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Abstract—Many of today’s most valued principles of gov-
ernance were developed during the eighteenth century’s Age
of Enlightenment. Twenty-first century democratic nations may
benefit from revisiting the idealized decision making systems
developed during the Enlightenment and reframing them within
the socio-technical context of the Information Age. This article
explores Thomas Paine’s (English: 1737-1809) requirements
of representation, Adam Smith’s (Scottish: 1723-1790) self-
interested actors, and Marquis de Condorcet’s (French: 1743—
1794) optimal decision making groups.

Index Terms—collective decision making, e-participation, e-
democracy, computational social choice theory

I. INTRODUCTION

Eighteenth century Europe is referred to as The Age of
Enlightenment, a period when prominent philosophers began
to question traditional forms of authority and power and the
moral standards that supported these forms. The radical ideas
of the Enlightenment helped to shape various revolutions
across Europe as well as contribute to the formalization of the
governing structure that would determine the course of a new
nation: the United State of America. It was during this time
that many of the values we hold in high esteem today were set
in their present form. However, the present implementation of
these values in decision making can benefit from a revamping
that makes greater use of the technical advances made in
the present Information Age. Such a revitalization of the
modern decision making infrastructure can yield a greater
precision and as such, better embody the ideals, not simply
the mechanism, of these original thinkers. To move in this
direction, the principle of citizen representation as articulated
by Thomas Paine (English: 1737-1809) and the principle of
competitive actors for the common good as articulated by
Adam Smith (Scottish: 1723-1790) are considered from a
techno-social, collective decision making systems perspective.
Moreover, the validity of these ideals can be understood within
the mathematical formulations of Marquis de Condorcet’s
(French: 1743-1794) requirements for optimal decision mak-
ing.
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II. CONDORCET JURY THEOREM: ENSURING OPTIMAL
DECISION MAKING

Marquis de Condorcet ardently supported equal rights and
free and universal public education. These ideals underpinned
his investigations in mathematics, philosophy, and political
science, making his work as significant today as it was then.
Condorcet was one of the first to widely apply mathematics
to the nascent field of political science. Of his mathematical
investigations into the nature of politics, one of his most
famous results is the Condorcet statement and its associated
theorem. In his 1785 FEssai sur I’Application de I’Analyse
aux Probabilités des Decisions prises a la Pluralité des Voix
(english translation Essay on the Application of Analysis to the
Probability of Majority Decisions), Condorcet states that when
a group of “enlightened” decision makers chooses between
two options under a majority rule, then as the size of the
decision making population tends toward infinity, it becomes
a certainty that the best choice is rendered [1]. The first
statistical proof of this statement is the Condorcet jury theorem
expressed as follows. Imagine there exists m independent
decision makers and each decision maker has a probability
p € [0,1] of choosing the best of two options in a decision.
If p > 0.5, meaning that each individual decision maker is
enlightened, and as n — oo, the probability of a majority vote
outcome rendering the best decision approaches certainty at
1.0. This is known as the “light side” of the Condorcet jury
theorem. The “dark side” of the theorem states that if p < 0.5
and as n — oo, the probability of a majority vote outcome
rendering the best decision approaches 0.0. Figure 1 plots the
relationship between p and n, where a 100% probability of the
group rendering the best decision is white and a 0% probability
1s black.

The Condorcet jury theorem is one of the original for-
mal justifications for the application of democratic principles
to government. Moreover, it verifies the intuition that it is
important to utilize a large group of enlightened decision
makers. Democracies do not rely on a single decision maker,
but instead use senates, parliaments, and referendums to add
increase the size of the voting population in order to better
ensure optimal decisions are rendered. Additionally, it is a
democratic ideal to include those who will be affected by the
decision in the decision making process. Whether for diversity
of opinion or ideals, including many people in decision-
making is already a goal of democracy. The necessity of
enlightened decision makers is apparent in the lengths to


http:hup:/Icdms.lanl.gov
mailto:jhw@lanl.gov
mailto:marko@lanl.gov

1.0

0.8

0 10 20 30 40 50 60 70 80 90
n

100

Fig. 1.  The relationship between p € [0,1] and n € (1,2,...,100)
according to the Condercet jury theorem model. Darker values represent a low
probability of a majority vote rendering the best decision and the lighter values
represent a high probability of a majority vote rendering the best decision.

