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Abstract 
We introduce novel results for approximate inference OIl planar graphical models using the 
loop calculus framework. The loop calculus (Chertkov and Chern yak , 
press the exact partition function of a graphical model as a finite sum of terms that can be 
evaluated once the belief propagatioll solution is known. Tn general, full summation 
over all correction terms is intractable. We develop an algorithm for the approach pre­
sented in Chertkov et al. (2008) which represents an efficient truncation scheme and a new 
representation of the series in terms of pfaffiulls of a matrix for planar graphs. We 
the performance of the algorithm for the partition function approximation on models with 
binary variables and pairwise interactions on grids and OIl random stmcture, We study in 
detail both the loop series and the equivalent. pfaffian series and show that the first term 
of the pfaffian series for the general, intractable planar model, can provide very accurate 
.pproximatiolls. The algorithm outperforms previous truncation sehemas of the loop series 

with other state-of-the-art methods for approximate inference, 

1. Introduction 

Graphical models are popular tools widely used in many area,<; which require modeling of 
uncertainty. They provide an effective approach through a compact representation of the 

probability distribution, The two most common types of graphical models are 
Networks (BN) or markov random fields (MRFs). 

The partition function of a graphical model, which plays the role of normalization con­
stant in a MRF or probability of evidence (likelihood) in a BN is a fundamental 
which arises in many contexts such as hypothesis testing or parameter estimation. Exact 
computation of this quantity is only feasible when the graph is not too complex, or 
alently, when its tree-width is smalL Currently many methods are devoted to approximate 
this quantity 

1 

http:CHERTKOV(1J!LANL.GOV


V. GOMEZ AND M. CHERTKOV AND H.J. KAPPEN 

The Belief Propagation (BP) algorithm (Pearl, 1988) is at the core of many of these 
approximate inference methods. Initially thought as an exact algorithm for tree graphs, it 
is widely used as an approximate method for loopy (Murphyet 1999; Frey a.nd 

1997). The exact partition function is explicitely related with the I3P approxima­
tion through the loop calculus framework introduced by Chertkov and Chernyak (200Ga). 
loop calculus allows to express the exact partition function as a finite sum of terms (loop 
series) that can be evaluated once the I3P solution is known. Each term maps 
to a subgraph, also denoted as a generalized loop, where all nodes have at least 
two. Summation of the entire loop series is a hard combinatorial task because the number 
of generalized loops can be enourmously large. However, different approximations can be 
obtained by considering different subsets of generalized loops in the graph. 

It has been shown empirically (Gomez et aL, 2007; Chertkov and Chernyak, 200Gb) that 
truncating this series may provide efficient corrections to the initial I3P approximation. 
More precisely, whenever I3P performs satisfactorily which occurs in the case of 
weak interactions between variables or short influcence of loops, only a small quantity of 
terms is sufficient to recover the exact result (Gomez et aL, 2007). On the other hand, 
for those cases where I3P requires many iterations to converge, many terms of the series 
are required to improve substantially its approximation. A characterization of the 
classes of tractable problems via loop calculus still remains as an open question. 

A step toward this goal has been done in Chertkov et aL (2008) where it is shown that for 
any graphica.l model, summation of a certain subset of terms can be mapped to a summation 
of weighted perfect matchings on an extended graph. For planar graphs (graphs that can 
be embedded in a plane without crossing edges), this problem can be solved in polynomial 
time evaluating the pfaffian of a skew-symmetric matrix associated to the extended graph. 
.Furthermore, the full loop series can be expessed as a sum over so-called pfafRan terms. 
Each pfafRan term may account for a number of loops and is solvable in 
time as well. 

Their approach builds on work developed in the 1960s by Kasteleyn (1963); Fisher 
(1966) and other physicists who addressed the question of how many perfect matchings 
exist in a also known as the dimer problem in the statistical physics literature (a 
dimer represents an edge between two nearest neighbors in a graph), Their key result can 
be summarized as follows: the partition function of a planar gm.phical model defined on 

variables can be mapped to 11 weighted perfect matching problem and calculated in 
polynomial time under the following two restrictions: 

1. Symmetric pairwise interactions: Interactions exist between two variables and 
only depend on disagreement between their values. 

2. Single variable potentials fields) are zero for all variables. 

Such a model is known in statistical physics as the binary Ising model without external field. 
Notice that exact inference on a general binary planar is intractable (I3arahona, 1982). 

Recently, other methods for inference on graphical models which are based in the work 
of Kasteleyn and Fisher have been introduced. Globerson and Jaakkola (2007) obtained 
upper bounds on the partition function for non-planar graphs with binary variables 
decomposition of the partition function into a weighted sum over partition functions of 
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spanning planar models which fulfill the two previous conditions. The resulting problem 
is a convex optimization problem and, since exact inference can be done in each planar 
sub-model, the bound can be calculated in polynomial time. 

