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Analysis of Error Floor of LDPC Codes under LP Decoding over the BSC

Shashi Kiran Chilappagari, Bane Vasic
Dept. of ECE
University of Arizona
Tucson, AZ 85721, USA
Email: {shashic,vasic}@ece.arizona.cdu

Abstract— We consider Linear Programming (LP) decoding
of a fixed Low-Density Parity-Check (LDPC) eode over the
Binary Symmetric Channel (BSC). The LP decoder fails when
it outputs a pseudo-codeword which is not a codeword. We
proposc an efficient algorithm termcd the Instanton Search
Algorithm (ISA) which, given a random input, gencrates a set
of flips called the BSC-instanton and prove that: (a) the LP
decoder fails for any set of flips with support vector including an
instanton; {b) for any input, the algorithm outputs an instanton
in the number of steps upper-bounded by twice the number of
flips in the input. Repcated sufficient number of times, the ISA
outeomes the number of unique instantons of different sizes,
We use the instanton stafistics to predict the performance of
the LP decoding over the BSC in the error floor region. We also
propose a semi-analytical method to predict the performance
of LP decoding over a large range of transition probabilities of
the BSC.

I. INTRODUCTION

In this paper, we consider pseudo-codewords [1] and
instantons of the LP decoder [1] for the BSC. We define the
BSC-instanton as a noise configuration which the LP decoder
decodes into a pseudo-codeword distinct from the all-zero-
codeword while any reduction of the (number of flips in}
BSC-instanton leads to the all-zero-codeword. Being a close
relative of the BP decoder (see [2], [3] for discussions of
different aspects of this relation}, the LP decoder appeals
due to the following benefits: {a) it has maximum-likelthood
(ML) certificate ie., if the output of the decoder is a
codeword, then the ML decoder is also guaranteed to decode
into the same codeword; (b) the output of the LP decoder
is discrete even if the channel noisc is continuous (meaning
that problems with numerical accuracy do not arise); (¢} its
analysis is simpler due to the readily available set of powerful
analytical tools from the optimization theory; and (d) it
allows systematic sequential improvement, which results in
decoder flexibility and feasibility of an LP-based ML for
moderately large codes [4], [5]. While slower decoding speed
is vsually cited as a disadvantage of the LP decoder, this
potential problem can be significantly reduced, thanks to the
recent progress in smart sequential use of LP constraints {6}
and/or appropriate graphical transformations [5], [7], [8].

The main contributions of this paper are: (1) characteri-
zation of all the failures of the LP decoder over the BSC
in terms of the instantons, (2) a provably efficient Instanton
Search Algorithm (ISA}, and (3} a semi-analytical method to
predict the performance of LP decoding over a large range
of probabilities of transition of the BSC.
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The rest of the paper is organized as follows. In Section 11,
we give a brief introduction to the LDPC codes, LP decoding
and pseudo-codewords. In Section I, we introduce the BSC-
specific notions of the pseudo-codeword weight. medians
and instantons {defined as special set of flips), their costs,
and we also prove some set of useful lemmata emphasizing
the significance of the instanton analysis. In Section IV,
we deseribe the ISA and prove our main result concerning
bounds on the number of iterations required to output an
instanton.

II. PRELIMINARIES: LDPC CoDES, LP DECODER AND
PSEUBO-CODEWORDS

In this section, we discuss the LP decoder and the notion
of pseudo-codewords. We adopt the formulation of the LP
decoder and the terminology from [1], and thus the interested
reader is advised to refer to [1] for more details.

Let € be a binary LDPC code defined by a Tanner graph
G with two sets of nodes: the set of variable nodes V' =
{1.2,....n} and the set of check nodes ' = {1.2.....m}.
The adjacency matrix of G is H, a parity-check matrix of
C, with m rows corresponding to the check nodes and n
columns corresponding to the variable nodes. A binary vector
¢ ={¢1....,0,) is a codeword iff ¢ HT = 0. The support of
avector r = (ry, ra, ..., 7, ), denoted by supp(r}). is defined
as the set of all positions 7 such that r; # 0.

We assume that a codeword y is transmitted over a
discrete symmetric memoryless channel and is received as
¥. The channel is characterized by Prii;ly,] which denotes
the probability that y; is received as ;. The negative log-
likelihood ratio (LLR) corresponding to the variable node i

i given by
o Prijilm = 0)
== log | o el I
TER A Pr(gy = 1)

The ML decoding of the code C allows a convenient LP
formulation in terms of the codeword polytope poly{()
whose vertices correspond to the codewords in C. The ML-
LP decoder finds £ = (fy,..../f,) minimizing the cost
function 37, v fi subject to the £ € poly{C) constraint.
The formulation is compact but impractical because of the
number of constraints cxponential in the code length.
Hence a relaxed polytope is defined as the intersection
of all the polytopes associated with the local codes intro-
duced for all the checks of the original code. Associating



