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Abstract-- We consider Linear Programming (LP) decoding The rest of the paper is organized as follows. In Section II, 
of a fixed Low-Dt'nsity Parity-Check (LDPC) code o,'cr the we give a brief introduction to the LDPe codes, LP decoding
Binary Symmetric Channel (BSC). The LP decoder fails when and pseudo-codewords. In Section III, we introduce the BSC
it outputs a pseudo-codeword which is not a codeword. We 

notions of the pseudo-codeword VI·eight. medianspropose an effident algorithm termed the Instanton Search 

Algorithm (ISA) which, given a random input, generates a st't 
 and instantons (defined as special set of flips), their costs, 
of nips c.alled the BSC-instanton and prove that: (a) the LP and we also prove some set of useful lemmata emphasizing 
decoder fails for any set of flips with support vector including an the significance of the inSlantol1 analysis, In Section IV. 
instantonj (b) for any input, the algorithm outputs an instanton we describe the ISA and prove our main result concerning
in the number of steps upper-bounded by twice th(' number of 

bounds on the number of iterations required to output anflips ill the input. Repeated sufficient number of times, the ISA 
outcomes the number of unique instantons of different sizes. instanton. 
We use the instanton statistics to predict the performance of 
the LP decoding over the 8SC in the error floor rrgion. We also II. PRELIMINARIES: LOpe CODES, LP DECODER AND 
propose a semi-analytical method to predict the performance PSEUDO-CODE WORDS
of LP decoding over a large range of transition probabilities of 

the BSe. 
 In this section, we discuss the LP decoder and the notion 

of pseudo-codewords. We adopt the fonnulation of the LP 
I. INTRODUCTION 

decoder and the terminology from [I], and thus the interested 

In this paper. we consider pscudo-codewords [I J and reader is advised to refer to 1I J for more details. 

instantons of the LP decoder [I] for the BSC. We define the Let C be a binary LDPe code defined by a Tanner graph 
BSG-ins/anto/1 as a noise configuration which the LP decoder G with two sets of nodes: the set of variable nodes V 
decodes into a pseudo-codeword distinct from thc all-zero­ 2, ... ,n} and the set of check nodes C {L 2, .... 
codeword while any reduction of the (number of !lips in) The adjacency matrix of G is H, a parity-check matrix of 
BSC-instanton leads to the all-zcro-codeword. Being a close C. with rn rows corresponding to the check nodes and 
relative of the BP decoder (see l2], [3] for discussions of columns corresponding to the variable nodes. A binary vector 
different aspects of this relation), the LP decoder C • ' , .• e,,) is a codeword iff cHT = O. The support of 
due to the following benefits: (a) it has maximum-likelihood a vector r •1'2. . denoted by supp(r). is defined 

certificate i.e., if the output of the decoder is a as the set of all positions i such that r; O. 
codeword, then the ML decoder is also guaranteed to decode 

We assume that a codeword y is transmitted over a 
into the same codeword; (b) the output of the LP decoder 

discrete symmetric memoryless channel and is received as 
is discrete even if the channel noise is continuous y. The channel is charactcrized by which denotes 
that problems with numerical accuracy do not arise); (c) its 

the probability that y; is received as il'. The 
analysis is simpler due to the readily available set 

likelihood ratio (LLR) correSPonding to the variable node i 
analytical tools from the optimization theory; and (d) it 

is given 
allows systematic sequential improvement, which results in 

decoder flexibility and feasibility of an LP-based ML for ')'1 log; 

moderately large codes L4J, [5J. While slower decoding speed 


cited as a disadvantage of the LP decoder, this The ML decoding of the code C allows a cOl1wnient LP 

problem can be significantly reduced, thanks to the formulation in terms of the codeword polytope poly(C) 

recent progress in smart sequential use of LP constraints whose vertices correspond to the codewords in C. The ML­

and lor appropriate graphical transformations [5J, LP decoder finds f (h minimizing the cost 
function subject to the f E poly(C) constraint. The main contributions of this paper are: (I) characteri­
The formulation is compact but impractical because of thezation of all the failures of the LP decoder over the BSC 
number of constraints exponential in the codein terms of the instantons, (2) a provably efficient Instanton 

Search Algorithm (ISA), and (3) a semi-analytical method to Hence a relaxed polytope is defined as the intcrsection 
the performance of LP decoding over a large range of all the polytopes associated with the local codes intro­

of probabilities of transition of the BSC. duced for all the checks of the original code. Associating 



" 


with bits of the code we require 

O::;.!'t <:: 1, reV (I) 

