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Abstract.

We investigate the role of electron correlation in the two-photon double

ionization of helium for ultrashort XUV pulses with durations ranging from a
hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio
calculations for pulses with mean frequencies in the so-called “sequential” regime

(hw > 54.4eV). Electron correlation induced by the time correlation between
emission events manifests itself in the angular distribution of the ejected electrons,
which strongly depends on the energy sharing between them. We show that for
ultrashort pulses two-photon double ionization probabilities scale non-uniformly with
pulse duration depending on the energy sharing between the electrons. Most
interestingly we find evidence for an interference between direct (“nonsequential”)
and indirect (“sequential”) double photo-ionization with intermediate shake-up states,
the strength of which is controlled by the pulse duration. This observation may
provide a route toward measuring the pulse duration of FEL pulses.

PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz

1. Introduction

The role of electron correlation is of central interest
in our understanding of atoms, molecules and solids.
The recent progress in the development of ultrashort
and intense light sources [I-10] provides unprecedented
opportunities to study the effects of correlation not
only in stationary states, but also in transient states
(i.e., resonances), and even to actively induce dynamical
correlations [11].

The helium atom is the simplest atomic system
where electron-electron interactions can be studied, with
its double ionization being the prototype reaction for a
three-body Coulomb breakup. While computationally
challenging, the full dynamics of the helium atom can
still be accurately simulated in ab initio calculations
[12]. With the advent of intense XUV pulses, the focus
has shifted from single-photon double ionization [13-
17] and intense-IR laser ionization by rescattering ([18-
20] and references therein) to multiphoton ionization.
Two-photon double ionization (TPDI) has recently
received considerable attention, both in the so-called
“nonsequential” or “direct” regime (39.5eV < fw <
54.4eV), where the electrons necessarily have to share
energy via electron-electron interaction to achieve double
ionization [21-3 1], and in the “sequential” regime (fw >
54.4eV), where electron-electron interaction is not a

priori necessary [11, 35—40].

In a previous paper [11], we investigated the role
of energy and angular correlations in the shortest
pulses available today, where the distinction between
“sequential” and “nonsequential”’ becomes obsolete. In
this contribution, we again focus on the energy regime
where the sequential process is allowed and explore the
dependence of two-photon double ionization (TPDI) on
the pulse duration T, ranging from ~100 attoseconds
(the duration of the shortest pulses produced by high-
harmonic generation available today [3]) to a few
femtoseconds (the expected duration of FEL pulse
“bursts”). T, can be used as a control knob to change
from a “direct” to an “indirect” process. In section 3,
we discuss the behavior of the one-electron ionization
rate PP/(E)/T,, which displays non-uniform scaling
with T,. In scction 4, we investigate the angular
correlations, with a focus on longer pulses, which reveal
the detailed dynamics of the TPDI process. In section 5,
we show that for energies above the threshold associated
with shake-up ionization of the He atom, interferences
between sequential and nonsequential contributions can
be observed, the strength of which can be varied by
changing the pulse duration. One consequence is that
from the size and shape of these Fano-line resonances,
the pulse duration of XUV pulses might be deduced. All
this information is encoded in the final joint momentum
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distribution PP’(k,,ky) = PP/(E,, Es,Q4,), which
is experimentally accessible in kinematically complete
COLTRIMS measurements [11]. In this contribution, we
focus on integrated quantities, which are more readily
accessible because of better statistics. Unless otherwise
stated, atomic units are used.

2. Method

Our theoretical approach (described in more detail in
[23]) is based on a direct solution of the time-dependent
Schrédinger equation (TDSE) by the time-dependent
close-coupling (TDCC) scheme [22, 29, 38, 12]. The
TDSE is solved in its full dimensionality including all
inter-particle interactions. The laser field is linearly
polarized and treated in dipole approximation. The
interaction operator is implemented in both length and
velocity gauge, such that gauge independence can be
explicitly checked. In the TDCC scheme the angular
part of the wave function is expanded in coupled
spherical harmonics. For the discretization of the
radial functions, we employ a finite element discrete
variable representation (FEDVR) [13-46]. A local DVR
basis within each finite element leads to a diagonal
representation of all potential energy matrices. The
sparse structure of the kinetic energy matrices enables
efficient parallelization, giving us the possibility to
employ pulses with comparably long durations (up to a
few femtoseconds) in our simulations. For the temporal
propagation of the wave function, we employ the short
iterative Lanczos (SIL) method [17-19] with adaptive
time-step control.

