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Abstract-Several scenarios exist in the modern inter­
connected world which call for efficient network in­
terdiction algorithms. Applications are varied, including 
computer network security, prevention of spreading of In­
ternet worms, policing international smuggling networks, 
controlling spread of diseases and optimizing the operation 
of large public energy grids. In this paper we consider some 
natural network optimization questions related to the bud­
get constrained interdiction problem over general graphs. 
Many of these questions turn out to be computationally 
hard to tackle. We present a particularly interesting prac­
tical form of the interdiction question which we show to be 
computationally tractable. A polynomial time algorithm is 
then presented for this problem. 

L INTRODUCTION 

In today's inter-connected world, it is often necessary 
to maintain open communication and transportation net­
works. However in the interest of fair use, it is also 
important to keep these networks safe and prevent abuse, 
and to achieve this in the most non-intrusive manner 
possible. This has to be done using minimal additional 
infrastructure in a robust as well as distributed manner, 
and in addition has to meet budget constraints for the 
the cost of installation and operation. 

Examples of scenarios which require such interdiction, 
include policing drug and nuclear smuggling networks, 
computer network security applications where firewalls 
need to be setup to control the spread of Internet worms 
as well as future smart energy grids where dynamic load 
balancing will be crucial. Applications also include quar­
antine planning for controlling the spread of diseases. 

A formal model for this practical problem is a network 
interdiction model, where interdiction is performed along 
the edges or on the nodes of a graph which represents the 
communication or transportation network in sufficient 
detail. In this paper, without loss of generality we will 
be considering an edge interdiction model on a directed 
network graph. Throughout the paper, whenever a con-
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crete example is called for, we will use a representative 
transportation network used by smugglers. It should 
be noted that this serves only as an example and our 
approach is in fact quite general. 

On various edges e on the network graph, let us model 
the probability of a smuggler evading detection from 
the surveillance equipment installed on that edge by a 
parameter called the edge evasion probability, 7re. The 
detection probability be is naturally related to the evasion 
probability as be = 1 - 7re. In most natural cases, the 
evasion probabilities on various edges can be modeled 
to be statistically independent, which means that on any 
path p on the network, the effective evasion probability 
7rp is given by the product, 7rp IleEp 7re . It should be 
noted that statistical independence is perhaps not always 
a good assumption to make, for example when various 
enforcement devices/agencies are in constant communi­
cation, it invariably induces some inter-dependencies in 
their decision making. 

The interdiction problem is not new. In fact, several 
researchers have in the past considered interdiction in 
various forms [2], [3], [7], [8]. However many of these 
formulations are known to be computationally intractable 
for even modestly sized networks [6]. Some of the 
suggested solution methods involve some form of integer 
linear programming which is usually computationally 
costly. Cutting plane methods and sub-optimal linear 
programming relaxations have also been proposed in the 
literature. 

A common objective in interdiction problems is to 
determine an optimal allocation of budgets for instal­
lation of interdiction apparatus on individual edges such 
that the effective evasion probability is minimized while 
simultaneously satisfying some total budget constraints. 
In the next section, we give a formal definition of the 
budget constrained network interdiction problem. 
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Ill. A POLYNOMIAL TIME ALGORITHM FOR 

BC-SE-INT 

Algorithm 1 Budget Constrained Single Edge Interdic­
tion Algorithm (BC-SE-INT-ALGO) 
INPUT: 

A network graph Q(V,£) to be interdicted 

along with the local functions h for all 

e E £, a total budget B and a tolerance 

value e> O. 

STEPS: 


1. 	Set n l +- 1 and nO +- O. 
Augment the original network graph 
to obtain a new graph Q'(V',£') in the 
following way: 
Create a new node s and connect it 
to all nodes Sj E S with new directed 
edges e(s,sil' Similarly f create a new 
node d and connect it to all nodes 
di E V with new directed edges e(dj,d). 

All newly created edges e are marked 
non- interdictable, that is ie-l(x) ....... 00 

forXE[O,I). 
2. while (nl - nO > e) do { 
3. Set n' +­

4. for all e E , compute b~ 
5. 	 Solve the linear program: 

Minimi ze , Lea b~ . Xe subj ect to f 

Xe 2: (Yi - Yj); Xe 2:(Yj - yd 
Ys = 1, Yd 0; o:; Yif Xe :; 1 

Let B' be minimum attained. 
Let £' C {e:xe =I}. 

