
oq--{)(93o~LA-UR-
Approved for public release; 
distribution is unlimited. 

Titfe: I Neutron Beam Irradiation Study of Workload Dependence of 
SER in a Microprocessor 

Author(s): I Ted Hong, Sarah Michalak, Todd Graves, Jerry Ackaret, 

Sonny Rao, Subhasish Mitra and Pia Sanda 


Intended for: I SELSE5 

~Alamos 
NATIONAL LABORATORY 
--EST,'943-­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U,S, Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes, Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

Neutron Beam Irradiation Study of Workload 

Dependence of SER in a Microprocessor 


Ted Hong, Sarah Michalak*, Todd Graves*, Jerry Ackaret#, Sonny Rao#, Subhasish Mitra and Pia 

Sanda# 


Stanford University, 


*Los Alamos National Laboratory, and 


#IBM Systems and Technology Group 


Abstract- It is known that workloads are an important factor 
in SER, but it is proving difficult to find differentiating 
workloads for microprocessors. We have performed neutron 
beam irradiation studies of a commercial microprocessor 
under a wide variety of workload conditions from idle, 
performing no operations, to very busy workloads resembling 
real HPC, graphics, and business applications. There is 
evidence that the mean times to first indication of failure, 
MTFIF defined in Section II, may be different for some of the 
applications. 

Index Terms-SER, RAS, Fault Tolerance 

I. INTRODUCTION 

It makes sense that soft error rates (SER) in a computer system 
would have more impact if there is work done, and less if 
there is no useful work being done. Bender et. al. showed that 
SER is dependent upon workload in an 110 hub chip [I] . Ifwe 
apply Little's Law to SER, then SER should scale with 
workload bandwidth and data residency. If there is little or no 
workload, and little or no data residency, one would think that 
there should be little or no SER impact. Last year at SELSE 4, 
Rao et. al. showed controversial results that did not 
differentiate between idle and busy workloads for two 
different machines [2]. This year, we expanded the study to 
include more workloads and more data points for each 
workload. Statistical analysis was used to see if the workloads 
could be distinguished. With these data, there is evidence that 
the mean times to first indication of failure for some of the 
applications may be different. 

II. SYSTEM AND ApPLICATIONS 

Neutron beam measurements were performed at Los Alamo 
National Laboratory (LANL) in New Mexico using a single 

test system. The instrument configuration was similar but not 
identical to last year's measurement [2]. Notably the beam 
was denser than last year and the memory configuration was 
comparable but slightly different. 

Eighteen different applications, both single and multi­
threaded, were run while the test system was exposed to the 
neutron beam. These were collected/developed from a variety 
of sources, including Linpack from Intel Corp; Parsec from 
Princeton University [7][8]; SpecCPU2000, SpecOMP200 1­
M, SpecJBB 2001, and SpecCPU2006 from SPEC; Splash-2 
from Stanford University [13]; Ldpc from the University of 
Toronto [12] modified by Stanford [2]. In addition to these 
standard benchmarks, we also utilized the Idle loop of the 
underlying Linux Operating System and developed KpTest, an 
application that performs basic integer operations while self­
checking the result . 

~---- -- - -rr-------~ -~---r-- ..... ­-
AH Source Type (FplInt) : Description 
Linpack Intel Fp: Gaussian Elimination 
SpecJBB Spec2001 Int: Transactions Processing 
Gcc Spec2000 Int: C Compilation 
Gzip Spec2000 Int: Source Coding 
Mcf Spec2000 Int: Network Flow Scheduling 
Milc Spec2006 Fp: Quantum Chronodynamics 
Blackscholes Parsec Fp: Financial (PDE) 
Canneal Parsec Fp: Chip Routing Kernel 
Swaptions Parsec Fp: Monte Carlo Simulation 
S treamc Ius ter Parsec Fp: Online Clustering of Data 
X264 Parsec Int: Video Encoding 
Ammp OMP2001 Fp: Molecular Dynamics 

(ODE) 
Applu OMP2001 Fp: Fluid Dynamics (PDE) 
Ldpc Neal Fp: Chanel Coding for ECC 
Ray trace Splash-2 Fp: Ray tracing Application 
Idle - Linux Idle Workload 
IIdle - Idle w/o Test Apparatus Wkld 
KpTest - Int: Loop of Basic Operations 
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In Idle, the system is ready for work, but is not processing user 
instructions. In other words, apart from normal background 
tasks, we only run our test apparatus (which is mostly 
sleeping) and allow the operating system to maintain control 
of the processors in its idle loop. The difference between Idle 
and IIdle is that in IIdle the test environment is "sleeping". 

