

LA-UR- 09-00267

Approved for public release;  
distribution is unlimited.

*Title:* Partial Protection of SIV-Infected Rhesus Monkeys Against Superinfection with a Heterologous SIV Isolate.

*Author(s):* B. Korber, Z# 108817, T-6/T-Division

*Intended for:* Journal: Journal of Virology



Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

# REQUEST FOR LA-UR NUMBER

## T-10

Requester: Bette Korber Date: 1/13/09

Attach two copies for submission. Please allow a MINIMUM of two weeks before

Date LA-UR number needed by: 1/27/09  
(if you do not fill in this field, I will date two weeks from today)

### Type of Information:

- Abstract
- Summary
- Audio-Visual (Abstract required)
- Viewgraph (Abstract required)
- Full Paper
- Poster
- Other

DUSA?: BIOSCI

### Intended for:

- Journal
- Proceedings
- Meeting
- Talk
- Book
- Book Chapter
- Electronic (e.. e-print archive)
- Other: \_\_\_\_\_

### Particulars:

Meeting/Conference Name: \_\_\_\_\_

City/State/Country: \_\_\_\_\_

Meeting Date: \_\_\_\_\_

Journal Name: Journal of Virology

Other: \_\_\_\_\_

Program Code used to fund this work: THU8

**Note:** Technical information release (LAUR request) is to be submitted to S-7, Classification Group with copies as required of abstract or paper BEFORE you present or submit for publication of any technical work of the Laboratory.

1  
2  
3  
4  
5  
6

7 **Partial protection of SIV-infected rhesus monkeys against superinfection with a  
8 heterologous SIV isolate**

9

10

11

12

13

14 **Wendy W. Yeh<sup>1</sup>, Pimkwan Jaru-ampornpan<sup>1</sup>, Daiva Nevidomskyte<sup>1</sup>, Mohammed  
15 Asmal<sup>1</sup>, Srinivas S. Rao<sup>2</sup>, Adam P. Buzby<sup>1</sup>, David C. Montefiori<sup>3</sup>, Bette T. Korber<sup>4</sup>,  
16 and Norman L. Letvin<sup>1\*</sup>**

17

18

19 <sup>1</sup>Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical  
20 School, Boston, MA 02215

21 <sup>2</sup>Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892

22 <sup>3</sup>Department of Surgery, Duke University Medical Center, Durham, North Carolina  
23 27710

24 <sup>4</sup>Los Alamos National Laboratory, Los Alamos, NM 87545; Santa Fe Institute, Santa Fe,  
25 NM 875015

26

27

28 **Running Title: Protection of SIV-infected monkeys against superinfection**

29

30 **Word Count for abstract: 249**

31

32 **Word Count for text: 5429**

33

34 **\*Corresponding author. Mailing address: Division of Viral Pathogenesis, Beth Israel  
35 Deaconess Medical Center, CLS 1043, 3 Blackfan Circle, Boston, MA 02115. Phone:  
36 (617)735-4400. Fax: (617)735-4527. Email: nletvin@bidmc.harvard.edu.**

1     Abstract  
2  
3

4     Although there is increasing evidence that individuals already infected with  
5     HIV-1 can be infected with a heterologous strain of the virus, the extent of protection  
6     against superinfection conferred by the first infection and the biologic consequences of  
7     superinfection are not well understood. We explored these questions in the simian  
8     immunodeficiency virus (SIV)/rhesus monkey model of HIV-1/AIDS. We infected  
9     cohorts of rhesus monkeys with either SIVmac251 or SIVsmE660, and then exposed  
10    animals to the reciprocal virus through intrarectal inoculations. Employing a quantitative  
11    real-time polymerase chain reaction (qRT-PCR) assay, we determined the replication  
12    kinetics of the two strains of virus for 20 weeks. We found that primary infection with a  
13    replication-competent virus did not protect against acquisition of infection by a  
14    heterologous virus, but did confer relative control of the superinfecting virus. In animals  
15    that became superinfected, there was a reduction in peak replication and rapid control of  
16    the second virus. The relative susceptibility to superinfection was not correlated with  
17    CD4<sup>+</sup> T cell count, CD4<sup>+</sup> memory T cell subsets, cytokine production by virus-specific  
18    CD8<sup>+</sup> or CD4<sup>+</sup> cells, or neutralizing antibodies at the time of exposure to the second  
19    virus. Although there were transient increases in viral load of the primary virus and a  
20    modest decline in CD4<sup>+</sup> T cell counts after superinfection, there was no evidence of  
21    disease acceleration. These findings indicate that an immunodeficiency virus infection  
22    confers partial protection against a second immunodeficiency virus infection, but this  
23    protection may be mediated by mechanisms other than classical adaptive immune  
   responses.

1

2 **Introduction**

3

4 Superinfection with human immunodeficiency virus (HIV) is the infection of an  
5 HIV seropositive individual with a second heterologous strain of the virus after infection  
6 with the first infecting strain is established. There is accruing evidence for HIV-1 intra-  
7 and intersubtype superinfection in settings of intravenous drug use, structured treatment  
8 interruptions, and with strains that are resistant to antiretroviral drugs(2, 4, 6, 22, 26, 28,  
9 32, 39, 42, 43, 52, 60, 66). Epidemiologic studies have suggested that the frequency of  
10 superinfection ranges from rare to as high as 5% per year in high-risk populations (9, 10,  
11 15, 20, 24, 27, 31, 40, 41, 51, 59, 65, 67). However, it remains unclear how readily  
12 superinfections occur after exposure of an infected individual to a heterologous strain of  
13 virus. Furthermore, the variables that may contribute to susceptibility or resistance to  
14 superinfection, such as the timing of exposure to a second virus or the immunologic  
15 status of the exposed individual, have not been well-defined. It is also uncertain whether  
16 superinfection is invariably associated with the loss of HIV containment and clinical  
17 deterioration (8, 17, 21, 23, 26, 27, 30, 60). Understanding the risks for and the  
18 biological consequences of HIV superinfection will not only clarify an important clinical  
19 problem, it may also provide important insights into the nature of the immune responses  
20 that may confer protection against the initial acquisition of HIV.

21 The nonhuman primate model provides an ideal means of studying the  
22 pathogenesis of HIV-1 superinfection. This system allows for control of many important  
23 variables, including the dose, strain, route, and timing of infection. However, there have  
24 only been a few animal studies that have attempted to explore the biology of  
25 superinfection. The implications of these studies are uncertain because they have been

1 done in models in which infected monkeys do not develop AIDS and the viruses used are  
2 either replication-incompetent or replicate at low levels (11-13, 18, 36-38, 46-48, 53, 56-  
3 58, 61-64). Therefore, it is unclear whether we can extrapolate from these studies the  
4 frequency HIV-1 superinfection, the implications of superinfection on HIV pathogenesis,  
5 and the feasibility of inducing broadly cross-protective immune responses.

6 In the present study, we have developed a rhesus monkey model of mucosal  
7 superinfection to examine whether infection with replication-competent SIV confers a  
8 relative resistance to superinfection and elucidate the factors that influence the clinical  
9 course of infection with a second virus. We show that although prior infection with SIV  
10 does not protect against subsequent mucosal challenge with a heterologous SIV isolate,  
11 the primary infection does attenuate the replication capacity of the second virus.

1    **Materials and Methods**

2  
3    **Animals.** Fourteen adult rhesus monkeys (*Macaca mulatta*) were used in this study. All  
4    animals were housed at Bioqual (Rockville, MD) and maintained in accordance with the  
5    Association for Assessment and Accreditation of Laboratory Animal Care guidelines at  
6    National Institutes of Health.

7

8    **SIV challenge stocks.** The viruses used in this study included cell-free uncloned  
9    pathogenic SIVmac251 and pathogenic SIVsmE660 (kindly provided by Vanessa Hirsch,  
10   NIAID/NIH). The stock of SIVmac251 was expanded on human PBMC and the stock of  
11   SIVsmE660 was expanded on rhesus monkey PBMC. To initiate intravenous infections,  
12   2.1x10<sup>5</sup> RNA copies of SIVmac251 and SIVsmE660 were used. 6.3x10<sup>7</sup> RNA copies of  
13   SIVmac251 and 4.3x10<sup>8</sup> copies of SIVsmE660 were used for the intrarectal exposures.  
14   These were doses that were previously shown to reproducibly initiate mucosal infections  
15   in rhesus monkeys (29).

16

17   **Quantitative real-time PCR.** Plasma SIVmac251 and SIVsmE660 RNA levels were  
18   determined using a two-step quantitative RT-PCR assay. Four sets of strain-specific  
19   probes and primers for *gag* and *env* were used to distinguish and quantify SIVmac251  
20   and SIVsmE660. Viral RNA was extracted and purified from plasma using the QIAamp  
21   Viral RNA mini kit (Qiagen, Valencia, CA). RNA were subjected to reverse  
22   transcription (RT) with MultiScribe Reverse Transcriptase (Applied Biosystems, Foster  
23   City, CA) to generate cDNA products for quantitative PCR using the *env* RT primer 5'-  
24   GAACCCTAGCACAAAGACCCC-3' and the *gag* RT primer of 5'-

1 GGTGCAGCAAATCCTCT-3'. These primers were designed to anneal to conserved  
2 regions of *gag* and *env* that are shared by the two viral strains.

3 The subsequent qPCR reactions were set up using TaqmanGold Mastermix  
4 (Applied Biosystems, Foster City, CA). cDNA were amplified with SIVsmE660 TaqMan  
5 *env* and *gag* probes that were labeled with 6-carboxyfluorescein (FAM) and quencher  
6 dye BHQTM1, while the SIVmac251 *env* and *gag* TaqMan probes were labeled with  
7 Quasar 670 and quencher dye BHQTM2 (Biosearch Technologies, Novato, CA). For  
8 each sample, analyses for SIVmac251 and SIVsmE660 were conducted separately for  
9 both *env* and *gag*. The sequences and annealing temperatures for primers and probes  
10 were as follows:

11

| Strain and gene   | Primer/probe | Sequence                                 | Temp |
|-------------------|--------------|------------------------------------------|------|
| mac251 <i>gag</i> | Forward      | 5'-TTCGGTCTTAGCTCCATTAGTG-3'             | 62°  |
|                   | Reverse      | 5'-AGTTACCACCTATTGTTGTACTG-3'            |      |
|                   | Probe        | 5'-(Quasar)CTCCTCTGCCGCTAGATGGTGCTG-3'   |      |
| mac251 <i>env</i> | Forward      | 5'-CCAAGAGAGGGAGACCTCA-3'                | 56°  |
|                   | Reverse      | 5'-CCAAGCCAATCGGAGTGAT-3'                |      |
|                   | Probe        | 5'-(Quasar)ACTCCACAGTGACCAGTCTCATAGCA-3' |      |
| smE660 <i>gag</i> | Forward      | 5'-CAAGGGTCTGGGTATGAATCC-3'              | 62°  |
|                   | Reverse      | 5'-TCAATGCTCTGCCATTAAATCTAG-3'           |      |
|                   | Probe        | 5'-(FAM)TCCTGGCCCTCCTATTCCCTGACA-3'      |      |
| smE660 <i>env</i> | Forward      | 5'-AAACTGAGACAGATAGGTGGG-3'              | 58°  |
|                   | Reverse      | 5'-CCTGTTCCAAGCCTGCAC-3'                 |      |
|                   | Probe        | 5'-(FAM)ACAAGGAACGCAGGGACAACAACA-3'      |      |

12

13

14 The assembled reactions were run on a Stratagene Mx4000 Multiplex  
15 Quantitative PCR System (Stratagene, La Jolla, CA). Thermal cycling conditions  
16 consisted of 10 min at 95°C for AmpliTaq activation, followed by 45 cycles of 30 sec at  
17 95°C, 35 sec at gene- and strain-specific annealing temperatures as above, and 30 sec at  
18 70°C. Triplicate test reactions were performed for each sample. The nominal copy

1 numbers for test samples were determined by interpolation onto standard curves of RNA  
2 standards (duplicate reactions for log10 dilutions of  $10^1$  to  $10^6$  copies Eq/ml). All data  
3 analysis was performed with the Mx4000 v3.00 software (Stratagene, La Jolla, CA). The  
4 threshold sensitivity of this assay is 100 copies Eq/ml of plasma. Because a low level of  
5 cross-reactivity of probes between the two strains for SIV could not be eliminated, the  
6 baseline signal for the heterologous strain was substracted for all tested samples.

7

8 **Infection**. For intrarectal exposure to SIV, animals were placed in a sternal position after  
9 anesthesia (Ketamine 10mg/kg intramuscular [i.m.] and Xylazine 0.5mg/kg i.m.) with the  
10 pelvis propped up at approximately a  $45^{\circ}$  angle. A lubricated infant feeding catheter was  
11 inserted gently into the rectum of the animal approximately 4-6 inches without causing  
12 any injury. First, 5 ml of diluent (phosphate-buffered saline [PBS] w/ 0.5% human  
13 serum albumin) was gently flushed through the catheter and then 1 ml of the virus was  
14 injected through the catheter, followed by a 5 ml flush with diluent. The animal was  
15 returned to its cage and kept tilted at a 45 degree angle until it fully recovered from  
16 anesthesia. Six weekly, intra-rectal challenges were carried out with the heterologous  
17 virus.

