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Abstract 

Collective I/O is a widely used technique to improve I/O 
performance in parallel computing. It can be implemented 
as a client-based or server-based scheme. The client-based 
implementation is more widely adopted in MPI-IO software 
such as ROMIO because of its independence from the stor­
age system configuration and its greater portability. How­
ever, existing implementations of client-side collective I/O 
do not take into account the actual pattern offile striping 
over multiple I/O nodes in the storage system. This can 
cause a significant number of requests for non-sequential 
data at I/O nodes, substantially degrading I/O performance. 

Investigating the surprisingly high I/O throughput 
achieved when there is an accidental match between a par­
ticular request pattern and the data striping pattern on the 
I/O nodes, we reveal the resonance phenomenon as the 
cause. Exploiting readily available information on data 
striping from the metadata server in popular file systems 
such as PVFS2 and Lustre, we design a new collective I/O 
implementation technique, resonant I/O, that makes reso­
nance a common case. Resonant I/O rearranges requests 
from multiple MPI processes to transform non-sequential 
data accesses on I/O nodes into sequential accesses, sig­
nificantly improving I/O performance without compromis­
ing the independence ofa client-based implementation. We 
have implemented our design in ROMIO. Our experimental 
results show that the scheme can increase I/O throughput 
for some commonly used parallel I/O benchmarks such as 
mpi-io-test and ior-mpi-io over the existing implementation 
of ROMIO by up to 157%, with no scenario demonstrating 
significantly decreased performance. 
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1. Introduction 

As large-scale scientific applications running on clusters 
become increasingly I/O intensive, it is important to have 
effective system support for efficient I/O between the pro­
cesses on the compute nodes issuing I/O requests, and for 
the disks on the I/O nodes servicing the requests [1 , 2, 3]. 
A problematic situation in I/O performance is the issuance 
of requests for many small non-contiguous I/O accesses, 
because un-optimized servicing of these requests results in 
low disk efficiency and high request processing cost. Many 
techniques have been proposed to address this problem, in­
cluding data sieving [18) , list I/O [19], datatype I/O [7], 
and collective I/O [I8). Of these, collective I/O is one of 
the more commonly used techniques and usually yields the 
greatest improvement in I/O performance. This is because 
collective I/O rearranges requests from multiple processes 
(global optimization), rather than optimizing requests from 
each individual process (local optimization). 

1.1 	 Transforming Non-contiguous Access 
into Contiguous Access 

A common technique used in the aforementioned 
schemes for optimizing I/O performance is to transform 
small non-contiguous access requests into large contiguous 
accesses. Let us first see how the read operation can benefit 
from collective I/O. As depicted in Figure 1, four processes, 
Po, PI , P2 • and P3 , each requests four segments that are not 
adjacent in the logical file space. Because an I/O request 
must be issued for logically contiguous data, each process 
issues four requests. Without collective I/O there would be 
16 small requests from the compute nodes to the I/O nodes, 
with each I/O node receiving and servicing four requests in 
random order. 

With collective I/O, all the requested data is divided into 
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Figure 1. lIlustration of the ROMIO implementation of two­
phase collective I/O. Data are read by each process (the aggrega­
tor), Po, PI, P2 , or P3, which is assigned a contiguous file domain 
in the logical file space, first into its temporary buffer in phase I and 
then to the user buffer of the process that actually requested them 
in phase II. 

four file domains, each consisting of four contiguous seg­
ments, and each process issues a single request to read data 
belonging to a single file domain into its buffer. After the 
reads complete, each process retrieves its respective data 
from the others ' buffers via inter-node message passing. 
As an example of a widely used collective-I/O implemen­
tation, ROMIO [18] adopts a two-phase strategy. In the 
first phase, each process serves as an aggregator, with pro­
cess Pk (k ::::: 0) responsible for reading the kth file do­
main into its buffer. In the second phase, data is exchanged 
among the processes to satisfy their actual requests. The 
rationale for this implementation of collective I/O is two­
fold. First, both the number of requests issued to the VO 
nodes, and the request processing overhead, are reduced. 
Second, contiguous access is expected to be more efficiently 
serviced on the disk-based VO servers than non-contiguous 
access because contiguous access requires fewer disk head 
movements, which can account for more than an order of 
magnitude disparity in disk throughput. Clearly, for collec­
tive I/O to improve rather than degrade performance, the 
gains must outweigh the communication overhead incurred 
in this second phase that does not exist in the traditional 
non-collective VO scheme, 

1.2 The Resonance Phenomenon 

To analyze how collective I/O perfonns in a typical clus­
ter computing environment, we set up an experimental plat­
form consisting of eight nodes, four configured as com­
pute nodes, and the other four as I/O nodes, managed by 
a PVFS2 parallel file system [4]. File data was striped over 
the I/O nodes. We used the default PVFS2 striping unit size 
of 64KB. (More details of the experimental platforms are 
given in Section 4.) 