For every check node j, Ict N (j) denote thc set of variablc 
nodes which are neighbors of j. Let c;;: 

is even}. The polytope Cd.i associated with the check 
node is defined as the set of points (f. w) for which the 

constraints bold 

() 11'jT S 1, vT E F;j 

~ WJ.T (3) 

fi = LTc Hip'. Vi E (4) 

Now, let q r-iJQj be the set of 
(4) bold for all :i E C. (Note that 
to as the fundamental polytopc 
Tanner graph G and eonsequently the parity-check matrix H 

the code C.) The Linear Code Linear Program 
can be stated as 

~ ,t /, c,,~ •• w) q.""" 'Y·f· t 
iEV 

For the sake of LCLP is 
refcrred to in the following us the LP decoder. A solution 

to the LCLP such that all fis and 1JJj ,TS arc integers is 
known as an integer solution. The integer solution represents 
a codeword [II· It was also ShO\\11 in [I J that the LP decoder 
has the ML certificate, i.e., if the output of the decoder is a 
codeword, then the ML decoder would decode into the same 
codeword. The LCLP can fail. generating an output which 
is not a codcword. 

The performance of the LP decoder can be analyzed in 
terms or the pseudo-codewords, originally defined as follows: 

Definition I: [I J IntL"ger pseudo-codeword is a vector p 
of non-negative integcrs such that, for every 

check j E C, the neighborhood {Pi: i E N{ 'in is a 
sum of local codewords. 

Allernatively. one may choose to deHne are-scaled 
codeword, P (Pl,····II'!,) where 0 ::; Pi::; I,vi E V, 
simply equal to the output of the LCLP. In thc following, 
we adopt the re-scaled definition. 

A code C can have different Tanner graph represen­
tations and consequently potentially different fundamental 
polytopes. Hence, we refer to the pseudo-codewords as 
corresponding to a particular Tanner graph G of C. 

IT!. COST AND WEIGHT OF PSElJDO-CODEWORDS, 


MEDIANS AND INSTANTONS 


Since the focus of the paper is on the pseudo-codewords 
for the BSC, in this section we introduce some terms, e.g. 
instantons and medians, specillc to the BSC. We will also 
state here some preliminary lemmata which will enable 

discussion of the ISA in the next Section. The 
of all the lemmata and theorems can be found in the 

extended vcrsion of this paper [I 

The polytope q is symmetric and looks exactly the same 
from all codewords (see e,g. [I j), Hence we assume that the 

all-zero-codcword is transmitted. The process of changing 
a bit fTOm 0 to I and vice-versa is known as flinnim.!. The 
BSC flips cvery transmitted bit with a certain 
therefore call a noise vector with support of size Ii: as 
k 

In the case of the sse, the likelihoods are scaled as 

if lit = 0; 
/i = { ~1, if,lli 1. 

Two important characteristics of a pseudo-codeword are 
its eost and weight. While the cost associated with decoding 
to a pseudo-codeword has already been de1ined in general. 
we fonnalize it for the case of the BSe as follows: 

Definition 2: The cost associated with LP decoding of a 
binary vector r to a pseudo-codeword p is given by 

C(r,p) L Pi L Pi· (5) 
t\tSUpp\r) iESUpp(r) 

If r is the input, then the LP decoder converges to the pseudo­
codeword p which has the least value of C(r, p). The cost 
of decoding to the alJ-zero-eodeword is zero. Hence, a binary 
vector r does not converge to the all-zero-codeword if there 
exists a pseudo-codeword p with C( r, p) ::; o. 

3: [121. [13. Definition 2.101 Let p 
(Pi, ... ,p" ) be a pseudo-codeword distinct from the all-zero­
codeword. Let e be the smallest number such that the sum 

{ 

of the f; largest [JiS is at least (LiEF 12. Then. the BSe 
pseudo-codeword weight of p is 

21', if Pi (LiEF 
= 21: 1, if Pi > (LiEV' 

The mlllllnum pseudo-codeword weight of G denoted 
wr~~2 is the minimum over all the non-zero pseudo· 

codewords of G. The parameter (; = r(WBSc(p) + I) 
can be interpreted as the least number of bits to be flipped in 
the all-zero-codeword such that the resulting vector decodes 
to thc pseudo-codeword p. (See e.g. [13] for a number of 
illustrative examples.) 

The interpretation of SSC pseudo-codeword weight mo­
tivates the following definition of the median noise vector 

to a pseudo-codeword: 

Definition 4: The median noise vector (or simply the 
median) 1Hlp) of a pseudo-codeword p distinct from 
the all-zero-codeword is a binary vector with support 
S li"i,) ..... LL such that [iil" ·.,Pi,. are the e(= 

components of p. 

