgi-yl=)b %=F
e~ (i) €

Therefore step 5 finds a minimum budget interdiction
cut on the original network graph such that on any
(s.d)—path, at least one edge has evasion probability
less that 71". Moreover the interdiction cut cannot involve
any of the fictitious non-interdictable edges introduced
in step 1. Furthermore, the monotonous property of the
local functions f, implies that an optimal interdiction
cut resulting in a higher budget B’, cannot have a higher
evasion probability 71’. Therefore each iteration of the
loop from step 2 to step 8 reduces the search region for
7t by half at either of the steps 6 or 7, while satisfying
the budget constraint and will therefore terminate with
the correct solution in O(log1/¢€) iterations.

To estimate the complexity of BC-SE-INT-ALGO, for
a precision as required by the constant €, the loop
from step 2 to step 8 is executed O(log1l/e) times,
which is again a constant. We can further improve
the algorithm by substituting for the linear program in
step 5 any well known algorithm for max-flow, since
max-flow and min-cut are related by linear program-
ming duality [1]. Each iteration of this loop requires
a polynomial amount of time, which depends on the
(s — d)—min-cut algorithm employed. Using an efficient
max-flow algorithm as in [5], which has a complex-
ity of O(|V| - [€| + |V[*log|V]), each iteration takes

B <



1. BUDGET CONSTRAINED SINGLE EDGE
INTERDICTION

In this section we consider a few most commonly en-
countered versions of the network interdiction problem.
We then derive an algorithm which solves a practically
important form of the interdiction problem in time poly-
nomial in the size of the problem description.

Definition 1 (BC-INT, BC-AV-INT, BC-SE-INT)
Instance: A directed network graph G(V,£E); a set of
efficiently computable monotonic non-increasing local
budget-evasion-probability functions fe : R — [0,1]
associated with each directed edge e € E; two non-empty
subsets of V, the source nodes S and the destination
nodes D, such that S N'D = @; and a total interdiction
budget B.

Question 1 (BC-INT): Find a budget assignment to
each edge, b, which satisfies the total budget constraint
Yece be < B, and minimizes,

max I_I

€ P(SD j
) e € € Plsay
Question 2 (BC-AV-INT): Find a budget assignment to
each edge, b, which satisfies the total budget constraint
Y. ce be < B, and minimizes,

def o
- 1 Z wp %s,d) H

Pioa) € P(S.D) ¢ € Ploa)
Question 3 (BC-SE-INT): Find a budget assignment to

each edge, b, which satisfies the total budget constraint
Yece be < B, and minimizes,

def

fey(Be)

def
TMaAX = ;
Pisa

TAv

ft’;(h?,)

min
€ € Plsay

~ max fe;(be;)
Plsay € P(SD)

where P(S,D) is the set of all directed paths p{ sd)

from some node in 8 to some node in D, w ; are

{(s.4)
positive weights associated with these paths such that

i w; =1, and e represents a directed edge in
Plsay  Plsa A
the directed path p’( o)’

In the above definition, the local budget-evasion-
probability functions f(-) can be roughly interpreted as
follows: given a local arc budget of b, for arc e, we can
achieve an evasion probability of f.(b.) at that arc. Very
often in practice, the local functions f, could be made
to subsume other more complex characteristics on the
network too.

For example, if in a network with a single source and
destination, there are already in place other interdiction
apparatus, which ensures evasion probabilities less than
1 on certain edges. Then, we may wish to calculate the
residual evasion probability before installing any new
apparatus by first running a Dijkstra type shortest path
algorithm. Let each edge ¢ = (i, j) have a prior evasion
probability of &.. Also let us assume for example that by
installing N, apparatus of unit cost, the post-installation
edge evasion probability can be reduced to &, - ,55"’.
Then we may wish to set as a first order approximation,
fe(Ne) = ae - Be* Tlyep(s 2o, - Tleyep(ia) ey Here,
p(s,i) is the shortest path from source node s to node
i when the edges ¢’ are labeled with non-negative edge
weights of (—loga, ). Similarly p(j,d) is the shortest
path from node j to the destination node d.

All the three forms of interdiction problems can
be seen to be practically relevant in various contexts.
However, even for the simplest local functions f,, the
problems posed in questions 1 and 2 above are known
to be NP-complete even to approximate within a constant
factor, by a polynomial time reduction from the relatively
well known VERTEX-COVER and CLIQUE problems {4].
For a simple proof of this reduction, see {¢].

In this paper therefore, we will focus solely on ques-
tion 3. Since the local functions f, can be heavily non-
linear, it is not immediately clear that the problem in
question 3 more often than not admits a polynomial
time solution. We present one such solution in the next
section.

One may justify posing question 3 in favor of the
other two versions in many situations. In problems where
non-zero evasion probabilities have to be avoided at all
costs (for example in the case of nuclear smuggling),
interdiction apparatus at edge e can be reasonably mod-
eled as requiring a cost of b, to ensure 7, = 0. In
this case, solving question 3 is equivalent to solving
question 1, whereas question 2 is perhaps not practically
relevant (since it is the worst case evasion probability that
matters, not the average case). In many other instances,
it is usually the case that the evasion probability that can
be achieved is so small that a solution for question 3 is
practically very close to that of question 1. Moreover, the
availability of an efficient algorithm is clearly a factor to
be considered. Typical solutions to interdiction problems
would otherwise rely on the solution of cumbersome
integer-linear-programs, which are often computationally
intractable even for medium scale networks.



O(r|€] + O(V| - |€] + [V[Plog|V])) time, where r
denotes the time required for computing the inverse
function f,71(+) to the required precision.

V. CONCLUSION

We considered the important practical problem of
budget constrained interdiction. We posed an optimiza-
tion problem which is very relevant for several prac-
tical scenarios, with the additional property of being
computationally tractable. This is unlike other common
variations of interdiction related problem which are
typically computationally hard. We derived an algorithm
which finds an optimal solution (up to any given small
constant) to the problem we posed. Simulation results
using an implementation of our algorithm were very
promising - large networks which were typically not
amenable to brute force integer programming approaches
have yielded meaningful solutions while using up only
reasonable computation times,

Problems of future interest include scenarios where
simultaneous optimization is required over several cost
functions and under multiple budget constraints. Also of
interest are networks where multiple commodities are
transacted. Further improvements in running time are of
definite interest, as are faster approximation algorithms
for use with extremely large networks. Algorithms which
adapt to dynamic changes in evasion probabilities as
well as models which consider statistical dependence and
other stochastic variables are also of interest.
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