which democratic societies go to choose leaders. Elections
are opportunities to compare candidates’ expertise, skills, and
other leadership qualities that serve as indicators of one’s
ability to make optimal decisions in the future. It is hoped that
these decisions are voted on by an informed (or enlightened)
electorate.

While the Condorcet jury theorem does not reveal any
startling conditions for a successful democracy, it does dis-
till the necessary conditions to two variables (under simple
assumptions). If a decision making group has a large n and
a p > 0.5, then the group is increasing its chances of
optimal decision making. Unfortunately, the theorem does not
suggest a means to achieve these conditions. Technology-
enabled social algorithms provide an means by which to
achieve the conditions of the “light” side of the Condercet
jury theorem and thus, achieve optimal decision making.
Given the advances in information systems, communication
technologies, and social algorithms, it may be possible to build
and deploy a decision making infrastructure that solicits the
decision making influence of those individuals that are more
likely than not to choose the best decision for a particular
problem [2]. This article presents two such algorithms that
show promise as mechanisms for the future of societal-
scale, collective decision making. One algorithm exaggerates
Thomas Pains’ requirements of representation in order to
accurately simulate the behavior of a large decision making
population (n — o0), and the other makes use of Adam
Smith’s market philosophy to induce participation by the
enlightened within that population (p — 1). Both algorithms
together, utilize the Condorcet jury theorem to the society’s
advantage.

ITII. DYNAMICALLY DISTRIBUTED DEMOCRACY:
SIMULATING A LARGE DECISION MAKING POPULATION

Thomas Paine was originally born in England, but in his
middle years, he relocated to America due to the recommen-
dation of Benjamin Franklin. It was in America, in the time
leading up to the American Revolution, where his enlightened

ideals were well received. In 1776, the same year as the
authoring of the Declaration of Independence, Thomas Paine
wrote a widely distributed pamphlet entitled Common Sense
which outlined the values of a democratic regime [3]. This
pamphlet discussed the equality of man and the necessity
for all those at stake, to partake in the decision making
processes of the group. When populations are small “some
convenient tree will afford them a State house™, but as the
population increases the necessity for representatives who
act on behalf of their constituents becomes the necessary
consequence. Moreover, and being the central tenet of political
representation, it is important that representatives “act in the
same manner as the whole body would act were they present”.
In other words, it is necessary to simulate the behavior of a
large group even if only a subset of that group can actively
participate. <

One of the conclusions of the Condorcet jury theorem is
that, assuming the other conditions of the theorem are met, a
larger decision making population is better than a smaller one.
To explore the implications of achieving this large n, consider
the various forms of government. Assuming a p > 0.5,
the Condorcet jury theorem would hold that a representative
democracy would be more likely to make optimal decisions
than a dictatorship and that a direct democracy would be
more likely to make optimal decisions than the representative
democracy. In practice, the desire for optimal decision making
is tempered by the tremendous burden that constant voting
would impinge on citizens (not to mention the logistical
problems such a voting system would incur). For this reason,
representation is a necessity. However, if the representative
body votes as its represented constituents would have voted,
then representative democracy and direct democracy are equal.
The problem then is to develop a social algorithm that accu-
rately simulates the decision making behavior of the whole
population without demanding the burdensome amount of time
this would require.

