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Abstract— 1t is known that workloads are an important factor
in SER, but it is proving difficult to find differentiating
workloads for microprocessors. We have performed neutron
beam irradiation studies of a commercial microprocessor
under a wide variety of workload conditions from idle,
performing no operations, to very busy workloads resembling
real HPC, graphics, and business applications. There is
evidence that the mean times to first indication of failure,
MTFIF defined in Section II, may be different for some of the
applications.

Index Terms—SER, RAS, Fault Tolerance

[. INTRODUCTION

It makes sense that soft error rates (SER) in a computer system
would have more impact if there is work done, and less if
there is no useful work being done. Bender et. al. showed that
SER is dependent upon workload in an I/O hub chip [1]. If we
apply Little’s Law to SER, then SER should scale with
workload bandwidth and data residency. If there is little or no
workload, and little or no data residency, one would think that
there should be little or no SER impact. Last year at SELSE 4,
Rao et. al. showed controversial results that did not
differentiate between idle and busy workloads for two
different machines [2]. This year, we expanded the study to
include more workloads and more data points for each
workload. Statistical analysis was used to see if the workloads
could be distinguished. With these data, there is evidence that
the mean times to first indication of failure for some of the
applications may be different.

II. SYSTEM AND APPLICATIONS

Neutron beam measurements were performed at Los Alamo
National Laboratory (LANL) in New Mexico using a single

test system. The instrument configuration was similar but not
identical to last year’s measurement [2]. Notably the beam
was denser than last year and the memory configuration was
comparable but slightly different.

Eighteen different applications, both single and multi-
threaded, were run while the test system was exposed to the
neutron beam. These were collected/developed from a variety
of sources, including Linpack from Intel Corp; Parsec from
Princeton University [7]{8]; SpecCPU2000, SpecOMP2001-
M, SpecJBB 2001, and SpecCPU2006 from SPEC; Splash-2
from Stanford University [13]; Ldpc from the University of
Toronto [12] modified by Stanford [2]. In addition to these
standard benchmarks, we also utilized the Idle loop of the
underlying Linux Operating System and developed KpTest, an
application that performs basic integer operations while self-
checking the result .
Table 1: Application Description

App Source Type (Fp/Int) : Description

Linpack Intel Fp: Gaussian Elimination

SpecJBB Spec2001 | Int: Transactions Processing

Gece Spec2000 | Int: C Compilation

Gzip Spec2000 | Int: Source Coding

Mcf Spec2000 | Int: Network Flow Scheduling

Milc Spec2006 | Fp: Quantum Chronodynamics

Blackscholes | Parsec Fp: Financial (PDE)

Canneal Parsec Fp: Chip Routing Kernel

Swaptions Parsec Fp: Monte Carlo Simulation

Streamcluster | Parsec Fp: Online Clustering of Data

X264 Parsec Int: Video Encoding

Ammp OMP2001 | Fp: Molecular Dynamics
ODE)

Applu OMP2001 | Fp: Fluid Dynamics (PDE)

Ldpc Neal Fp: Chanel Coding for ECC

Raytrace Splash-2 Fp: Raytracing Application

Idle - Linux Idle Workload

[1dle - Idle w/o Test Apparatus Wkid

KpTest - Int: Loop of Basic Operations
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In Idle, the system is ready for work, but is not processing user
instructions. In other words, apart from normal background
tasks, we only run our test apparatus (which is mostly
sleeping) and allow the operating system to maintain control
of the processors in its idle loop. The difference between ldle
and I1dle is that in IIdle the test environment is “sleeping”.

From SpecCPU2000, we chose three different integer
applications: Gcee, Gzip, and Mcf. Gzip is one of the simplest
benchmarks while Gece is one of the most complex. Finally,
Mcf has one of the highest CPl of all Spec integer
benchmarks.  Finally, from SpecCPU2006 we chose a
floating-point benchmark: Milc. These four applications
along with the single-threaded KpTest provide a wide range of
single-threaded behaviors.