In our experiment we ran N -process MPI programs, 
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Fig ure 2. Throughput of I/O nodes when running a demonstra­
tion MPI program with two and four processes, varying the seg­
ment size from 32KB to I024KB, with and without collective I/O. 
Throughput peaks at 64KB with non-collective-4, and at 128KB 
with non-collective-2, exhibiting resonance between the data re­
quest pattern and the striping pattern. 

where N was 2 or 4, one process per compute node, that 
read data from a 10GB file striped over the four I/O nodes. 
The access pattern was generally the same as that illustrated 
in Figure I . Specifically, the processes repeatedly call col­
lective I/O to read the entire file from beginning to end. In 
each call, process i, i E {O, 1, ... , N - I}, reads segments 
k * N + i, k E {O, 1,2, 3}, in the file range specified by 

. the call. The size of the segment was varied from 32K.B 
to I 024KB (powers of two times 32KB) over different runs 
of the program. Figure 2 shows the I/O throughput of the 
system using collective I/O with N processes and the var­
ious segment sizes, denoted as collective-IIO-N, where N 
is 2 or 4. The graph also shows the throughput with N 
processes when each process makes four distinct I/O calls 
for each of its four segments of contiguous data, denoted 
as non-coLlective-1I0-N. As we expect, with coLlective-JIO­
N, increasing segment size (amount of requested data) gives 
increasing throughput. This is consistent with the fact that 
the disk is more efficient with large contiguous data access 
because of better amortized disk seek time. Surprisingly, 
however, we see that the throughput for non-collective­
JIO-4 reaches a peak value of 17SMB/s at 64KB segment 
size, which is much higher than the 42MB/s throughput for 
collective-JIO-4 at the same segment size. Similarly, for 
l1on-collective-JIO-2 there is a peak of 149MB/s at 128K.B. 
versus 72MB/s for collective-JIO-2. This appears to be in­
consistent with the assumption that requests for larger con­
tiguous data would be more efficiently serviced. 

The reason for these throughput peaks lies in the order 
in which the requests arrive at each I/O node. Figure 3 
illustrates the different orders when collective I/O is used 
(Figure 3(a)) and is not used (Figure 3(b)) in the case of 
four processes. When collective I/O is used, four contigu­
ous segments are assigned to a process as a file domain . 
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Figure 3. Illustration of how a resonance is developed: when 
collective lIO is used (Figure (a)), each process reads four contigu­
ous segments, but each lIO node receives requestS from four pro­
cesses in an unpredictable order. When collective lIO is not used 
(Figure (b)), a process sends four requests for four non-contiguous 
segments to one I/O node, making the service order of the requests 
at the node consistent with the offsets of the requested data in the 
file domain. 

Because both segment size and striping unit size are 64KB, 
the four requests to a particular I/O node, each for 64KB 
data, come from four concurrent processes and arrive in an 
order determined by the relative progress of the processes, 
which is unpredictable. In an operation manual for the Lus­
tre cluster file systems this issue is raised as a disadvan­
tage of striping a file into multiple objects (the portion of 
file data on one I/O server). Consider a cluster with 100 
clients and 100 I/O servers. Each client has its own file to 
access . The manual [5) states: "If each file has JOO ob­
jects, then the clients all compete with one another for the 
attention of the servers, and the disks on each node seek 
in JOO different directions. In this case, there is needless 
contention." This exactly describes the situation with col­
lective I/O when multiple processes access the same file on 
multiple I/O nodes simultaneously. We note that while the 
I/O scheduler at the I/O node can re-order the requests for a 
sequential dispatching order, this re-ordering operation will 
rarely occur unless the I/O system is saturated and many re­
quests are pending. Therefore, an I/O node usually serves 
requests in the order that they are received-in random or­
der from the viewpoint of I/O node-which degrades disk 

performance. In contrast, when collective I/O is not used, 
all four requests to an I/O node are from the same process, 
which sends them one by one in the order of their offsets 
in the logical file space. Because the file system gener­
ally allocates data on the disk in an order consistent with 
their offsets in the file domain, the consequent sequential 
service order at an I/O node leads to an effective prefetch­
ing at the I/O node [12). We name this scenario, in which 
an accidental match between data request pattern and data 
striping pattern produces sequential disk access and peak 
disk performance, resonance in the distributed I/O service, 
a term borrowed from the physics field. A similar resonance 
exists with n0I1-collective-/IO-2 with 128KB segment size, 
in which two I/O nodes are dedicated to service requests 
from one process (one segment is striped on two nodes) , 
and no I/O node receives requests from multiple processes 
that cause random disk accesses. We also observe that 11011­

collective-II0-2 with 64KB segment size also generates a 
resonance, though with a throughput (I 25MB/s) lower than 
the one (l49MB/s) with 128KB. The lower throughput is a 
result of under-utilized I/O nodes, because at any time only 
two of the four 110 nodes are servicing requests from the 
two processes. 