Before presenting such a solution, it is important to define
a collective decision under total participation (i.e. a direct
democracy with full participation). Assuming a two-option
majority rule, an individual’s judgement can be placed along
a continuum between the two options such that the “political
tendency” of decision maker ¢ can be denoted x; € [0, 1]. For
example, given United States politics, a political tendency of
0 represents a fully Republican perspective, a tendency of 1
represents a fully Democratic perspective, and a tendency of
0.5 denotes a moderate. Given this definition, there are two
ways to quantify the group. One way is to calculate the average
tendency of all decision makers. That is d*" = %Ziig X,
where d*™ € [0,1] is the collective tendency of the group.
Given a uniform distribution of political tendency within x,
the global tendency approaches 0.5 as the size of the group
increases towards infinity. The other way to quantify the group
is to require that the individual’s tendency be reduced to a
binary option (i.e. a two option vote). If a decision maker has
a political tendency that is less than 0.5, then they will vote 0.
If they have a tendency equal to 0.5 then a fair coin toss will
determine their vote. Otherwise, for a tendency greater than
0.5, they will vote 1. This majority wins vote is denoted d***¢,



where d"°¢ € {0, 1}.

Imagine a direct democracy in the purest sense, where a
raise of hands or a shout of voices is replaced by an Internet
architecture and a sophisticated error- and fraud-proof ballot
system. All citizens have the potential to vote on any decisions
they wish; if they could not vote on a particular decision
for whatever reason, they could abstain from participating.
In practice, not every decision will be voted on by all n
citizens. Citizens will be constrained by time pressures to only
participate in those votes in which they are most informed or
most passionate. If we assume that all citizens have a tendency,
whether they vote or not, how would the collective tendency
and collective vote change as citizen participation waned?

Let d3d € [0,1] and d}%¢ € {0,1} denote the tendency
and vote given by 100% participation. Let d™ € [0,1]
and d;*® € {0,1} denote the collective tendency and vote
if only k-percent of the population participated. The error
in the calculation of the collective tendency for k-percent
participation is calculated as

e = a5 — ™) € [0,1].

The further away the active voters’ collective tendency is
from the population’s collective tendency, the higher the error.
The gray line in Figure 2 plots the relationship between k
and €™, As citizen participation wanes, the ability for the
remaining, active participants to reflect the tendency of the
whole becomes more difficult. Next, the error in the collective
vote is calculated as the proportion of voting outcomes that
are different than what a fully participating population would
have voted and is denoted e*°'. The gray line in Figure 3 plots
the relationship between k and e'*'®. As participation wanes,
the proportion of decisions that differ from what would have
occurred given full participation decreases. As with collective
tendency, a small active voter population is unable to replicate
the behavior of the whole.
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Fig. 2. The relationship between k and €™ for direct democracy (gray line)
and dynamically distributed democracy (black line). The plot provides the
average error over a simulation that was run with 1000 artificially generated
networks composed of 1000 citizens each. The preferential attachment,
network growth algorithm was used to generate a degree distribution that is
reflective of typical social networks “in the wild” (i.e. scale-free properties).
Moreover, links between citizens of opposing political tendencies are less
likely to link than like citizens.
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Fig. 3. The relationship between k and e"®*¢ for direct democracy (gray

line) and dynamically distributed democracy (black line). The plot provides
the proportion of identical, correct votes over a simulation that was run with
1000 artificially generated networks composed of 1000 citizens each.

Dynamically distributed democracy (DDD) is an algorithm
that provides a means by which a subset of the population can
simulate the decision making results of the whole population
[4). As such, the algorithm reflects the primary tenet of
representation as originally outlined by Thomas Paine and
quantifiably valued by Marquis de Condercet. The argument
for the use of DDD as mechanism for representation goes
as follows. Not everyone in a population needs to vote as
others in that same population more than likely have a nearly
identical political tendency. What does need to be recorded
is the frequency of that sentiment in the population. If an
active voter is similar in tendency to 10 non-participating
citizens, then the active voter’s ballot can be weighted by 10
to reflect the tendencies of the non-participating citizens. DDD
accomplishes this weighting through a similarity- or trust-
based social network that is used to direct voting power to
active voters so as to mitigate the error incurred by waning
citizen participation.