18

19 **Antibodies**. The antibodies used for surface staining of memory-associated molecules  
20 and in the intracellular cytokine staining were purchased from BD Biosciences (BD) and  
21 Beckman Coulter (BC). All reagents were validated and titered using rhesus monkey  
22 peripheral blood mononuclear cells (PBMCs). The antibodies used in memory staining  
23 were anti-CD3-PerCP-Cy5.5 (SP34.2 from BD), anti-CD4-fluorescein isothiocyanate

1 (19Thy5D7 from BC), anti-CD95-allophycyanin (DX2 from BD), and anti-CD28-  
2 phycoerythrin (CD28.2 from BC). For intracellular cytokine staining, the antibodies used  
3 were anti-TNF- $\alpha$ -fluorescein isothiocyanate (Mab11 from BD), anti-CD95-phycoerythrin  
4 (DX2 from BD), anti-IFN- $\gamma$ -phycoerythrin-Cy7 (B27 from BD), anti-CD28-PerCP-Cy5.5  
5 (L293 from BD), anti-IL-2-allophycyanin (MQ1-17H12 from BD), anti-CD4-AmCyan  
6 (L200 from BD), anti-CD3-Alexa fluor 700 (SP34.2 from BD), and anti-CD8 $\alpha$ -APC-cy7  
7 (SK1 from BD).

8

9 **CD4 $^+$  T lymphocyte counts and CD4 $^+$  memory subsets.** Whole blood collected in  
10 EDTA was surface stained with anti-CD3-PerCP-Cy5.5, anti-CD4-FITC, anti-CD95-  
11 APC, anti-CD28-PE. Peripheral blood CD4 $^+$  T lymphocyte counts were calculated by  
12 multiplying the percentage of CD3 $^+$ CD4 $^+$  T lymphocytes by the total lymphocyte counts.  
13 The percentages of central, naïve, and effector memory cells were calculated by  
14 multiplying the percentages of CD28 $^+$ CD95 $^+$ , CD28 $^+$ CD95 $^-$ , and CD28 $^-$ CD95 $^+$  T  
15 lymphocytes by the total lymphocyte counts.

16

17 **IFN- $\gamma$  ELISPOT assays.** Multiscreen 96-well plates were coated overnight with 100  $\mu$ l  
18 per well of 5  $\mu$ g/ml anti-human gamma interferon (IFN- $\gamma$ ) antibody (B27; BD  
19 Pharmingen) in endotoxin-free Dulbecco's PBS (D-PBS). The plates were then washed  
20 three times with D-PBS containing 0.25% Tween-20, blocked for 2 h with D-PBS  
21 containing 5% fetal bovine serum to remove the Tween 20, and incubated with peptide  
22 pools and 2 $\times$ 10 $^5$  PBMCs in triplicate in 100- $\mu$ l reaction mixture volumes. The peptide  
23 pool used in this study spanning the SIVmac239 Gag protein was comprised of 15 amino

1 acid peptides overlapping by 11 amino acids. Each peptide in a pool was present at a 1  
2  $\mu\text{g}/\text{ml}$  concentration. Following an 18 h incubation at 37°C, the plates were washed 9  
3 times with D-PBS containing 0.25% Tween-20 and once with distilled water. The plates  
4 were then incubated with 2  $\mu\text{g}/\text{ml}$  biotinylated rabbit anti-human IFN- $\gamma$  (Biosource) for 2  
5 h at room temperature, washed six times with Coulter Wash (Beckman Coulter), and  
6 incubated for 2.5 h with a 1:500 dilution of streptavidin-alkaline phosphatase (Southern  
7 Biotechnology). After five washes with Coulter Wash and one with D-PBS, the plates  
8 were developed with NBT/BCIP chromogen (Pierce). The process was stopped by  
9 washing with tap water, and the plates were air dried and read with an enzyme-linked  
10 immunospot (ELISPOT) reader (Hitech Instruments) using Image-Pro Plus image-  
11 processing software (version 4.1) (Media Cybernetics, Des Moines, IA).

12

13 **PBMC stimulation and intracellular cytokine staining.** Purified PBMCs were isolated  
14 from EDTA-anticoagulated blood and incubated at 37°C in a 5% CO<sub>2</sub> environment for  
15 6h in the presence of RPMI 1640-10% fetal calf serum alone (unstimulated), a pool of  
16 15-mer Gag peptides (5  $\mu\text{g}/\text{ml}$  [each peptide]), or staphylococcal enterotoxin B (5  $\mu\text{g}/\text{ml}$ ;  
17 Sigma-Aldrich) as a positive control. All cultures contained monensin (GolgiStop; BD  
18 Biosciences) as well as 1  $\mu\text{g}/\text{ml}$  of anti-CD49d (BD Biosciences). The cultured cells  
19 were stained with monoclonal antibodies specific for cell surface molecules (CD3, CD4,  
20 CD8, CD28, and CD95) and with an amine dye (Invitrogen) to discriminate live from  
21 dead cells. After being fixed with Cytofix/Cytoperm solution (BD Biosciences), cells  
22 were permeabilized and stained with antibodies specific for IFN- $\gamma$ , TNF- $\alpha$ , and IL-2.  
23 Labeled cells were fixed in 1.5% formaldehyde-phosphate-buffered saline. Samples were

1 collected on an LSR II instrument (BD Biosciences) and analyzed using FlowJo  
2 software (Tree Star). Approximately 200,000 to 1,000,000 events were collected per  
3 sample. The background level of cytokine staining varied within different samples and  
4 different cytokine patterns, but was typically <0.01% of the CD4<sup>+</sup> T cells (median, 0%)  
5 and <0.05% of the CD8<sup>+</sup> T cells (median, 0.01%). All data are reported after background  
6 correction. The only samples considered positive were those in which the percentage of  
7 cytokine-staining cells was at least twice that of the background.

8

9 **Virus neutralization assay.** Plasma samples are collected from all 14 infected animals  
10 immediately prior to intrarectal exposure to the second virus. Neutralizing antibodies  
11 were measured in a luciferase reporter gene assay that utilized either TZM-bl or  
12 5.25.EGFP.Luc.M7 (M7-Luc) cells as described previously (33). The 50% inhibitory  
13 dose (ID50) was defined as the plasma dilution that resulted in a 50% reduction in  
14 relative luminescence units (RLU) compared to virus control wells after subtraction of  
15 background RLU. Assay stocks of uncloned SIVsmE660 were generated in CEMx174  
16 cells. Assay stocks of the Env-pseudotyped virus, SIVmac251/CS.41, was generated by  
17 co-transfection of a SIVmac251CS Env plasmid and an Env-deficient HIV backbone  
18 plasmid (pSG3ΔEnv) in 293T cells. Both viral stocks were made cell free by filtration  
19 through 0.45-micrometer pores and stored at -70°C until use.

20

21 **Statistical analyses.** Statistical analyses and graphical presentations were computed with  
22 GraphPad Prism, using nonparametric Wilcoxon rank sum tests and Mann-Whitney U  
23 test. P values of <0.05 were considered significant.

1 **Results**

2 **SIVmac251 and SIVsmE660 differ by typical intraclade HIV-1 distance.** To evaluate  
3 the genetic relatedness of two isolates of SIV that are frequently used in nonhuman  
4 primate studies, we compared the genetic distance between SIVmac251 and SIVsmE660  
5 to intraclade and interclade HIV-1 sequence distances. We used HIV clade B and C  
6 sequences in the Los Alamos HIV Sequence Database to generate our estimates of HIV-1  
7 interclade and intraclade diversity. We used one sequence per person for these  
8 alignments. We analyzed 11,484 pairs of sequences for *gag*, 21,177 pairs of sequences  
9 for *env*, 32,465 pairs of sequences for *nef*, and 7,140 pairs of sequences for *pol*. Figure 1  
10 shows the distribution of normalized frequencies for percent similarity of intraclade and  
11 interclade pairwise comparisons. The calculated distance between SIVsmE660 and  
12 SIVmac251 at *gag*, *pol*, *env* and *nef* are plotted in each panel. As shown in Figures 1A  
13 and B, the distance between *gag* and *env* of the two SIV strains is similar to HIV-1 clades  
14 B and C intraclade distances, with a distance of 0.91 and 0.83 respectively. In contrast,  
15 the distances between the two SIV isolates in *pol* and *nef* are of the magnitude seen in  
16 interclade differences in HIV-1 (Figures 1C and D). Therefore, these two pathogenic  
17 SIV isolates are well-suited strains for use in a SIV model of superinfection because their  
18 two key foci, *env* and *gag*, have differences that reflect a degree of sequence  
19 heterogeneity comparable to different circulating HIV-1 isolates within the same clade.  
20

21 **Plasma SIV RNA levels following primary infection.** We then established cohorts of  
22 rhesus monkeys that were infected with one or the other of these two strains of SIV. The  
23 viruses and routes of administration used to initiate these infections are summarized in

1 Table 1. Eight animals were initially infected with SIVmac251 (Fig. 2A) and six animals  
2 were initially infected with SIVsmE660 (Fig. 2B). Infection was successfully established  
3 in 9 of these 14 monkeys via intrarectal route. However, 5 of 14 monkeys did not exhibit  
4 detectable viremia after 18 sequential intrarectal inoculations and had to be inoculated  
5 intravenously to initiate the primary infection (CR53, AV74, CG5G with SIVmac251 and  
6 CR54, CP37 with SIVsmE660).

7 Viral replication during primary infection occurred with kinetics typical of SIV  
8 replication in naïve rhesus monkeys. Moreover, SIV replication kinetics did not differ  
9 significantly between animals that became infected by mucosal or intravenous routes.  
10 Monkeys that were infected with SIVmac251 all developed uniform peak plasma viral  
11 RNA levels of 6-7 logs at 14 days after virus inoculation followed by a sustained viremia  
12 of 4-6 logs of plasma viral RNA, with the exception of one monkey (CT76) which had  
13 undetectable viremia by 700 days post-infection.

14 In the cohort of monkeys infected by SIVsmE660, monkeys had peak plasma  
15 viral RNA levels of 5-8 logs at 14 days after virus inoculation, followed by sustained  
16 viremia of 5-7 logs of plasma viral RNA in animals CP37 and CP23. However, three of  
17 the monkeys infected with SIVsmE660 (CP3C, CG7G, AK9F) had undetectable plasma  
18 viral RNA levels by 700 days post-infection, while monkey CR54 had undetectable  
19 plasma viral RNA levels by 85 days post-infection. This wide range in peak and set point  
20 viremias in monkeys infected with SIVsmE660 has been previously described (7, 19, 35).  
21 Since plasma viral RNA levels at peak and set point in some of the SIVsmE660-infected  
22 monkeys (CP37, CP23, CG7G) were of a magnitude comparable to that seen in monkeys  
23 following SIVmac251 infection, the variability in SIVsmE660 replication levels in

1 monkeys likely reflects a host factor effect rather than an intrinsic lack of replicative  
2 capacity of the SIVsmE660 strain.

3

4 **Plasma SIV RNA levels following superinfection.** Once set point plasma virus RNA  
5 levels were reached, all monkeys were exposed to the heterologous virus by 6 weekly  
6 intrarectal inoculations. The duration of primary infection and plasma virus RNA levels  
7 at time of exposure to the second virus are summarized in Table 1. The 8 SIVmac251-  
8 infected and 6 SIVsmE660-infected monkeys were then monitored for evidence of  
9 superinfection by assessing plasma SIVmac251 and SIVsmE660 RNA weekly for 20  
10 weeks.

11 To monitor the viral replication dynamics for each SIV strain in the dually-  
12 infected monkeys, we developed a qRT-PCR assay using strain-specific probes. Figure 3  
13 shows the replication kinetics of the two strains of SIV following the first and second  
14 infections. As depicted in Fig. 3A, 6 of 6 monkeys that were initially infected with  
15 SIVsmE660 became superinfected with SIVmac251. Of the 8 monkeys that were  
16 initially infected with SIVmac251, 6 became superinfected with SIVsmE660 (Fig. 3B).  
17 Viral RNA of the heterologous SIV strain was detected by 14-21 days after challenge. In  
18 11 of 12 superinfected animals, with the exception of AK9F, the levels of plasma viral  
19 RNA of the second virus at peak viremia were 1 to 4 logs lower than the peak viremia of  
20 the first virus. In addition, the levels of plasma viral RNA of the second virus also  
21 declined rapidly to undetectable levels in 6 animals (CR54, CP23, CR53, PBE, AH4X,  
22 CG71), while the viral load persisted at low levels in the remaining 6 animals (CP37,

1 CG7G, CP3C, AK9F, CP1W, CT76). The presence of the superinfecting virus at  
2 multiple time points was confirmed in each animal by direct sequencing.

3 Of the 14 infected animals that were exposed to a heterologous virus, only 2  
4 (AV74, CG5G) that were initially infected with SIVmac251 resisted superinfection with  
5 the heterologous virus (Fig. 3C). There was no detectable SIVsmE660 viral RNA in  
6 these animals for 20 weeks after exposure. The absence of replication by the second  
7 virus was verified by direct sequencing (data not shown).

8

9 **No apparent acceleration in disease progression after superinfection.** Interestingly,  
10 we observed an increase in plasma viral RNA levels of the primary virus (Figure 3A and  
11 3B) and a transient decline in CD4<sup>+</sup> T cells following superinfection in all of the animals,  
12 except CP3C, AK9F, and AH4X (Fig. 4). This finding is consistent with case reports of  
13 HIV superinfection in which superinfected individuals developed a transient perturbation  
14 in total plasma viral RNA levels in association with a clinical prodrome that aroused  
15 suspicion that an intervening event might have caused a sudden rise in viral load (2,  
16 26, 27, 42, 60, 67). The CD4<sup>+</sup> T cell counts are re-equilibrated 2-6 weeks after  
17 superinfection and a small increase in the CD4<sup>+</sup> T cell counts in some of the animals was  
18 observed from 42 to 126 days after superinfection (CT76, CP1W, CG71, CP3C, AK9F,  
19 CG7G). We did not perform statistical analyses on the differences in the CD4<sup>+</sup> T cell  
20 decline between superinfected and nonsuperinfected animals due to the small sample size  
21 of animals that resisted superinfection, but the trend in changes of CD4<sup>+</sup> T cell counts  
22 were indistinguishable between all animals. Therefore, there appeared to be no

1 acceleration in disease progress in the superinfected monkeys as a consequence of  
2 superinfection.