Dynamical information is obtained by projecting
the wave packet onto products of Coulomb continuum
states. As these independent-particle Coulomb wave
functions are not solutions of the full Hamiltonian,
projection errors are, in principle, inevitable. However,
since we are able to propagate the wavepacket for long
times after the conclusion of the pulse, errors in the
asymptotic momentum distribution can be reduced to
the one-percent level by delaying the time of projection
until the two electrons are sufficiently far apart from each
other [24].

All results presented were obtained at a mean
photon energy of hw = 70eV, which for long pulses
would correspond to the sequential regime. We
choose the vector potential to be of the form A(t) =
2Agsin®(mt/(2T,))sin(wt) for 0 < t < 2T,. The
duration T, corresponds to the FWHM of the sine-
squared envelope function. The peak intensity was
chosen as Iy = 102 W/cm? to ensure that ground state
depletion and three-or more photon effects are negligible.
In order to reach convergence of the angular distribution,
single electron angular momenta up to values of {; max =
lomax = 10 were used. The highest total angular
momentum included in the time propagation was Lyax =
3. For extracting the final probability distributions, only
the two-photon channels L = 0 and L = 2 were taken
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into account. The radial grid was composed of FEDVR
elements of 4 a.u. with order 11, with an extension up to
Tmax = 800a.u. for the longest pulses. All presented
quantities were tested for numerical convergence and
gauge independence.

3. Pulse length dependence of TPDI

The nature of the two-photon double ionization (TPDI)
process depends strongly on the photon energy. In
order to doubly ionize the helium atom (ground state
energy Ey = —79eV), each photon must have an
energy of at least w = —FE3/2 =~ 39.5eV. For
39.5eV < hw < b4.4eV, a single photon does not
provide sufficient energy to ionize the He™ ion. Thus,
TPDI can only occur if the two electrons exchange
energy during the ionization process. In a temporal
picture, this implies that the “first”, already ejected
electron still has to be close to the nucleus when the
second photon is absorbed, i.e., both photons have to be
absorbed quasi-simultaneously (or nonsequentially). For
photon energies larger than the ground state energy of
the He™ ion (fw > 54.4eV), an independent-particle
picture is applicable for long pulses: each electron
absorbs one photon and electron-electron interaction is
a priori not required for double ionization to occur. The
first electron is released from the He atom with an energy
of £y = hw — I, while the second electron is released
from the He' ion with an energy of Eo = hw — Is.
Here, I, =~ 24.6eV (I =~ 54.4eV) is the first (second)
ionization potential of helium. For shake-up satellites
the partitioning of ionization potentials is different (I3 =
I3/n?), and so are the peak positions E1 5, but the overall
picture of sequential and independent photoionization
events remains unchanged.

However, for ultrashort pulses of a few hundred
attoseconds, the notion of sequentiality loses its
meaning. The breakdown of the independent-particle
picture and strong coupling between the outgoing
electrons is in that case not imposed by the necessity
of energy-sharing but is enforced by the ultrashort
time correlation between the two photoemission events
occurring within 7,.  Electron-electron interaction
therefore plays a decisive role in the correlated final
momentum distribution. In particular, the electrons are
preferably emitted in a back-to-back configuration at
approximately equal energy sharing, corresponding to a
Wannier ridge configuration [11].

A key indicator for sequential TPDI is that for
sufficiently low intensities (when ground state depletion
is negligible), the total yield scales with P2/ o
S LT 1)1 dtdt o« T2, where T, is the duration
of the laser pulse [23, 37). This is an immediate
consequence of two independent subsequent emission
processes, the probability for each of which increases
linearly with T}, such that PR/ ~ (P’)%. Equivalently,
for each of the two processes a well-defined transition
rate W = limg, .o P'/T; exists. This implies that
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Figure 1. (a) Double ionization (DI) rate PP/(E)/T, (i.e., DI probability divided by the pulse duration) for TPDI by an XUV
pulse at fiw = 70eV with different pulse durations T,. For sufficient pulse duration, the DI rate converges to a stable value except
near the peaks of the sequential process. (b) and (c) show the two-electron energy spectrum PPI(Ey, E3) for (b) Tp = 300 as and (c)