Another example is the work of Schraudolph and Kamenetsky (2008) which provides 
a framework for exact inference on a restricted class of planar graphs using the approach 
of Kasteleyn and Fisher. More precisely, they showed that any joint probability function 
defined on binary variables can be expressed in a functional form which fulfills the two 
previous conditions after addition of a new auxiliary node linked to all the existing nodes. 
Under this transformation, the two conditions can be relaxed at the cost of restrictin 
the graphical model to be B-outerplanar, which means that there must exist a planar 
embedding in which a subset B of the nodes lie on the same face. In this way, thev can 
allow for instance single-variable potentials for the subset B of variables. 

to the two aforementioned approaches which on exact inference on a 
tractable planar model, the loop calculus directly leads to a framework for approximate 
inference on general planar graphs. Truncating the loop series according to Chertkov et al. 
(2008) already gives the exact result if the planar graph fulfills the two previous constraints. 
In the general planar case, however, this truncation may result into an accurate approxi­
mation that can be incrementally corrected by considering subsequent terms in the series. 

In the next Section we review the main theoretical results on loop calculus and planar 
and introduce the algorithm used in this work. In Section ~i we provide experimental 

results on approximation of the partition function for grid" and randomly structured graphs. 
\Ve focus on a planar-intractable binary model with symmetric pairwise interactions but 
nonzero single variable potentials. The source code used for this results is freely available 
at http://www.mbfys.ru.nl/staff/v.gomez/. We end this manuscript with conclusions 
and future work in Section 4. 

2. Belief Propagation and loop Series for Planar Graphs 

We consider the Forney graph representation, also called general vertex model (Barney, 
2001; Loeliger, 2(04), of a probability distribution p(eT) defined over a vector eT of binary 
variables (vectors are denoted using bold symbols). Forney graphs are general graphieal 
models which subsume factor graphs and therefore both bayesian networks and markov 
random fields. In appendix A we show how to convert a factor model to its equivalent 
Forney graph representation. 

A binary Forney graph 9 (V, E) consists of a set of nodes V where each node a V 
represents an interaction and each edge (<2, b) E £ represents a binary variable ab which take 
vdlues O'ab {±l}. We denote a the set of neighbors of node a. Interactions .fa (eTa) are 
arbitrary functions defined over typically small subsets of variables where eTa is the vector 
of variables associated with node a, i.e. eTa := (aabl' O"ab2"") where bi Ea. 

The joint probability distribution of such a model factorizes as: 

p Z-l IT fa (eTa), Z = L IT fa (eTa), (1) 
aEV CT aEV 

where Z is the normalization factor or partition function. 
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From a variational perspective, a fixed point of the BP algorithm a stationary 
point of the Bethe "free energy" approximation under proper contraints (Yedidia et al., 
2000). In style notation: 

(ua ) In --- ~exp (_pBP) , = LL ( 
ba(Ua)) '"' lnbab 
fa(ua) bEa O-oba Uo. 

(2) 

where ba (ua) and bab (uab) are the beliefs (pseudo-marginals) associated to each node a V 
and variable ab. For graphs without loops, Equation (2) coincides with the Gibbs "free 
energy" and therefore ZBP coincides with the exact partition function Z. If the graph 
contains loops, ZBP is just an approximation more or less accurate depending on how 

the influence of the loops is. 
We introduce now some convenient definitions related to the loop calculus framework. 

Definition 1 A generalized loop in a graph Q (V, £) is any subg'mph C = (VI, EI), 
Vi ~ V, EI (V' X V') n £ such that each node in V' has degree two or larger. 

For simplicity, we will use the term loop in rest of this manuscript. loop calculus allows to 
represent Z in terms of the BP approximation via the loop series expansion: 

Z= ·Z, (3)Z (1 + L rc) rc IT JLa;ae' 
CEe aEG 

where C is the set of all loops in the graph. Each loop term rc is a product of terms JLa,ae' 

each of them associated to every node a of the loop. iic denotes the set of neighbours of a 
which appear the 100D C: 

L ba (ua ) IT (Uab-

Ua, bElIeIT mab L Uabbab (4)
JLa;ac 2 

O-abmao 
bEae 

In this work we eonsider planar where all nodes have degree no than 3. W{~ 

triplet a node with three in the In appendix A we show that a 
,"pWv,"' model can be converted to this representation at the cost of introducing auxiliary 

nodes. 

Definition 2 A 2-regular loop is a loop in which all nodes have degree two. 

Definition 3 The 2-regular partition function is the truncated form of (3) which 
sums all 2-regular loops only: 1 

Z0 = ZBP. z0, Z0 1 + L rc· 
CECld(a)=2,\iaEC 

As an example, Figure 1a shows a small Forney and Figure 1 b the seven loops included 
in its corresponding 2-regular Dartition function. 

1. Notice that this part of the series is denoted as single-connected partition function in Chertkov et aL 
We prefer to use 2-regular partition function because loops with more than one connected 

component are also included in this part of the series. 
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Figure 1: 	 Example. (a) A Forney graph. (b) Loops (in bold) included in the ,,"-1I:':;~U1CH 

partition function. (c) Loops (in bold and red) not included in the 
partition function. Marked in red, the triplets associated with each loop. 