One observers that. C (M (p), p) ~ O. From the definition of 
11'BSc(p), it follows that at least one median exists for every 
p. Also, all medians of p have + 1) /2l flips. 
The proofs of the following two lemmata are now apparent. 

Lemma I: The LP decoder decodes a binary vector with 
k flips into a pseudo-codeword p distinct from the alI-zero­
codeword WRSc(p)::; 2k. 

Lemma 2: Let p be a pseudo-codeword with median 
Aj (p) whose support has cardinality k. Then 'U}BSc(p) E 

J,2k}. 



Lemma 3: Let M(p) be a median of P with support 8. 
Then the result of LP decoding of any binary vector with 
support S' Sand IS'I < is distinct from p. 

Lemma 4: If 	 to a 

PM t 
::; 

5: The BSC instan/on i is a binary vector with 
the following properties: (I) There exists a 
P such that CO, p) ::; C(i,O) 0; (2) For any binary 
veetor r such that supp(r) C supp(i), there exists no pseudo­
codeword with C(r, p) ::; O. The size of an instanton is the 
cardinality of its support. 

[n other words, the LP decoder decodes i to a pseudo­
codeword other than the all-zero-codeword or one finds a 

that p) 0 (interpreted as 
the LP decoding failure). whereas any binary vector with 

in i is decoded to the all-zero­
veri/ied that if c is the transmitted 

codeword and r is the received vcctor such that 
where the addition is modulo two, then there exists 

a pscudo-codev.-ord pi such that p') :::; err, c). 

The following lemma follows from the definition of the 
cost of decoding (the pseudo-codeword cost): 

Lemma 5: Let i be an instanton. Then for any binary 
vector r such that supp(i) supp(r), there exists a pseudo­
codeword p satisfying C(r. p) n. 

The above lemma that the LP decoder fails to 
decode every vector r whose support is a superset of an in­
stanton to the all-zero-codeword. We now have the 

1: Let r be a binary vector with support 8. 
Lct p be a pseudo-codeword such that C(r, p) 'S O. If all 
binary vectors with support 8' C 8 such that 18'1 = 181- I, 
converge to 0, then r is an instanton. 

The above lemmata lead us to the following lemma which 
characterizes all the failures of the LP decoder over the BSe: 

Lemma 6: A binary vector r converges to a pseudo­
codeword different from the all-zero-codeword jfTthe support 
of r contains the support of an instanton as a subset. 

The most general fOll11 of the above lemma can be stated 
as following: if c is the transmitted codeword and r is 
the received vector, then r converges to a 
differcnt from c iff the supp(r where the addition is 
modulo two, contains the support of an instanton as a subset. 

From the above discussion, 'I'Ve see that the BSC instantons 
arc analogous to the minimal stopping sets for the case 
of iterative/LP decoding over the BEe. In t~let, Lemma 6 
characterizes all the decoding failures of the LP decoder 
over the BSC in telms of the instantons and can be used to 
derive analytical estimates of the code perfon11ance given the 
weight distribution of the instantons (this will be illustarted 
in Section V). In this sense, the instantons arc more funda­
mental than the minimal pseudo-codewords [14], [12] for the 
BSC (note, that this statement does not hold in the case of 
the AWGN channel). Two minimal pseudo-codewords of the 
same weight can give rise to ditferent number of instantons. 

This issue was first pointed out by Forney et al. in [13]. (Sec 
Examples 1,2,3 for the BSC case in [13].) [t is also worth 
noting that an instanton converges to a minimal 
codeword. 

IV. INSTANTON SEARCH ALGORITHM AND 


PERFORMANCE ANALYSIS 


A. ISA 

rn this Section, we describe the Instanton Search 
rithm. The algorithm starts with a random binary vector with 
some number of flips and outputs an instanton. 

[nstanton Search Algorithm 
inithlli=atioll (1""0) step: rnitialize to a binary input vector (' 

containing suffi~aeni number of flips so that the LP decoder 

decodes it into a pseudo-codeword different from the all­

zero-codeword. Apply the LP decoder to r and denote the 

pseudo-codeword output of LP by pl. 


Take the 
 pi (output of the 
and calculate its median the LP 

) and denote the output by PAl, Lemma 
4, only two cases arise: 

• 	 ) <W/i8C(pl). Then p'+1 PM, becomes 
the /-th step outputi(l + 1) step input. 