Tp = 750 as.

the total rate P2!/T;, of the two-step process does not
converge to a finite value in the limit of long pulses.
By contrast, nonsequential or direct double ionization
Pn%{,seq scales linearly with T}, and a converged transition
rate exists in the limit W = limz, oo PRlccq/Tp-

For ultrashort pulses, the scaling of the ionization
yield with T}, varies between T}, and Tg highlighting the
non-uniform convergence over different regions of the
electron emission spectrum and the breakdown of the
distinction between direct and indirect processes. l7i¢. la
illustrates the dependence of the energy differential
electron emission probability (projection of the joint
energy distribution [“ig. 1b/c, onto the E) (or E;) axis)
for different pulse durations, divided by T, dW/dE =
PPI(E)/T,. This quantity converges to a duration-
independent cross section value (apart from constant
factors) except in the regions near E = hw — I; and
E = hw — Iy, i.e., those values of the energy where the
sequential process is allowed [4()]. The peak areas grow
linearly with 7T}, indicative of an overall quadratic scaling
characteristic for the sequential process (cf. Fig. 2a). If
one divides the yield contained in the peak areas by Tg,
the result is just proportional to the product of the single
ionization cross sections for one-photon absorption from
the He ground state and one-photon absorption from the
He™ ground state.

The region within which the linear scaling prevails
is determined by the pulse duration, for two different
reasons:

(i) Due to Fourier broadening, the photon energy is
not well defined for a finite pulse, limiting the energy
resolution.  Thus, if the broadened sequential peak
overlaps with the final energy of interest, the long-pulse
limit PP/(E) o T}, can not be observed.

(ii) There is an intrinsic maximum time delay
between ionization events that can lead to a specific

combination of final energies of the ejected electrons.
When the second electron is ionized at a time when
the first electron is already far from the nucleus, the
electrons cannot exchange a sufficient amount of energy.
For each final state, there is a maximum delay t,(:”)
between ionization events that can lead to that specific
energy sharing. This implies that the pulse has to be
considerably longer than this maximal delay in order to
resolve all contributions to a specific final state.

In order to estimate the size of effect (ii), we
employ a simple classical model: the first electron
is emitted with energy FEg) hw — I;. In order
to reach a specific final state with energies (E), Esp),
the liberated electron has to gain or lose the energy
AFE = min(|Es; — £y, |Es; — E7|) by interacting with
the second electron. Therefore, the first electron can be
at most a distance rg;(t")) = 1/AE from the core at the
moment of the second photon absorption. This leads to
a critical time

2y/a(a+1) —In (2a+2 a(a+1)+1)
N (2Es))3/? ()

£

with o = Eg/AFE.

Likewise, the spectral width of the pulse gives a
corresponding time tﬁi) = 1/AFE. Linear scaling should
be observed for pulse durations 7, much longer than
t?’ii). Setting c(i‘ii) = 10t£l’”) leads to good agreement
with the full numerical simulation (Fig. 2b). Moreover,
both criteria give similar results thereby precluding a
clear distinction between them. Fig. 2b displays the
estimates T and the fraction of double ionization
probability that scales linear with 7, as a function of

emission energy and pulse duration,
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Figure 2. (a) Scaling of two-photon double ionization yields with pulse duration Tp, (FWHM of the sin? XUV pulses) at fiw = 70eV.
The green points are the total ionization yield P27, the red squares give the differential yield at equal energy sharing PP/(E = Eqq),
with Eeq = (2hw + Ep)/2, and the blue diamonds give the differential yield at £ = 41eV. The dashed lines show fits to quadratic and
linear scaling with T}, for the total and singly differential yield. (b) Contour plot of Pg{ (E,Tp). A value of 1 for Pgl[ (white in the
color scale used here) marks the region where linear scaling of the singly differential yield with pulse duration T}, is observed. The gray

lines indicate the position of the peaks from the sequential process. The violet and green lines indicate the pulse durations Tc(i) and
Tc(”) after which linear scaling of the yield with T}, is expected due to Fourier broadening of the sequential peak and because of the

maximum time delay between the photon absorptions (see text).

where Thax = 4.5fs is the longest pulse we used.
Prg,] takes on the value one when the double ionization
probability at energy E shows linear scaling with pulse
duration. We note that the estimate of effect (ii) could
be validated in a time-independent perturbation theory
calculation. This does not show Fourier broadening but
introduces an effective cutoff for the interaction time tgii)
because of the limited box size.

