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ABSTRACT

The use of generalized polynomial chaos (gPC) expansions is investigated for uncertainty
quantification in radiation transport. The gPC represents second-order random processes in terms
of an expansion of orthogonal polynomials of random variables and is used to represent the
uncertain input(s) and unknown(s). We assume a single uncertain input—the total macroscopic
cross section—although this does not represent a limitation of the approaches considered here. Two
solution methods are examined: The Stochastic Finite Element Method (SFEM) and the Stochastic
Collocation Method (SCM). The SFEM entails taking Galerkin projections onto the orthogonal
basis, which, for fixed source problems, yields a linear system of fully-coupled equations for the
PC coefficients of the unknown. For k-eigenvalue calculations, the SFEM system is non-linear and
a Newton-Krylov method is employed to solve it. The SCM utilizes a suitable quadrature rule to
compute the moments or PC coefficients of the unknown(s), thus the SCM solution involves a
series of independent deterministic transport solutions. The accuracy and efficiency of the two
methods are compared and contrasted. The PC coefficients are used to compute the moments and
probability density functions of the unknown(s), which are shown to be accurate by comparing
with Monte Carlo results. Our work demonstrates that stochastic spectral expansions are a viable
alternative to sampling-based uncertainty quantification techniques since both provide a complete
characterization of the distribution of the flux and the k-eigenvalue. Furthermore, it is demonstrated
that, unlike perturbation methods, SFEM and SCM can handle large parameter uncertainty.
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1. INTRODUCTION

We explore the use of stochastic transport formulations to quantify the uncertainty in the particle
flux and, if fission is present, the k-eigenvalue, resulting from random uncertainties in input
parameters such as cross sections. Given a stochastic representation of the input parameter,
solution of the transport equation yields a stochastic characterization of the unknown(s) from
which quantitative measures of output uncertainty (standard deviations, cumulative and
probability density functions) can, in principle, be obtained. Sampling-based methods, where
solutions are generated for individual realizations of the input parameters to construct a
statistically significant sample space of outputs, are the easiest to implement but are also
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computationally the most expensive. For practical computational purposes, the infinite
dimensional probability space setting of phase-space random processes such as the particle flux
must be replaced by a finite dimensional space using appropriate dimension reducing techniques.

Truncated spectral representations of random inputs and outputs in terms of random orthogonal
basis functions, particularly the so-called polynomial chaos expansions [3, 11], are powerful
dimension reducing methods that are endowed with strong convergence properties which enables
high accuracy to be achieved at much lower cost than sampling methods. The problem then
reduces to developing and solving a finite number of deterministic equations for the expansion
coefficients. In this work, we contrast two different stochastic projection methods to obtain the
equations for the expansion coefficients: (i) Galerkin projection, also known as the stochastic
finite element method (SFEM), which leads to a system of coupled transport-like equations, and
(ii) averaging by standard or specially constructed quadrature rules, also known as the stochastic
collocation method (SCM), which leads to independent transport equations. The SFEM and SCM
approaches are widely used in modeling system response to random parametric excitations in
diverse applications [1, 3, 5, 10, 11] but have been largely overlooked in radiation transport
applications (see, however [2, 9]).

Our goal is to develop these methods for quite general random variations in physical parameters
for both fixed source and k-eigenvalue calculations. The stochastic spectral approach is
demonstrated on a one group transport problem with a single random cross section that has a
prescribed probability distribution. Application to both the fixed source and the k-eigenvalue
problems is demonstrated. After a brief discussion of the polynomial chaos expansion of random
processes, the SFEM and SCM methods are applied to a specific transport problem. Numerical
results are then presented for the mean, standard deviation and probability distribution of the
scalar flux or k-eigenvalue.

2. POLYNOMIAL CHAOS EXPANSIONS

Wiener [8] first demonstrated rigorously that any second-order random process could be
expanded in a convergent sequence of Gaussian random variables using multidimensional
Hermite polynomials as a basis and named this representation “Homogeneous Chaos”. Much
later this expansion made possible the numerical computation of the response of complex
physical systems to Gaussian distributed random excitations in model parameters and inputs, and
culminated in the stochastic finite element method (SFEM) of Ghanem and Spanos [3]. Xiu and
Karniadakis [11] subsequently extended this approach to allow a broader class of orthogonal
polynomial bases and developed the so-called “generalized Polynomial Chaos” (gPC) expansion.
They specifically showed, in the context of structural mechanics and CFD applications, that if the
distribution function of the excitation was identical to the weight function of a classical
orthogonal polynomial belonging to the Askey family [4], then a generalized expansion
constructed from these random polynomials was convergent and the SFEM method could be
readily adapted to handle uncertainty distributions other than Gaussian. The Askey scheme, along
with their corresponding random variable distributions and support, are listed in Table I. As can
be seen, the gPC of the Hermite type reduces to Wiener’s original homogeneous chaos.