2.1 Computing the 2-regular Partition Function Using Perfect Matching 

In Chertkov et a1. (2008) it has been shown that computation of z0 can be mapped to a 
dimer matching problem, more to the computation of the sum of all 
perfect matchings in a graph. A perfect matching is a subset of edges such that each node 
is met exactly one edge in the subset: The weight of a matching is the product of the 
weights of the edges in the matching. The idea of this mapping is to extend the original 
Forney graph 9 into an new graph gcxt in such a way that each perfect matching in gext 

corresponds to a 2-regular loop in g. Under the planarity condition, the sum of all weighted 
rnatchings can be done in polynomial time following Kasteleyn's argument. Here 

we reproduce these results with little variations and more emphasys in algorithmic 

a Forney graph 9 and the BP approximation, we simplify 9 and obtain the 2-core 
by removing nodes of 1 recursively. After this step, either 9 is the null graph (and 
then TIP is exact) or 9 is composed of vertices of degree 2 or 3 At this point. all terms 
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9 	 9"J'1 

....... 


....... 


Figure 2: 	 Fisher's rules. The original graph 9 is converted to an extended graph 
gext where each node is split in two or three nodes according to its degree. Note 
that rules preserve planarity. 

appearing in equation (4) can be computed. Also, it is convenient for subsequent steps to 
have a biconnected graph (a graph that remains connected after removal of any vertex). If 
necessary, we add dummy edges with zero weight which do not alter the partition function. 

To construct the extended graph gexi we split each node with degree 2 or 3 in 9 according 
to the rules introduced by Fisher (1966), see Figure 2. Edge weights associated to external 
edges are set to unity and new internal edges are weighted according to the corresponding 
terms JLa;iic of Equation (4). It is easy to see that each 2-regular loop in 9 is associated to 
a perfect matching in gext and, furthermore, this correspondence is unique. Consider, for 
instance, the vertex of degree three in the bottom of Figure 2. a 2-regular loop C, 
vertex a can appear in four different configurations: either node a does not appear in C, or 
C contains one of the following three sub-paths: -b-a-c:-, -b-a-d- or -c-a-d-. These four cases 
correpond to sub-terms in a loop with values 1, JLa;{b,c}, Jla;{b,d} and and 
coincide with the matchings shown within the box on the left. A simpler reasoning holds 
for the vertex of degree two of the top of Figure 2. 

This correspondence allows to express the 2-regular partition function Z0 as the sum 
over all weighted perfect matchings defined on gext. (1963) a method to 
compute this sum in polynomial time for planar We follow his <:> ......'"..-rH'''' 

orient edges of a planar embedding of gext in such a way that for every face 
the external face) the number of clockwise oriented is odd. For a 
orientation can be easily calculated. Algorithm 1 produces such an orientation 
and 
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Algorithm 1 Pfaffian orientation 
Arguments: undirected biconnected graph Yext. 

1: Construct a planar embedding Qe.rt of Ye,'Lt. 

2: Construct a spanning tree T of Q~:rt. 
3: Construct a faces tree H having vertices corresponding to the faces of Qext: 

connect two vertices in H if the respective face boundaries share an edge not in T. 

,1: for all face (vertex in H) do 

5: Orient all its in T arbitrarily (but keep the number of clock-wise oriented edges). 
6: end for 
7: for all face in H) traversed in postorder do 
8: Add the unique not in T. 
9: Orient it such that the number of clock-wise oriented edges is odd. 

10: end for 
11: RETURN directed extended graph T 

Next, denote IIii the weight of the edge between nodesi and in Yext. After orienting 
the graph we creat~ the following skew-symmetric matrix A 

+/Lij if (i,j) 

= -/Lij if (j, i) 
{ o otherwise 

This matrix is known as the Tutte matrix of and the pfaffian of A gives the desired 
sum. The pfaffian is an algebraic object very related with the determinant. More 
Pf(A)2 Calculation of 2:0 can therefore be in time O(N3) where N is 
the number of nodes of (Galbiati and Maffioli, 

In our case, however, z(/) can be either positive or negative, and computing the value 
of the pfaffian up to the sign is not enough for our purposes. Furthermore, since each 
element Aij can be negative not only because of the pfaffian orientation but also because 
of Equation (4), the sign of the pfaffian needs to be corrected. Our solution considers the 
original binary matrix: 

+1 if (i,j) 

= -1 if i)
{ o otherwise 

If the of Pf(B) is negative then the is changed. The absolute value 
Pf(B) coincides with the number of perfect or the number of 100DS included in 
the sum. The represents the correction. The corrected value of zQ) is: 

Z0 = sign (Pf (B)) .Pf (A) . 
For the special case of binary planar graphs with pure interaction potentials (symmetric 

and zero local the 2-regular partition function coincides with the exact partition 
function Z = . z(/) since the other terms in the series vanish. 
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2.2 Computing the Full Loop Series Using Perfect Matching 

Chertkov et al. (2008) established that zf/j is just the first term of a finite sum involving 
pfaffians. We briefly reproduce their results here and provide an algorithm to compute the 
full loop series as a pfaffian series. 