For long enough pulses, there is an additional
interesting feature at energies Fy = fw—I1—&; and Fy =
Rw — I + &3, with £, = 2 — 2/n? the excitation energy
to the n-th excited state in He'. At these energies,
sequential ionization via the excited ionic (shake-up)
state |nl) is allowed. We discuss this is in more detail in
section 5.

4. Angular correlations

Additional information on the dynamics of the two
lonized electrons can be extracted from the angular
correlations in the TPDI process. To that end, we
introduce the forward-backward asymmetry distribution
A(E1, E;), obtained by fixing the ejection direction of
one electron in the direction of the laser polarization
(f; =0°) and calculating the probability for the second
electron to be emitted into the forward half-space 85 <
/2 or backward half-space 8, > 7 /2. The probabilities

thus defined are
PY(E\, E,) =

4772/9 ) P(Ey, E3,0,=0°,0;)sin0,dfy, (3)
2<m/2

0p>m/2

where the factor 472 stems from integration over ¢, and
¢2. The forward-backward asymmetry is then given by

P+(E1,E2) — P_(El,Eg)
AL B = P+(Ey\,E2)+ P~ (Ey, Ey)’ “)
which varies in the range [—1,1]. Values close to zero
indicate vanishing correlation between the electrons,
while large absolute values identify strong angular
correlations.  Positive values (A > 0) indicate a
preference for ejection of both electrons in the same
direction while negative values (A < 0) indicate ejection
in opposite directions. Note that A(FE), Ez) is not
symmetric under exchange of E; and Ej5, as the emission
direction of the electron with energy FE; is fixed in the
laser polarization direction. Analogously, the reduced
one-electron asymmetry A(FE)) can be determined by
integrating P*(E|, E,) over the energy of the second
electron, i.e., P*(Ey) = [ P¥(Ey, E;)dE,, and A(E;) =
(P*(E1) - P~(E1))/(PT(E1) + P~ (En)).

Fig. 3 shows the asymmetry of TPDI at Aw =
70eV photon energy for pulses of different duration
Ty, from T, = 75as up to T, = 4500as. For the
shortest pulses, the electrons are dominantly ejected in
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Figure 3. Forward-backward asymmetry A(E1) for TPDI by an XUV pulse at fw = 70eV, for different pulse durations Tp. The gray
lines show the expected positions of the peaks for the sequential process (with and without shake-up).

00

Figure 4. Combined double ionization probability PPI(E|, E5) and forward-backward asymmetry A(E7, E3) after TPDI by an XUV

pulse at kw = 70eV with a duration of 450 as. The z-axis gives PP/

(E1, E) (in arbitrary units), while the color encodes the asymmetry,

with cyan to blue signifying negative values (ejection in opposite direction) and yellow to red signifying positive values (ejection in the
same direction). Vanishing A corresponds to white. For energies where PP/ (E; | E») is negligible, the color is set to gray.

opposite directions independent of energy, as observed
previously [l1].  As the duration is increased, a
stable pattern emerges: at the “sequential” peaks,
the electrons are essentially uncorrelated, leading to
vanishing asymmetry. As most electrons are ejected in
this channel, the total (energy-integrated) asymmetry
is very small for long pulses. However, for energies in
between the two main peaks at F} = fw — I}, and Fp =
Fw — I, the electrons are emitted in opposite directions.
This is precisely because these final state energies are
reached only when the two electrons are ejected in such a
configuration. This back-to-back Wannier-like emission
near equal energy sharing remains pronounced even for
long pulses.