{(f1,.... f,) with bits of the code we require
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For every check node 7, let N(j) denote the set of variable
nodes which are neighbors of j. Let £; = {T € N(j) :
[T} is even}. The polytope ), associated with the check
node 7 is defined as the set of points (f.w) for which the
following constraints hold

<wyrsl, vT & F, 2
Lrep, wir = | (3)
fi=2pep, maiwir Vi€ N{j) 4)

Now, let {7 = 1;(); be the set of points (f, w) such that {1)-
(4) hold for all 7 & . (Note that 7, which is also referred
to as the fundamental polytope [9], {10}, is a function of the
Tanner graph & and consequently the parity-check matrix H
representing the code C.) The Linear Code Linear Program
(LCLP) can be stated as

min Z’y,;f;. sit. {(f,w) e Q.

For the sake of brevity, the decoder based on the LCLP is
referred to in the following as the LP decoder. A solution
(f. w) to the LCLP such that all f;s and w; ps are integers is
known as an integer solution. The integer solution represents
a codeword [1]. It was also shown in {1] that the LP decoder
has the ML certificate, i.e., if the output of the decoder is a
codeword, then the ML decoder would decode into the same
codeword. The LCLP can fail, generating an output which
is not a codeword.

The performance of the LP decoder can be analyzed in
terms of the pseudo-codewords, originally defined as follows:

Definition 1: {1] Integer pseudo-codeword is a vector p =
{pi.....pn) of non-negative integers such that, for every
parity check j € C', the neighborhood {p; : ¢ € N{(j)} is a
sum of local codewords.
Alternatively. one may choose tw define a re-scaled pseudo-
codeword, p = (p;..... ) where 0 < p; < I,Vi € V,
simply equal to the output of the LCLP. In the following,
we adopt the re-scaled definition.

A given code C can have different Tanner graph represen-
tations and consequently potentially different fundamental
polytopes. Hence, we refer to the pseudo-codewords as
corresponding to a particular Tanner graph G of C.

ITI. COST AND WEIGHT OF PSEUDO-CODEWORDS,
MEDIANS AND INSTANTONS

Since the focus of the paper is on the pseudo-codewords
for the BSC, in this section we introduce some terms, ¢.g.
instantons and medians, specific to the BSC. We will also
state here some preliminary lemmata which will enable
subsequent discussion of the ISA in the next Section. The
proofs of all the lemmata and theorems can be found in the
extended version of this paper [11].

The polytope (2 is symmetric and looks exactly the same
from all codewords (see ¢.g. [1]). Hence we assume that the

all-zero-codeword is transmitted. The process of changing
a bit from 0 to 1 and vice-versa is known as flipping. The
BSC flips cvery transmitted bit with a certain probability. We
therefore call a noise vector with support of size k as having
k flips.

In the case of the BSC, the likelihoods are scaled as

- L
Yi = -1

Two important characteristics of a pseudo-codeword are
its cost and weight. While the cost associated with decoding
to a pscudo-codeword has already been defined in general.
we fonmalize it for the case of the BSC as follows:

ify,; ‘:OQ

Definition 2: The cost associated with LP decoding of a
binary vector r to a pseudo-codeword p is given by

Y o Y on®

(@suppir) iesuppir)
If r is the input, then the LP decoder converges to the pseudo-
codeword p which has the least value of C(r, p). The cost
of decoding to the all-zero-codeword is zero. Hence, a binary
vector r does not converge to the all-zero-codeword if there
exists a pseudo-codeword p with C'(r,p)} < 0.

Definition 3: [12], [13. Definition 2.10] Let p =
(P1.. -, pu) be a pseudo-codeword distinct from the all-zero-
codeword. Let e be the smallest number such that the sum
of the e largest p;s is at least (3, p,,;) /2. Then, the BSC
psendo-codeword weight of p is

ey 2e, it Soopi= (Dievpi) /2
wpsc(p) { 2 -1, if Lo > (i i) /2
The minimum pseudo-codeword weight of (7 denoted
by wBPC is the minimum over all the non-zero pseudo-
codewords of (7. The parameter € = [{(wngso(p)+ 1) /2]
can be interpreted as the least number of bits to be flipped in
the all-zero-codeword such that the resulting vector decodes
to the pseudo-codeword p. (See ec.g. [13] for a number of
illustrative examples.)

C(r,p) =

The interpretation of BSC pscudo-codeword weight mo-
tivates the following definition of the median noise vector
corresponding to a pseudo-codeword:

Definition 4. The median noise vector (or simply the
median) A (p} of a pseudo-codeword p distinet from
the all-zero-codeword is a binary vector with support
S = {iy iy, .., 4 }. such that py,....p;, are the e(=
[(wasc(p) + 1) /2]) largest components of p.