6. if (B' > B) set nO <--- n' . 
7. else if (B' < B) set n 1 <--- rr' . 
8. } 
9. 	Set n <­

For all e E C f set be <--- b~ and for all e E 
£\C, set be <- O. 

OUTPUT: 


The solution n and an associated set of 

edge budgets {be: e E £} 


In order to derive an algorithm for BC-SE-INT, we will 
assume that the local functions are efficiently invertible 
- that is, fe- 1(.) can be computed in polynomial-time. 
There is no loss in generality due to this asswnption, 
since in virtually all practical scenarios this is true 
- moreover in the event of there being no analytical 
form for the inverse function, a table look-up based 
approach can be easily implemented. A pseudo-code for 
the proposed algorithm BC-SE-INT-ALGO is listed as 

Algorithm I. 

IV. CORRECTNESS AND COMPLEXITY OF 

BC-SE-INT-ALGO 

To see that the algorithm BC-SE-INT-ALGO produces 
the correct result to an accuracy of better that an additive 
factor of to, we can note the following. Since S n V 0, 
any (s, d) -path should contain at least one interdictable 
edge. Moreover, since the local functions are monotonic 
non-decreasing, an increased local budget will not in­
crease the edge's evasion probability. 

Now the linear program in step 5 is well known to 
have an integral polyhedra, so that at the solution, Xe E 
{O, 1}. This can be easily seen considering the following 
probabilistic argwnent: If Yi is a fractional point in the 
solution, let us use the following randomized procedure 
- generate a uniform random variable u, then set Yi +- 0 
if Yi < u and set Yi +- 1 otherwise. Now, 

8' < E (I:: b~ . xe) 
eEE 

I:: 	 b~· Pr (u E [rnin{Yi,Yj}, rnax{Yi,Yj}]) 
e=(i,j) 

I:: b~ IYi - Yjl I::b~ . xe = 8' 
e (i,j) e 

Therefore step 5 finds a minimum budget interdiction 
cut on the original network graph such that on any 
( s, d) - path, at least one edge has evasion probability 
less that n'. Moreover the interdiction cut cannot involve 
any of the fictitious non-interdictable edges introduced 
in step 1. Furthermore, the monotonous property of the 
local functions Ie implies that an optimal interdiction 
cut resulting in a higher budget 8', cannot have a higher 
evasion probability n'. Therefore each iteration of the 
loop from step 2 to step 8 reduces the search region for 
n by half at either of the steps 6 or 7, while satisfYing 
the budget constraint and will therefore terminate with 
the correct solution in 0 (log 1/to) iterations. 

To estimate the complexity of BC-SE-INT-ALGO, for 
a precision as required by the constant e, the loop 
from step 2 to step 8 is executed 0 (log 1/e) times, 
which is again a constant. We can further improve 
the algorithm by substituting for the linear program in 
step 5 any well known algorithm for max-flow, since 
max-flow and min-cut are related by linear program­
ming duality [I]. Each iteration of this loop requires 
a polynomial amount of time, which depends on the 
(s - d)-min-cut algorithm employed. Using an efficient 
max-flow algorithm as in [5], which has a complex­
ity of O(IVI . lEI + IVI2 10g lVI), each iteration takes 



II. BUDGET CONSTRAINED SINGLE EDGE 


INTERDICTION 


In this section we consider a few most commonly en­
countered versions of the network interdiction problem. 
We then derive an algorithm which solves a practically 
important form of the interdiction problem in time poly­
nomial in the size of the problem description. 

Definition 1 (BC-INT, BC-AV-INT, BC-SE-INT) 

Instance: A directed network graph Q(V,£); a set of 
efficiently computable monotonic non-increasing local 
budget-evasion-probability jUnctions fe : R+ J--; [0, I} 
associated with each directed edge e E £; two non-empty 
subsets of V, the source nodes S and the destination 
nodes V, such that S n V = 0; and a total interdiction 
budget B. 
Question 1 (BC-INT): Find a budget assignment to 
each edge, be which satisfies the total budget constraint 
kEf be :::; B, and minimizes, 

iTMAX 
def max IT fej(bej )

j
p(s,d) E P{S,V) 

ej E P{s,d) 

Question 2 (BC-AV-INT): Find a budget assignment to 
each edge, be which satisfies the total budget constraint 
kEf: be :::; B, and minimizes, 

def
iTAV .L w

PJ IT. fej(bej ) 
(s,d) .J 

P{s,d) E P(S,V) ej E f'(s,d) 