If I, are Askey polynomials of order p and (;, are their corresponding random variables, the gPC
expansion of a second-order random process indexed by phase space coordinates §'is given
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Table I. Continuous Wiener-Askey Polynomial Chaoses and their Underlying Random Variables
and Corresponding Weight Functions

Wiener-Askey Chaos | Random Variables Weight Function Support
{2(¢)} ¢ w(¢)
2
Hermite Gaussian #6_% (—o0, )
Laguerre gamma Ql:(l(f)—c [0, 0)
; (at+p+2)(1-0)*(1+¢)"
Jacobi beta 20;"3(,)_0)1““&1)1,(“1) [a, b]
Legendre uniform =) [a,b]
by [11]:
X( )_CO (DIO—}_ZCH (T)Il Cn
i1=1
K 4
+ Z Z Ciyia (@)12(Cir» Gip) +
t1=114s=1
ip_1
+ Z Z Ciy..ip _)IP Gy - '7Cil’) (D
21=1 tp=1

where w denotes a member of the random event space, or a realization and ¢;, _;,.(¢) are
deterministic expansion coefficients that carry the phase space dependence. This expansion can
be rewritten in a more compact notation as

M
=Y a@:({¢:}) 2)

i=0

where the ¢;(¢) and ®;({(,}) denote various combinations of c;,._;, and I,,(¢,, - - ., G, ). Invoking
the orthogonality of the basis functions, the expansion coefficients in Eq. 2 are given by:

v 4 219
5D = a0 H
where we have introduced the inner product
(70960 = [ FQ9(w(c)de. @)

The weight function w(() in the above definition of the inner product is the weight function
associated with the particular choice of Askey polynomials used. As, by definition, it is also the
probability distribution function for the random variable, it follows that the inner product
(f(¢),g(Q)) is equivalent to the mathematical expectation of f(¢) g().
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3. APPLICATION OF GPC TO THE TRANSPORT EQUATION
3.1. Fixed Source Problem

We now apply the gPC method to a steady-state, mono-energetic, fixed source homogeneous
medium transport problem with a random total cross section. The appropriate random transport
equation is given by:

o(x, p; w)
H oz

where ¢ (z, p1; w) is the random angular flux and otherwise standard notation is used. Appropriate
boundary conditions on the free surfaces are assumed. The uncertain input parameter is assumed
to be the total cross section, with a known probability distribution function belonging to the
Askey scheme, and the mean number of secondaries ¢ is assumed nonrandom. Thus we are
assuming that the uncertainty exists only in the atomic density. This model of input randomness is
adopted here for illustration only and does not constitute a limitation of the approach. The angular
flux and total cross section are first expanded in terms of the appropriate random polynomials, the
gPC expansion, formally expressed as:

Fo(Whb(a, p5w) = o(w) 58(z;w) + Qe ) 5)

Y(z, pw) = Zwi(:v-,u)@i(C(w)) (6a)
P,

ow) = D o;®i(C(W)), (6b)
j=0

where o; is known since the distribution of the cross section is known and the expansion
coefficients ¢;(z, pu) represent deterministic unknowns. We describe two approaches for obtaining
equations for these coefficients. In one, the gPC expansion given in Egs. 6 is first substituted into
the transport equation:

P P,

MZ&/Q—“ )+ 323t s ) =
33 )i ((@), (C() + Q). (D)
=0 7=0

Projections are then taken over suitable test functions to eliminate the random functions. This
procedure then yields the closed system of equations for the expansion coefficients 1y,
E=0,1,...8%

8 P
‘”+me/z=52ba¢i+qe, (=01,....P ®)

where by; = Zfio crj@—f)g;p—” and g = T’a@ = 040@. In view of the use of basis expansions and

projections over test functions in the random dimension, this approach is commonly referred to as
the stochastic finite element method or SFEM. It’s use enables a stochastic transport equation to
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be reduced to a system of (P + 1) fully-coupled deterministic equations for the expansion
coefficients ¢, (z, 1). As Eq. 8 resembles a system of coupled transport equations, not unlike
multigroup equations, standard numerical methods, direct or iterative, can presumably be
employed for numerical solution. Of interest then is the order P of the expansion that is necessary
to accurately describe the solution of the original random problem, with accuracy determined in
the sense of convergence of ensemble averages of the flux and/or its probability distribution.