One observers that, C (M (p), p) < 0. From the definition of
wpsc(p), it follows that at least one median exists for every
p. Also, all medians of p have [(wpsc(p)+ 1) /2] flips.
The proofs of the following two lemmata are now apparent,

Lemma [: The LP decoder decodes a binary vector with
k flips into a pseudo-codeword p distinct from the all-zero-
codeword iff wasc(p) < 2k.

Lemma 2: Let p be a pseudo-codeword with median
M (p) whose support has cardinality k. Then wggo(p) €
{2k — 1,2k}



Lemma 3: Let M {p) be a median of p with support S.
Then the result of LP decoding of any binary vector with
support 87 < S and {8'] < |51 is distinct from p.

Lemma 4: If M(p) converges to a pseudo-codeword
P ;‘ P. then lx,’gsg{pg(;} < ll’g‘gct(p). Also,
C(M(p).pu) < C(M(p).p})

Definition 5: The BSC instunfon 1 is a binary vector with
the following properties: (1) There exists a pseudo-codeword
p such that C(i,p) < C(i,0) = 0; (2) For any binary
vector r such that supp(r) < supp(i), there exists no pseudo-
codeword with C(r, p) < 0. The size of an instanton is the
cardinality of its support.

In other words, the LP decoder decodes i to a pseudo-
codeword other than the all-zero-codeword or one finds a
pseudo-codeword p such that C{i,p) = 0 (interpreted as
the LP decoding failure), whereas any binary vector with
flips from a subset of the flips in 1 is decoded to the all-zero-
codeword. It can be easily verified that if ¢ 1s the transmitted
codeword and r is the received vector such that supp{c+r) =
supp(i}, where the addition is modulo two, then there exists

The following lemma follows from the definition of the
cost of decoding (the pseudo-codeword cost):

Lemma 5: Let i be an instanton. Then for any binary
vector r such that supp(i) € supp(r), there exists a pseudo-
codeword p satisfying C{r.p} < Q.

The above lemma implies that the LP decoder fails to
decode every vector r whose support is a superset of an in-
stanton to the all-zero-codeword. We now have the following
corollary:

Corollary 1: Let v be a binary vector with support §.
Let p be a pseudo-codeword such that C{r, p) < 0. If all
binary vectors with support §' ¢ S such that [§'] = |5] -1,
converge to 0, then r is an instanton.

i

The above lemmata lead us to the following lemma which
characterizes all the failures of the LP decoder over the BSC:

Lemma 6: A binary vector r converges to a pseudo-
codeword different from the all-zero-codeword iff the support
of r contains the support of an instanton as a subset,

The most general form of the above lemma can be stated
as following: if ¢ is the transmitted codeword and r is
the received vector, then r converges to a pseudo-codeword
different from ¢ iff the supp{r + ¢}, where the addition is
modulo two, contains the support of an instanton as a subset.

From the above discussion, we see that the BSC instantons
are analogous to the minimal stopping sets for the case
of iterative/LP decoding over the BEC. In fact, Lemma 6
characterizes all the decoding failures of the LP decoder
over the BSC in terms of the instantons and can be used to
derive analytical estimates of the code performance given the
weight distribution of the instantons (this will be illustarted
in Section V). In this sense, the instantons are more funda-
mental than the minimal pseudo-codewords [14], [12] for the
BSC (note, that this statement does not hold in the case of
the AWGN channel). Two minimal pseudo-codewords of the
samc weight can give rise to different number of instantons.

This issue was first pointed out by Forney er o/, in [13]. (Sce
Examples 1, 2, 3 for the BSC case in [13].) It is also worth
noting that an instanton converges to a minimal pseudo-
codeword.

I'V. INSTANTON SEARCH ALGORITHM AND
PERFORMANCE ANALYSIS

A. IS4

In this Section, we describe the Instanton Search Algo-
rithm. The algorithm starts with a random binary vector with
some number of flips and outputs an instanton.

Instanton Search Algorithm

Initidlization (I=0) step: Initialize to a binary input vector
containing sufficient number of flips so that the LP decoder
decodes it into a pseudo-codeword different from the all-
zero-codeword. Apply the LP decoder to r and denote the
pseudo-codeword output of LP by pl.

{ > 1step: Take the pseudo-codeword p' (output of the
(I — 1} step) and calculate its median A7(p'). Apply the LP
decoder to M (p') and denote the output by pyy,. By Lenima
4, only wo cases arise:

o wpse(pay) < wse(p'). Then p'*! = pyy, becomes
the [-th step output/(7 + 1} step input.

o wree(pa,) = wpse(p'). Let the support of M(p’) be

Let r;, be a binary vector with support ;,. Apply the
LP decoder to all r;, and denote the i;-output by p;,.
If p;, = 0,¥i, then M(p') is the desired instanton
and the algorithm halts. Else, p;, # 0 becomes the /-th
step output/({ + 1} step input. {(Notice, that Lemma 3
guarantees that any p;, # p', thus preventing the ISA
from cntering into an infinite loop.)