3

4 **Peak viral replication following the second infection was lower than peak viral**  
5 **replication following the first infection.** Of the 12 monkeys that became superinfected,  
6 11 animals efficiently controlled the second virus at peak viremia, with the exception of  
7 AK9F. Peak replication following the second virus infection was lower than peak  
8 replication after the first infection in each monkey (Fig. 5A). The decrease in peak  
9 viremia was statistically significant as determined by the paired Wilcoxon rank sum test  
10 ( $p=0.001$ ). Furthermore, when considered as a cohort, the median peak viral load value  
11 following the second infection was lower than that observed following the first infection  
12 (Fig. 5B). The difference in the median values and interquartile ranges of peak viremia  
13 between the first and second infections was statistically significant as determined by the  
14 unpaired Mann-Whitney U test ( $p<0.0001$ ).

15

16 **Susceptibility to superinfection was not associated with time after the first infection**  
17 **or persistence of the primary virus.** In these 2 cohorts of monkeys, superinfection was  
18 initiated between 3 and 20 months after the primary infection (Table 1). This large  
19 window of susceptibility suggests that infected individuals are likely susceptible to  
20 superinfection regardless of the state of immune competence of the host or the maturity  
21 of the immune response to the initial virus. Superinfection can occur after the immune  
22 response against the initial infection has had time to develop and mature. In addition,  
23 since 10 of 12 superinfected animals harbored the *Mamu-A\*01, -B\*08, -B\*17* alleles,

1 (Table 1), susceptibility to superinfection appears not to be a consequence of major  
2 histocompatibility complex alleles that are associated with relatively efficient viral  
3 control.

4 Furthermore, the likelihood of acquiring a second virus appears not to be  
5 correlated with the persistence of replication of the primary virus at the time of exposure  
6 to the heterologous virus (Table 1). Some animals became superinfected despite  
7 relatively high levels of replication of the primary virus, ranging from  $10^4$ - $10^6$  RNA  
8 copies/ml in the plasma (CP23, CP37, CP1W, PBE, CG71, AH4X, and CR53), while  
9 others became superinfected in the setting of undetectable or low level replication of the  
10 primary virus, ranging from  $10^2$ - $10^3$  RNA copies/ml in the plasma (CP3C, CG7G, AK9F,  
11 CR54, CT76).

12 Interestingly, in animals that had a high set point viremia following exposure to  
13 the first virus, either SIVmac251 (CP1W, CR53, PBE, AH4X, and CG71) or SIVsmE660  
14 (CP37 and CP23), the second virus was efficiently controlled after superinfection while  
15 the first infecting virus remained the predominant viral quasispecies in the plasma. In  
16 contrast, in animals that had undetectable plasma viral RNA levels following exposure to  
17 SIVsmE660 (CG7G, CP3C, and AK9F) or SIVmac251 (CT76) prior to superinfection,  
18 the heterologous virus replaced the first viral strain after superinfection even in monkeys  
19 with blunted peak replication of the second virus. Only one monkey in the cohort, CR54,  
20 was able to control both viruses to undetectable levels. These data suggest that, although  
21 direct viral interference did not contribute to susceptibility to superinfection, it may have  
22 influenced the viral replication dynamics of the second virus relative to the primary virus  
23 after superinfection.

1

2 **Susceptibility to superinfection was not associated with absolute CD4<sup>+</sup> T cell counts**  
3 **or percent central memory CD4<sup>+</sup> T cells.** To determine if there were any clinical  
4 parameters associated with relative susceptibility to superinfection in these cohorts of  
5 monkeys, we assessed the absolute CD4<sup>+</sup> T cell counts and the percentage of CD4<sup>+</sup> T  
6 lymphocytes that were central memory cells immediately prior to the exposure of these  
7 animals to the heterologous virus. There was no difference between absolute CD4<sup>+</sup> T cell  
8 counts or the percentage of CD4<sup>+</sup> central memory T cells in the animals that became  
9 superinfected and those that resisted superinfection (Fig. 6A and B). Although a  
10 statistical analysis could not be performed to validate this observation due to the small  
11 sample size of animals that resisted superinfection, the absolute CD4<sup>+</sup> T cell counts and  
12 the percentage of central memory CD4<sup>+</sup> T cells of animals that resisted superinfection  
13 were within the range of the corresponding parameters in animals that became  
14 superinfected. In addition, we also analyzed the percentages of effector and naïve  
15 memory CD4<sup>+</sup> T cells and found that there were no differences in these values between  
16 the two groups of monkeys (data not shown). Together, these data indicate that animals  
17 with immune systems that are more damaged by a prior SIV infection appeared not to  
18 have an increased susceptibility to superinfection.

19

20 **Susceptibility to superinfection was not associated with virus-specific cellular**  
21 **immune responses.** To determine whether systemic virus-specific cellular immune  
22 responses conferred protection against heterologous virus in the monkeys that resisted  
23 superinfection, all rhesus monkeys were evaluated for SIV-specific cellular immunity

1 immediately prior to exposure to the heterologous virus. Cellular immunity to SIV was  
2 first evaluated using an Elispot assay to assess PBMC IFN $\gamma$  responses following exposure  
3 to a pool of SIV Gag peptides (Fig. 7A). SIV-specific T cell responses were  
4 indistinguishable between the animals that became superinfected and those that resisted  
5 superinfection.

6 SIV-specific CD4 $^{+}$  and CD8 $^{+}$  T lymphocyte function were further evaluated by  
7 intracellular cytokine staining. Immediately prior to exposure to the heterologous virus,  
8 PBMC production of IFN $\gamma$ , TNF $\alpha$ , and IL-2 were assessed after stimulation with SIV  
9 Gag peptide pools. We were able to detect virus-specific CD4 $^{+}$  (Fig. 7B) and CD8 $^{+}$  (Fig.  
10 7C) T lymphocyte responses in PBMC of all monkeys. We did not perform statistical  
11 analyses on the differences in cytokine secretion between the two groups of monkeys due  
12 to the small sample size of animals that resisted superinfection. However, the cytokine  
13 responses of the two animals that resisted superinfection were within the range of the  
14 corresponding parameters in animals that became superinfected. Therefore, the  
15 qualitative and quantitative cell-mediated SIV-specific immune responses of monkeys  
16 that became superinfected and those that resisted superinfection appeared to be  
17 indistinguishable. These findings suggest that SIV-specific cellular immune responses  
18 likely did not account for the variability in the susceptibility of these monkeys to  
19 superinfection.

20

21 **Antibody responses did not protect against superinfection.** The role of neutralizing  
22 antibody responses in protecting against HIV superinfection is not clear (5, 49, 50). To  
23 assess whether SIV-specific antibodies played a role in the resistance to superinfection in

1 these cohorts of animals, plasma samples harvested just prior to the heterologous viral  
2 challenge were assayed for neutralizing antibody responses elicited by the primary SIV  
3 infection. The ability of plasma antibody to neutralize SIVsmE660 and SIVmac251 was  
4 measured in luciferase reporter gene neutralizing antibody assays using uncloned  
5 SIVsmE660 and pseudoviruses expressing viral Envelope cloned from SIVmac251CS 41  
6 (33). The serum ID<sub>50</sub> neutralizing titers against both viruses are shown in Table 2,  
7 Plasma from 5 of 6 monkeys (except CR54) that were first infected with SIVsmE660  
8 neutralized the homologous SIVsmE660 (1:62 to 1:508), while plasma from 5 of 8  
9 SIVmac251-infected monkeys neutralized homologous SIVmac251 (1:33 to 1:215).

10 To investigate whether the antibodies generated by these animals following  
11 primary infection have the ability to neutralize the heterologous virus, we assayed the  
12 plasma of the monkeys for neutralization activity against the second virus before their  
13 exposure to that virus. As shown in Table 2, animals initially infected with SIVsmE660  
14 generated undetectable or low titer neutralizing antibodies to SIVmac251 (ranging from  
15 undetectable to 1:41).. We also detected neutralizing antibodies against SIVsmE660 in 6  
16 of 8 animals that were initially infected with SIVmac251 (ranging from 1:73 to 1:245).  
17 However, the titers against the heterologous SIVsmE660 in the SIVmac251-infected  
18 animals were not significantly lower than the titers against the homologous  
19 SIVsmE660 in SIVsmE660-infected animals ( $p=0.95$ , Mann-Whitney test).

20 Interestingly, animals AV74 and CG5G, which were initially infected with  
21 SIVmac251 and subsequently resisted superinfection with SIVsmE660, had neutralizing  
22 antibodies against SIVsmE660 prior to exposure to this heterologous virus. However, the  
23 titers of these antibodies were within the range of antibody titers against SIVsmE660 that

1 were generated by other SIVmac251-infected animals that became superinfected  
2 following exposure to SIVsmE660. We did not perform statistical analyses of the  
3 differences in antibody titers against SIVsmE660 between the SIVmac251-infected  
4 monkeys that resisted superinfection and the SIVmac251-infected monkeys that became  
5 superinfected because of the small number of animals that resisted superinfection.  
6 Nevertheless, the titers of neutralizing antibodies specific for the heterologous viruses  
7 that were elicited during primary infection appears to not have influenced the  
8 susceptibility of monkeys to superinfection.

9

10 **Discussion**

11 HIV superinfection has important implications for vaccine prevention of HIV  
12 infection and the global genetic diversity of HIV. In this study, we used intrarectal  
13 inoculations of two replication-competent strains of SIV to simulate HIV-1  
14 superinfection and employed quantitative analyses of viral RNA using strain-specific  
15 primers to define the replication dynamics of each virus over time. We demonstrated that  
16 immune responses generated during primary infection that are capable of controlling one  
17 strain of SIV do not preclude subsequent infection with a second strain of SIV.  
18 Superinfection occurred as early as 3 months and as late as 2 years following primary  
19 infection and susceptibilities to superinfection appeared to be independent of classical  
20 adaptive immune responses or the level of replication of the primary virus, even though  
21 we were not able to evaluate the statistical significance of these parameters because of the  
22 small number of animals that resisted superinfection in this study. Importantly, the  
23 replication of the superinfecting virus during the first days following exposure was  
24 attenuated compared with the replication of the primary virus. The relative susceptibility

1 of monkeys to superinfection in the present study could not be attributed to a difference  
2 in the replication capacities of these two strains of SIV, since superinfection occurred in  
3 both cohorts of animals regardless of which virus was used to establish the first infection.  
4 Furthermore, the ability of both SIVmac251 and SIVsmE660 to maintain dominance in  
5 superinfected monkeys suggests that these two SIV strains are comparable in their  
6 fitness.

7 Previous nonhuman primate studies using a live attenuated immunodeficiency  
8 virus to generate protection against a pathogenic immunodeficiency virus challenge  
9 provide an important context for the present findings. Although such live attenuated  
10 viruses can confer protection against a homologous virus challenge (11, 14, 25, 36, 57,  
11 64), they provide only partial protection against a heterologous virus infection (16, 34,  
12 44, 63). The results of the present study are consistent with those findings in that prior  
13 infection did not prevent superinfection with a heterologous virus, but did damp  
14 replication of the second virus at peak and in the post-acute phase of superinfection.  
15 Interestingly, the 2 animals that resisted superinfection had also resisted 18 attempts at  
16 the first infection by the intrarectal route and required intravenous inoculation to establish  
17 primary infection. This finding raises the possibility that variations in the mucosal barrier  
18 rather than specific immunological mechanisms may have contributed to differences in  
19 susceptibility to mucosal infection in this cohort of animals (29).

20 Just as the correlates of protective immunity have not yet been defined for the  
21 protection observed in monkeys that have received a live attenuated SIV vaccine (1, 3,  
22 11, 44, 45, 54, 55), the mechanisms accounting for the partial protection observed against  
23 superinfection are not clear. We used pooled peptides corresponding to SIVmac239 Gag

1 to evaluate virus-specific cellular immune responses because the cross-reactive responses  
2 are likely the most germane to controlling the replication of the heterologous virus.  
3 Nevertheless, there may be additional T cell responses that contribute to controlling the  
4 second virus that are not detected using SIVmac239 peptides. It is possible that the total  
5 cell-mediated response to both viruses contributed to the relative control of each virus in  
6 superinfected animals. A recent study by Reynolds *et al.* examining the ability of live-  
7 attenuated SIV to protect macaques against heterologous virus challenge implicated  
8 MHC class I-restricted CD8<sup>+</sup> cellular responses in reducing heterologous viral replication  
9 during the chronic phase of infection (44). However, further studies are needed to  
10 elucidate the relative contributions of CD8<sup>+</sup> T cells and other factors, including CD4<sup>+</sup> T  
11 cells, antibodies, and NK cells, in the acute phase of replication of the second virus. A  
12 decrease in the number of potential target cells as a result of depletion of memory CD4<sup>+</sup>  
13 T cells in the lamina propria in the gut and lymph nodes following the first infection may  
14 have contributed to the reduction and magnitude of peak viremia observed following the  
15 second infection. Further detailed characterization of CCR5<sup>+</sup> transitional and effector  
16 memory T cells in mucosal effector sites are needed to determine the availability of target  
17 cells. Other factors, such as innate immune responses or viral interference, may have  
18 also contributed to the relative protection observed against the superinfecting virus.