The rest of the applications are dual-threaded. For both single
and dual-threaded applications, the application under
consideration utilizes both cores of the CPU. We ran two
instances of the single threaded applications and specified that
the dual-threaded applications utilized two cores. For these
multi-threaded applications we chose applications with
different sharing and data-resilience characteristics. Ldpc,
Blackscholes, Canneal, Swaptions, Streamcluster, Ammp, and
Applu with their iterative nature are thought to be less
sensitive to data errors than Linpack, SpecJBB, X264, and
Raytrace. Spec]BB as a Java program relies on a Java runtime
engine, which with “just in time compilation,” may be more
vulnerable. Canneal is a unique program in that it does not
utilize any locks, and can behave correctly in the presence of
data races; its data is also not easily cached, forcing sharing to
be performed via main memory. X264 utilizes a pipeline
parallelization model in which the entire data to be worked on
needs to be transferred between processors [8]. Finally, of the
two OMP benchmarks Applu is reported [1] to have one of the
highest communication./computation ratios suggesting that it
might be more vulnerable to errors in the caches than Ammp,
which has one of the least.

III. EXPERIMENT

Each application was run repeatedly until failure, where
failure is defined as having occurred when the test system no
longer responded to a ping from an external controller. Several
“times,” measured in Monitor Units (MUs), were captured
from the logs for each experiment, where each log
corresponds to a particular instance in which a given
application was run until failure. These experimental logs are
system console logs that contain values of MU output at
roughly 10-second intervals, error messages the system under
test reported, a bootup and reset log, and test apparatus output
and errors. The number of MUs during a given time interval
is proportional to the number of neutrons/cm’ to which the
device was exposed during that time interval.

For these experiments, the following MU values were
collected: 1) the MU value when the experiment was launched
by the external controller, which is usually prior to the
launching of the application (“MU Start”); 2) the MU value
immediately prior to the launching of the application (“MU

First”); 3) the MU value before the first reported error in the
logs (“MU Stop Early”); and 4) the MU value following the
time at which the system stopped responding to the external
controller (“MU Stop Late”). Under the experimental
protocol, there is a slight delay between MU Start and the
application startup. Rarely, MU Start occurs after the launch
of the application due to errors in the automated cleanup of a
prior failed run. MU Stop Early is approximate since MU
counts were output to the experimental logs every 10 seconds.
MU Stop Late is also approximate since the system under test
is polled every 5 seconds.

For each of the applications, interest focuses on estimating the
mean number of MU, reported in arbitrary units (AUs), until
the system first issued an error message or the mean time to
first indication of failure, MTFIF. (MTFIF is a good measure
for the inverse of SER.) This includes any type of system
failure, whether directly related to the application running
during the experiment or not. Because of the manner in which
the data were collected, the first error is known to have
occurred within 10 seconds after the MU Stop Early value. In
particular, the MU values were (ideally) output to the
experimental logs every 10 seconds. With MU Stop Early, the
most recent MU value before an error message appeared in the
experimental log, the error message must occur within 10
seconds of MU Stop Early unless one or more MU values
were not reported.

Ten KpTest experiments yielded no experimental log. There
is no obvious reason why these logs should be missing.
KpTest was the last application run, so it is possible that the
control program was suffering difficulties at that time. All
KpTest experiments for which a value of MU Stop Early
could be derived are included in the analyses (an experimental
log is required in order to derive MU Stop Early). For the l1dle
experiments, the MU test apparatus counter wasn’t used, so
for these experiments, only MU Start and MU Stop Late are
available.

Thirty-one experiments in which the application was allowed
to run until failure were conducted for each application with
the following exceptions: Ammp (n=41); KpTest (n=26);
Linpack (n=40); SpecJBB (n=33); and x264 (n=41).

IV. MODELLING THE EXPERIMENTAL DATA

The experimental goal was to determine whether different
MTFIFs, in AUs, were obtained when different applications
were running. That is, interest focuses on the values of MU
Stop Early — MU First. While we could have defined MTFIF
from the view of the external controller that is not in the beam
(MU Stop Late - MU Start), this view suffers from two errors
due to delays in the external view compared to an internal one:
the delay from MU Start (command given) and the application
start; and the delay from the first error and MU Stop Late
(actual machine failure). MTFIF from an internal view of the
machine under the beam is closer to the difference between
the true application start and the first error indication,
provided that the logs can be trusted. Since the acceleration
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factor isn’t extreme, errors are intermittent enough that this
assumption is likely true. Since neither MU First nor MU
Stop Early values are available for lidle, the results of the 31
lidle experiments are omitted from the analyses.