Consider T the set of all possible triplets (vertices with degree 3 in the original graph Q). 
For each possible subset WET including an even number of triplets there exists a unique 
correspondence between loops in Q including the triplets in wand perfect matchings in 
another extended graph Qext-J; constructed after removal of the triplets W in Q. Using this 
representation the full loop series can be represented as a pfaffian series, where each term Z'll 

is tractable and is a product of the respective pfaffian with the J.La;a terms associated with 
each triplet of W: 

Z = I:Z'll Z'll = Z'll II J.La;a (6) 
'll aEW 

Z'll = sign (Pf ( B'll) ) . Pf ( A'll) . 

The 2-regular partition function thus corresponds to W = 0. We refer to the remaining 
terms of the series as higher-order pfaffian terms. Notice that matrices A'll and B'll depend 
on the removed triplets and therefore each Z'll requires different matrices and different 
edge orientations. In addition, after removal of vertices in Q the resulting graph may be 
disconnected. As before, in these cases we add dummy edges with zero weight to make 
the graph biconnected again. Notice then that IPf(B'll ) I is no longer the number of loops 
included in the pfaffian but an upper bound. 

Figure lc shows the loops corresponding to the higher-order pfaffian terms of the exam­
ple. The first and second subsets of triplets (grouped in grey squares) include summation 
over two loops and the remaining pfaffian terms include uniquely one loop. 

Exhaustive enumeration of all subsets of triplets leads to a 21TI time algorithm, which 
is prohibitive. However, many triplet combinations may lead to forbidden configurations. 
Experimentally, we found that a principled way to look for higher order pfaffian terms with 
large contribution is to search first for pairs of triplets, then groups of four, and so on. For 
large graphs, this also becomes intractable. Actually, the problem is very similar to the 
problem of selecting loop terms rc with largest contribution. The advantage of the pfaffian 
representation, however, is that Zf/j is always the pfaffian term that accounts for the largest 
number of loop terms and is the most contributing term in the series. In this work we do 
not derive any heuristic to search pfaffians terms with larger contributions. Instead, we 
study the full pfaffian series and in particular we focus on the accuracy of Zf/j. 

Algorithm 2 describes the full procedure to compute all terms using the representation 
of expression (6). The main loop can be stopped at to obtain an anytime algorithm which 
produces corrections incrementally. 

3. Experiments 

In this section we study numerically the proposed algorithm. To facilitate the evaluation and 
the comparison with other algorithms we focm; on the the binary Ising model, a particular 
case of the model (1) where factors only depend on the disagreement between two variables 
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Algorithm 2 Pfaffian series 
Arguments: graph 9 

1: z O. 

2; for all (1]1 E T) do 

3; Build extended graph ge:rt.-p applying rules of Figure 2. 

4; orientation in ge:rt.-p according t.o Algorithm 1 

5; Build matrices A and E. 


correction Z\{I according to Equation (3). 

/-La:a' 

9: RETURN 'Z 

6: 'uUIHIJULe PIGtlllGtll with 
7; Z Z 

8: end for 

. We consider also nonzero local 
in all variables so t.hat t.he model 

We creat.e different inference 
local field 
Normal dist.ribution { 
determine how difficult 
tractable. For e > 0, small values of f3 result in 

} "V 

for e 0 the is 
coupled variables problems) 

and values of ;3 in strongly coupled variables (hard problems). e result in 
easier inference problems. 

In the next subsection we analyze the full pfaffian series llsing a small and 
compare it with the original represent.ation based on the loop series. we compare the 
following algorithms for approximation of the partition function: 2 

Thuncated Loop-Series for BP (TLSBP) (Gomez et al., 20(7), which accounts for a 
certain number of loops by perfoming depth-first-search on the factor graph and then 
merging the found loops iteratively. We adapted TSLBP as an anytime algorithm 
(anyTLSBP) such that only the length of the loop is used as argument instead of 
the two parameters Sand !vf, see Gomez et al. (2007) for details. This approach does 
not compute all possible loops (in particular, complex loops are not included), but is 
more efficient than TLSBP since merging t.wo loops only involve bit.wise 

Cluster Variation Method (CVM-Loopk) A double-loop implement.ation of CVM 
kes et. a1.. 2(03). This algorit.hm is a special case of generalized belief 

We use as outer clusters all 
that consist of up to k different 

Thee-Structured Expectation Propagation (TheeEP) 
method perforrnes exact inference on a base tree of the" 
mates the other interactions. This method yields good results if the 
is very sparse, which is the case of planar models. 

2. We use the libDAI library for algorithms CVM-Loopk, TreeEP and TRW, 
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choosing the base tree described in Minka and Qi (2004) to multiple variable factors 
as follows: when estimating the mutual information between Xi and Xj , we take the 
product of the marginals on {i,j} of all the factors that involve Xi and/or Xj' Other 
generalizations of TreeEP to higher- order factors are possible (e.g., by clustering 
variables), but it is not clear how to do this in general in an optimal way. 

When possible, we also compare with the following two methods which provide upper bounds 
of the partition sum: 

Planar graph decomposition (PDC) (Globerson and Jaakkola, 2007) which decom­
poses the vector of factors into a mixture over planar graphs. 

Tree 	Reweighting (TRW) (Wainwright et aI., 2005) which decomposes the vector of 
factors into a mixture over spanning trees. 