• 	 WBSc(PM,) = 1J'nsc(pl ). Let the support of M(pl) be 
S {i l ... , }. Let Sl,ce 8\{it} for some it E 8. 
Let ric be a binary vector with support . Apply the 
LP decoder to all r" and denote the it-output by Pi,. 
If Pi, 0, then,\l (pi) is the desired instanton 
and the algorithm halts. Else, Pi, 0 becomes the loth 
step outputl(l 1) step input. (Notice, that Lemma 3 
guarantees that any Pi, =I pi, thus preventing the rSA 
from into an infinite 

Theorem I below states that the rSA tenminates (i.e., 
outputs an instanton) in the number of steps of the order 
the number of flips in the initial noise configuration. 

Theorem 1: w H8c( pi) and Isupp(Al (pi) I are monoton­
ically decreasing. Also, the ISA tenninates in at most 2ko 
steps, where ko is the number of flips in the input. 

B. Prediction Using InstallfOiI Statistics 

The FER at a given (l can be estimated 

I: 
k=1 

Since the channel under consideration is the BSC, we have 

errors) = 

Note that the quantity Pr(decoder failurell,' eITors) is in­
dependent of (I. [t can be shown that as (V --+ 0, 
the FER is dominated by the smallest k for which 

f 0 or in other words the 
instanton (see [15J for a formal 

of this relation). In fact, on a log-log scale, the 
FER curve in the asymptotic limit is equal to the size of the 
smallest weight instanton. Hence, the instanton statistics can 



be lIsed to predict the FER perfOimanee for small values of 
0,. 

For large values of 0, the FER is dominated by 
k. The values of Pr(decoder failurelk errors) for large Ii: 
can be estimated using Monte-Carlo simulations with very 
good accuracy. These estimates can be made with a fixed 
complexity by running a predetrmined number 
with k errors. Hence, the FER for large values of Q can also 
be predicted using such Monte-Carlo data .. 

The region in which it is the most dillicult to predict the 
performance is for intermediate values of Ct. The value of 

failurel" errors) for interemediate k cannot be 
Monte-Carlo as it requires a very com­

estimates cannot be made as the instanton 
statlsties for higher weight instantons are not complete. 
Hence, we make llse of an approach that is a combination 
of Monte-Carlo simulations and analytical approach. 

Observe that a decoder failure for a pattem with k errors 
can occur due to the presence of an instanton (or instantons) 
of size less than or equal to k. Let Pr(rlk) denote the 
probability that an instanton of size.,. is present in an error 
pattern of sizc k. If the number of instantons of size r is 
denoted by 7;, then, it can be seen that 

Pr(rlk) 	 (6) 

Since, a decoder failure occurs if and only if an instanton is 
present, we have 

k 

Pr(decoder cnors) "'" L 
where i is the size of the smallest weight instanton. For 
a sufficiently value of k, Monte-Carlo simu­
lations, the relative frequencies of different instantons can 
be found and consequently Pr(-rlk) for different l' can be 
estimated. Using Eq. 6, the values of I;. call be estimated 
approximately. These statistics can then be used to estimate 
Pr(decoder failurelk errors) for intermediate values of k 

7. 

It should be noted that while there are a large number 
of instantons of large size, the error noor performance is 
dominated by the instnatons of smallest size which are very 
rare. Hence, estimates made using the above method may 
not be very raliable. This fact underlies the importance of 
the ISA which is suceessfi.d in finding the smallest 
instantons. 

V. NUMERICAL RESULTS 

We first present the instanton statistics for th.: following 
two codes (I) The (3,5) regular Tanner code of length 155 
116] and (2) A (3,6) regular random code of length 204 from 
MacKay's webpage [! 7]. 

Table II shows the data for the Tanner and the MacKay 
code from k 8 to k 20. For k < 20, we can assume 
that Pr(decoder failurelk errors) 1. Table III shows the 
relative frequencies of various weight instantons for the 

TABLE III 


INSTANTON STAIISTlCS 


58 

Tanner code and the MacKay code. The results arc obtained 
by simulating 107 error patterns with 8 errors for the Tanner 
code resulting in 331 decoder failures. The contributions of 
various insstantons is fonnd by examining the subsets of the 
8 error patterns and Hnding the instantons. Note that some 
error patterns can consist mUltiple instantons and hene the 
estimates made arc only approximate. For the Taner code, it 
is found that there are approximately 2300 instantons of size 
6, 6.4 x lOG instantons of size 7 and :3,8 x l()' instantosn 
of size 8. For the MacKay code, it is found that there arc 
approximately 1120 instantons of size 5, 1.6 x 10J) instantons 
of size 6, 9.2 x lOG instantons of size 7 and instantons 
of size 8. Fig. I(a) and Fig. I(b) show the comparision 
between the FER curves obtained using the semi-analytical 
approach described above and the Monte-Carlo simulations. 
It is clcar from the plots that the proposed method 
thc performance 
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