From SpecCPU2000, we chose three different integer 
applications: Gcc, Gzip, and Mcf. Gzip is one of the simplest 
benchmarks while Gcc is one of the most complex. Finally, 
Mcf has one of the highest CPI of all Spec integer 
benchmarks. Finally, from SpecCPU2006 we chose a 
floating-point benchmark: Mile. These four applications 
along with the single-threaded KpTest provide a wide range of 
single-threaded behaviors. 

The rest of the applications are dual-threaded. For both single 
and dual-threaded applications, the application under 
consideration utilizes both cores of the CPU. We ran two 
instances of the single threaded applications and specified that 
the dual-threaded applications utilized two cores. For these 
multi-threaded applications we chose applications with 
different sharing and data-resilience characteristics. Ldpc, 
Blackscholes, Canneal, Swaptions, Streamcluster, Ammp, and 
Applu with their iterative nature are thought to be less 
sensitive to data errors than Linpack, SpecJBB, X264, and 
Ray trace. SpecJBB as a Java program relies on a Java runtime 
engine, which with "just in time compilation," may be more 
vulnerable. Canneal is a unique program in that it does not 
utilize any locks, and can behave correctly in the presence of 
data races; its data is also not easily cached, forcing sharing to 
be performed via main memory. X264 utilizes a pipeline 
parallelization model in which the entire data to be worked on 
needs to be transferred between processors [8]. Finally, of the 
two OMP benchmarks Applu is reported [I] to have one of the 
highest communication./computation ratios suggesting that it 
might be more vulnerable to errors in the caches than Ammp, 
which has one of the least. 

III. EXPERlMENT 

Each application was run repeatedly until failure, where 
failure is defined as having occurred when the test system no 
longer responded to a ping from an external controller. Several 
"times," measured in Monitor Units (MUs), were captured 
from the logs for each experiment, where each log 
corresponds to a particular instance in which a given 
application was run until failure. These experimental logs are 
system console logs that contain values of MU output at 
roughly IO-second intervals, error messages the system under 
test reported, a bootup and reset log, and test apparatus output 
and errors. The number of MUs during a given time interval 
is proportional to the number of neutrons/cm2 to which the 
device was exposed during that time interval. 

For these experiments, the following MU values were 
collected: I) the MU value when the experiment was launched 
by the external controller, which is usually prior to the 
launching of the application ("MU Start"); 2) the MU value 
immediately prior to the launching of the application ("MU 

First"); 3) the MU value before the first reported error in the 
logs ("MU Stop Early"); and 4) the MU value following the 
time at which the system stopped responding to the external 
controller ("MU Stop Late"). Under the experimental 
protocol, there is a slight delay between MU Start and the 
application startup. Rarely, MU Start occurs after the launch 
of the application due to errors in the automated cleanup of a 
prior failed run. MU Stop Early is approximate since MU 
counts were output to the experimental logs every 10 seconds. 
MU Stop Late is also approximate since the system under test 
is polled every 5 seconds. 

For each of the applications, interest focuses on estimating the 
mean number of MUs, reported in arbitrary units (A Us), until 
the system first issued an error message or the mean time to 
first indication of failure, MTFIF. (MTFIF is a good measure 
for the inverse of SER.) This includes any type of system 
failure, whether directly related to the application running 
during the experiment or not. Because of the manner in which 
the data were collected, the first error is known to have 
occurred within 10 seconds after the MU Stop Early value. In 
particular, the MU values were (ideally) output to the 
experimental logs every 10 seconds. With MU Stop Early, the 
most recent MU value before an error message appeared in the 
experimental log, the error message must occur within 10 
seconds of MU Stop Early unless one or more MU values 
were not reported. 

Ten KpTest experiments yielded no experimental log. There 
is no obvious reason why these logs should be missing. 
KpTest was the last application run, so it is possible that the 
control program was suffering difficulties at that time. All 
KpTest experiments for which a value of MU Stop Early 
could be derived are included in the analyses (an experimental 
log is required in order to derive MU Stop Early). For the lIdle 
experiments, the MU test apparatus counter wasn't used, so 
for these experiments, only MU Start and MU Stop Late are 
available. 