Analyzing the conditions for resonance to occur, we see 
that the key factor for high I/O throughput is not accessing a 
contiguous file domain, rather, it is ensuring sequential ac­
cess of data on an I/O node. When data is striped over mul­
tiple 110 nodes , collective I/O, which designates one con­
tiguous file domain to a process, allows requests for data on 
an I/O node to be from multiple processes, which introduces 
the indeterminacy that leads to non-sequential access . If we 
can rearrange requests involved in collective I/O such that 
all the requests for data on an I/O node come from one pro­
cess, then resonance would be a common case when each 
process requests its data in ascending order of file offset. 
This is one the of techniques used in our proposed imple­
mentation of collective I/O, called resonant 110. 

The rest of this paper is organized as follows. Section 2 
gives a brief description of related work. In Section 3 we 
describe the design and implementation of resonant I/O in 
detail. Performance evaluation results are presented in Sec­
tion 4, followed by conclusions in Section 5. 

2 Re1ated Work 

There is a large body of work on improving I/O perfor­
mance for high-performance computing. Among the work 
directly related to our work presented here, there are two 
important issues that have been studied. 

The first issue is how to efficiently access a large num­
ber of small, non-contiguous pieces of data. This access 
pattern, typically produced by directly using UNIX-style 
read and write, can incur a large overhead in processing 



requests. It also prevents systems from inferring the 'big 
picture' of access patterns to enable optimization in a larger 
scope, such as rearrangement of requests for sequential disk 
access. Data sieving [18] is one of the techniques proposed 
to address this issue by aggregating small requests into large 
ones. Instead of accessing each small piece of data sep­
arately, data sieving accesses a large contiguous scope of 
data that includes the small pieces of data. If the additional 
unrequested data, called holes, is not excessive, the bene­
fit can be significant. However, data sieving cannot ensure 
that its aggregated large requests from multiple clients are 
serviced at each I/O node in an order that minimizes disk 
seeks, which is the objective of resonant I/O. 

Datatype I/O [7] and list I/O [19] are the two other tech­
niques that allow users to specify multiple non-contiguous 
accesses with a single I/O function call. Datatype I/O is 
used for accesses with certain regularity, while list I/O han­
dles a more general case. Compared to these techniques col­
lective I/O is more aggressive in aggregating small requests 
by re-arranging requests collectively issued by a group of 
processes. However, while collective I/O does improve the 
size of a request for data contiguous in the logical file space, 
it may adversely cause requests to arrive at the I/O nodes in 
random order, as we have shown. (As will be described 
later, list I/O will playa role in our design.) 

The second issue is portability. As most high-
performance cluster computing platforms are customized 
configurations, there are many variations in software and 
hardware architectures. To be widely adopted, a technique 
needs to be minimally dependent on specific system struc­
tures and configurations. As an example, ROMIO [18] is 
a high-performance and portable implementation of MPI­
10 [11] in which the aforementioned optimization tech­
niques, including collective I/O, are included. ROMIO uses 
ADIO (Abstract Device Interface for MPI-I/O) [17], an in­
temallayer to accommodate the machine-dependent aspects 
of the implementation of MPI-IO, so that MPI-IO can be 
implemented portably on top of ADIO. Because the config­
uration of the storage subsystem of a cluster may be mod­
ified independently of the computing subsystem, it is de­
sirable to implement I/O optimization techniques on the 
client side to keep them independent of configuration of 
storage subsystem. Collective I/O, as well as other com­
monly used techniques, are usually implemented on the 
client side. In contrast, server-side implementations such as 
server-directed collective I/O [15] are less adopted. Server­
directed collective I/O was developed as a component of 
Panda, an I/O library for accessing multi-dimensional ar­
rays, on the IBM SP2 supercomputer [15]. In this system 
I/O nodes are heavily involved in the re-arrangement of 
I/O requests by collecting request information from com­
pute nodes and then directing them for sending/receiving 
data. Disk-directed I/O [14] is a strategy similar to server-

directed collective I/O, with the addition of explicit schedul­
ing of requests according to the data layout on disk. While 
these two techniques can provide performance benefits sim­
ilar to resonant I/O, both of them compromise the indepen­
dence of middle ware on compute-side I/O, such as MPI-IO, 
from configuration changes on the I/O-node side. 

3 The Design of Resonant 110 

The design objective of resonant I/O is to ensure that re­
quests arrive at each I/O node in ascending order of file off­
sets for requested data from the same file. While data layout 
on disk usually matches offsets in the logical file space, the 
design allows the disk to service the requests in its preferred 
order, i.e., from small disk addresses to high addresses (pos­
sibly sequential), to achieve high disk throughput. 

3.1 	 Making Collective I/O Aware of Data 
Layout 

To induce resonance the compute node must know on 
which I/O node requested data are stored. Because an im­
portant design goal for the compute-node-side middleware 
is keeping the middleware independent of the I/O node 
side's configuration to ensure portability and system flex­
ibility, explicitly requesting this information from the I/O 
nodes is undesirable. 