To evaluate the accuracy of the approximations we consider errors in Z and, when possible, 
computational cost as well. As shown in Gomez et al. (2007), errors in Z obtained from a 
truncated form of the loop series are very similar to errors in single variable marginal prob­
abilities, which can be obtained by conditioning over the variables under interest. We only 
consider tractable instances for which Z can be computed via the junction tree algorithm 
(Lauritzen and Spiegelhalter, 1988). Given an approximation Z' of Z, the error measure 
used in this manuscript is: 

errorZ' = I log Z - log Z'I 
10gZ 

As in Gomez et al. (2007), we use four different schedulings of the messages for BP: 
fixed and random sequential updates, parallel (or synchronous) updates, and residual belief 
propagation (RBP), a method proposed by Elidan et al. (2006) which selects the next 
message to be updated which has maximum residual, a quantity defined as an upper bound 
on the distance of the current messages from the fixed point. We report non-convergence 
when none of the previous methods converged. We report convergence at iteration t when 
the maximum absolute value of the updates of all the messages from iteration t - 1 to t is 
smaller than a threshold {) = 10-14 . 

3.1 Full Pfaffian Series 

In the previous section we have described two equivalent representations of the exact par­
tition function in terms of loop series and pfaffian series. Here we analyze numerically how 
these two representations differ using an example, shown in Figure 3 as a factor graph, for 
which all terms of both series can be computed. We analyze a single instance parameter­
ized using e = 0.1 and different pairwise interactions (3 E {0.1, 0.5, lo5}. We expect similar 
results for larger instances. 

We use TLSBP to retrieve all loops, 8123 for this example, and Algorithm 2 to compute 
all pfaffian terms. To compare the two approximations we sort all contributions, either 
loops or pfaffians, by their absolute value in decreasing order, and then analyze how the 
errors are corrected as more terms are included in the approximations. We define partition 
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3: 	 Planar graph used for the example in factor graph representation. Circles and 
black squares denote variables and factors respectively. 
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4: 	 Comparison between full series and full pfaffian series. Each row corresponds 
to a different value of the interaction strength (3. Left column shows the error 
considering loop terms ZTLSBP (I) in log-log scale. Shaded regions include all 
loop terms (not necesarily 2-regular loops) to reach the same (or better) accuracy 
than the accuracy of the 2-regular partition function Zf/J. Middle column shows 
the error considering pfaffian terms zPf (p) also in log-log scale. The first 
term corresponds to Zf/j and is marked with a circle. Right column shows the 
values of the first 100 pfaffians terms sorted by IZwl and excluding z0. 

11 



V. GOMgZ AND M. Cm;RTKOV AND H.J. KAPpgN 

way:functions for the truncated series in the 

ZTLSBP(I) =ZBP i~/C,) , ZPl (p) ~ZBP (~" ) 

In this way ZlL:;bJ-' (l) accounts from the I most contributing loops and (p) accounts for 
the p most contributing pfaffian terms. In all cases, the pfaffian term with largest absolute 
value ZWj corresponds to zf/J. 

Figure 4 shows the error ZTLSBP (first column) and ZPf (second column) of both 
For weak interactions (;3 = 0.1) BP converges fasi and provides an accurate 

approximation with an error of order 10-4 • Summation of less than 50 loop terms (top-left 
is enough to obtain machine precision accuracy. Notice that the error is almost 

reduced totally with the z0 correction (top-middle panel). In this scenario, higher order 
terms of the pfaffian series are negligible (top-right panel). 

As we increase the complexity of the problem, the quality of the BP approximation 
decreases. The number of loop corrections required to correct the BP error then increases. 
In this example, for intermediate interactions 0.5) the first pfaffian term z0 improves 
considerably, more than 5 orders of magnitude, on the BP error. Note that approximately 

loop terms are required to achieve the same correction as the one obtained by z0 

region of middle-left panel) . 
.For strong interactions = 1.5) BP converges after many iterations and gives a poor 

approximation. In this scenario also a larger proportion of loop terms (bottom-left 
is necessary to correct the BP result up to machine precision. .F'or the particular 
we see (bottom-left panel) that approximately 200 loop terms are required to achieve the 
same correction as the one obtained by Z0' The z@ is quite accurate (bottom-middle panel). 

As the right panels show, higher order pfaffian contributions tend to change progressively 
from a sequence with a few relevant terms t.o a alternating sequence of positive and 
negative terms which grow in absolute value as the difficulty of the problem increases. These 
oscillations are present in both representations and can be explained the mixed type of 

we can conclude that the correction to the BP armrnvl can be 
!:HgIllllC<:tllL even in hard problems for which BP converges after many and does 
not require and explicit search for 

3.2 Grids 

After analyzing the full pfaffian series OIl a small random example we now restrict to the 
Z0 approximation using Ising grids (nearest neighbor connectivity). First, we compare that 
approximation with other inference methods for different types of interactions (attractive 
or mixed) and then we study the scalability of the method in fUllction of the size of the 
graphs. 