As previously stated, let x € [0,1]" denote the political
tendency of each citizen in this population, where x; is the
tendency of citizen ¢ and, for the purpose of simulation, is
determined from a uniform distribution. Assume that every
citizen in a population of n citizens uses some social network-
based system to create links to those individuals that they
believe reflect their tendency the best. In practice, these links
may point to a close friend, a relative, or some public figure
whose political tendencies resonate with the individual. Let
A € [0,1]™*™ denote the link matrix representing the network,
where the weight of an edge, for the purpose of simulation, is
denoted

1—|x; —xj| if link exists

At,j = s
0 otherwise.

In words, if two citizen’s are identical in their political
tendency, then the strength of the link is 1.0. If their tendencies
are completely opposing, then their trust (and the strength of
the link) is 0.0. Note that an assortativity parameter [5] is
used to bias the connections in the network towards citizens



with similar tendencies. The assumption here is that given
a system of this nature, it is more likely for citizens to
create links to similar-minded individuals than to those who
opinions are quite different. It is the purpose of the social
network to capture these links. The resultant link matrix A
is then normalized to be row stochastic in order to generate a
probability distribution over the weights of the outgoing edges
of a citizen. Figure 4 presents an example of an n = 100
artificially generated trust-based social network, where red
denotes a tendency of 0.0 (Republican), purple a tendency
of 0.5 (moderate), and blue a tendency of 1.0 (Democrat).
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Fig. 4. A visualization of the network of trust links between citizens. Each
citizen’s color denotes their “political tendency”, where full red is O, full blue
is 1, and purple is 0.5. The layout algorithm chosen is the Fruchterman-
Reingold layout.

Given this social network infrastructure, it is possible to
better ensure that the collective sentiment is appropriately
represented through a weighting of the active, participating
population. Given that the set of active voters can change from
decision to decision, the algorithm gets its name: dynamically
distributed democracy. Every citizen, active or not, is initially
provide with % “vote power” and this is represented in the
vector ¥ € R™, such that the total amount of vote power in
the population is 1. Let y € R” denote the total amount of
vote power that has flowed to each citizen over the course of
the iterative algorithm. Finally, a € {0,1}™ denotes whether
citizen ¢ is participating (a; = 1) in the current decision
making process or not (a; = 0). The values of a are biased by
an unfair coin that has probability k of making the citizen an
active participant and 1 — k of making the citizen inactive. The
iterative DDD algorithm is presented below, where o denote
entry-wise multiplication and € =~ 1.

In words, active citizens serve as vote power “sinks” in
that once they receive vote power, from themselves or from
a neighbor in the network, they do not pass it on. Inactive
citizens serve as vote power “sources” in that being inactive,
they propagate their vote power over the network links to
their neighbors iteratively until all (or €) vote power has

Y0
while }"i=Cy; < e do
y<—y+(yoa)
y—yo(l—a)

y— Ay
end

reached active citizens. At which point, the tendency in the
active population is defined as §*" = x - y. Figure 2 plots
the error incurred using DDD (black line), where & denotes
the percentage of actively participating citizens. The error is
defined as

e = |digo — 8™ € [0,1].

Next, the collective vote, 6;°¢, is determined by a weighted

majority as dictated by the vote power accumulated by active
participants. Figure 3 plots the proportion of votes that are
different from what a fully participating group would have
rendered using DDD (black line). In essence, if a citizen,
for any reason, is unable to participate in a decision making
process, then they may abstain from participating knowing that
the underlying social network will accurately distribute their
vote power to their neighbor or neighbor’s neighbor. The DDD
algorithm is better able to simulate full active participation
even as citizens abstain from participation.