Fortunately, the configuration information that is needed 
in resonant I/O is readily available on the compute node 
side in many commonly used parallel file systems, includ­
ing PVFS2 [4, 6], Lustre [8 , 9] , and GPFS [10] . In these 
systems meta-data service is separate from data service to 
avoid bottlenecks in data transfer. As such, a compute node 
needs to first communicate with the meta-data server to ac­
quire the locations of its requested data on the I/O nodes 
before it can access data on I/O nodes. In fact, we only 
need to know the striping unit size and number of I/O nodes, 
from which we can determine which requested data are on 
the same I/O node. We are aware that these two parame­
ters may be set by users when the file is created in some file 
systems such as Lustre. However, to keep the design gen­
eral and the interfaces of collective I/O unchanged, we do 
not assume that users would provide these parameters when 
they call collective I/O functions. 

3.2 	 Process Access Set and I/O Node Ac­
cess Set 

Because resonant I/O is an implementation of collective 
I/O, it does not make any changes to the function inter­
faces seen by programmers. As usual, each participant in 
a resonant-I/O operation needs to call the same collective­
I/O function to specify one file segment or mUltiple non­



adjacent file segments in a request. To execute the function 
call the processes are first synchronized to exchange infor­
mation on the requested file segments so that every process 
knows all the file data requested in the collective 110. After 
that, a collective-IIO implementation strategy needs to de­
cide, for each process, which data the process is responsible 
for accessing. We call the set of data that is assigned to a 
process its access set. Once a process knows its access set it 
generates one or multiple requests to the 110 nodes to access 
the data specified by the access set. In ROMIO collective 
110 all file data to be requested are evenly partitioned into 
contiguous file domains. Each file domain is the access set 
of a process, which then uses only one request to access the 
data. Because the method of forming access sets based on 
contiguity in the logical file seeks to reduce the number of 
requests as well as their processing overhead, the resulting 
pattern of requests does not necessarily help improve disk 
efficiency, as descri1;led in Section I. 

To achieve disk efficiency in the implementation of col­
lective 110, we define an 110 node's access set as the set of 
data that are requested in a collective 110 and are stored on 
the 110 node. One of the objectives of resonant 110 is to 
ensure that an 110 node's access set is accessed by requests 
arriving in the ascending order of the offsets of the data in 
the logical file domain. Note that it is the LBNs (logical 
block numbers)l of the data that represent the on-disk loca­
tions of the data and directly determine the disk efficiency, 
and there is a mapping from the logical file offsets to on­
disk LBNs by file systems. Therefore, in theory, ascend­
ing file offsets do not necessarily correspond to ascending 
LBNs, but in practice the correspondence generally holds, 
especially for file systems managing large files. Further­
more, our objective is that client-side optimization, such as 
resonant 110, not require detailed configuration information 
on the server side. Using file offsets for this purpose fulfills 
this objective. Because striping unit size and the number 
of 110 nodes are available, processes on the compute nodes 
can easily calculate the access set of each 110 node. 

The reasons that an 110 node's access set might be re­
quested in a random order are that (1) data in the 110 node's 
access set belong to multiple processes' access sets; and, (2) 
these processes send their requests in random order because 
of their unpredictable relative progress. To produce an as­
cending access order at an 110 node, resonant 110 can take 
either of two actions: (1) make one process' access set be an 
110 node's access set; or, (2) make multiple processes send 
their requests in a pre-defined order. In the following we 
describe how resonant 110 takes the first action as its basic 
approach to produce an ascending access order, and takes 
the second action to make an optimization for a particular 
request pattern. 

I If the I/O node is attached with a disk array, the LBN refers to the 
address on the array. 

3.3 	 Designating Agent Processes Accord­
ing to the I/O Node's Access Set 

If a process' access set is the same as an 110 node's ac­
cess set, and the process sends its requests to the 110 node 
in ascending order of offset, then the 110 node will receive 
all of its requests in the preferred order. We call such a pro­
cess the 110 node's agent process. Assuming each 110 node 
needs one agent process, for a given 110 node we select the 
process that requests the largest amount of data from the 110 
node and has not been selected as another 110 node's agent 
process. Ifmore than one such process exists, we arbitrarily 
choose the one with lowest rank in the MPI process group. 
As some data requested by an agent process may belong to 
other processes and need to be transferred between the agent 
process and their owner processes, this strategy minimizes 
the data to be transferred. The data transfer takes place be­
fore access to the 110 nodes in the write operation, and after 
access to the 110 nodes in the read operation. This data 
transfer is similar to the inter-process communication phase 
in ROMIO collective 110. However, we make a special op­
timization for the read operation in this phase to minimize 
the transfer cost, as follows. 

Synchronization is usually required after each agent has 
read data from 110 nodes into its buffer and before the inter­
process data transfer starts. This synchronization can de­
grade 110 performance by forcing all processes to wait for 
the slowest process to read its data; moving the synchro­
nization ahead of the read operation would obviate this. 
To this end, we let all agent processes send their requests 
for their access sets in a non-blocking fashion in the first 
phase of the read operation, assuming non-blocking 110 is 
supported, and synchronize their progress immediately af­
ter sending requests instead of after the data has been read. 
Then each process proceeds to read directly from the 110 
nodes the data that it needs but has not requested in the 
first phase. If the process is not an agent, the data is ac­
tually all that it needs to access. This step replaces inter­
process data transfer to eliminate synchronization immedi­
ately before the second phase. In this arrangement, we ac­
tually make many requests issued in the first phase serve as 
prefetching hints for the requests issued in the second phase. 
By performing the synchronization we ensure that requests 
in the second phase arrive after the 110 nodes receive re­
quests from the agents in the first phase. Thus the request 
service order at an 110 node is determined by the arrival or­
der of requests in the first phase. When data is read from the 
disk, the requests of the second phase would be satisfied in 
the buffer cache of the 110 node. Usually the buffer cache 
is large enough to hold the data when the requests in the 
second phase arrive. By using the prefetching-like method, 
the two phases in resonant 110 can be overlapped to achieve 
higher efficiency. 