3.2.1 ATTRACTIVE INTERACTIONS 

\Ve first focus on binary models with interactions that tend to the coupled variables to 
the same value, Ja;{ab,ac} > O. If local fields are also positive > 0, Va V. Sudderth 
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Attractive interactions, strong local fields: 6;:; 1 
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GVM-Loop4 
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Figure 5: 	 7x7 grid attractive interactions and positive local fields. Curves show error aver­
ages over 50 random instances in function of the difficulty of the problem. 

et a1. (2008) showed that the BP approximation is a lO'liJer-bo1Lrul of the exact partition 
function and all loops (and therefore pfaffian terms too) have the same sign:~. Although this 
is not formally proven for general models with attractive interactions regardless the sign of 
the local fields, numerical results that this propery holds as well for that type of 
models. 

We generate grids with positive interactions and local fields, i.e. I{Ja;bc} I rv N(O, /3/2) 
and I{Ja;b}1 rv N(0,/3e) and study the performance for various values of /3 and for strong 
e = 1 and weak e = 0.1 local fields. 

5 shows the average error over 50 instances reported by different methods. 
this setup, BP converged in all instances using sequential updates of the messages. The error 
curves of all methods show an initial growth and a subsequent decrease, a fact explained 
by the phase transition occurring in this model for e = 0 and tJ :::::: 1 (Mooij and Kappen, 
2005). As the difference between the two plots suggest, errors are larger as e approaches 
zero. Notice, however, that ZI/) = Z for the limit case of e o. 

We observe that in all instances Zf/J a.lways improves on the BP approximation. Correc­
tions are more for weak interactions ;) < 1 and strong local fields. For 
interactions /3 > 1 and weak local fields the iIllprovement is less significant, although this 
occurs for all methods under consideration. 

The ZrtJ approximation turns to perform better than TreeEP in all cases for very 
strong couplings, where they show very similar results. Interestingly, ZrtJ performs very 

3. The condition is that all single variable beliefs at the BP fixed point must satisfy ma.l> 

> O,\I(a,b) t: 
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Mixed interactions, strong local fields: 8 = 1 Mixed intera:tions. weak local fields: e ;;: 0.1 
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6: 	 7x7 grid mixed interactions. Curves show error averages over 50 random instances 
in function of the difficulty of the problem. Bottom panels show percentage of 
cases in which BP converged. 

similar to CVM-Loop4 which is known to be a very accurate approximation for this 
of model, see Yedidia et al. (2000) for instance. We observe that in order to obtain better 
average results than Z0 using CVM, we need to select larger outer-clusters snch as loops of 
length 6, which increases dramatically the computational cost. 

The methods which provide upper bounds of Z (PDC and TRW) report the largest 
average error. PDC performs slightly better than TR\;Y', as has been shown in Globerson and 
Jaakkola (2007) for the case of mixed interactions. We remark that the worse performance 
of PDC for stronger couplings and weak local fields might be attributed to implementation 

since for > 4 we have numerical precision errors. In general, both upper bounds 
bl~H111cantly less tight than the lower bounds provided by BP and Z0' 

3.2.2 MIXED INTERACTIONS 

We now analyze a more general Ising grid model where interactions and local fields can have 
mixed signs. In that case, and Z0 are no longer lower bounds of Z and loop terms can 
be positive or negative. Figure 6 show results using this setup. Top panels show average 
errors and bottom panels show percent of instances in which BP converged using at least 
one of the methods described in section. 

For strong local fields (left panels), as !'J grows we see that the improvements of on 
BP are on average less significant. It is important to note that corrects the BP 

even for very strong couplings ({3 10) where a small percentage of the graphR failed 
to converge. Z0 performs Rlightly better than CVM-Loop4 and substantially better than 
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TreeEP for small . All three methods show similar results for 
in the case of attractive the best results are attained 

For the case of weak local fields (right panels), BP fails to converge near the transition 
to the spin-glass phase. For (3 = 10, BP converges only in less than of the instances. 
In the difficult configurations, /3 > 22, all methods under consideration similar results 
(all comparable to DP). Moreover, it may happen that Zf/J degrades the approximation 
because loops of alternating signs have major influence in the series. This result was also 
reported in Gomez et al. (2007) when loop terms instead of pfaffian terms where considered. 

3.2.3 SCALING WITH GRAPH SrZE 

We now study how the Zf/J approximation accuracy varies as we increase the size of the 
vVe random grids with mixed couplings for ... ,19} and focus on 

a regnne of intermediate local fields e = 0.5 and strong /3 1. vVe compare 
also with a variant of our previous algorithm for the loop series. 

which we increase 
a fair comparison between both we run anyTLSDP for 

the same amount of cpu time as the one required to obtain and take the last valid result. 

Figure 7 (left) shows the errors of different methods. variability in the errors was 
larger than before, we took the median for comparison. liVe can see that results are similar 
to previous In order of increasing accuracy we have DP, TreeEP, CVM-Loop4 
and Zi/J. We note that larger clusters in CVM would have better results. 