For energies outside the energy interval delimited
by the sequential peaks, the asymmetry is equally
strong, but now positive pointing to the same emission
direction for both electrons. When the second electron
is emitted in the same direction as the first one, the
well-known post-collision interaction [50-33] tends to
increase the asymmetric sharing of the available energy
[L1]. The dividing line between the two different regimes
of ejection in opposite or in the same direction is quite
sharp and lies directly at the position of the sequential
peaks. A more complete representation of the two-
electron energy and angular correlations is presented in
Fig. 1 for a pulse duration of T, = 450as. While the
height gives the joint probability PP7(E;, E;), the color



represents the asymmetry distribution A(E;, E;). The
borderline between positive and negative A (i.e., A= 0,
white) is precisely near the peaks associated with the
sequential process. In the central region in between
the “sequential” peaks the emission is preferentially on
opposite sides while emission into the same hemisphere
prevails outside the main peaks. For completeness we
note that in the region between the two main peaks,
only electrons emitted in opposite direction are observed
both in “sequential” (fw > 54.4 eV) and “nonsequential”
(39.5eV < fhw < 54.4eV) TPDI [23]. The main
difference is that in nonsequential TPDI, only that region
is energetically accessible, such that no other angular
configurations are observed.

5. Shake-up interferences

We return now to the additional structures at higher
(E =~ hw— I+ &) and lower (E =~ fw — I, ~ &) energies
visible in Figs. 1 and 3. They correspond to shake-
up satellites in Het which can serve as intermediate
states in sequential TPDI. In the shake-up process,
the He™ ion is left in an excited state, while the free
electron obtains an energy of E] = hw — I — &,
(with &, the excitation energy to the m-th shell of
He™). In the long-pulse limit, this simply leads to the
appearance of shake-up satellite lines at energies £} and
EL = hw — Iy + &, in the one-electron energy spectrum.
For ultrashort pulses, however, the nonsequential (or
direct) double ionization channel becomes available as
well and can lead to the same final states. Post-
collision interactions (PCI) lead to a broad distribution
of electron energies (see scction 1), so that the electrons
can obtain the same final energies of Ef¢/ = E} and
EFC! = E| as the electrons emitted via He'(nl) in
the sequential process. Both indistinguishable pathways
lead to the same final state and thus to an interference
pattern in the double ionization yield, as observed
in Fig. 1 and Fig. 3. This interference bears some
resemblance to the well known exchange interference
between e.g. photo-electrons and Auger electrons [51-
57]. There is, however, a fundamental difference: while
the exchange interference is intrinsically controlled by
atomic parameters, namely the energy and lifetime
(width) of the Auger electron, the novel interference
observed here is truly a dynamical effect present only for
short pulses and can be controlled by the pulse duration
Tp.

As the dependence of the yield on pulse duration
is different for the different channels (proportional
to T, for the nonsequential channel, proportional to
Tg in the sequential channel), the observed spectrum
strongly changes with pulse duration. For short pulses
(Ty < 500as, cf. Fig. 1), the yield is completely
dominated by the nonsequential channel without any
trace of a shake-up interference. As the pulse duration
is increased, the sequential channel with shake-up
becomes increasingly important. As expected from
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the interference of a relatively sharp peak with a
smooth background, the peak resembles a Fano lineshape
[58]. Thus, the position of the maximum is shifted
from the position expected in the limit of infinitely
long pulses. Even for relatively long pulses (T, =
4.5 fs), similar to those produced in free electron lasers,
the position of the shake-up peak in the one-electron
energy spectrum PPI(E) is shifted by a considerable
fraction of an electron Volt. The structural similarity
to a Fano resonance (a quasi-discrete resonance due
to the shake-up intermediate state embedded in a
smooth continuum due to the direct double ionization)
suggests to characterize the interference in terms of
Fano resonance parameters for the position Ep(Tp),
width I'(T},), and asymmetry parameter q(T}), as well
as its strength Ix(T,) (Fig. 3). To apply Fano’s theory
[53], the calculated energy spectrum PP!(E) is divided
by the nonresonant spectrum P2! (E), taken to be
proportional to the singly differential cross section as
predicted from the model by Horner et al [10), Eq. (8)].
Away from the peaks, this fits the form of the spectrum
very well. A background contribution ¢y, is added to
account for the different angular distributions of the
different channels, which prevent complete interference.
This gives

PDI(E) N (qF/2+E—Ep)2
PEL.(B) "t E- Err v O

The simple fitting procedure used here only works well
for pulse durations T, > 1.5fs, as for shorter pulses,
the “nonresonant” background is not described well by
the approximation used here and the shake-up peak
itself is less strong and considerably broadened. Fig. 5
illustrates the dependence of the obtained parameters
on the pulse duration, confirming the expected behavior:
for long pulses, the peaks converge to the satellite lines,
i.e., Lorentzians of vanishing width, such that Fr —
hw—I+ & (Bp > hw—-1, — &), T - 0, ¢ = oo.
The overall strength Ir of the shake-up peak relative
to the nonresonant background is obtained from the
integral over the Fano lineshape, Ir « cp(q? — 1)T.
This behaves approximately linear with T}, confirming
the scaling of the sequential shake-up channel with Trf
versus the scaling of the nonresonant background with
T, (Fig. 5¢). Also shown in Fig. 5a is the position Emax
of the maximum of the spectrum PP!(E) without any
further processing.