Because an agent process may send many requests to 
an 110 node in resonant 110, compared with one request 
in the ROMIO collective 110, the request processing cost 
can be substantially higher. To reduce this cost resonant 
110 uses list 110 to pack small requests for non-contiguous 
data segments into one or a few large requests to minimize 
request processing overhead. For the ROMIO implemen­
tation in MPICH2, one list 110 can accommodate up to 
MAX..ARRAY_SIZE (64) non-contiguous data segments, 
which can significantly reduce the cost. 

3.4 	 Timing Requests from Different Pro­
cesses 

Because the second phase in the conventional implemen­
tation of collective 110 is the additional cost that does not 
exist in the non-collective 110 scheme, we seek to eliminate 
it subject to the condition that the access pattern satisfies a 
non-overlapping condition. This condition requires that in 
a collective 110 call the file offsets of the data requested by 
process i are smaller than those of data requested by process 
i + 1 (i = 0, 1, ... , N - 2; N is the number of processes). 
If a collective 110 call satisfies the condition for all the re­
quests in the call to a given 110 node, those from process 
i will be for data with offsets smaller than those from pro­
cess j (i < j) . If we place the processes into sets accord­
ing to the 110 nodes to which they send their requests such 
that processes in different sets do not share 110 nodes, and 
ensure that for all processes in a set, a process with lower 
rank always sends its request earlier than a process of higher 
rank, then the 110 nodes will receive the requests in the pre­
ferred order. For this particular request pattern, by timing 
the sending of requests in different processes, we can pro­
duce the same effect on request arrival order as by using 
process agents . Then we can eliminate the second phase in 
which data are transferred to their owner processes, because 
each process requests its own data. 

When the non-overlapping condition is satisfied, in each 
process set the process with lowest rank sends its request(s) 
first, and after a short delay it sends a synchronous message 
to the process with the next higher rank in the set, which 
then repeats the procedure. The delay is introduced to en­
sure that requests arrive at 110 nodes in the preferred order. 
Our study has shown that because disk access time is usu­
ally much higher than message passing time, this delay can 
be chosen from a relatively large range, such as from 0.1 ms 
to Ims, with little affect on 110 performance, especially in 
a system supporting non-blocking 110 where a process can 
send its message without waiting to receive its requested 
data. (We note that the choice of delay does not affect 
the correctness of the protocol, only performance.) If non­
blocking 110 is not supported no delay would be imposed 
and 110 access among processes would be fully serialized. 
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Figure 4. Algorithmic Description of Resonant Va 

Because we coordinate request sending among pro­
cesses, the benefits of improved disk efficiency will out­
weigh the penalty of reduced concurrency of 110 operations 
if the number of processes is comparable to the number of 
110 nodes. Otherwise, the serialization could become a per­
formance bottleneck. To maintain balance, we set up n pro­
cess groups in each process set sharing a common set of 
110 nodes , where n is the number of the 110 nodes. We 
place the ith process in a set, sorted by rank, into group k, 
where k = i/n. Then processes in the same group send 
their requests without coordination, and the timing (or seri­
alization) is carried out between process groups. 

This timing technique can also be applied to make the 
approach using agent processes more scalable. When the 
number of processes in a collective 110 is much larger than 
the number of 110 nodes, and the amount of data to be re­
quested is very large, resonant 110 can designate more than 
one process agent for each 110 node for higher network 
bandwidth. This is made possible by timing the request 
sending in these mUltiple agent processes. 

3.5 	 Putting it All Together 

Figure 4 summarizes the design of resonant 110. The ob­
jective in the design is to make requests served at each 110 
node arrive in the preferred order. This is achieved by ei­
ther allowing requests to one 110 node to be from the same 
agent process or by coordinating the issuance of requests 
from multiple processes. In achieving this objective, sev­
eral optimizations were applied, including minimization of 
the cost of synchronization and elimination of the second 
phase of a conventional implementation of collective 110. 



4 Performance Evaluation and Analysis 

To evaluate the perfonnance of resonant I/O and com­
pare it with the widely used collective I/O implementation 
in ROMIO, we used two different experimental platfonns. 
The first is our own dedicated system, an eight-node clus­
ter. All nodes are of identical configuration, each with dual 
1.6GHz Pentium processors, 1GB memory, and an 80GB 
SATA hard disk. The cluster uses the PVFS2 parallel virtual 
file system (version 2.6.3), in which four nodes were con­
figured as compute nodes and the other four as I/O nodes . 
Each node runs Linux 2.6.21 and uses GNU libc 2.6. One 
of the I/O nodes is also configured as the meta-data server 
of the file system. We used MPICH2-1.0.6 with ROMIO 
for our MPI programs. All nodes are connected through 
a switched Gigabit Ethernet network. The default striping 
unit size, 64KB, is used to stripe file data over the I/O nodes . 
The second platform, used to evaluate how the performance 
of resonant I/O scales in a shared production environment, 
is described in the section on performance as a function of 
scaling. 