Ising grids' ~ =1 B =0.5 
10",--,--­

N g" g 10-4 
I----_ .... " ... -­ fr" ... --" 

10"1 ' _J 
50 100 150 200 250 300 50 100 150 200 250 300 

N N 

7: UCtlllll~ with grid size for e = 0.5 and 11 0.1. Results are error medians over 50 
instances. DP converged in all cases. 
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Overall, we can see that the error stays approximately constant as we increase N in 
almost all methods that we compare. The error of anyTLSBP starts the smallest but 
soon increases because the proportion of loops captured decreases very fast. .For N > 100 
anyTLSBP performs worse than CVM-Loop4. The Z0 correction, on the other hand, stays 
more constant and we can conclude that for this configuration the Zf/J correction scales 
rea.<;onably well. Note that, although anyTLSBP is systematically worse than 
show similar behaviour for large graphs, N > 150, which is worth to mention 
because both truncation methods are based on different prindples: whereas Zf/J truncates 
all non 2-regular loops, anyTLSBP truncates loops of size larger than a certain length. 

Figure 7 (right) shows the cpu time of all tested approaches. The cpu time required to 
compute Z0 scales with O(N{;cxt) but turns out to be the least efficient approach. \Ve in 
section 4. The cpu time of the Junction-tree method quickly increases with the tree-width 
of the graphs. For large enough N exact solution via the Junction-tree method is no 
feasible and Zf/J represents an improvement over BP. 

3.3 Random Graphs 

In the previous subsection we have studied the Zf/J correction on graphs with grid structure. 
It is interesting to analyze the Zf/J correction in graphs with no nearest neighbor connectivity. 
For that we consider random planar graphs which we using the method described 
in Schaeffer (1999). This method allows to generate efficiently random planar graph with a 
given number of edges. We focus on 3-connected graphs. The resulting graphs are 

~= 0.5 8=0.1 
10' 

10' 

103 
L" 

10.4 

N 

g 10' 
~ 

10" 

10' 

10' 

50 100 150 200 250 300 350 400 450 500 400 450 500 
edges edges 

Figure 8: with number of edges for moderate interactions and weak local fields. 

Results are error medians over 50 instances. BP converged in all cases. 
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interpreted as factor graphs with pairwise interactions which are converted to an equivalent 
Forney graph representation (see appendix A for details). 

Inference problems are now parameterized by the number of of the graphical 
model and the interaction and local field parameters. We choose weak local field potentials 
e = 0.1 and intermediate couplings ,8 0.5 and analyze the error varying the number 
of edges. This setup generates extended graphs (after application of Fisher rules) of 
sizes between 2 . 102 and 2.3 . 103 nodes. We note that this is a particular challenging 
problem for approximate inference methodH but not for exact inference, because although 
the number of nodes grows fast, the graphs aTe still sparse and their tree-widths do not 
grow as dramatically as in the grids case. 

Figure 8 (left) shows errors of different methods. First, we remark that the improvement 
of CVM-Loop4 over BP is less significant than in the grids scenario. In this case, CVM­
Loop4 performs very similarly to TreeEP. This is probably explained because CVM-Loop4 
exploits symmetries in the structure of the networks which do not occur in the graphs 
considered here. Second, the Zf/J approximation performs better than these two approaches. 
However, selecting clusters such as in CVM-Loop8 the Zf/J correction can be improved. 

Computational costs are shown in 8 (right). The Zf/J and the CVM-LoopS are the most 
expensive approaches. is more efficient than CVM-Loop8, but only for number of 
up to 250. 1reeEP and CVM-Loop4 have very Himilar Hcaling behavior. Although TreeEP is 
significantly more efficient than CVM-Loop4, their costs get closer as the size of the graphs 
increases . .TuncTree is more efficient than all approximate methods except BP. which is the 
most efficient algorithm. 

4. Discussion 

We have presented an algorithm based in the loop calculus framework for approximate 
inference on planar graphical models defined on binary variables. The proposed approach 
corrects the estimate of the partition function provided by BP. 

We have illustrated the algorithm using the Ising model. This model allows to analyze 
how the performance of the method varies according to the complexity of the problem. 
Given that exact results are obtained in polynomial time for the case of zero local fields, one 
would expect less accurate approximations for problems with larger local fields. However, 
the outcomes of our experiments on grids show that significant improvements over BP are 
always obtained for large enough single variable potentials. The quality of this correction 
degrades as external fields become smaller. This suggests that in the Ising model, the 
difficulty of the inference task changes abruptly from very easy problems with no local 
fields to very hard problems with small local fields and then decays again as external fields 
become larger. 

The Zf/J correction turns out to be competitive with other state of the art methods for 
approximate inference of the partition function. In first place, we have shown that ZI/J is 
much more accurate than methods which provide upper bounds of Z such as TR'.V or PDC. 
This illustrates that such methods corne at the cost of less accurate approximations. We 
have abo shown that for the caHe of grids with attractive interactions, the lower bound 
provided by Z0 is the most accurate. 
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performs much better than treeEP for weak and intermediate 
Up1ll1b:-i and shows results for strong interactions. This is a good result given 

that TreeEP exploits the of the underlying graph and planar are known to 
be sparse. 