An alternative approach to obtaining the expansion coefficients in Eq. 6a is to use quadrature to
evaluate the projections over the gPC polynomials. If the weight functions correspond to classical
orthogonal polynomials listed in Table I, appropriate Gaussian quadrature sets are available or can
be constructed to compute the projections with potentially high accuracy. From Eq. 3, we then
have for the /" moment of the flux:

M

W, (D€> 1
= ~ mq) m¥m- 9
e T N T 2 et ?

where v, (z, 1) is the angular flux corresponding to a deterministic value of the cross section o,
from the quadrature set appropriate to the cross section pdf, with w,, the associated weight and
@ the £t" order polynomial evaluated at the m*® abscissa. Like the SFEM method presented
earlier, the SCM method yields a deterministic transport problem but with the added advantage
that the equations for the angular fluxes {4, (z, ), = 1,2 - - M} are uncoupled. This
quadrature-based method of obtaining the coefficients is known as the Stochastic Collocation
Method or SCM.

Once the expansion coefficients have been obtained by either method, statistical realizations of
the angular flux can be generated by sampling the random polynomials in Eq. 6a. Ensemble
averages such as the mean and the variance can be constructed either by taking appropriate
projections of the gPC expansion

P n
(") = <<Z zpp(x,mcbp(w)) > (10)

where, from orthogonality of the basis functions ®,, we have, for instance, (¢)) = ¢, and
{(Y?) = Z;::o Y2 (x, p)(®5(w)), or directly by quadrature
M

@™ (2, 1)) = > wmtp (2, m)n=1,2,... (11)

m=1

Finally, benchmark solutions were obtained by solving Eq. 5 for a large number of cross section
realizations sampled from the total cross section pdf and performing suitable averages. As with

the SCM method, this Monte Carlo approach yields independent transport equations but unlike

the SCM method, all solutions are uniformly weighted in the averaging process.

In all three methods, the angular flux is approximated using the discrete ordinates or Sy method in
angle and a linear discontinuous finite element representation in space. The resulting discretized
system can be expressed as:

Ly = MSDY + § (12)
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where L is the streaming and removal operator, M is the moment-to-discrete operator, S is the
e o 5 R
scattering operator, D is the discrete-to-moment operator (i.e., D¢ = ¢), ¢ = [z,/;o .. .'wp] and

d=1[q-.. (j'p]T. In the SFEM case, the system of equations can be solved using an inexact block
Gauss-Seidel (IBGS) iteration in which there are (P + 1) blocks corresponding to the (P + 1)
flux moments or using a Krylov iterative method which can be preconditioned using this splitting.
The SCM involves solving a series of deterministic transport equations, which can be
accomplished using standard source iteration or a Krylov iterative method.

3.2. k-Eigenvalue Problem

We now apply the gPC to a mono-energetic k-eigenvalue problem, where the total cross section is
once again random:

“W + o(w)Y(z, g w) = %w) (C + %) $(z;w) (13)

where f is defined such that of(w) = fo(w) so that, once again, there is a single random input.
Eqgs. 6 are substituted into Eq. 13 along with the additional condition

1
if(_: Z(b/\ (14)

where k has been represented in terms of its inverse A = ;- in order to keep all of the basis
functions in the numerator. This yields:

Zcp e B 15 0, (i(z. ) = S01(@)) 0 =

=0 7=0

Taking a Galerkin projection onto the basis yields the following system of SFEM equations:

8¢£ -|-Zbe, ("4/)Z ) Z/\ Zfimz¢z> KZO""’P (16)

where by; = Zﬁo aj@—g%;b—") and fon; = Efio %;i—@{ﬁaj. Application of the angular and

spatial discretization refashions Eq. 16 in the form of a matrix equation

P
> (Lg—MSD Z Am ZMsﬂszw,, £=0,...,P (17)
i=0

where Ly; is the streaming and removal operator, M is the moment-to-discrete operator, Sy; and