19 The present study of superinfection in the SIV/thesus monkey model has  
20 important implications for HIV pathogenesis and vaccine development. Although this  
21 SIV model of superinfection utilized a higher dose mucosal challenge to establish  
22 superinfection than likely occurs in human cases of HIV superinfection, the findings in  
23 the present study suggest that HIV superinfection can occur readily throughout the course

1 of infection. Therefore, the prevalence of HIV superinfection is likely underestimated,  
2 especially in cases whose only clinical manifestation is transient low-level replication of  
3 the second virus. Interestingly, similar to human cases of HIV superinfection described  
4 by Casado and Piantadosi, *et al* (8, 40), SIV superinfection in the present study also did  
5 not necessarily lead to increases in viral load and clinical deterioration. This could be  
6 because both SIV strains that were used in this study are comparably fit and therefore the  
7 persistence of either one or both may not dramatically affect disease progression. In  
8 contrast, the clinical sequelae in HIV superinfection may have more variable outcomes  
9 than what we have observed in this study, since the relative dynamics of the two viruses  
10 may be markedly different as a consequence of their relative replication fitness.

11 Although superinfection is likely a common phenomenon in HIV-1 infections, it may not  
12 have clinical consequences if the two viruses are equivalent in their fitness or if the  
13 superinfecting virus transiently replicates at a low level. In contrast to this,  
14 superinfection likely has a profound impact on the sensitivity of circulating viruses to  
15 antiretroviral therapy and global HIV genetic diversity as a consequence of viral  
16 recombination.

17 Creating a vaccine that can protect against infection by a virus with the genetic  
18 heterogeneity of HIV is a daunting challenge, given that immune responses generated  
19 after live SIV infection do not prevent infection of macaques by a heterologous SIV  
20 isolate in the nonhuman primate model. Nevertheless, the phenomenon of HIV/SIV  
21 superinfection should not discourage the pursuit of an AIDS vaccine, since effective  
22 vaccines for viruses such as mumps and measles do not prevent entry of virus into the  
23 body. While the immune system does not prevent new strains of virus from establishing

1 infections, it can limit the spread of those viruses and attenuate the pathogenic sequelae  
2 of infection. Further dissection of the virologic and immune correlates of protection  
3 against superinfection in monkeys may provide important insights into the nature of  
4 immune responses that are required to provide protective immunity against an  
5 immunodeficiency virus infection.

6

7 **Acknowledgements**

8 We thank Vanessa Hirsch for providing virus stock SIVsmE660. This work was  
9 supported by NIH NIAID PHS grants K08-AI069995 (W.W.Y.), and AI-0678501  
10 (W.W.Y. and N.L.L.), the Center for HIV/AIDS Vaccine Immunology.

11

1    **References**

2    1. **Almond, N., T. Corcoran, R. Hull, B. Walker, J. Rose, R. Sangster, K.**  
3    **Silvera, P. Silvera, M. Cranage, E. Rud, and E. J. Stott.** 1997. Mechanisms of  
4    protection induced by attenuated simian immunodeficiency virus. IV. Protection  
5    against challenge with virus grown in autologous simian cells. *J Med Primatol*  
6    **26**:34-43.

7    2. **Altfeld, M., T. M. Allen, X. G. Yu, M. N. Johnston, D. Agrawal, B. T. Korber,**  
8    **D. C. Montefiori, D. H. O'Connor, B. T. Davis, P. K. Lee, E. L. Maier, J.**  
9    **Harlow, P. J. Goulder, C. Brander, E. S. Rosenberg, and B. D. Walker.** 2002.  
10    HIV-1 superinfection despite broad CD8+ T-cell responses containing replication  
11    of the primary virus. *Nature* **420**:434-9.

12    3. **Berry, N., R. Stebbings, D. Ferguson, C. Ham, J. Alden, S. Brown, A.**  
13    **Jenkins, J. Lines, L. Duffy, L. Davis, W. Elsley, M. Page, R. Hull, J. Stott,**  
14    **and N. Almond.** 2008. Resistance to superinfection by a vigorously replicating,  
15    uncloned stock of simian immunodeficiency virus (SIVmac251) stimulates  
16    replication of a live attenuated virus vaccine (SIVmacC8). *J Gen Virol* **89**:2240-  
17    51.

18    4. **Blick, G., R. M. Kagan, E. Coakley, C. Petropoulos, L. Maroldo, P. Greiger-**  
19    **Zanlungo, S. Gretz, and T. Garton.** 2007. The probable source of both the  
20    primary multidrug-resistant (MDR) HIV-1 strain found in a patient with rapid  
21    progression to AIDS and a second recombinant MDR strain found in a chronically  
22    HIV-1-infected patient. *J Infect Dis* **195**:1250-9.

23    5. **Blish, C. A., O. C. Dogan, N. R. Derby, M. A. Nguyen, B. Chohan, B. A.**  
24    **Richardson, and J. Overbaugh.** 2008. Human immunodeficiency virus type 1  
25    superinfection occurs despite relatively robust neutralizing antibody responses. *J*  
26    *Virol* **82**:12094-103.

27    6. **Brenner, B., J. P. Routy, Y. Quan, D. Moisi, M. Oliveira, D. Turner, and M.**  
28    **A. Wainberg.** 2004. Persistence of multidrug-resistant HIV-1 in primary  
29    infection leading to superinfection. *Aids* **18**:1653-60.

30    7. **Brown, C. R., M. Czapiga, J. Kabat, Q. Dang, I. Ourmanov, Y. Nishimura,**  
31    **M. A. Martin, and V. M. Hirsch.** 2007. Unique pathology in simian  
32    immunodeficiency virus-infected rapid progressor macaques is consistent with a  
33    pathogenesis distinct from that of classical AIDS. *J Virol* **81**:5594-606.

34    8. **Casado, C., M. Pernas, T. Alvaro, V. Sandonis, S. Garcia, C. Rodriguez, J.**  
35    **del Romero, E. Grau, L. Ruiz, and C. Lopez-Galindez.** 2007. Coinfection and  
36    superinfection in patients with long-term, nonprogressive HIV-1 disease. *J Infect*  
37    *Dis* **196**:895-9.

38    9. **Chakraborty, B., L. Valer, C. De Mendoza, V. Soriano, and M. E. Quinones-**  
39    **Mateu.** 2004. Failure to detect human immunodeficiency virus type 1  
40    superinfection in 28 HIV-seroconcordant individuals with high risk of reexposure  
41    to the virus. *AIDS Res Hum Retroviruses* **20**:1026-31.

42    10. **Chohan, B., L. Lavreys, S. M. Rainwater, and J. Overbaugh.** 2005. Evidence  
43    for frequent reinfection with human immunodeficiency virus type 1 of a different  
44    subtype. *J Virol* **79**:10701-8.

1 11. Connor, R. I., D. C. Montefiori, J. M. Binley, J. P. Moore, S. Bonhoeffer, A.  
2 Gettie, E. A. Fenamore, K. E. Sheridan, D. D. Ho, P. J. Dailey, and P. A.  
3 Marx. 1998. Temporal analyses of virus replication, immune responses, and  
4 efficacy in rhesus macaques immunized with a live, attenuated simian  
5 immunodeficiency virus vaccine. *J Virol* **72**:7501-9.

6 12. Cranage, M. P., S. A. Sharpe, A. M. Whatmore, N. Polyanskaya, S. Norley,  
7 N. Cook, S. Leech, M. J. Dennis, and G. A. Hall. 1998. In vivo resistance to  
8 simian immunodeficiency virus superinfection depends on attenuated virus dose. *J*  
9 *Gen Virol* **79** ( Pt 8):1935-44.

10 13. Cranage, M. P., A. M. Whatmore, S. A. Sharpe, N. Cook, N. Polyanskaya, S.  
11 Leech, J. D. Smith, E. W. Rud, M. J. Dennis, and G. A. Hall. 1997. Macaques  
12 infected with live attenuated SIVmac are protected against superinfection via the  
13 rectal mucosa. *Virology* **229**:143-54.

14 14. Daniel, M. D., F. Kirchhoff, S. C. Czajak, P. K. Sehgal, and R. C. Desrosiers.  
15 1992. Protective effects of a live attenuated SIV vaccine with a deletion in the nef  
16 gene. *Science* **258**:1938-41.

17 15. Diaz, R. S., R. Pardini, M. Catroxo, E. A. Operksalski, J. W. Mosley, and M.  
18 P. Busch. 2005. HIV-1 superinfection is not a common event. *J Clin Virol*  
19 **33**:328-30.

20 16. Evans, D. T., J. E. Bricker, H. B. Sanford, S. Lang, A. Carville, B. A.  
21 Richardson, M. Piatak, Jr., J. D. Lifson, K. G. Mansfield, and R. C.  
22 Desrosiers. 2005. Immunization of macaques with single-cycle simian  
23 immunodeficiency virus (SIV) stimulates diverse virus-specific immune  
24 responses and reduces viral loads after challenge with SIVmac239. *J Virol*  
25 **79**:7707-20.

26 17. Fang, G., B. Weiser, C. Kuiken, S. M. Philpott, S. Rowland-Jones, F.  
27 Plummer, J. Kimani, B. Shi, R. Kaul, J. Bwayo, O. Anzala, and H. Burger.  
28 2004. Recombination following superinfection by HIV-1. *Aids* **18**:153-9.

29 18. Fultz, P. N., A. Srinivasan, C. R. Greene, D. Butler, R. B. Swenson, and H.  
30 M. McClure. 1987. Superinfection of a chimpanzee with a second strain of  
31 human immunodeficiency virus. *J Virol* **61**:4026-9.

32 19. Goldstein, S., C. R. Brown, H. Dehghani, J. D. Lifson, and V. M. Hirsch.  
33 2000. Intrinsic susceptibility of rhesus macaque peripheral CD4(+) T cells to  
34 simian immunodeficiency virus in vitro is predictive of in vivo viral replication. *J*  
35 *Virol* **74**:9388-95.

36 20. Gonzales, M. J., E. Delwart, S. Y. Rhee, R. Tsui, A. R. Zolopa, J. Taylor, and  
37 R. W. Shafer. 2003. Lack of detectable human immunodeficiency virus type 1  
38 superinfection during 1072 person-years of observation. *J Infect Dis* **188**:397-405.

39 21. Gottlieb, G. S., D. C. Nickle, M. A. Jensen, K. G. Wong, J. Grobler, F. Li, S.  
40 L. Liu, C. Rademeyer, G. H. Learn, S. S. Karim, C. Williamson, L. Corey, J.  
41 B. Margolick, and J. I. Mullins. 2004. Dual HIV-1 infection associated with  
42 rapid disease progression. *Lancet* **363**:619-22.

43 22. Gottlieb, G. S., D. C. Nickle, M. A. Jensen, K. G. Wong, R. A. Kaslow, J. C.  
44 Shepherd, J. B. Margolick, and J. I. Mullins. 2007. HIV type 1 superinfection  
45 with a dual-tropic virus and rapid progression to AIDS: a case report. *Clin Infect*  
46 *Dis* **45**:501-9.

1 23. **Grobler, J., C. M. Gray, C. Rademeyer, C. Seoighe, G. Ramjee, S. A. Karim, L. Morris, and C. Williamson.** 2004. Incidence of HIV-1 dual infection and its association with increased viral load set point in a cohort of HIV-1 subtype C-infected female sex workers. *J Infect Dis* **190**:1355-9.

2 24. **Hu, D. J., S. Subbarao, S. Vanichseni, P. A. Mock, A. Ramos, L. Nguyen, T. Chaowanachan, F. Griensven, K. Choopanya, T. D. Mastro, and J. W. Tappero.** 2005. Frequency of HIV-1 dual subtype infections, including intersubtype superinfections, among injection drug users in Bangkok, Thailand. *Aids* **19**:303-8.

3 25. **Johnson, R. P., J. D. Lifson, S. C. Czajak, K. S. Cole, K. H. Manson, R. Glickman, J. Yang, D. C. Montefiori, R. Montelaro, M. S. Wyand, and R. C. Desrosiers.** 1999. Highly attenuated vaccine strains of simian immunodeficiency virus protect against vaginal challenge: inverse relationship of degree of protection with level of attenuation. *J Virol* **73**:4952-61.

4 26. **Jost, S., M. C. Bernard, L. Kaiser, S. Yerly, B. Hirscher, A. Samri, B. Autran, L. E. Goh, and L. Perrin.** 2002. A patient with HIV-1 superinfection. *N Engl J Med* **347**:731-6.

5 27. **Jurriaans, S., K. Kozaczynska, F. Zorgdrager, R. Steingrover, J. M. Prins, A. C. van der Kuyl, and M. Cornelissen.** 2008. A sudden rise in viral load is infrequently associated with HIV-1 superinfection. *J Acquir Immune Defic Syndr* **47**:69-73.

6 28. **Koelsch, K. K., D. M. Smith, S. J. Little, C. C. Ignacio, T. R. Macaranas, A. J. Brown, C. J. Petropoulos, D. D. Richman, and J. K. Wong.** 2003. Clade B HIV-1 superinfection with wild-type virus after primary infection with drug-resistant clade B virus. *Aids* **17**:F11-6.