Generalized belief propagation turned out to be the best algorithm in our numerical 
experiments. Using a double-loop implementation of CVM and enough outer clusters 
we could always improve on the Z(/J approximation. Notice, however, that although in this 
study larger regions gave better results, this not necessary true in general. For grid graphs, 
we have shown that to improve the Z(/J correction, one has to select including at 
least loops of length 6 in the graph. For planar graphs with random structure we found 
more variability in the solutions, but in general using CVM-Loop8 we could improve the 
results of Zf/j. 

Finally, we have results comparing Z(/J with TLSBP, which is another 
for the loop series of BP which considers the length of the loops as the tuncation 

the calculation of involves a resummation of many terms which in 
are summed individually. This favours the Z(/J On the other 

is restricted to the class of loops whereas TLSBP also accounts for terms 
loop i'itructures in which nodes can have than 

2. This favouri'i the approach. Overall, for planar graphi'i, we have shown evidence 
that the Zf/j approach is better than TLSBP when the size of the graphs is not very small. 
We emph&'lize, however, that can be applied to non-planar binary graphical modeb 
too. 

Currently, the shortcoming of the presented approach is the implementation constant 
which determines the final computational cost. However, since the critical part of the 
algorithm is the pfaffian calculation and not the algorithms used to obtain the extended 
graphs and the associated matrices, it is easy to devise more efficient methods than the one 
used here. First, methods exist for the caleulation of the determinant/pfaffian which can 
reduce the cost from O(N:3) to O(N3/2). Second, the pfaffian involving the binary matrix !J 
could be computed more effidenly a bit-matrix representation as in (Schraudolph and 
Kamenetsky, 2008). Another posibility would be to correct the i'iign other "I..,., I."V 
which does not require the pfaffian of B, thus reducing the cpu time to the half. All these 
technical issues are under current research. 

We have focus on inference defined on 
tions and to make them difficult we have introduced local field potentIalS. 
to emphasize that the can be directly applied also to models where 
interactions between variables are not symmetric. This implies that both conditions men­
tioned in the introduction section can be relaxed and still having an approximate 
and differs from other approaches that use the Fisher & Kasteleyn approach (Globerson 
and Jaakkola, 2007; Schraudolph and Kamenetsky, 2008). Although planarity may appear 
a severe restriction, we emphasize that planar graphs appear in many contexts such as 
computer vision and image processing, magnetic and optical recording, or network routing 
and logistics. 

Of interest are extensions of this work for non-planar graphs. In the spirit of Globerson 
and Jaakkola (2007) one can think about other types of spanning subgraphs more 
than 11 easy" planar graphs for which exact computation can be performed perfect 
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Figure 9: (a) A small factor graph OF and (b) an equivalent forney graph 

matching. The correction Zf/J can be an accurate approximation of this spanning subgraphs 
and the resulting approximation method would also provide bounds of the exact result. 
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Appendix A: Converting a factor graph to a Forney Graph. 

A probabilistic model is usually represented as a bayesian network or a markov random field. 
Since bipartite factor graphs subsume both models, we show here how to convert a factor 

model defined on binary variables to a more general Forney graph representation for 
which the presented algorithm can be directly applied. 

In a bipartite factor graph OF (VF, EF) the set VF is composed of a set of variable 
nodes X and a set of factor nodes :J. Each variable node i X, i := {I, 2, ... } represents 
a variable which takes values (Ti }. We label factor nodes using capital letters so 
that a {A, B,. .}, a. E :J denotes a factor node which has an associated function fa (ua) 
defined on a subset of variables a E X. An (undirected) edge exists between two nodes 

i) E EF if i E nO. 

Given OF, a direct way to obtain an equivalent forney graph 0 is: first, we create a 
node (ji E V for each variable node i E VF. Second, we associate a new binary variable 

with values (T5iu = {±1} to edges ((ji, a) E E. Nodes (ji E V are equivalentfactoT nodes 
and have associated the characteristic function (ji(Ua ) 1 if (Jl5

i 
a = (J15,b, Va, bE 6i and zero 

otherwise. Finally, factor nodes c E: VF correspond to the same factor nodes c in V but 
defined on the new variables (j;(;. Vi E c. 
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Figure 9 shows an example of this transformation. Notice that, although we impose an 
direction in the edge labels, they remain undirected: (0;, a) (a, 0,), 'Vo" a E V. The joint 
distribution of QT is related to the joint distribution of Q by: 

1 	 1 
ZfA(adfB(a2)fc(aI, Z fA (aDl A)fB(a(j2B)fc(0'''1 c. (a(j)A. aD] C) f62 (a62B' 

Once Q ha'l b<C'en generated following the previous procedure it may be the case that nodes 
8i E V have degree :3 or larger. This happens if a variable i appears in more than :3 factor 
nodes in QT. It is easy to convert Q to a graph were all 8. nodes have maximum degree 
3 by introducing new auxiliary variables Oil' 8i2 , ... and equivalent nodes. For instance, if 
variable i VT appears in 4 factors C, D: 

!Ii; ,a(j;B, aDiC' (a8 i A' a8i B, a",) ,aOiC,aijiD)' 

Also notice that Q may have more loops than QT. 
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