S emi are the scattering and fission source matrices, respectively, and D is the

discrete-to-moment operator. Thus, in total there are 2/ N (P + 1) equations, where I is the

number of spatial cells and /V is the number of quadrature angles, while the solution vector,

Z=[0,---,%p, Aoy - -, AP,
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contains (2/ N + 1)(P + 1) unknowns. The additional (P + 1) equations can be obtained using
the normalization condition on the eigenfunction:

75 (i) (DF) =1 1)

where J is the exact eigenfunction and is a function of the random dimension. Since the norm of
@ is a deterministic quantity, Eq. 18 states that for each realization of the material, the Ly-norm of
the eigenfunction vector is unity. The eigenfunction can then be replaced by its PC expansion to

yield
P P T
> > (D) (D) @, =1. (19)

i=0 j=0

Projecting onto the basis then gives the final (P + 1) equations:

> (D4)" (D) @B, = 6. £=0,....P 20)

i=0 j=0

As can be seen in Eq. 17, the matrix equation is non-linear since both the eigenvalue and the
eigenfunction are unknown, therefore it is necessary to use a non-linear iterative solver such as
Newton-Raphson. The system of equations is first written in the form

F(Z) = [Fy(Z) - - - Fp(Z) Fpa(B)]T = 0

where 7 is the solution vector, and the Fj are given by

P P P

Fy(f) = > (La—MSuD)ghi— Y An > MSsmDi; (21a)
2730 . L ) m=0 1=0

Frad®@) = 33 (D) (D3)) (@:9,8) — bn (21b)

Il
o

z j=0

for ¢ =0, ..., P. The iteration then takes the form

J- 629 = _F(z9) 22)
D = 7)1 57 23)
where = is the iteration index and J;; = 7%

Newton-Raphson shows quadratic convergence near the solution point, but can diverge if the
initial guess is not sufficiently accurate. Here, the solution is initialized using SCM, although
there are other possible intializing algorithms. It is also possible to compute the PC coefficients of
k using SCM in the same manner that the PC coefficients of ¢ were computed in Eq. 9.
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4. NUMERICAL RESULTS
4.1. Fixed Source

To illustrate the stochastic spectral approach described above, we assume that the pdf of the total
cross section is given by the two-parameter gamma distribution:

1 aed o
P(o) = F(a)ﬁaa exp ( ﬂ) (24)
We set @ = 5 and 3 = 1 so as to obtain a cross section mean of 5 ¢cm ™" and a variance of 5 cm™2.
An attractive feature of this distribution is that the support is positive so that, unlike the Gaussian
distribution, negative cross sections cannot arise. Also, as can be seen in Fig. 1, the pdf is
unimodal and the parameters can be tuned to yield a symmetric or skewed distribution to cover a
range of uncertainty models.

o
|

[NV
n

L[ | B I 1}

o

===mean

0.1
0.1

005+
;

Qe L 1. h = !
0 2 4 6 8 10 12 14 16 18 20

Figure 1. Gamma Distribution for Various Values of o and /3

Shown in Fig. 2 are the mean and relative standard deviation of the scalar flux for an incident
beam on the left face of a 5 cm slab. Results were computed using Monte Carlo for 3.8934 x 10°
realizations to achieve a relative sample standard deviation of 1%, Gauss-Laguerre quadrature for
various quadrature orders M, and SFEM with Laguerre chaos for various PC orders £. As can be
seen, a PC order of P in SFEM is equivalent to a quadrature order of M = (P + 1), a result that
can be proven using matrix manipulation and numerical results, but which is not shown here.
Although the mean scalar flux is seen to converge at P = 7 and M = 8, the standard deviation
requires a higher order expansion or quadrature. A similar observation can be made for the pdf of
the scalar flux, as shown in Fig. 2(b) for several depths, generated using both Monte Carlo and PC
expansions. It is interesting to observe how rapidly the flux pdf becomes skewed with increasing
depth into the slab, requiring an expansion order of P = 31 before the PC-generated distributions
converge. The distributions also show a long tail towards flux values considerably larger than the
mean indicating the existence of a “transmission window” when random fluctuations in the total
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Figure 2. Scalar Flux: SFEM with a Laguerre Chaos expansion and SCM with Gauss-Laguerre
Quadrature (a« = 5, 8 =1, {o) =5.0cm™, v, = 5.0 cm~2, ¢ = 0.5)
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Table IL. IBGS Iteration Count and Run Time in Seconds: Average over 25 Runs for a Gamma Dis-
tributed Cross Section for SFEM with Laguerre Chaos and SCM with Gauss-Laguerre Quadrature