Such effects could possibly be observed in FEL
pulses, which reach focused intensities of up to
1018 W/em?. To confirm that the results shown here
(calculated for 102 W/cm?) also apply for these high
intensities, we did an additional calculation at a peak
intensity of o = 5-10'® W/cm? with a pulse duration of
T, = 4.5fs. The shape of the differential yield PP/(E)
(not shown) is almost unchanged compared to the result
at 10'2 W/em? peak intensity, even though the ground
state survival probability is only 32%. The total double
ionization probability is PP = 36%, i.e., more than a
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Figure 5. Parameters of the shake-up interference peaks around 57eV for TPDI by an XUV pulse at fw = 70eV obtained from
fitting to a Fano lineshape. (a) Fano resonance energy Er and position Epax of the maximum in the spectrum, (b) width I, (¢) Fano
parameter g and integrated yield /g from the shake-up pathway. See text for details.

third of the helium atoms in the laser focus are doubly
ionized. Even though the yield in the shake-up peak is
only 0.6% of the total yield for that duration, this could
be seen in experiment as only the integrated one-electron
energy spectrum has to be observed. Moreover, from
the position, strength and asymmetry of the interference
peaks, information on the poorly known pulse duration
of FEL pulse “bursts” could possibly be deduced.

It should be noted that in order to see these
interference effects, the asymptotic momenta ki, ko (i.e.,
not only the asymptotic energies (£}, E2)) from the two
pathways have to coincide. The shake-up channel has
a considerably different angular distribution than the

nonsequential channel, such that only partial overlap

between the final states is expected. This leads to a
rich structure in the observed angular distributions (not
shown), a more detailed analysis of which is in progress.
During the preparation of this contribution, we became
aware of work by Palacios et al [39] who also observe the
interference between these different channels.

6. Summary

We have presented a detailed study of the dynamics of
the two-photon double ionization process in helium in
the so-called “sequential” energy regime for a wide range
of ultrashort pulse durations (75as to 4.5fs). We have
shown how electron interaction and thereby correlation
enforced by the short pulse duration influences the
observed energy spectra and angular distributions.

The one-electron ionization rate PP!(E)/T, con-
verges to a stable value with increasing pulse duration
for energies away from the sequential peaks (E = fw—1I,
and F = hw — I2), giving rise to a well-defined (direct)
differential double ionization cross section. However,
near the peaks where the sequential process is allowed,
PPI(E)/T, grows with T,. We have thus observed a
non-uniform scaling of the double ionization probability
with T;,. Even though in this spectral range the sequen-

tial process is allowed, both the direct and sequential
co-exist, giving rise to interferences which are induced
by the short time correlation between the two emission
events. The nonsequential channel without shake-up and
the sequential shake-up channel, where the intermediate
state after one-photon absorption is an excited state of
the He™ ion, can interfere. In attosecond pulses, only the
nonsequential channel contributes, while in long pulses
(longer than the 4.5fs used here), the sequential shake-
up channel would dominate. For pulse durations of a few
femtoseconds, as obtained in free electron lasers, the two
channels are similarly important, such that interference
can be clearly observed. This interferences may open
up the possibility to measure the duration of ultrashort
XUV pulses in the femtosecond regime.

We have also found that the angular distributions
in the final states populated by nonsequential processes
are strongly correlated. In ultrashort pulses, where the
TPDI process is necessarily nonsequential, the favored
emission channel is the Wannier ridge riding mode of
back-to-back emission at equal energies (cf. [11]). In
longer pulses, back-to-back emission is strongly favored
in the region close to equal energy sharing, while for
strongly asymmetric energy sharing, the electrons are
primarily emitted in the same direction.
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