58 additional experiments were not included in the analyses
(in addition to the lidle experiments). 49 were removed
because the system experienced problems before the launching
of the experiment. Either there were issues with the
automation on the control machine or the machine in the beam
experienced errors or failures before the launching of the
experiment. Note that there were more than 49 instances of
failures before the launching of the experiment; the
automation was able to detect some and reboot the machine to
recover and correctly launch an experiment. Similarly, 9 were
removed because the failure happened after the launching of
the experiment, but before the test application was launched.
This yielded 495 experiments from the 17 applications that
were included in the analyses.

The experimental data are interval censored, i.e., for a given
experiment the first indication of failure is known to occur in
an interval with left endpoint MU Stop Early - MU First and
right endpoint equal to the MU value that is 10 seconds after
MU Stop Early - MU First. Note that for some experiments,
MU Stop Early equals MU First; this means that the failure
occurred within 10s after MU First.

The MU value 10 seconds after MU Stop Early is unknown or
missing. However, based on the MU values in the logs, the
distribution of the change in the MU count over ten second
intervals during the experiments may be estimated. (There are
0 values in this data that correspond mostly to when the beam
was turned off; thus they are excluded in estimating the
number of MUs in 10 seconds.) We used the mean number of
MUs in the 10-second intervals (28) to estimate the number of
MUs in a 10-second interval for each experiment. Thus, the
first indication of failure for a given experiment was assumed
to occur in the interval [MU Stop Early — MU First, MU Stop
Early — MU First + 28] corresponding to that experiment.
Methods for missing data exist (Little and Rubin [5]) so that
sound inferences can be made in the presence of missing data.
Using the mean as was done for the analyses can lead to faulty
inferences [S]. An analysis that incorporates the variability
in the number of MUs in 10 seconds would lead to sounder
inferences.

In addition, there were 5 experiments for which MU First was
actually “MU Second.” In these cases, network issues meant
that the MU count immediately before the application start
could not be obtained. In all these cases, the network issue
was transient and the second MU count value 10s later, MU
Second, was correctly obtained. For these case, MU First was
estimated by subtracting 28 from the recorded value.

The data from the experiments from the 17 applications were
modeled jointly using a Bayesian hierarchical model [6]. With
this model, the failure rate under a given application, which is
the inverse of the MTFIF under that application, is
approximately a weighted average of the observed failure rate

when that application was running and a failure rate estimated
using the data from all 495 experiments. The probability
arrived at which includes information from prior data is called
“posterior probability”.

If the data observed when a given application was running
provide a lot of information about the failure rate under that
application, then those observed data will be weighted more
heavily, compared to the failure rate estimated using the data
from all 495 experiments, in the estimate of the failure rate
under that experiment. Conversely, if the data observed when
a given application was running provide relatively little
information about the failure rate under that application, then
those observed data will receive relatively little weight,
compared to the failure rate estimate based on all 495
experiments, in the estimate of the failure rate under that
application. Because the model was fit via a simulation
method (Markov Chain Monte Carlo), the draws of the
rate parameters can be used to estimate the MTFIFs and
related quantities discussed in this paper.

For further information about the model and model checking
results, see Appendix I.

V. RESULTS

Results are presented in Figure 1, which includes estimated
95% posterior probability intervals for the MTFIF in AUs for
the 17 applications. The estimated posterior probabilities are
tabulated against each other in Table II. The vertical axis
indicates the MTFIF in AUs, while horizontal axis indicates
the application, with Blackscholes and Streamcluster
abbreviated as “Blacksch” and “Streamcl]” because of space
constraints.