Theorem | below states that the ISA terminates (i.e.,
outputs an instanton) in the number of steps of the order
the number of flips in the initial noise configuration.

Theorent 1: wrse(p') and |supp(M (p*))| are monoton-
ically decreasing., Also, the ISA terminates in at most 2k
steps, where kg is the number of flips in the input.

B. Performance Prediction Using [nstanton Statistics

The FER at a given « can be estimated using
FER(a) = Z Pr{decoder failure|k errors) Pr{k errors)
k=1

Since the channel under consideration is the BSC, we have
Pr(k errors) = (;) () (1 = gyt

Note that the quantity Pr(decoder failurejk errors) is in-
dependent of «. [t can be shown that as o« — 0,
the FER is dominated by the smallest & for which
Pr{decoder failurelk errors) # 0 or in other words the
smallest weight instanton (see {15} for a formal description
of this relation). In fact, on a log-log scale, the slope of the
FER curve in the asymptotic limit is equal to the size of the
smallest weight instanton. Hence, the instanton statistics can



be used to predict the FER performance for small values of
o

For large values of o, the FER is dominated by higher
k. The wvalues of Pr{decoder failurelk errors) for large &
can be estimated using Monte-Carlo simulations with very
good accuracy. These estimates can be made with a fixed
complexity i.e., by running a predetrmined number of pattern
with & errors. Hence, the FER for large values of o can also
be predicted using such Monte-Carlo data. .

The region in which it is the most difficult to predict the
performance is for intermediate values of «. The value of
Pr{decoder failure|k errors) for interemediate k cannot be
obtained by Monte-Carlo as it requires a very high com-
plexity. Analytical estimates cannot be made as the instanton
statistics for higher weight instantons are not complete.
Hence, we make use of an approach that is a combination
of Monte-Carlo simulations and analytical approach.

Observe that a decoder failure for a pattern with £ errors
can occur due to the presence of an instanton (or instantons)
of size less than or cqual to k. Let Pr{rlk) denote the
probability that an instanton of size r is present in an error
pattern of size k. If the number of instantons of size » is
denoted by T, then, it can be seen that

B -
(\v') F"
7 N
()
Since, a decoder failure occurs if and only if an instanton is
present, we have

Pr(rik) ~ (6)

B
k errors) & Z Pr{rlk), v

=i

Pr{decoder failure

where 4 is the size of the smallest weight instanton. For
a sufficiently large value of &, using Monte-Carlo simu-
lations, the relative frequencies of different instantons can
be found and consequently Pr{r{k} for different » can be
estimated. Using Eq. 6, the values of T, can be estimated
approximately. These statistics can then be used to estimate
Pr{decoder failurelk errors) for intermediate values of &
using Eq. 7.

It should be noted that while there are a large number
of instantons of large size. the error floor performance is
dominated by the instnatons of smallest size which are very
rare. Hence, estimates made using the above method may
not be very raliable. This fact underlies the importance of
the 1SA which is successful in finding the smallest weight
nstantons.

V. NUMERICAL RESULTS

We first present the instanton statistics for the following
two codes (1) The (3,5) regular Tanner code of length 135
{16] and (2) A (3,6) regular random code of length 204 from
MacKay’s webpage [17].

Table 11 shows the data for the Tanner and the MacKay
code from & = 8 to k = 20. For & « 20, we can assume
that Pr{decoder failure|k errors) = 1. Table IIT shows the
relative frequencies of various weight instantons for the

TABLE 1T
INSTANTON STATISTICS
# instantons of weight

Code # error cvenis T z z = g
Tanner code 331 130 | 37 | 139 | S8
MacKay code 87 10

Tanner code and the MacKay code. The results are obtained
by simulating 107 error patterns with 8 errors for the Tanner
code resulting in 331 decoder failures. The contributions of
various insstantons is found by examining the subscts of the
8§ error patterns and finding the instantons. Note that some
error patterns can consist multiple instantons and hene the
estimates made arc only approximate. For the Taner code, it
is found that there are approximately 2300 instantons of size
6, 6.4 % 10° instantons of size 7 and 3.8 x 107 instantosn
of size 8. For the MacKay code, it is found that there arc
approximately (120 instantons of size 5, 1.6 x 10% instantons
of size 6, 9.2 x 10% instantons of size 7 and instantons
of size 8. Fig. l{a) and Fig. 1(b) show the comparision
between the FER curves obtained using the semi-analytical
approach described above and the Monte-Carlo simulations.
It is clear from the plots that the proposed methed predicts
the performance accurately.
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