Thomas Paine outlines that representatives should maintain
“fidelity to the public” and believes this is accomplished
through frequent elections [3]. The utilization of an Internet-
based social network system afford repeated “elections” in
the form of citizens creating outgoing links to other citizens
as they please, when they please, and to whom them please.
That is, citizens can dynamically choose representatives who
need not be picked for a handful of potential representatives
and, upon faltering in their ability to represent a citizen, can
immediately have an incoming edge retracted from them. Such
an architecture turns the representative’s status from that of
elected public official to that of self-intentioned citizen.

While many countries have political institutions that are
set up according to a left, right, and moderate agenda, the
individual perspectives of a citizen may be more complex. In
many cases, the complexities of a citizen’s political tendencies
may only be amenable to a multi-dimensional representation.
In a multi-relational trust-based social network, the links are
augmented with labels in order to denote the type of trust one
citizen has for another. In this way, voting power propagates
over the links in a manner that is biased to the domain of
the decision. For example, citizen ¢ may trust citizen j in
the domain of “education” but not in the domain of “health
care”. The design of such a system has been articulated in [6].
While a mechanism for dynamically distributing vote power
amongst a set of active decision makers within a population
has been presented, the means by which ballots are posed has
not. Research into societal-scale, decision support systems is
presented in [7].

With the Internet, supporting Web technologies, and DDD,
it is possible to dynamically determine a representative-layer
of government that more accurately reflects a full direct



democracy. In this respect, the larger population helps to
ensure, according to the Condorcet jury theorem, that the
decisions are either definitely right or definitely wrong. Other
technologies could be utilized to induce only those that are
more likely than not to choose the optimal decision to actively
participate.

IV. PREDICTION MARKETS: INCENTIVIZING AN
ENLIGHTENED MAJORITY

Adam Smith was a Scottish moral and economic philoso-
pher who is best known for his two most famous works entitled
The Theory of Moral Sentiments (1759) and An Inquiry into the
Nature and Causes of the Wealth of Nations (1776). It is in the
latter work that Adam Smith outlines the benefits of utilizing
market mechanisms to accurately determine, in a decentralized
fashion, the value of goods and production requirements. It
is articulated that, in some cases, the greatest contribution to
the common good can be derived not by the cooperation, but
instead by the competition of those agents involved in the
market. When an agent pursues “his own interest he frequently
promotes that of the society more effectually than when he
really intends to promote it” [8]. Market mechanisms can be
used beyond the determination of commodity prices and can
be generally applied to information aggregation and ultimately,
to optimal collective decision making.

[t is no easy task to ensure that a decision making population
contains an enlightened majority. The means to gauge whether
a particular individual will be an optimal decision maker fall
on proxy measures such as IQ and expertise. If these measures
are to successfully determine whether a decision maker has
p > 0.5, they must be carefully considered for applicability
to the decision at hand. Different decisions require different
knowledge. Furthermore, in democratic governments, it is an
ideal to put as few strictures on political participation as
possible (e.g., women’s suffrage is more democratic). There-
fore, the goal is to provide a mechanism that calls for the
fewest a priori restrictions on participation and assumptions
about the knowledge required. What is needed then is a
self-selection mechanism that incentivizes those who have
knowledge regarding the problem and are confident in their
knowledge and discourages participation from others without
forbidding it. A prediction market is such a mechanism.

Prediction markets reward individuals for buying low and
selling high, thus encouraging those who believe they know
which way the market will move to contribute their informa-
tion in the form of the price at which they purchase and sell
shares. A prediction market differs from commodity markets
(such as the New York Stock Exchange) in that stocks rep-
resent future events. For example, given the market question
“Will prediction markets be used in U.S. government?”, shares
of stocks in a ‘“yes” outcome and in a “no” outcome are
purchased and sold on the market. These outcomes can be
placed on a continuum such that “no” is 0 and “yes” is 1. Then,
similar to the previous section, an individual’s judgement is a
point along the continuum between the two outcomes such that
the “prediction” of decision maker ¢ can be denoted x; € [0, 1].
The price at which a share is bought or sold denotes the