In the figure, the estimated 95% posterior interval for the
MTFIF in AUs for each application is presented as a vertical
line. The dash that intersects a given vertical line indicates the
estimated posterior MTFIF for the corresponding application.
The solid horizontal line provides the posterior mean of the
estimate based on all 495 experiments. The dashed horizontal
lines provide the estimated 95% posterior interval for this
value. The results in Figure 1, the paragraph below, and in
would likely be different if the missing number of MUs in 10
seconds had been addressed in a more rigorous manner.

The estimated posterior probability that the MTFIF when
Ammp is running is greater than that when Raytrace is
running is just over 0.95. The corresponding estimated
posterior probabilities for the applications with the next 8
highest failure rates (Mcf through KPTest) and Raytrace are
greater than 0.90. The estimated posterior probability that the
MTFIF for Ammp is greater than that for Linpack is also
greater than 0.90. Thus, there is evidence in the data that the
MTFIF may differ among some of the applications. With
additional data, further differences might be found.

In addition, one instance of silent data corruption (SDC) was
observed when Linpack was running.
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V1. CONCLUSION

These results show that the MTFIFs for some of the
applications may be indeed be different. The workloads with
the most difference in SER were Ammp and Raytrace. These
had 95% confidence of being different, as indicated by the
MTFIF. Prior experiments presented at SELSE4 were not able
to differentiate between workloads. The present set of
experiments were broadened in scope of workloads, and
number of measurements taken at each workload. Both
Bayesean and Weibull analysis methods yielded the same
conclusion (Weibull analysis was used for the SELSE4 study).
The present studies are consistent with last year’s
measurements when one looks that the overall spread in
MTFIF. The difference between the most divergent values for
the mean MTFIF is 20%. Even taking the extremes of the
error bars, the spread is within 100%. These are small
differences on the scale of the SER for various design points,
and for other workloads (e.g. see Dang et. al. on I/O adaptors
[16]). The minor overall differences in mean MTFIF explain
that it was difficult to see statistically significant difference
between workloads for the SELSE4 experiments. A notable
conclusion is that the idle workload did not have the highest
MTFIF. That is, the processor was not less vulnerable when
running idle as when running workload (e.g. Raytrace).
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Figure 1: Estimated posterior mean times to first
indication of failure, MTFIF measured in AUs and
corresponding 95% posterior intervals for 17 applications

Table 2: Estimated posterior probability that the MTFIF
for one application is greater than MTFIF for another.
(i,j) = POMTTIF i > MTFIF j)
1| 2| 3| 4| 5| 6| 7| 8| 9|10]|11[12]13[14[15]|16
2(.57
31.58|.50

41.58).51(.50
51.60|.53|.52| .51
6

f

8

66(.59(.59(.58( .56
67/.60|.59].58|.56|.49
70| .63.63[.62] 59| 53 .52
9[.70[.64.63].62].60| 53| .53[ .50
10 [.71].65].64|.64] .62[.55[.55].51| .51
11(.74|.67|.67|.66|.64] .58|.57|.54|.53].51
12|.77|-72|.71|.70| 68| 62| 62| 58].58[.56|.54
13 150 .76|.76|.75|.73| .67|.67|.64|.64] .61.59] .55
14 5238 76|.76].75|.73] .67|.67| 64|.64[ 61| .59 .55] .49

15 79|.79[.77|.76[.72| .67( 67
16 79].79[.77|.77|.73] 68/ 68| 52
17 70[65

VII. APPENDIX I

Under the model, the distribution of the interval-censored
times to first indication of failure, in AUs, for experiment i is
exponential with MTFIF 1/A;. The A;s are then modeled as
Gamma-distributed, with mean exp(B) and variance exp(B)*/C
where B and T are unknown. (Since the A;s are positive, a
distribution on positive values like the Gamma is
required.) The parameters § and T were assigned vague
priors, with the distribution of § given fixed § Normal with
mean -2.3 and variance 10> and p@) = 10/(g+10)* with
respect to dC; the prior for  is that found in [9] when their
parameter zo=10. The parameters of the Normal
distribution and the value of z, were based on our prior
opinion about the distribution of the A;s and were intended
to be relatively non-informative, i.e. to let the data from
the experiments speak. The model was fit using the YADAS
software [10]. Model checking via plots of the observed data
and posterior predictive p-values [11] suggested no gross lack
of model fit. For just over half of the 17 applications, there
was evidence that extremes in the times to first indication of
failure were not consistent with the model used. This
suggests that the failure times from some of the
experiments may not be exactly exponential. For a few of
the applications, further lack of model fit was suggested. Prior
sensitivity analyses suggested that the results presented here
are not particularly sensitive to the parameters values
governing the prior distribution on f§ and €.