Our resonant I/O is implemented in ADIO on top of 
PVFS2. The current version of ADIO does not provide gen­
uine support for non-blocking I/O functions [26]. Because 
of this limitation our implementation of resonant I/O makes 
some compromises: (1) for the read operation, the second 
phase is not initiated until the data requested in the first 
phase has been received by the agent processes, which nul­
lifies much of the benefit of using prefetching-like data ac­
cess in the second phase; and, (2) the I/O operations among 
process groups are serialized. The consequence of these 
compromises is that experimental results for resonant I/O 
presented here are conservative, and potential performance 
advantages may not be fully revealed. 

In addition to the demonstration program we used in Sec­
tion I to exhibit the resonance scenario, we used four well­
known benchmark programs for the evaluation: colLperf 
from the MPICH2 software package, mpi-io-test from the 
PVFS2 software package, ior-mpi-io from the ASCI Pur­
ple benchmark suite developed at Lawrence Livermore Na­
tional Laboratory [20], noncontig. from the Parallel I/O 
Benchmarking Consortium [24] at Argonne National Lab­
oratory to test 110 characteristics with noncontiguous file 
access [21], and hpio, designed by Northwestern Univer­
sity and Sandia National Laboratories, to systematically 
evaluate performance with diverse set of I/O access pat­
terns [22, 23]. 

All presented measurements represent arithmetic means 
of three runs. The variation coefficients-the ratio of the 
standard deviation to the mean-are less than 5% for the 
experiments on the dedicated cluster and less than 20% on 
the production system. To ensure that all data were accessed 
from the disk, we flu shed the system buffer caches of the 
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Figure 5. VO throughput of the demonstrati on program with 
varying segment sizes and number of processes. 

compute nodes and I/O nodes before each test run . 

4.1 	 Revisiting the Demonstration Pro­
gram 

We first revisit the demonstration program presented in 
Section I. Figure 5 shows the I/O throughput observed 
when running the program with ROMIO collective I/O and 
resonant I/O with two and four MPI processes . The figure 
shows that resonant I/O can significantly improve I/O per­
formance. It produces its peak throughput for segment size 
of 64KB with four processes and for segment size of 128KB 
with two processes, the two scenarios where resonance take 
place when 110 requests are not collectively issued (c.f. Fig­
ure 2). In these two scenarios, resonant I/O increases I/O 
throughput by 151 % and 75 % over their counterparts in 
ROMIO collective I/O, respectively. However, the through­
put of resonant I/O in these two scenarios is less than those 
of non-collective I/O shown in Figure 2. This is because res­
onant I/O needs synchronization in each call, which slows 
the faster processes. In fact a collective call is not necessary 
when an I/O node is dedicated to a process. For a segment 
size of 32KB and with two processes, ROMIO collective 
I/O coincidentally requests data in the same pattern as res­
onant I/O, so it has almost the same throughput as that of 
resonant I/O. 

4.2 	 Results on the Dedicated Cluster 

We ran benchmarks colLperf, mpl-lO-test, ior-mpl-lO, 
noncontig, and HPIO on the dedicated cluster to measure 
their achieved aggregate I/O throughput when resonant I/O, 
and ROMIO collective I/O, were used . Because the only 
I/O operation in the last four benchmarks are file read, we 
also turned each read into a corresponding write, and used 
the modified programs to measure write throughput as well. 
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scale of arrays. 

4.2.1 Benchmark colLperf 

The benchmark colLperfcomes from the MPI source pack­
age. Using collective 110, this benchmark first writes a 3D 
block-distributed array to a file which resides on the par­
allel file system corresponding to the global array in row­
major order and then reads it back, and checks if the data 
is consistent with the written data [25) . We scaled the ar­
ray size between 643 and 10243 to test the effect of storage 
throughput. We isolated read and write phases with memory 
flushing instead of read-after-write used in the original im­
plementation. Figure 6 shows the read and write throughput 
for both resonant 110 and ROMIO collective 110. Because 
the 110 request size is proportional to the array size, as the 
array size increases the disk becomes very efficient in ser­
vicing individual requests , and the system quickly reaches 
its peak bandwidth (around 80MB/s). Therefore, while res­
onant 110 produces higher throughput, the improvements 
over ROMIO collective 110 are modest. 