Question 3 (BC-SE-INT): Find a budget assignment to 
each edge, be which satisfies the total budget constraint 
kEf be ::; B, and minimizes, 

iT 
def max min fej(bej )

j
P(s,d) E P(S,V) ej E p{s,d) 

where P(S, V) is the set of all directed paths ~s,d} 
from some node in S to some node in V, W _i are 

P(s,til 

positive weights associated with these paths such that 
E i W j = 1, and ej represents a directed edge in 

P(s,ti) P(5,ti) 

the directed path ~s,dr 

In the above definition, the local budget-evasion­
probability functions feU can be roughly interpreted as 
follows: given a local arc budget of be for arc e, we can 
achieve an evasion probability of fe(be) at that arc. Very 
often in practice, the local functions fe could be made 
to subsume other more complex characteristics on the 
network too. 

For example, if in a network with a single source and 
destination, there are already in place other interdiction 
apparatus, which ensures evasion probabilities less than 
1 on certain edges. Then, we may wish to calculate the 
residual evasion probability before installing any new 
apparatus by first running a Dijkstra type shortest path 
algorithm. Let each edge e = (i, j) have a prior evasion 
probability of (Xe. Also let us assume for example that by 
installing Ne apparatus of unit cost, the post-installation 
edge evasion probability can be reduced to (Xe . f3~e. 
Then we may wish to set as a first order approximation, 

fe(Ne) = (Xe' f3~e . I1e~Ep(s,i) (Xe~ . I1edEp(j,d) (Xed' Here, 
p(s, i) is the shortest path from source node s to node 
i when the edges e' are labeled with non-negative edge 
weights of (-log(Xe')' Similarly pU,d) is the shortest 
path from node j to the destination node d. 

All the three forms of interdiction problems can 
be seen to be practically relevant in various contexts. 
However, even for the simplest local functions fe, the 
problems posed in questions 1 and 2 above are known 
to be NP-complete even to approximate within a constant 
factor, by a polynomial time reduction from the relatively 
well known VERTEX-COVER and CLIQUE problems 
For a simple proof of this reduction, see [(,]. 

In this paper therefore, we will focus solely on ques­
tion 3. Since the local functions fe can be heavily non­
linear, it is not immediately clear that the problem in 
question 3 more often than not admits a polynomial 
time solution. We present one such solution in the next 
section. 

One may justifY posing question 3 in favor of the 
other two versions in many situations. In problems where 
non-zero evasion probabilities have to be avoided at all 
costs (for example in the case of nuclear smuggling), 
interdiction apparatus at edge e can be reasonably mod­
eled as requiring a cost of be to ensure iTe = O. In 
this case, solving question 3 is equivalent to solving 
question 1, whereas question 2 is perhaps not practically 
relevant (since it is the worst case evasion probability that 
matters, not the average case). In many other instances, 
it is usually the case that the evasion probability that can 
be achieved is so small that a solution for question 3 is 
practically very close to that of question I. Moreover, the 
availability of an efficient algorithm is clearly a factor to 
be considered. Typical solutions to interdiction problems 
would otherwise rely on the solution of cumbersome 
integer-linear-programs, which are often computationally 
intractable even for medium scale networks. 



O(rl£1 + O(IVI . 1£1 + IVI2 log IVI) time, where r 
denotes the time required for computing the inverse 
function fe- 1 (.) to the required precision. 

V. CONCLUSION 

We considered the important practical problem of 
budget constrained interdiction. We posed an optimiza­
tion problem which is very relevant for several prac­
tical scenarios, with the additional property of being 
computationally tractable. This is unlike other common 
variations of interdiction related problem which are 
typically computationally hard. We derived an algorithm 
which finds an optimal solution (up to any given small 
constant) to the problem we posed. Simulation results 
using an implementation of our algorithm were very 
promising - large networks which were typically not 
amenable to brute force integer programming approaches 
have yielded meaningful solutions while using up only 
reasonable computation times. 

Problems of future interest include scenarios where 
simultaneous optimization is required over several cost 
functions and under multiple budget constraints. Also of 
interest are networks where mUltiple commodities are 
transacted. Further improvements in running time are of 
definite interest, as are faster approximation algorithms 
for use with extremely large networks. Algorithms which 
adapt to dynamic changes in evasion probabilities as 
well as models which consider statistical dependence and 
other stochastic variables are also of interest 
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