(=5, e=10"%

| Iteration Count Run Time (s)
P
e M || Richardson | GMRES(8) | BiCGStab || Richardson | GMRES(8) | BiCGStab
1 32 15 8 0.0116 0.014 0.0116
2 52 22 12 0.0072 0.0088 0.0076
3 54 25 13 0.0472 0.052 0.0444
4 104 43 25 0.0144 0.018 0.0156
0.5 7 112 52 32 0.288 0.2492 0.2432
' 8 208 83 49 0.0304 0.036 0.0316
15 242 112 62 1.6896 1.352 1.1996
16 415 158 92 0.0624 0.0732 0.064
31 466 199 NC 9.214 6.372 NC
32 827 298 174 0.138 0.151 0.135
1 1267 117 51 0.4424 0.0976 0.0628
2 2321 198 60 0.302 0.0712 0.0308
3 1385 201 89 1.1768 0.4004 0.272
4 4674 397 141 0.609 0.143 0.0716
0.99 | 7 1537 338 158 3.8676 1.588 1.1628
8 9531 152 293 1.24 0.273 0.15
15 1529 560 217 10.3232 6.606 4.0132
16 19630 1450 618 2.57 0.533 0.321
31 1516 626 NC 29.9836 19.7056 NC
32 40593 2700 1229 5.33 0.999 0.652

cross section are allowed. Also, it will be noted that the flux appears to be nonrandom near the
incident boundary, as reflected in the moments plot and the very peaked pdf plot. This can be
attributed to the fact that the flux in 1D slab geometries depends only on the optical depth
variable, into which all randomness is subsumed and which is zero at the surface. There is a
residual dependence on the optical thickness of the slab which is random but which, in our
example, is sufficiently large as to have a negligible effect.

Table II shows iteration counts and run times given as an average over 25 runs for this same test
case. An inexact block Gauss-Seidel splitting is employed and three different iteration schemes
are tested: Richardson iteration and two Krylov methods, restarted generalized minimum residual
(GMRES(n)) and bi-conjugate gradient stabilized (BiCGStab). For both SFEM and SCM, the
iteration counts given are totals. Thus, for the SCM quadrature solution, the count is the total
number of deterministic transport iterations for all quadrature abscissas. For the SFEM solution,
the count is the total number of iterations for the coupled SFEM equations. As can be seen, larger
iteration counts, hence larger run times, are required for larger scattering ratios, as expected in a

10/15
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transport setting when the material becomes more diffusive. Since the SCM involves a series of
deterministic transport computations, for which convergence is strongly influenced by the
scattering ratio, the iteration count per quadrature point varies only slightly with quadrature order
and variance and the run time per transport computation remains constant provided ¢ does not
change. On the other hand, for SFEM, the runtime per iteration more than doubles each time the
number of PC coefficients doubles. Although there are always fewer SFEM iterations than SCM
iterations, each SFEM iteration involves inverting a much larger matrix, and is therefore more
computationally extensive. Therefore, without exception, an M -term SCM quadrature solution
always runs in a shorter time than an SFEM solution for P = (M — 1). Since these solutions are
equivalent, SCM is shown to be the more efficient solution method when there is a single random
variable.

4.2. k-Eigenvalue

Numerical results were obtained for a critical reactor with uncertain macroscopic cross sections.
The test problem was taken from an analytical benchmark test set originally intended for
criticality code verification [7]. The system is a bare slab reactor composed of uranium dioxide
with material parameters v = 1.70, oy = 0.054628 cm™!, 0, = 0.027314 cm™!, o, = 0.464338
cm~! and o, = 0.54628 cm~!. The analytic critical size of the reactor is given as 20.74213 cm

in [7]. Using 100 spatial cells and 32 discrete ordinates, by trial and error the critical size was
found to be 20.742942196391 cm. Using this critical size and the mean cross sections listed
previously, the total cross section is assumed to be randomly distributed according to a known pdf.