4.2.2 Benchmark mpi-io-test 

In the mpi-io-test benchmark we used four MPI processes, 
one on each compute node, to read a 10GB file . Each pro­
cess reads one segment of contiguous data at a time. In each 
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Figure 7. 110 throughput of benchmark mpi-io-cesc with vary­
ing segment sizes. 

collective call , four processes read four segments in a row, 
respectively. In the next call, the next four segments are 
read . Figure 7 shows the throughput of the benchmark when 
resonant 110 and ROMIO collective 110 are used. As ex­
pected for this benchmark we see an 110 resonance (a spike 
in I/O throughput) at segment size 64KB. This resonance 
occurs with resonant 110 for both the read and write versions 
of the benchmark. Interestingly, we found that the ROMIO 
collective 110 also exhibits these resonances ..Because there 
is no overlapping of processes' access ranges, ROMIO col­
lective I/O does not re-arrange requests, and executes its 
110 as non-collective 110 does. However, for other segment 
sizes, ROMIO collective 110 allows each 110 node to re­
ceive requests from multiple processes, and resonant 110 is 
able to order request arrivals and substantially increases the 
throughput by up to 61 %. The figures also show that the 
write bandwidth is higher than read bandwidth when the 
segment size is larger than 64KB; this is mainly due to de­
layed write-back. 

4.2.3 Benchmark ior-mpi-io 

In benchmark ior-mpi-io each of the four MPI processes 
reads one quarter of a IGB file: process 0 reads the first 
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Figure 8. I/O throughput of benchmark ior-mpi-io with varying 
segment sizes. 

quarter, process I reads the second quarter, and so on. The 
reads are executed as a sequence of collective calls. In a 
call, each of the four processes reads a segment with the 
same relative offset in their respective access scope, start­
ing at offset O. Figure 8 shows the throughput with dif­
ferent segment sizes. When the segment size is less than 
64KB only one 110 node is involved in servicing requests 
in each call, so the throughput is very low. The difference 
is that requests are from one agent process in resonant 110 
and from four processes in ROMIO collective 110, which 
explains their performance difference in the read version of 
the benchmark. The performance advantage of resonant 110 
diminishes with increasing segment size because increas­
ingly amortized disk seek time reduces the penalty of non­
sequential disk access in collective 110. 

4.2.4 Benchmark noncontig 

Benchmark noncontig uses four MPI processes to read a 
10GB file using the vector derived MPI datatype. If the 
file is considered to be a two-dimensional array, there are 
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Figure 9. 110 throughput of benchmark IIol1contig with varying 
segment sizes. 

four columns in the array. Each process reads a column 
of the array, starting at row 0 of its designated column. 
In each row of a column there are elmtcount elements 
of the MPfJNT type, so the width of a column is elmt­
count*sizeoj(MPfJND. In each collective call, the total 
amount of data read by the processes is fixed, determined by 
the buffer size, which is 16MB in our experiment. Thus the 
larger elmtcount the more small pieces of non-contiguous 
data are accessed by each process. 

When elmtcount is small, such as 4096, resonant 110 
would need to send requests for a large number of non­
contiguous data segments. Because each list 110 can contain 
at most 64 non-contiguous segments using the default list 
110 parameter, multiple Iist-I/O requests must be made by 
each agent process. This creates extra overhead for resonant 
110 as ROMIO collective 110 uses only four requests. Fig­
ure 9 shows that the 110 throughput of resonant 110 is a little 
lower than that of ROMIO collective 110 when elmtcount is 
4096. However, when elmtcount is increased, resonant 1/0 
yields higher throughput. Both read and write throughput 
peaks at elmtcount of 16K when the segment size equals the 
striping unit size and all the data requested by an agent pro­
cess arefor itself. For read the peak throughput is 101MB/s, 
an improvement of 157% over that of ROMIO collective 
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Figure 10. VO throughput of benchmark HPIO with varying 
segment sizes. 

VO, and for write the peak throughput is 96MB/s, an im­
provement of 97% over that of ROMIO collective VO . 

4.2.5 Benchmark HPIO 

The benchmark HPIO can generate various data access 
patterns by changing three parameters: region_count, re­
gion...spacing, and region...size [23) . In our experiment, we 
set region_count to 4096, region...spacing to 0, and vary re­
gion...size from 2K.B to 64KB . Using four MPI processes, 
the access pattern is similar to the one described for bench­
mark noncontig. Here the length of a column is fixed as 
regio/Lconnt (4096) and the width of a column varies from 
2K.B to 64K.B (powers of two times 2K.B). Each process 
reads its designated column with a collective call. Only one 
collective call is made in the benchmark. 

Compared with the 16MB data requested in one col­
lective call in noncontig, HPIO accesses much more data 
in one collective call, from 32MB to 1GB. This helps the 
benchmark to achieve a higher throughput and the high 
throughput is consistent across different region sizes, as we 
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Figure 11. Abso lute and relative throughput of resonant 110 
and ROMIO collective VO under different interference intensity. 
represented by length of the compute time between two consecutive 
lIO calls in mpi-io- resl . 

compare Figures 9 and 10. Resonant I/O provides even 
higher throughput by rearranging requests to an VO node, 
and produces a resonance peak at a region size of 64KB. 