Thirty-one experiments in which the application was allowed 
to run until failure were conducted for each application with 
the following exceptions: Ammp (n=4I); KpTest (n=26); 
Linpack (n=40); SpecJBB (n=33); and x264 (n=4I). 

IV. MODELLING THE EXPERIMENTAL DATA 

The experimental goal was to determine whether different 
MTFIFs, in AUs, were obtained when different applications 
were running. That is, interest focuses on the values of MU 
Stop Early - MU First. While we could have dermed MTFIF 
from the view of the external controller that is not in the beam 
(MU Stop Late - MU Start), this view suffers from two errors 
due to delays in the external view compared to an internal one: 
the delay from MU Start (command given) and the application 
start; and the delay from the first error and MU Stop Late 
(actual machine failure). MTFIF from an internal view of the 
machine under the beam is closer to the difference between 
the true application start and the first error indication, 
provided that the logs can be trusted. Since the acceleration 
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factor isn't extreme, errors are intermittent enough that this 
assumption is likely true. Since neither MU First nor MU 
Stop Early values are available for !idle, the results of the 31 
!idle experiments are omitted from the analyses. 

58 additional experiments were not included in the analyses 
(in addition to the !idle experiments). 49 were removed 
because the system experienced problems before the launching 
of the experiment. Either there were issues with the 
automation on the control machine or the machine in the beam 
experienced errors or failures before the launching of the 
experiment. Note that there were more than 49 instances of 
failures before the launching of the experiment; the 
automation was able to detect some and reboot the machine to 
recover and correctly launch an experiment. Similarly, 9 were 
removed because the failure happened after the launching of 
the experiment, but before the test application was launched. 
This yielded 495 experiments from the 17 applications that 
were included in the analyses. 

The experimental data are interval censored, i.e ., for a given 
experiment the first indication of failure is known to occur in 
an interval with left endpoint MU Stop Early - MU First and 
right endpoint equal to the MU value that is 10 seconds after 
MU Stop Early - MU First. Note that for some experiments, 
MU Stop Early equals MU First; this means that the failure 
occurred within lOs after MU First. 

The MU value 10 seconds after MU Stop Early is unknown or 
missing. However, based on the MU values in the logs, the 
distribution of the change in the MU count over ten second 
intervals during the experiments may be estimated. (There are 
ovalues in this data that correspond mostly to when the beam 
was turned off; thus they are excluded in estimating the 
number of MUs in 10 seconds.) We used the mean number of 
MUs in the 10-second intervals (28) to estimate the number of 
MUs in a lO-second interval for each experiment. Thus, the 
first indication of failure for a given experiment was assumed 
to occur in the interval [MU Stop Early - MU First, MU Stop 
Early - MU First + 28] corresponding to that experiment. 
Methods for missing data exist (Little and Rubin [5]) so that 
sound inferences can be made in the presence of missing data. 
Using the mean as was done for the analyses can lead to faulty 
inferences [5]. An analysis that incorporates the variability 
in the number of MUs in 10 seconds would lead to sounder 
inferences. 

In addition, there were 5 experiments for which MU First was 
actually "MU Second." In these cases, network issues meant 
that the MU count immediately before the application start 
could not be obtained. In all these cases, the network issue 
was transient and the second MU count value lOs later, MU 
Second, was correctly obtained. For these case, MU First was 
estimated by subtracting 28 from the recorded value. 

The data from the experiments from the 17 applications were 
modeled jointly using a Bayesian hierarchical model [6] . With 
this model, the failure rate under a given application, which is 
the inverse of the MTFIF under that application, is 
approximately a weighted average of the observed failure rate 

when that application was running and a failure rate estimated 
using the data from all 495 experiments. The probability 
arrived at which includes information from prior data is called 
"posterior probability". 

If the data observed when a given application was running 
provide a lot of information about the failure rate under that 
application, then those observed data will be weighted more 
heavily, compared to the failure rate estimated using the data 
from all 495 experiments, in the estimate of the failure rate 
under that experiment. Conversely, if the data observed when 
a given application was running provide relatively little 
information about the failure rate under that application, then 
those observed data will receive relatively little weight, 
compared to the failure rate estimate based on all 495 
experiments, in the estimate of the failure rate under that 
application. Because the model was fit via a simulation 
method (Markov Chain Monte Carlo), the draws of the 
rate parameters can be used to estimate the MTFIFs and 
related quantities discussed in this paper. 