collective prediction of the decision makers. Let the number
of shares of “0” stock on the market be denoted sy and the
number of “1” stocks on the market be s;. There are many
ways to determine stock prices, such as through a traditional
continuous double-auction format, or using a market maker
format such as Hanson’s logarithmic market scoring rule [9]
which states that the current price of outcome “0” is

e%0
T
where e is the base of the natural logarithm. Similarly, the
current price of outcome “1”is ¢c; = (35(;;—:—15‘1— or simply 1—cg.

Suppose there exists a prediction market in a future event
with two possible outcomes represented by two stocks denoted
“0” and “1”. The outcome, o, is determined by finding the
mean of a finite collection of environmental signals, each
between O or 1. This environment could be considered the
voting population in a general election between a Republi-
can (“0”) and a Democrat (“1”) or any scenario where the
outcome with the greater representation in the environment is
considered the optimal decision. Also, suppose there exists
a set of n participants in the market, hereafter referred to
as traders. A trader has access to some of the factors in
the environment. The mean of these accessible signals is the
trader’s prediction, x;. Trader i’s knowledge is denoted p;
and is equal to the proportion of signals in the environment to
which the the trader has access. Trader ¢ has p; < 0.5 if they
have access to fewer than half of the environmental signals.
Similarly, trader ¢ has p; > 0.5 if they have access to more
than half of the environmental signals. For the simulation,
p € [0,1]™ is normally distributed around p according to a
binomial variance. Thus, the average trader knowledge refers
to the mean of p across all traders rather than to a homogenous
collective of traders all with equivalent p. This alternative
Condorcet jury theorem is proven in [10] and yields a slower
convergence than that depicted in Figure 1. However, for the
sake of a market simulation, where there exist a heterogenous
set of traders, it is necessary to assume such a distribution.

Given this framework, the purpose of the simulation is to
demonstrate that decision making can remain optimal even
as the average knowledge of the traders decreases (i.e. as p
decreases). The market price, ¢y, is compared to the actual
outcome o, such that a more optimal decision is one with the
lowest absolute difference. More specifically, the error of the
market prediction is defined as

Cp =

™ = |co — o]

Traders interact with the market in turn. During a trader’s
turn, they compare their belief, x;, to the current market
value, cg. If x; > cg, the trader will buy shares of “0”
stock and, in the same instance, sell shares of “1” stock. If
traders do not consider their amount of knowledge, then the
participation by the traders is homogenous. That is, traders
lacking knowledge will behave the same as traders with
knowledge. The number of shares that a trader will buy, is
determined by the homogenous decision algorithm,

= (jx, = o)



where o € [0,1] serves as a smoothing factor to eliminate
large swings in the market value. Note that the value of o
is the same for all traders in the homogenous group. When
trader’s do not consider their knowledge, they participate
in the market by purchasing enough stocks to move the
market price a ¢ proportion between the current price and
the trader’s prediction. Each time shares are traded, the traded
stock’s share count, s, is incremented if the trader bought or
decremented if the trader sold. Thus, as shares are purchased
and sold, cg fluctuates.

The gray line in Figure 5 plots the relationship between
the mean of p and eP™® for trader’s not considering their
knowledge. As the average trader knowledge decreases, the
poorly informed agents continue to exert as much power in
moving the price in the market as the well-informed traders,
causing market error to increase.
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Fig. 5. The relationship between p and eP™® for homogenous participation

(gray line) with ¢ = 0.5 and self-selecting heterogeneous participation (black
line). The plot provides the average error over a simulation of 1000 traders
over 1000 runs. The space between the lines represents accuracy that is gained
by allowing trader’s to participate with the number of shares they can buy or
sell at one time varying based on their knowledge.