7 29. **Letvin, N. L., S. S. Rao, V. Dang, A. P. Buzby, B. Korioth-Schmitz, D. Dombagoda, J. G. Parvani, R. H. Clarke, L. Bar, K. R. Carlson, P. A. Kozlowski, V. M. Hirsch, J. R. Mascola, and G. J. Nabel.** 2007. No evidence for consistent virus-specific immunity in simian immunodeficiency virus-exposed, uninfected rhesus monkeys. *J Virol* **81**:12368-74.

8 30. **Liu, S. L., J. E. Mittler, D. C. Nickle, T. M. Mulvania, D. Shriner, A. G. Rodrigo, B. Kosloff, X. He, L. Corey, and J. I. Mullins.** 2002. Selection for human immunodeficiency virus type 1 recombinants in a patient with rapid progression to AIDS. *J Virol* **76**:10674-84.

9 31. **Manigart, O., V. Courgaud, O. Sanou, D. Valea, N. Nagot, N. Meda, E. Delaporte, M. Peeters, and P. Van de Perre.** 2004. HIV-1 superinfections in a cohort of commercial sex workers in Burkina Faso as assessed by an autologous heteroduplex mobility procedure. *Aids* **18**:1645-51.

10 32. **McCutchan, F. E., M. Hoelscher, S. Tovanabutra, S. Piyasirisilp, E. Sanders-Buell, G. Ramos, L. Jagodzinski, V. Polonis, L. Maboko, D. Mmbando, O. Hoffmann, G. Riedner, F. von Sonnenburg, M. Robb, and D. L. Birx.** 2005. In-depth analysis of a heterosexually acquired human immunodeficiency virus type 1 superinfection: evolution, temporal fluctuation, and intercompartment dynamics from the seronegative window period through 30 months postinfection. *J Virol* **79**:11693-704.

1 33. **Montefiori, D. C.** 2005. Evaluating neutralizing antibodies against HIV, SIV, and  
2 SHIV in luciferase reporter gene assays. *Curr Protoc Immunol Chapter 12:Unit*  
3 12.11.

4 34. **Nilsson, C., B. Makitalo, R. Thorstensson, S. Norley, D. Binninger-Schinzel,**  
5 **M. Cranage, E. Rud, G. Biberfeld, and P. Putkonen.** 1998. Live attenuated  
6 simian immunodeficiency virus (SIV)mac in macaques can induce protection  
7 against mucosal infection with SIVsm. *Aids* 12:2261-70.

8 35. **Nishimura, Y., T. Igarashi, A. Buckler-White, C. Buckler, H. Imamichi, R.**  
9 **M. Goeken, W. R. Lee, B. A. Lafont, R. Byrum, H. C. Lane, V. M. Hirsch,**  
10 **and M. A. Martin.** 2007. Loss of naive cells accompanies memory CD4+ T-cell  
11 depletion during long-term progression to AIDS in Simian immunodeficiency  
12 virus-infected macaques. *J Virol* 81:893-902.

13 36. **Norley, S., B. Beer, D. Binninger-Schinzel, C. Cosma, and R. Kurth.** 1996.  
14 Protection from pathogenic SIVmac challenge following short-term infection with  
15 a nef-deficient attenuated virus. *Virology* 219:195-205.

16 37. **Novembre, F. J., J. de Rosayro, S. Nidtha, S. P. O'Neil, T. R. Gibson, T.**  
17 **Evans-Strickfaden, C. E. Hart, and H. M. McClure.** 2001. Rapid CD4(+) T-  
18 cell loss induced by human immunodeficiency virus type 1(NC) in uninfected and  
19 previously infected chimpanzees. *J Virol* 75:1533-9.

20 38. **Otten, R. A., D. L. Ellenberger, D. R. Adams, C. A. Fridlund, E. Jackson, D.**  
21 **Pieniazek, and M. A. Rayfield.** 1999. Identification of a window period for  
22 susceptibility to dual infection with two distinct human immunodeficiency virus  
23 type 2 isolates in a *Macaca nemestrina* (pig-tailed macaque) model. *J Infect Dis*  
24 180:673-84.

25 39. **Pernas, M., C. Casado, R. Fuentes, M. J. Perez-Elias, and C. Lopez-Galindez.**  
26 2006. A dual superinfection and recombination within HIV-1 subtype B 12 years  
27 after primary infection. *J Acquir Immune Defic Syndr* 42:12-8.

28 40. **Piantadosi, A., B. Chohan, V. Chohan, R. S. McClelland, and J. Overbaugh.**  
29 2007. Chronic HIV-1 infection frequently fails to protect against superinfection.  
30 *PLoS Pathog* 3:e177.

31 41. **Piantadosi, A., M. O. Ngayo, B. Chohan, and J. Overbaugh.** 2008.  
32 Examination of a second region of the HIV type 1 genome reveals additional  
33 cases of superinfection. *AIDS Res Hum Retroviruses* 24:1221.

34 42. **Plantier, J. C., V. Lemee, I. Dorval, M. Gueudin, J. Braun, P. Hutin, A.**  
35 **Ruffault, and F. Simon.** 2004. HIV-1 group M superinfection in an HIV-1 group  
36 O-infected patient. *Aids* 18:2444-6.

37 43. **Ramos, A., D. J. Hu, L. Nguyen, K. O. Phan, S. Vanichseni, N. Promadej, K.**  
38 **Choopanya, M. Callahan, N. L. Young, J. McNicholl, T. D. Mastro, T. M.**  
39 **Folks, and S. Subbarao.** 2002. Intersubtype human immunodeficiency virus type  
40 1 superinfection following seroconversion to primary infection in two injection  
41 drug users. *J Virol* 76:7444-52.

42 44. **Reynolds, M. R., A. M. Weiler, K. L. Weisgrau, S. M. Piaskowski, J. R.**  
43 **Furlott, J. T. Weinfurter, M. Kaizu, T. Soma, E. J. Leon, C. MacNair, D. P.**  
44 **Leaman, M. B. Zwick, E. Gostick, S. K. Musani, D. A. Price, T. C. Friedrich,**  
45 **E. G. Rakasz, N. A. Wilson, A. B. McDermott, R. Boyle, D. B. Allison, D. R.**

1 Burton, W. C. Koff, and D. I. Watkins. 2008. Macaques vaccinated with live-  
2 attenuated SIV control replication of heterologous virus. *J Exp Med* **205**:2537-50.  
3 45. Schmitz, J. E., R. P. Johnson, H. M. McClure, K. H. Manson, M. S. Wyand,  
4 M. J. Kuroda, M. A. Lifton, R. S. Khunkhun, K. J. McEvers, J. Gillis, M.  
5 Piatak, J. D. Lifson, G. Grosschupff, P. Racz, K. Tenner-Racz, E. P. Rieber,  
6 K. Kuus-Reichel, R. S. Gelman, N. L. Letvin, D. C. Montefiori, R. M.  
7 Ruprecht, R. C. Desrosiers, and K. A. Reimann. 2005. Effect of CD8+  
8 lymphocyte depletion on virus containment after simian immunodeficiency virus  
9 SIVmac251 challenge of live attenuated SIVmac239delta3-vaccinated rhesus  
10 macaques. *J Virol* **79**:8131-41.  
11 46. Sernicola, L., F. Corrias, M. L. Koanga-Mogtomo, S. Baroncelli, S. Di Fabio,  
12 M. T. Maggiorella, R. Belli, Z. Michelini, I. Macchia, A. Cesolini, L. Cioe, P.  
13 Verani, and F. Titti. 1999. Long-lasting protection by live attenuated simian  
14 immunodeficiency virus in cynomolgus monkeys: no detection of reactivation  
15 after stimulation with a recall antigen. *Virology* **256**:291-302.  
16 47. Sharpe, S. A., A. Cope, S. Dowall, N. Berry, C. Ham, J. L. Heeney, D.  
17 Hopkins, L. Easterbrook, M. Dennis, N. Almond, and M. Cranage. 2004.  
18 Macaques infected long-term with attenuated simian immunodeficiency virus  
19 (SIVmac) remain resistant to wild-type challenge, despite declining cytotoxic T  
20 lymphocyte responses to an immunodominant epitope. *J Gen Virol* **85**:2591-602.  
21 48. Sharpe, S. A., A. M. Whatmore, G. A. Hall, and M. P. Cranage. 1997.  
22 Macaques infected with attenuated simian immunodeficiency virus resist  
23 superinfection with virulence-revertant virus. *J Gen Virol* **78** ( Pt 8):1923-7.  
24 49. Shibata, R., T. Igarashi, N. Haigwood, A. Buckler-White, R. Ogert, W. Ross,  
25 R. Willey, M. W. Cho, and M. A. Martin. 1999. Neutralizing antibody directed  
26 against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV  
27 chimeric virus infections of macaque monkeys. *Nat Med* **5**:204-10.  
28 50. Smith, D. M., M. C. Strain, S. D. Frost, S. K. Pillai, J. K. Wong, T. Wrin, Y.  
29 Liu, C. J. Petropoulos, E. S. Daar, S. J. Little, and D. D. Richman. 2006. Lack  
30 of neutralizing antibody response to HIV-1 predisposes to superinfection.  
31 *Virology* **355**:1-5.  
32 51. Smith, D. M., J. K. Wong, G. K. Hightower, C. C. Ignacio, K. K. Koelsch, E.  
33 S. Daar, D. D. Richman, and S. J. Little. 2004. Incidence of HIV superinfection  
34 following primary infection. *Jama* **292**:1177-8.  
35 52. Smith, D. M., J. K. Wong, G. K. Hightower, C. C. Ignacio, K. K. Koelsch, C.  
36 J. Petropoulos, D. D. Richman, and S. J. Little. 2005. HIV drug resistance  
37 acquired through superinfection. *Aids* **19**:1251-6.  
38 53. Stebbings, R., N. Berry, J. Stott, R. Hull, B. Walker, J. Lines, W. Elsley, S.  
39 Brown, A. Wade-Evans, G. Davis, J. Cowie, M. Sethi, and N. Almond. 2004.  
40 Vaccination with live attenuated simian immunodeficiency virus for 21 days  
41 protects against superinfection. *Virology* **330**:249-60.  
42 54. Stebbings, R., N. Berry, H. Waldmann, P. Bird, G. Hale, J. Stott, D. North,  
43 R. Hull, J. Hall, J. Lines, S. Brown, N. D'Arcy, L. Davis, W. Elsley, C.  
44 Edwards, D. Ferguson, J. Allen, and N. Almond. 2005. CD8+ lymphocytes do  
45 not mediate protection against acute superinfection 20 days after vaccination with  
46 a live attenuated simian immunodeficiency virus. *J Virol* **79**:12264-72.

1 55. Stebbings, R. J., N. M. Almond, E. J. Stott, N. Berry, A. M. Wade-Evans, R.  
2 Hull, J. Lines, P. Silvera, R. Sangster, T. Corcoran, J. Rose, and K. B.  
3 Walker. 2002. Mechanisms of protection induced by attenuated simian  
4 immunodeficiency virus. *Virology* **296**:338-53.

5 56. Stephens, E. B., S. V. Joag, B. Atkinson, M. Sahni, Z. Li, L. Foresman, I.  
6 Adany, and O. Narayan. 1997. Infected macaques that controlled replication of  
7 SIVmac or nonpathogenic SHIV developed sterilizing resistance against  
8 pathogenic SHIV(KU-1). *Virology* **234**:328-39.

9 57. Tenner-Racz, K., C. Stahl Hennig, K. Uberla, H. Stoiber, R. Ignatius, J.  
10 Heeney, R. M. Steinman, and P. Racz. 2004. Early protection against  
11 pathogenic virus infection at a mucosal challenge site after vaccination with  
12 attenuated simian immunodeficiency virus. *Proc Natl Acad Sci U S A* **101**:3017-  
13 22.

14 58. Titti, F., L. Sernicola, A. Geraci, G. Panzini, S. Di Fabio, R. Belli, F.  
15 Monardo, A. Borsetti, M. T. Maggiorella, M. Koanga-Mogtomo, F. Corrias,  
16 R. Zamarchi, A. Amadori, L. Chieco-Bianchi, and P. Verani. 1997. Live  
17 attenuated simian immunodeficiency virus prevents super-infection by cloned  
18 SIVmac251 in cynomolgus monkeys. *J Gen Virol* **78** ( Pt 10):2529-39.

19 59. Tsui, R., B. L. Herring, J. D. Barbour, R. M. Grant, P. Bacchetti, A. Kral, B.  
20 R. Edlin, and E. L. Delwart. 2004. Human immunodeficiency virus type 1  
21 superinfection was not detected following 215 years of injection drug user  
22 exposure. *J Virol* **78**:94-103.

23 60. van der Kuyl, A. C., K. Kozaczynska, R. van den Burg, F. Zorgdrager, N.  
24 Back, S. Jurriaans, B. Berkhout, P. Reiss, and M. Cornelissen. 2005. Triple  
25 HIV-1 infection. *N Engl J Med* **352**:2557-9.

26 61. Wakrim, L., R. Le Grand, B. Vaslin, A. Cheret, F. Matheux, F. Theodoro, P.  
27 Roques, I. Nicol-Jourdain, and D. Dormont. 1996. Superinfection of HIV-2-  
28 preinfected macaques after rectal exposure to a primary isolate of SIVmac251.  
29 *Virology* **221**:260-70.

30 62. Walther-Jallow, L., C. Nilsson, J. Soderlund, P. ten Haaft, B. Makitalo, P.  
31 Biberfeld, P. Bottiger, J. Heeney, G. Biberfeld, and R. Thorstensson. 2001.  
32 Cross-protection against mucosal simian immunodeficiency virus (SIVsm)  
33 challenge in human immunodeficiency virus type 2-vaccinated cynomolgus  
34 monkeys. *J Gen Virol* **82**:1601-12.