F or further information about the model and model checking 
results, see Appendix I. 

v. RESULTS 

Results are presented in Figure 1, which includes estimated 
95% posterior probability intervals for the MTFIF in AUs for 
the 17 applications. The estimated posterior probabilities are 
tabulated against each other in Table II. The vertical axis 
indicates the MTFIF in AUs, while horizontal axis indicates 
the application, with Blackscholes and Streamcluster 
abbreviated as "Blacksch" and "Streamcl" because of space 
constraints . 

In the figure, the estimated 95% posterior interval for the 
MTFIF in AUs for each application is presented as a vertical 
line. The dash that intersects a given vertical line indicates the 
estimated posterior MTFIF for the corresponding application. 
The solid horizontal line provides the posterior mean of the 
estimate based on all 495 experiments. The dashed horizontal 
lines provide the estimated 95% posterior interval for this 
value. The results in Figure I, the paragraph below, and in 
would likely be different if the missing number of MUs in 10 
seconds had been addressed in a more rigorous manner. 

The estimated posterior probability that the MTFIF when 
Ammp is running is greater than that when Ray trace is 
running is just over 0.95. The corresponding estimated 
posterior probabilities for the applications with the next 8 
highest failure rates (Mcf through KPTest) and Ray trace are 
greater than 0.90. The estimated posterior probability that the 
MTFIF for Ammp is greater than that for Linpack is also 
greater than 0.90. Thus, there is evidence in the data that the 
MTFIF may differ among some of the applications. With 
additional data, further differences might be found. 

In addition, one instance of silent data corruption (SDC) was 
observed when Linpack was running. 
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VI. CONCLUSION 

These results show that the MTFIFs for some of the 
applications may be indeed be different. The workloads with 
the most difference in SER were Arnmp and Ray trace. These 
had 95% confidence of being different, as indicated by the 
MTFIF. Prior experiments presented at SELSE4 were not able 
to differentiate between workloads. The present set of 
experiments were broadened in scope of workloads, and 
number of measurements taken at each workload. Both 
Bayesean and Weibull analysis methods yielded the same 
conclusion (Weibull analysis was used for the SELSE4 study). 
The present studies are consistent with last year's 
measurements when one looks that the overall spread in 
MTFIF. The difference between the most divergent values for 
the mean MTFlF is 20%. Even taking the extremes of the 
error bars, the spread is within 100%. These are small 
differences on the scale of the SER for various design points, 
and for other workloads (e.g . see Dang et. a1. on I/O adaptors 
[16)) . The minor overall differences in mean MTFIF explain 
that it was difficult to see statistically significant difference 
between workloads for the SELSE4 experiments. A notable 
conclusion is that the idle workload did not have the highest 
MTFIF. That is, the processor was not less vulnerable when 
running idle as when running workload (e.g. Ray trace). 
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Figure 1: Estimated posterior mean times to first 
indication offailure, MTFIF measured in AUs and 

corresponding 95% posterior intervals for 17 applications 

Table 2: Estimated posterior probability that the MTFIF 
for one application is greater than MTFlF for another. 
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VII. ApPENDIX I 

Under the model, the distribution of the interval-censored 
times to fITst indication of failure, in AUs, for experiment i is 
exponential with MTFIF lfAi. The AiS are then modeled as 
Gamma-distributed, with mean exp(~) and variance exp(I3)2~ 
where 13 and ~ are unknown. (Since the I..jS are positive, a 
distribution on positive values like the Gamma is 
required.) The parameters ~ and ~ were assigned vague 
priors, with the distribution of 13 given flXed 1; Normal with 
mean -2.3 and variance 102 and p(~) = I O/(~+ 10)2 with 
respect to d~; the prior for ~ is that found in [9] when their 
parameter :zo=IO. The parameters of the Normal 
distribution and the value of Zo were based on our prior 
opinion about the distribution of the I..jS and were intended 
to be relatively non-informative, i.e. to let the data from 
the experiments speak. The model was fit using the YADAS 
software [10]. Model checking via plots of the observed data 
and posterior predictive p-values [11] suggested no gross lack 
of model fit. For just over half of the 17 applications, there 
was evidence that extremes in the times to first indication of 
failure were not consistent with the model used. This 
suggests that the failure times from some of the 
experiments may not be exactly exponential. For a few of 
the applications, further lack of model fit was suggested. Prior 
sensitivity analyses suggested that the results presented here 
are not particularly sensitive to the parameters values 
governing the prior distribution on 13 and ~. 