A prediction market provides incentives for contributing
predictions that are strongly backed by knowledge. The higher
the demand for a stock, the higher its price. Therefore, simply
following the crowd, without personal knowledge that this
prediction is accurate, comes with a significant financial risk.
Additionally, money is earned by buying a stock when the
price is low and selling it when the price is high. The
likelihood that a trader can predict that a stock will increase
in value is based on their knowledge of the environment. In
a market, the choice of when to participate, which stocks to
buy and sell, and how many is left the each trader. Individuals
select their own extent of involvement with the knowledge that
poor choices result in a financial loss. To simulate the effect
of an incentive system on trader behavior, a heterogeneous
decision algorithm is used:

Shelero = p; (,xi . COI)a
where p; is the knowledge of the trader. Trading decisions
are identical to those of the homogenous decision algorithm
except that the number of shares bought or sold is dependent

upon the trader’s knowledge. Trader’s with perfect knowledge
buy or sell the number of shares necessary to move the market
price to their prediction and all other traders buy or sell some
fraction thereof.

When trader’s bias their participation in the market based on
how confident they are in their prediction, the average trader
knowledge has less of an effect on the market error. The black
line in Figure 5 plots the relationship between p and eP¢
for trader’s that allow the degree of knowledge to effect the
number of shares they will buy or sell. As the average trader
knowledge decreases, the poorly informed traders (those with
pi < 0.5), buy fewer shares and so exert less power in moving
the market price than well informed traders (those with p; >
0.5). Therefore, the market error remains low, even as the
proportion of traders with p; < 0.5 increases.

Not only do prediction markets amplify the abilities of those
with p; > 0.5, they also increase the abilities of individuals to
contribute useful information. Because prediction markets and
their associated incentives operate through time, an additional
benefit of a market mechanism is that it motivates the traders
to become more knowledgeable or informed through time.
Traders have a monetary incentive to seek out new informa-
tion, especially if the environment is changing, and update
their positions in the market accordingly. This further improves
the likelihood that a collective will have p > 0.5 by the time
the market closes.

V. CONCLUSION

According to the Condorcet jury theorem, the key to op-
timal decision making lies in the use of a large decision
making collective, where individuals act independently and
with each having a probability of being correct that exceeds
50%. As articulated by Thomas Paine, the involvement of a
large collective of decision makers is burdensome and logis-
tically challenging. Therefore, social algorithms are needed
to simulate the benefits of a large collective when only
a subset participates. The solution presented in this article
is dynamically distributed democracy (DDD). DDD uses a
social network to automatically forward the decisions of those
who don’t participate in the form of additional weighting to
those who do. Using DDD, even as participation wanes, the
accuracy of the representation remains high. The stipulation
that the collective be more than 50% likely to be correct is
difficult to translate to real-world decision making situations
simply because there is no way of knowing which decision
makers meet this condition. Social algorithms are needed
to incentivize those with p > 0.5 of choosing the optimal
answer to participate without a priori restricting participation.
This article presented a market environment as a solution.
Prediction markets emphasize both self-selection such that
there are disincentives for participating without confidence in
your solution and competition such that individuals are likely
to act independently. Markets allow participants to choose
when, if, and the extent of their participation. It was shown that
in a market, even as the probability of being correct decreases,
the accuracy of the market remains high.

As has been demonstrated, technology-enabled social al-
gorithms have the potential to mold collections of decision
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makers to the statistical ideals that yield optimal decisions.
However, the promise of social algorithms is even greater.
They have the potential to allow for the values of democratic
nations to be more perfectly executed. For example, DDD
supports the implementation of direct democracies allowing
for greater governance by the people and prediction markets
allow an unrestricted populace to participate without degrading
the integrity of the decision making. The future of democracy
revolves around developing such social algorithms and their
Internet-based implementations so as to not only produce
optimal decisions, but do so in accordance with the highest
values of democratic societies.
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