35 63. Wyand, M. S., K. Manson, D. C. Montefiori, J. D. Lifson, R. P. Johnson, and  
36 R. C. Desrosiers. 1999. Protection by live, attenuated simian immunodeficiency  
37 virus against heterologous challenge. *J Virol* **73**:8356-63.

38 64. Wyand, M. S., K. H. Manson, M. Garcia-Moll, D. Montefiori, and R. C.  
39 Desrosiers. 1996. Vaccine protection by a triple deletion mutant of simian  
40 immunodeficiency virus. *J Virol* **70**:3724-33.

41 65. Xiridou, M., F. van Griensven, J. W. Tappero, M. Martin, M. Gurwitz, S.  
42 Vanichseni, W. Kittikraisak, R. Coutinho, and K. Choopanya. 2007. The  
43 spread of HIV-1 subtypes B and CRF01\_AE among injecting drug users in  
44 Bangkok, Thailand. *J Acquir Immune Defic Syndr* **45**:468-75.

45 66. Yang, O. O., E. S. Daar, B. D. Jamieson, A. Balamurugan, D. M. Smith, J. A.  
46 Pitt, C. J. Petropoulos, D. D. Richman, S. J. Little, and A. J. Brown. 2005.

1 Human immunodeficiency virus type 1 clade B superinfection: evidence for  
2 differential immune containment of distinct clade B strains. *J Virol* **79**:860-8.

3 67. **Yerly, S., S. Jost, M. Monnat, A. Telenti, M. Cavassini, J. P. Chave, L.**  
4 **Kaiser, P. Burgisser, and L. Perrin.** 2004. HIV-1 co/super-infection in  
5 intravenous drug users. *Aids* **18**:1413-21.

6

ACCEPTED

1 **Figure Legends**

2 **Figure 1.** Genetic distances between SIVmac251 and SIVsmE660 in relation to

3 **HIV-1 clade B and C intraclade and interclade distances.** We performed pairwise

4 comparisons of 11,484 *gag* (A), 21,177 *env* (B), 7140 *pol* (C), and 32,465 *nef* (D)

5 sequences from individuals infected with HIV-1. The genetic distance for each of these

6 comparisons was graphed as fractional similarity between a given pair (X-axis). The

7 amplitude of the bar graph reflects the percentage of pairwise comparisons exhibiting a

8 given similarity (Y-axis). Comparisons between pairs of sequences within each clade

9 and pairs of sequences from different clades are distinguished by shading: intraclade B

10 (light hatched bars), intraclade C (gray bars), interclade B versus C (dark hatched bars).

11 Genetic distances between SIVmac251 and SIVsmE660 sequences were similarly

12 calculated and plotted simultaneously at each genetic locus as black diamonds.

13

14 **Figure 2.** Plasma viral RNA levels following primary infection with either SIVmac251

15 or SIVsmE660. (A) Six rhesus monkeys were infected with SIVmac251, and (B) eight

16 were infected with SIVsmE660 via either intrarectal (IR) or intravenous (IV)

17 inoculations. Although the animals were infected after different numbers of intrarectal

18 exposures or a single intravenous inoculation, the viral RNA levels are displayed

19 synchronously as days post-infection. Viral RNA levels are shown as log<sub>10</sub> copies of

20 plasma viral RNA/ml of plasma for individual monkeys at each time point.

21

22 **Figure 3.** Plasma viral RNA levels of both SIV strains following the primary infection

23 and superinfection in each individual monkey. Monkeys were either first infected with

1 SIVsmE660 and then with SIVmac251 (A), or first with SIVmac251 followed by  
2 SIVsmE660 (B). Only two monkeys that were initially infected with SIVmac251 resisted  
3 superinfection with SIVsmE660 after 6 intrarectal challenges (C). The red lines and  
4 symbols represent RNA levels of SIVsmE660, while the blue lines and symbols represent  
5 plasma RNA levels of SIVmac251.

6

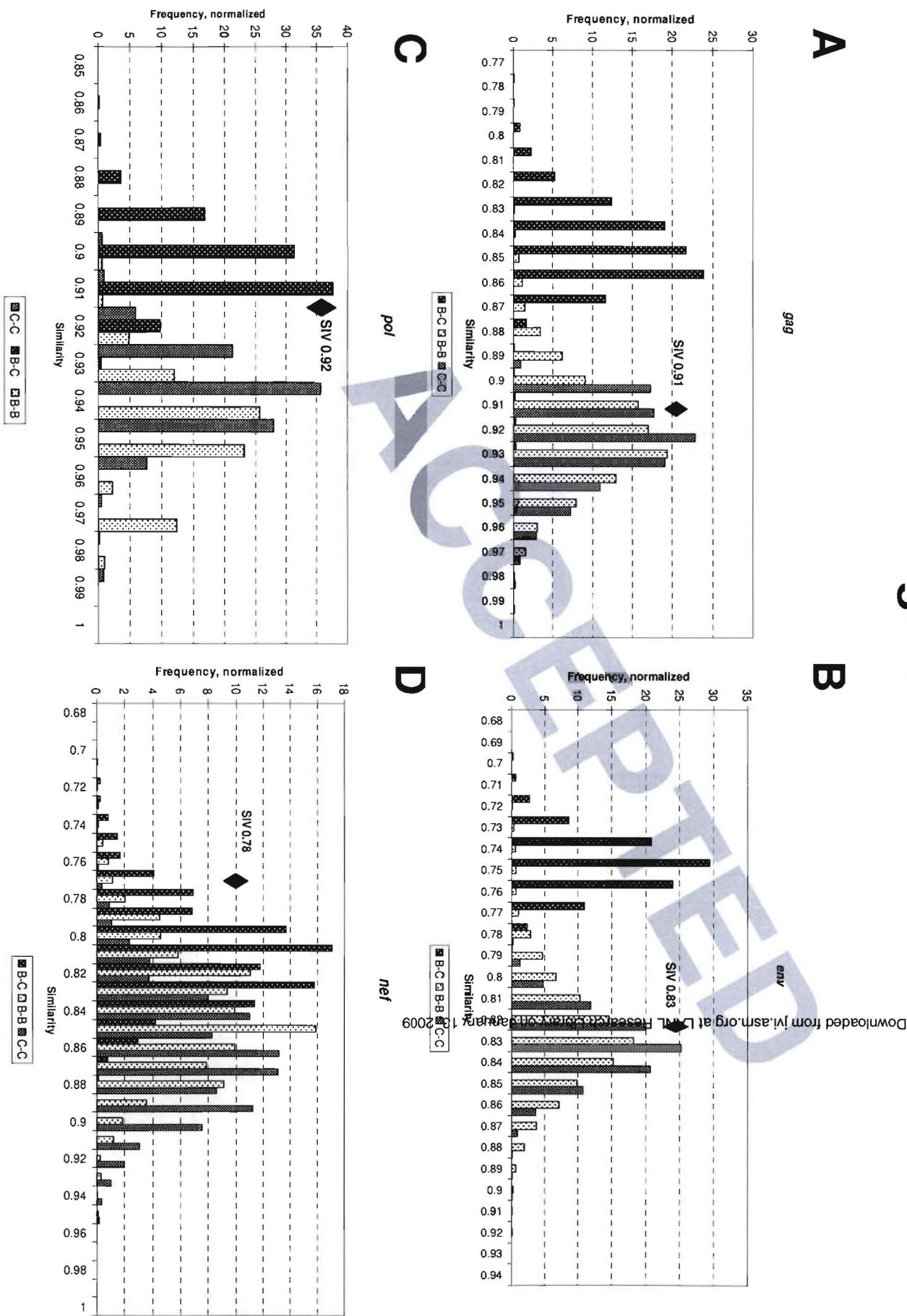
7 **Figure 4.** Absolute CD4<sup>+</sup> T cell counts for 126 days after superinfection. The CD4<sup>+</sup> T  
8 cell counts in the peripheral blood are shown in blue for the six animals that were initially  
9 infected with SIVmac251 then superinfected with SIVsmE660 (A), in red for the six  
10 animals that were first infected with SIVsmE660 then superinfected with SIVmac251  
11 (B), and in black for the two animals that resisted superinfection (C). The dotted line  
12 indicates day 0 prior to superinfection. The pre-superinfection CD4<sup>+</sup> T cell counts were  
13 obtained 7 days prior to superinfection.

14

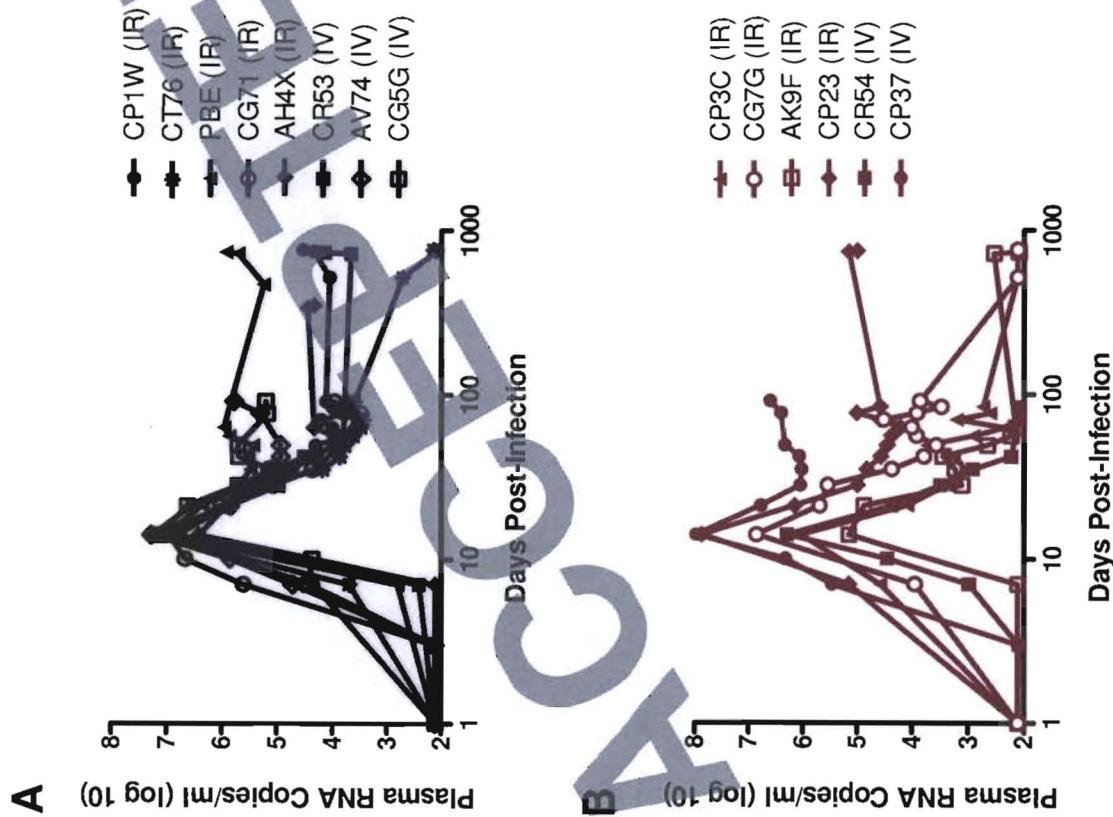
15 **Figure 5.** Peak plasma viral RNA levels were higher following the first infection  
16 compared to the second infection. (A) Peak plasma viral RNA levels for each monkey  
17 following primary infection and superinfection are indicated by individual filled circles  
18 and are connected by lines. In 11 of 12 superinfected animals, there was a lower peak  
19 plasma viral RNA level following the superinfection than following the primary  
20 infection. These comparisons were done using the 2-tailed paired Wilcoxon rank sum  
21 test ( $p=0.001$ ). (B) Peak plasma viral RNA levels are depicted as separate points  
22 following primary infection and following superinfection. Bars representing the median  
23 value and interquartile ranges are shown for each group. The 2-tailed unpaired Mann-

1 Whitney U test ( $p<0.0001$ ) was used to evaluate the statistical significance of the  
2 differences between the peak viremias at the two time points.