VIlI. ApPENDIX II 

The data were also analyzed using the methods from the previous 
study [14]. For these analyses, ReliaSoft Weibull++ [15] was 
used to estimate the probability that the failure rate under 
application i was different from that under application j for all 
unique pairs i, j. The analysis is based on Equation (1): 

P~2 ~ tJ= fooo J; ~)* R2 ~)* dt, (1) 
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where jet) is the probability density function under the first 
application and R,(t) is the reliability or survival function under 
the second application. (If the probability was 0.5, the 
distributions were considered identical. A result of 0.5 ± 0.1 was 
identified with approximate equality of the two distributions. 
There was no evidence from this analysis that conflicted with the 
conclusions of the analysis presented in the body of this paper. 

IX. ACKNOWLEDGEMENTS 

This work was performed with the aid of a research grant by 
the Los Alamos National Laboratory to Stanford University 
for neutron irradiation studies of the workload effects of SER. 
We thank Steve Wender of LANSCE for his help, and Ricardo 
Mata and Anh Dang for their assistance during the 
experiments. 

X. REFERENCES 

[I] 	 V. Aslot and R. Eigenmann, "Perfonnance Characteristics of the SPEC 
OMP200 I Benchmarks" EWOMP 200 I. 

[2] 	 J. Bau et ai, "Error Resilient System Architecture (ERSA) for 
Probabilistic Applications" SELSE 3,2006. 

[3] 	 C. Bender, P.N. Sanda, P. Kudva, R. Mala, V. Pokala, R. Haraden, M. 
Schallhom, "Soft Error Resilience of the IBM POWER6 Processor 
Input/Output Subsystem", IBM J. Res. Dev. Vol. 52, No.3 (2008). 

[4] 	 SELSE4 Workshop, http://www.sclse.org Austin TX (2007). 
[5] 	 R. Little and D. Rubin Statistical Analysis with Missing Data, 2,d 

edition, John Wiley, New York (2002). 
[6] 	 A. Gelman, J. Carlin, H. Stem and D. Rubin, Bayesian Data Analysis, 

Chapman and Hall, London (I995). 
[7] 	 C. Bienia, S. Kumar, J.P. Singh and K. Li, "The PARSEC Benchmark 

Suite: Characterization and Architectural Implications," PACT 2008. 
[8] 	 C. Bienia, S. Kumar, J.P. Singh and K. Li, "The PARSEC Benchmark 

Suite: Characterization and Architectural Implications," Princeton 
University Tech Report TR·SII-OS 2008 . 

[9] 	 C. Christiansen and C. Moms, "Hierarchical Poisson Regression 
Modeling" , Journal ofthe American Statistical Association v.92, pp6lS ­
632 (1997). 

[10] 	 T. Graves, "Design Ideas for Markov Chain Monte Carlo Software" , 
Journal of Computational and Graphical Statistics v.16, pp 24-43 
(2007). 

[II] 	A. Gelman and X. Meng, "Model Checking and Model Improvement", 
in Practical Markov Chain Monte Carlo, ed. W. Gilks, S. Richardson, 
and D. Spiege1halter, pp IS9-201, Chapman and Hall, New York (1996). 

[12] Neal, "Software for Low Density Parity Check (LDPC) codes," 2006, 
http://www.cs.utoronto.cal- radfordlldpc.software.html 

[13] 	 S.C Woo, et a!. "The SPLASH-2 programs: characterization and 
methodological considerations," ISCA 1995. 

[14] Rao, S., Hong, T., Sanda, P. , Ackaret, 1., Barrera, A., Yanez, J., Mitra, 
S., Kellington, JT, and McBeth, R. (2008) "Examining Workload 
Dependence of Soft Error Rates," Proceedings ofS£LS£08. 

[15] 	 G. G. Brown and H. C. RutemilIer, (I973) "Evaluation of Pr {x ::::: y} 
When Both X and Yare from Three-Parameter Weibull 
Distributions," IEEE Trans. Reliability R-22, No.2, 7S-82. 

[16] 	Anh Dang et. a!. submitted to this SELSE 

http://www.cs.utoronto.cal-radfordlldpc.software.html
http:http://www.sclse.org