VIIL

The data were also analyzed using the methods from the previous
study [14]. For these analyses, ReliaSoft Weibull++ [15] was
used to estimate the probability that the failure rate under
application i was different from that under application j for all
unique pairs i, j. The analysis is based on Equation (1):

APPENDIX 11

Pl 2o - [ A@RO)dt, )
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where f£(t) is the probability density function under the first
application and R,(t) is the reliability or survival function under
the second application. (If the probability was 0.5, the
distributions were considered identical. A result of 0.5 + 0.1 was
identified with approximate equality of the two distributions.
There was no evidence from this analysis that conflicted with the
conclusions of the analysis presented in the body of this paper.

[X. ACKNOWLEDGEMENTS

This work was performed with the aid of a research grant by
the Los Alamos National Laboratory to Stanford University
for neutron irradiation studies of the workload effects of SER.
We thank Steve Wender of LANSCE for his help, and Ricardo
Mata and Anh Dang for their assistance during the
experiments. '

X. REFERENCES

[1] V. Aslot and R. Eigenmann, “Performance Characteristics of the SPEC
OMP2001 Benchmarks” EWOMP 2001.

[2] J. Bau et al, “Error Resilient System Architecture (ERSA) for
Probabilistic Applications” SELSE 3, 2006.

[3] C. Bender, P.N. Sanda, P. Kudva, R. Mata, V. Pokala, R. Haraden, M.
Schallhom, “Soft Error Resilience of the IBM POWERG6 Processor
Input/Output Subsystem”, IBM J. Res. Dev. Vol. 52, No. 3 (2008).

[4] SELSE4 Workshop, http://www.selse.org Austin TX (2007).

(5] R. Little and D. Rubin Statistical Analysis with Missing Data, 2™
edition, John Wiley, New York (2002).

[6] A. Gelman, J. Carlin, H. Stern and D. Rubin, Bayesian Data Analysis,
Chapman and Hall, London (1995).

[71 C. Bienia, S. Kumar, J.P. Singh and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” PACT 2008.

[8] C. Bienia, S. Kumar, J.P. Singh and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” Princeton
University Tech Report TR-811-08 2008.

[9] C. Christiansen and C. Morris, “Hierarchical Poisson Regression
Modeling”, Journal of the American Statistical Association v.92, pp618-
632 (1997).

[10] T. Graves, “Design Ideas for Markov Chain Monte Carlo Software”,
Journal of Computational and Graphical Statistics v.l6, pp 24-43
(2007).

[11] A. Gelman and X. Meng, “Model Checking and Model Improvement”,
in Practical Markov Chain Monte Carlo, ed. W. Gilks, S. Richardson,
and D. Spiegelhalter, pp 189-201, Chapman and Hall, New York (1996).

[12] Neal, “Software for Low Density Parity Check (LDPC) codes,” 2006,
http://www cs.utoronto.ca/~radford/ldpc.software html

[13] S.C Woo, et al. “The SPLASH-2 programs: characterization and
methodological considerations,” ISCA 1995.

[14] Rao, S., Hong, T., Sanda, P., Ackaret, J., Barrera, A., Yanez, J., Mitra,
S., Kellington, JT, and McBeth, R. (2008) “Examining Workload
Dependence of Soft Error Rates,” Proceedings of SELSE0S.

[15] G. G. Brown and H. C. Rutemiller, (1973) ‘‘Evaluation of Pr {x >y}
When Both X and Y are from Three-Parameter Weibull
Distributions,”” IEEE Trans. Reliability R-22, No. 2, 78-82.

[16] Anh Dang et. al. submitted to this SELSE



http://www.cs.utoronto.cal-radfordlldpc.software.html
http:http://www.sclse.org