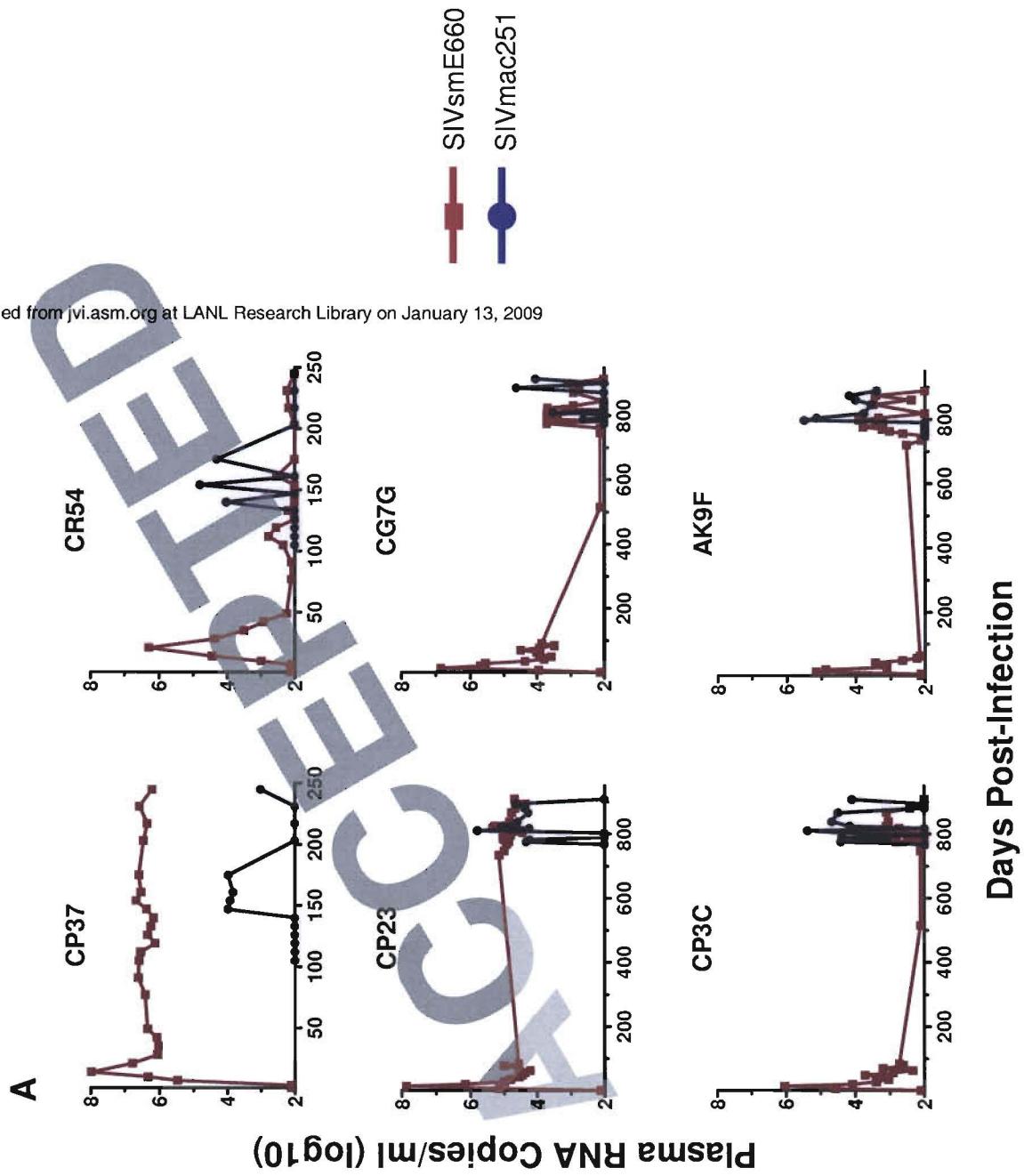
3


4 **Figure 6.** Resistance to SIV superinfection was not associated with peripheral blood  
5 absolute CD4<sup>+</sup> counts or central memory CD4<sup>+</sup> T cells at the time of exposure to the  
6 superinfecting virus. (A) CD4<sup>+</sup> T lymphocyte counts on the day of challenge with the  
7 heterologous SIV isolate did not differ between the monkeys that became superinfected  
8 and those that resisted superinfection. (B) There was also no significant difference in  
9 these groups of monkeys in the percentage of central memory CD4<sup>+</sup> T lymphocytes as  
10 identified by their expression of CD28 and CD95. The dashed boxes highlight the  
11 animals that resisted superinfection.

12


13 **Figure 7.** Resistance to superinfection was not associated with SIV Gag-specific CD4<sup>+</sup>  
14 and CD8<sup>+</sup> T lymphocyte responses at the time of exposure to the superinfecting virus.  
15 Peripheral blood lymphocytes obtained from the monkeys prior to challenge with the  
16 superinfecting virus were exposed to a pool of overlapping SIV Gag peptides and their  
17 responses were assessed in IFN- $\gamma$  ELISPOT assays (A) and intracellular cytokine staining  
18 assays. Gating on CD4<sup>+</sup> (B) or CD8<sup>+</sup> (C) T lymphocytes, the cells were assessed for  
19 production of TNF- $\alpha$ , IFN- $\gamma$ , and IL-2. The dashed boxes highlight the animals that  
20 resisted superinfection.

21


# Figure 1



**Figure 2**



# Figure 3



# Figure 3

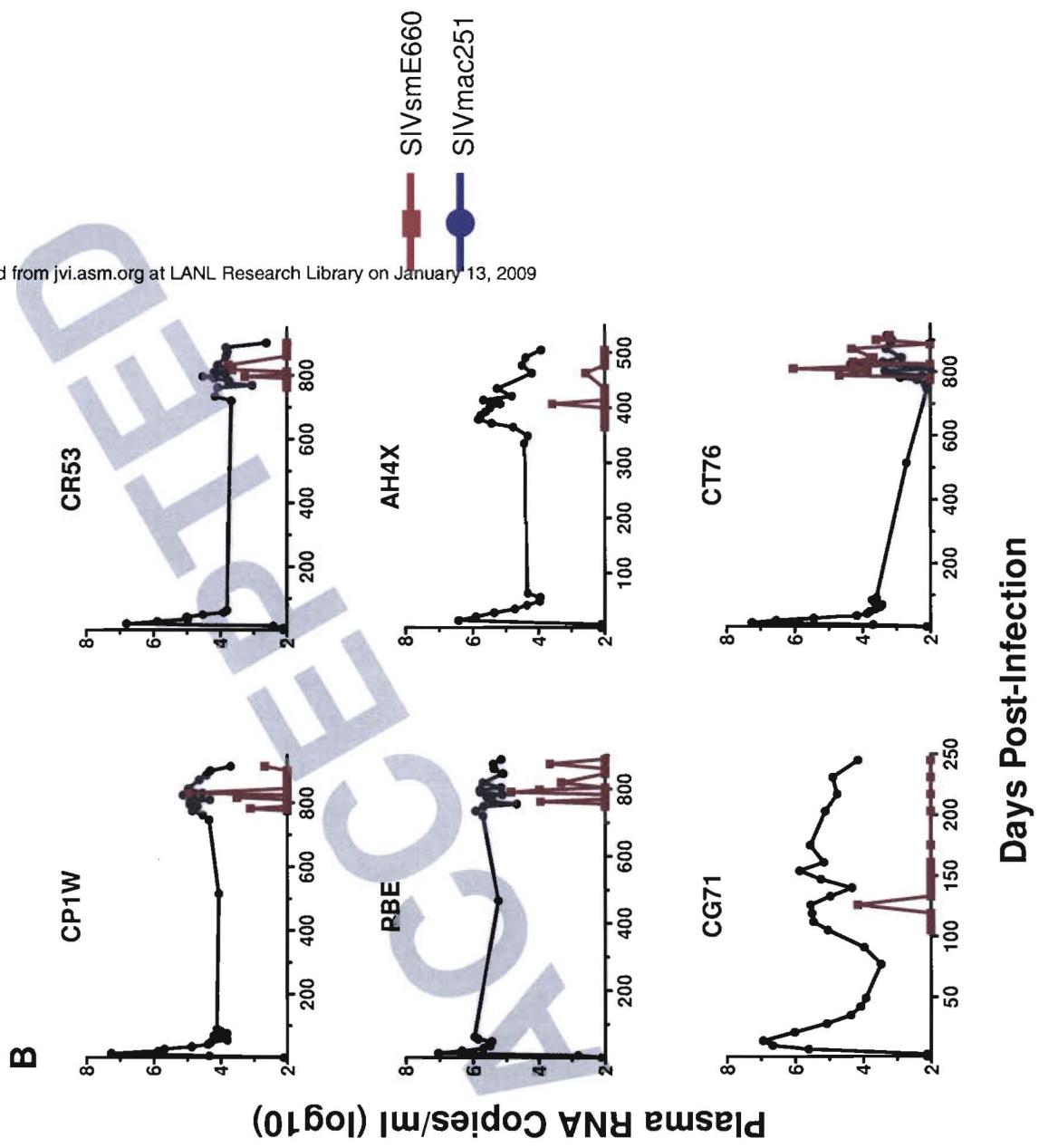
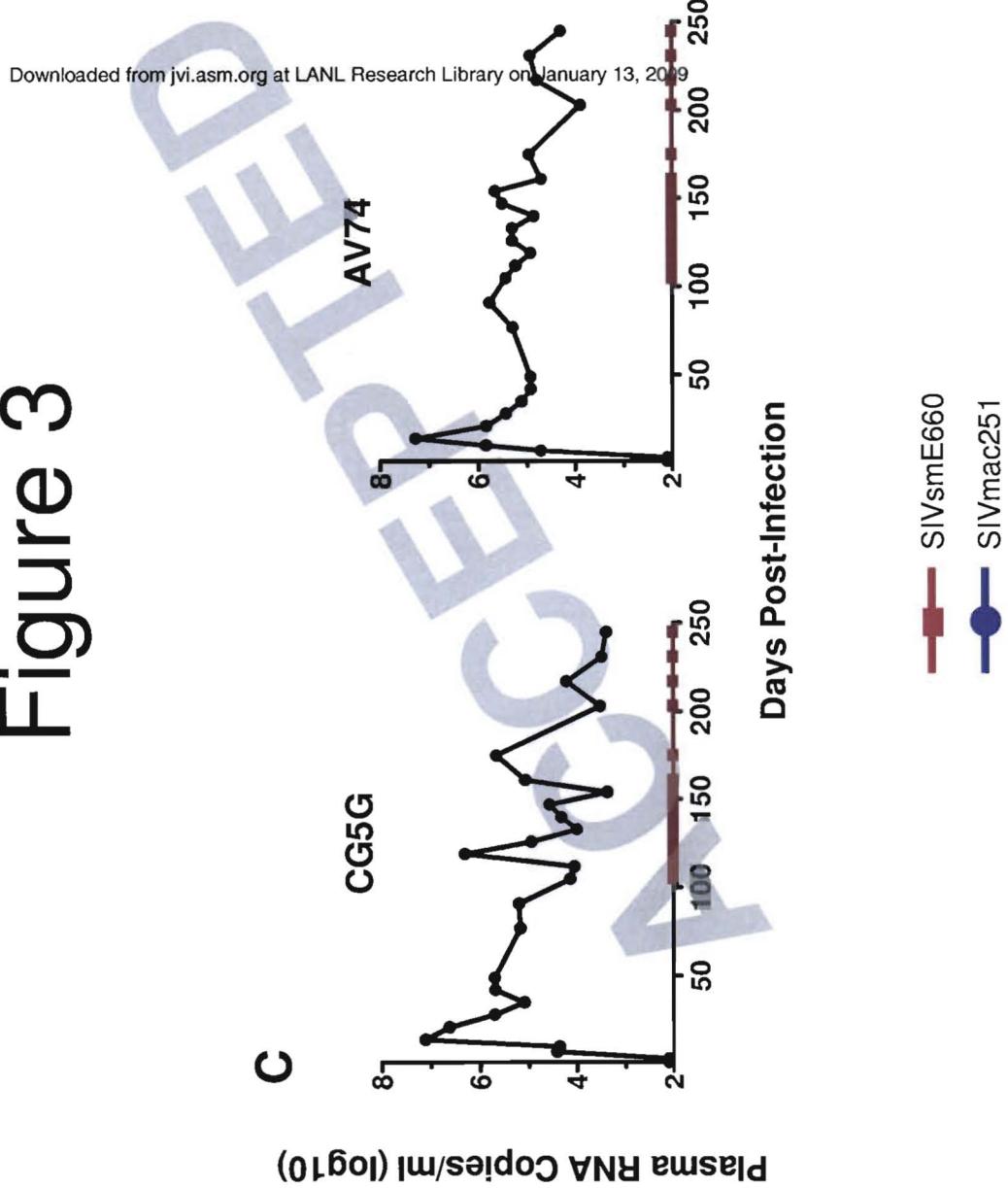
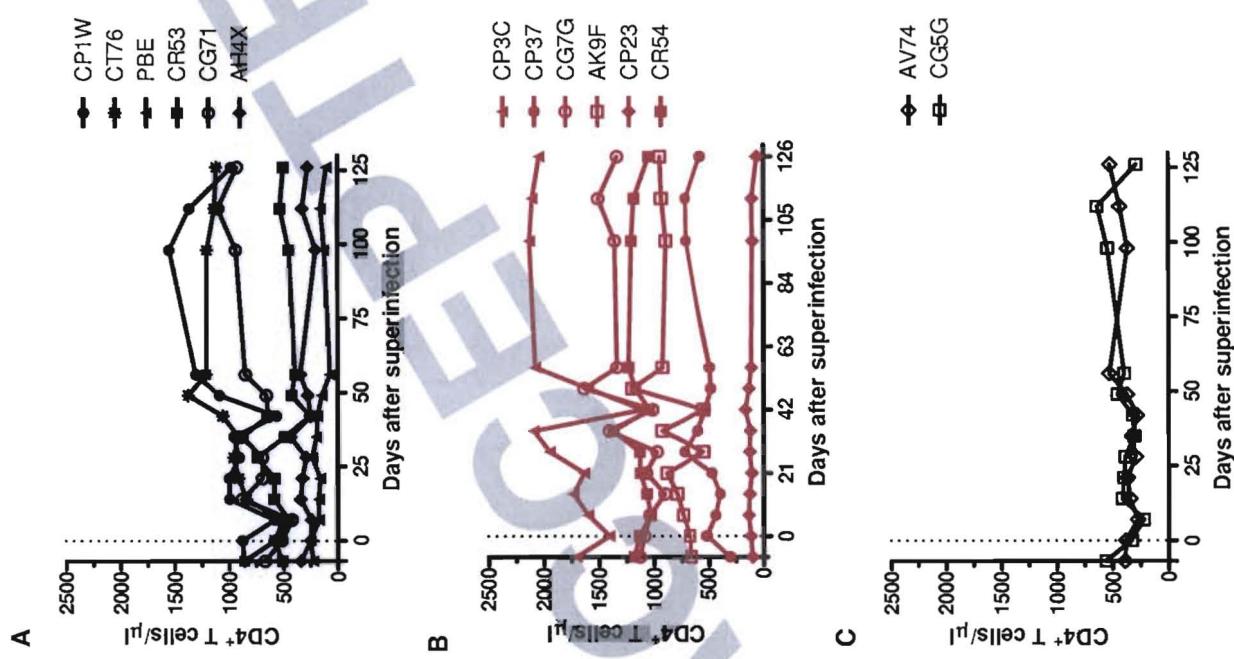