4.3 Resonant I/O Under Interference 

In this section we study the impact of interference due to 
external competing VO requests on the performance of res­
onant VO . For comparison we also show the impact of in­
terference on ROMIO collective I/O. We run two programs, 
the demonstration program, denoted by demo, and mpi-io­
test, which concurrently access their respective files that are 
striped over the same set of I/O nodes. We use four paral­
lel processes for each program with 64KB segment size. In 
this experiment we consider mpi-io-test to be the source of 
interference with demo. To control intensity of inteference 
we insert a period of compute time between two consecutive 
I/O requests in mpi-io-test. Accordingly, the interference in­
tensity is quantitatively represented by the magnitude of the 
compute time. That is, the smaller the computer time the 
higher the interference. We also define a metric called rela­
tive throughput as the ratio of the throughput of the program 
under interference and the throughput of the program with 

10 

compute TIme (ms) 



exclusive access to the same storage system. We measure 
both absolute throughput and relative throughput of demo 
and mpi-io-test with inter-call compute time ranging from 1 
second to 0 seconds using resonant I/O and ROMIO collec­
tive VO , respectively (see Figure II). 

For the demo program, the relative throughput of res­
onant VO drops from 0.90 to 0.43 as the compute time de­
creases from I second to O. In contrast, the relative through­
put of ROMIO collective VO drops from 0.98 to 0.47. The 
relative throughput of resonant VO drops at a greater rel­
ative rate, which demonstrates that resonant VO is more 
sensitive to interference because sequential request-service 
order is more difficult to retain with increasingly high in­
terference from concurrently VO requests. However, even 
when there is no compute time between two consecutive VO 
calls (indicating the highest interference intensity), in mpi­
io-test, resonant VO still achieves an absolute throughput of 
48MB/s for demo, which is more than twice the throughput 
of ROMIO collective VO (22MB/s). Meanwhile, when the 
interference intensity is the highest, mpi-io-test could poten­
tially reduce the throughput of demo by at least half. From 
this perspective, the relative throughput of resonant VO for 
demo, which is 0.43, can be deemed quite acceptable. This 
result shows that the effort at the application/runtime level 
to maintain preferred request arrival order still help to im­
prove disk scheduling efficiency even when the competing 
load on the disk system is high and there are many pending 
requests for the disk scheduler to reorder. 

For mpi-io-test, the relative throughput also drops but at a 
relatively moderate rate with the increase in interference in­
tensity. Higher interference intensity means more VO time 
in the program's run time, and the VO time could be at least 
doubled when mpi-io-test runs concurrently with demo in 
comparison to when it has exclusive use of the VO subsys­
tem. Here the relative throughput of resonant VO is slightly 
higher than that of ROMIO collective VO. The rising curves 
representing absolute throughput of mpi-io·test are due to 
its increasing VO demand as its compute time is reduced. 

4.4 Scalability of Resonant I/O 

In this section we study the scalability of resonant VO in 
a production system environment, the Itanium 2 Cluster at 
Ohio Supercomputer Center, which has 110 compute nodes 
and 16 storage nodes, each with 4 GB of memory, running 
the PVFS2 file system. We ran benchmark mpi-io-test with 
10GB file size and 1MB segment size with different num­
bers of processes, each on a different processor, to a maxi­
mum of 64. Figure 12 shows VO throughput as a function 
of the number of compute nodes, relative to the throughput 
achieved on a single node, for benchmark mpi·io-test, for 
both resonant VO and ROMIO collective I/O. As shown, 
resonant VO is as scalable as ROMIO collective VO. Be­
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Figure 12. 110 throughput as a function of the number of com· 
pute nodes, relative to a single node, for benchmark mpi·;o·resr. 

cause the quantity of data requested in a collective-VO call 
is proportional to the number of processes, the VO through­
put increases with the number of processes to the limit of 
the storage system at 32 processes. When the performance 
of the storage system becomes a bottleneck, efficient use 
of the disk-based system becomes critical, which explains 
the performance advantage of resonant I/O over the ROMIO 
collective I/O when the number of processes is larger than 
32 . In general, both resonant VO and ROMIO collective VO 
scale well in our experiment. In addition, we note that the 
program shared the VO nodes with other concurrently run­
ning programs during its execution . As the measurements 
show, the concurrent I/O requests from other programs do 
not negate the effects of resonant VO arranging a preferred 
access order for a higher VO throughput. This is because 
the requests belonging to a collective VO, implemented as 
resonant VO, still arrive at the VO system in a bursty fashion 
and so retain their preferred order. 

5 Conclusions and Future Work 

We have proposed, designed, and implemented a 
new collective VO scheme, resonant //0, that makes 
resonance-a phenomenon describing the increase in per­
fonnance when there is a match between request patterns 
and data striping patterns-a common case. Resonant 
VO makes the client-side implementation of collective VO 
aware of the VO configuration in its rearrangement of re­
quests without compromising the portability of client-side 
middleware and the flexibility of server-side configuration. 
Our experimental results show significant increases-up to 
157%-in VO throughput for commonly used parallel VO 
benchmarks. Resonant VO demonstrated advantages both 
at scale, and in the presence of competition for VO services. 
Finally, resonant VO has not been observed to substantially 
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