Figure 3



**Figure 4**



**Figure 5**



Figure 6

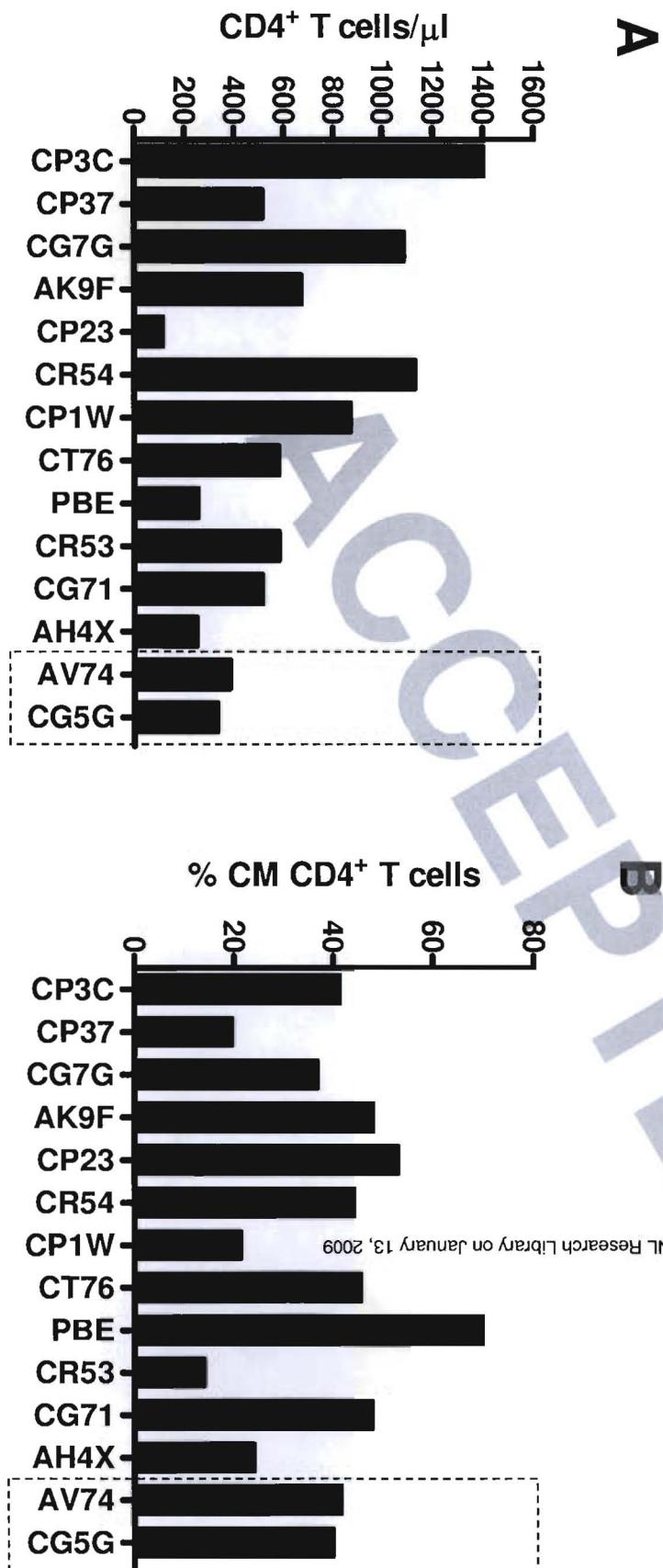



Figure 7

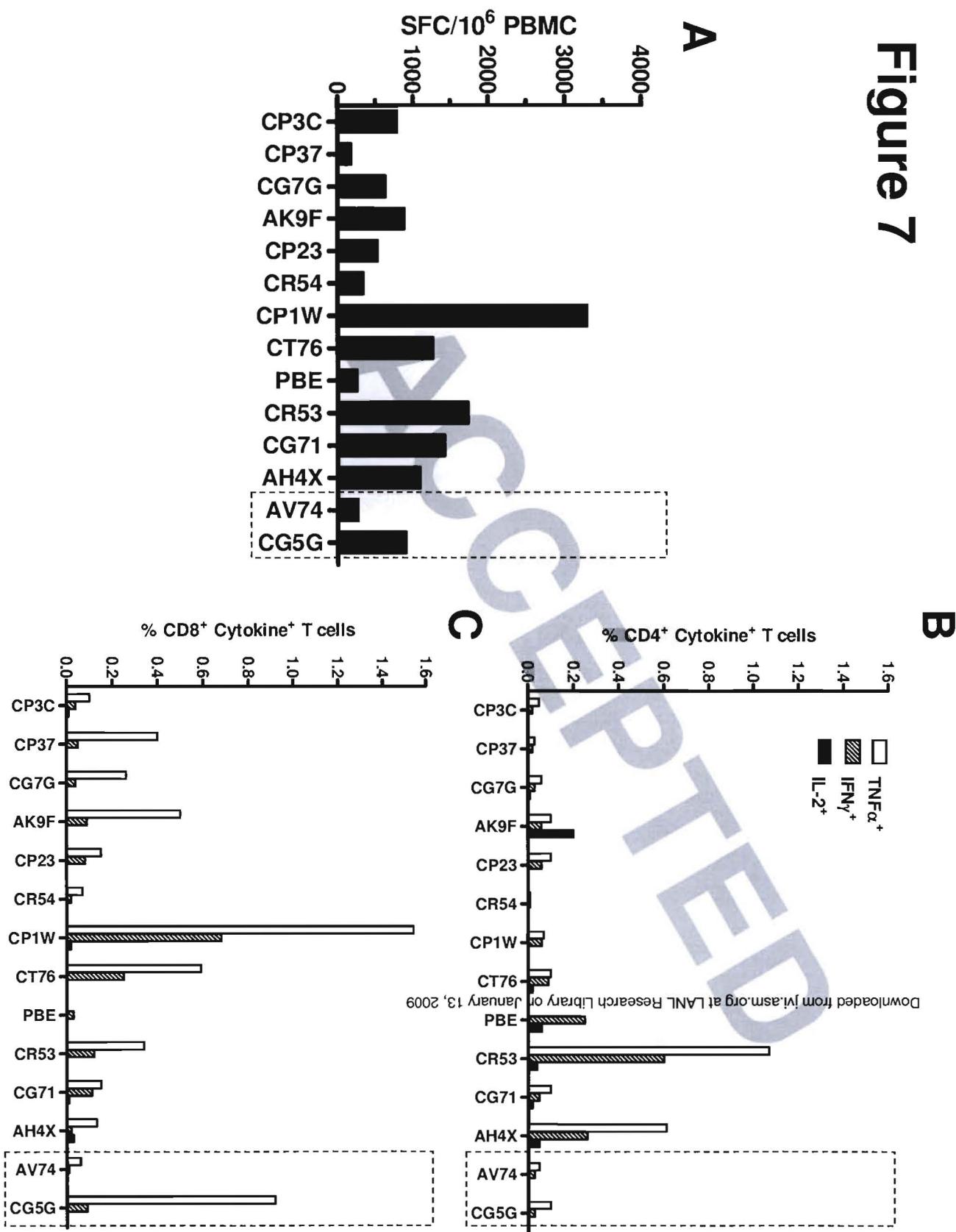



Table 1. Viruses, routes of infection, viral load, and time of superinfection

| Monkey            | Primary virus | MHC-class I <sup>a</sup> | Primary virus <sup>b</sup> | Days of Infection | Viral RNA <sup>c</sup> | Second virus <sup>c</sup> (IR) <sup>d</sup> | Superinfection |
|-------------------|---------------|--------------------------|----------------------------|-------------------|------------------------|---------------------------------------------|----------------|
| CP3C              | SIVsmE660     | A*01, B*17               | IR                         | 768               | 1.00x10 <sup>2</sup>   | SIVmac251                                   | Yes            |
| CG7G              | SIVsmE660     | A*01, B*17               | IR                         | 775               | 5.02x10 <sup>3</sup>   | SIVmac251                                   | Yes            |
| AK9F              | SIVsmE660     | B*17                     | IR                         | 748               | 1.00x10 <sup>2</sup>   | SIVmac251                                   | Yes            |
| CP23              | SIVsmE660     | A*01                     | IR                         | 768               | 8.70x10 <sup>4</sup>   | SIVmac251                                   | Yes            |
| CR54              | SIVsmE660     | A*01                     | IV                         | 105               | 2.21x10 <sup>2</sup>   | SIVmac251                                   | Yes            |
| CP37              | SIVsmE660     | A*01                     | IV                         | 105               | 3.77x10 <sup>6</sup>   | SIVmac251                                   | Yes            |
| CP1W              | SIVmac251     | A*01, B*08               | IR                         | 775               | 6.98x10 <sup>4</sup>   | SIVsmE660                                   | Yes            |
| CT76              | SIVmac251     | A*01                     | IR                         | 775               | 2.45x10 <sup>2</sup>   | SIVsmE660                                   | Yes            |
| PBE               | SIVmac251     | A*02                     | IR                         | 748               | 4.85x10 <sup>5</sup>   | SIVsmE660                                   | Yes            |
| CG71              | SIVmac251     | A*01, B*17               | IR                         | 105               | 1.12x10 <sup>5</sup>   | SIVsmE660                                   | Yes            |
| AH4X              | SIVmac251     | Neg                      | IR                         | 365               | 6.23x10 <sup>4</sup>   | SIVsmE660                                   | Yes            |
| CR53              | SIVmac251     | A*01, B*17               | IV                         | 762               | 1.17x10 <sup>4</sup>   | SIVsmE660                                   | Yes            |
| AV74 <sup>e</sup> | SIVmac251     | Neg                      | IV                         | 105               | 2.73x10 <sup>5</sup>   | SIVsmE660                                   | No             |
| CG5G <sup>e</sup> | SIVmac251     | A*01                     | IV                         | 105               | 1.37x10 <sup>4</sup>   | SIVsmE660                                   | No             |

<sup>a</sup> MHC-class I alleles typed were Mamu-A\*01, -A\*02, -B\*08, and -B\*17. Alleles that are present in each monkey are indicated. Neg indicates all four alleles were not detected.

<sup>b</sup> Route of primary infection: IR, intrarectal infection; IV, intravenous infection

<sup>c</sup> Set point plasma viral RNA in copies/ml of primary virus at time of exposure to second virus

<sup>d</sup> All monkeys were exposed to the second virus via intrarectal inoculation

<sup>e</sup> Monkeys that resisted superinfection are highlighted in gray.

Table 2. Neutralizing antibodies in rhesus animals after primary infection prior to superinfection

Downloaded from

Downloaded from [jvi.asm.org/](http://jvi.asm.org/) at ANL Research Library on January 13, 2009

| Animal            | Primary Virus | Days | ID50 in TZM-bl cells <sup>a</sup> |                        | ID50 in 5.25.EGFP.Luc.M7 cells <sup>a</sup> |                        |
|-------------------|---------------|------|-----------------------------------|------------------------|---------------------------------------------|------------------------|
|                   |               |      | SIVmac251/CS41 <sup>b</sup>       | SIVsmE660 <sup>c</sup> | SIVmac251                                   | SIVsmE660 <sup>c</sup> |
| CP3C              | SIVsmE660     | 768  | <20                               | <20                    | 92                                          |                        |
| CG7G              | SIVsmE660     | 775  | <20                               | <20                    | 508                                         |                        |
| AK9F              | SIVsmE660     | 748  | 20                                | 20                     | 136                                         |                        |
| CP23              | SIVsmE660     | 768  | 37                                | 37                     | 62                                          |                        |
| CR54              | SIVsmE660     | 105  | <20                               | <20                    | <20                                         |                        |
| CP37              | SIVsmE660     | 105  | 41                                | 79                     |                                             |                        |
| CP1W              | SIVmac251     | 775  | 43                                | 43                     | 245                                         |                        |
| CT76              | SIVmac251     | 775  | 50                                | 50                     | 110                                         |                        |
| PBE               | SIVmac251     | 748  | 50                                | 50                     | <20                                         |                        |
| CG71              | SIVmac251     | 105  | <20                               | <20                    | 188                                         |                        |
| AH4X              | SIVmac251     | 365  | 33                                | 33                     | 120                                         |                        |
| CR53              | SIVmac251     | 762  | 215                               | 215                    | <20                                         |                        |
| AV74 <sup>d</sup> | SIVmac251     | 105  | <20                               | <20                    | 73                                          |                        |
| CG5G <sup>d</sup> | SIVmac251     | 105  | <20                               | <20                    | 124                                         |                        |

<sup>a</sup> Values are the sample serum dilution at which relative luminescence units (RLU) were reduced 50% compared to virus control wells (no serum sample).

<sup>b</sup> Pseudovirus containing Env cloned from single expansion of uncloned SIVmac251 challenge stock were generated in 293T cells.

<sup>c</sup> Uncloned SIVsmE660 virus stock were generated in CEMx174 cells.

<sup>d</sup> Monkeys that resisted superinfection are highlighted in gray.