Table III. Iteration Counts, Run Times and Errors for the SCM and a Single SCM-initialized
SFEM Iteration in a Multiplying Material: Uniform Random Variable and Legendre Chaos (SCM
tolerance = 107%)

SCM Initialize SFEM

% PC | M | GMRES(8) | runtime (s) | || Fscoum |2 | GMRES(25) | runtime (s) | || Fsrem |2
1 2 102 0.217 3.2355e-04 20 0.723875 2.6288e-07

3 4 211 0.45 3.0228e-04 39 5.9535 2.3297e-07

: 7 8 420 0.904 3.2456e-04 90 60.283 2.5748e-07
15 | 16 847 1.8 3.2652e-04 125 536.956 1.9739e-07

1 2 108 0.228 2.2224e-03 21 0.7538 1.4410e-06

3 4 214 0.457 1.3736e-03 98 9.4105 8.5795e-07

% 7 8 433 0.924 4.3315e-04 187 130.33 4.8508e-07
15 | 16 862 1.84 4.2298e-04 253 1148.068 5.2655e-07

We first compare the accuracy and computational efficiency of SCM-initialized Newton’s method
for SFEM and SCM for this problem. Table III shows iteration counts, run times and Ly-Norms of
F for the SCM initialization and a single Newton-Krylov SFEM iteration. The SCM initialization
produces a solution with || Fscy [|2 on the order of 1073 or 10~* in all cases. A single
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-8 L _— - ‘ — - =
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log1 0(tolcra.uce)

Figure 3. || Fscy |2 as a Function of Tolerance for Various PC Orders (Solid Lines: ‘Q’? =1,
: Ve 1
Dashed Lines: = %)

Newton-Krylov SFEM iteration then produces an | Fspgy |2 on the order of 1076 or 1077, Note,
however, that these are L, norms—the individual elements of Fgcy and Fspgy are generally
smaller than the norm.

In the previous section, it was shown that SCM using a quadrature order of M is equivalent to
SFEM using a PC order of P = (M — 1). The same cannot be said for multiplying media due to
the non-linear nature of the SFEM equations. As can be seen in Fig. 3, the size of || Fscy [|2 is
strongly dependent on the tolerance set for the power iteration used to compute the k-eigenvalue

and the inner source iteration used to compute the flux updates. For ‘{;’? = %, as the tolerance

decreases, || Fscum ||2 decreases as well and is on the order of 10~® for a tolerance of 1072 for

P = 7 and 15. However, for P = 1 and 3, || Fscu |2 is approximately 10~* and 102,
respectively. Even with a very small tolerance, || Fscy ||2 is quite large for small P, indicating
that SCM with a quadrature order of M = (P + 1) is not in fact equivalent to SFEM with a PC
order of P. (In comparison, consider that if o'y and v are set to zero and a volume source is placed
in the system, SCM with a quadrature order of A = (P + 1) yields || Fscu ||2 on the order of
1072 or 10713 for P = 1, 3, 7 and 15.) However, the fact that || Fscy |2 gets very small for

P =7 as the tolerance gets small indicates that the solution is essentially converged and that the
two methods do eventually converge to the same answer, as would be expected. Similar

conclusions can be drawn for ‘(/g = —\1@ although clearly the solution does not converge as

quickly as it does for the smaller variance.
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Table IV. Runtime for SCM for M = (P +1) in seconds: Uniform Random Variable and Legendre

Chaos (‘(ﬁ’? =3

|tolerance P= I P=3 l P=T| P=15

1073 0.08 | 0.16 | 0.39 0.64
1076 | 0217 | 045 | 0.904 1.8
ks g 036 | 076 | 1.44 2.9
-1 066 | 129 | 2.58 5.04

Table V. Gamma Distribution: Mean and standard deviation of the k-eigenvalue calculated using
M -dimensional Gauss-Laguerre quadrature and Monte Carlo with 10° realizations (o = 5, %22 =

1 > (o)
v

M (P) 2(1) 4(3) 8(7) 16 (15) 32(31) Monte Carlo
mean | 9.6224972e-01 | 9.5207180e-01 | 9.5190828e-01 | 9.5191928e-01 | 9.5191913e-01 || 9.5179068e-01
stdev | 7.4869877e-02 | 1.1745105e-01 | 1.2343850e-01 | 1.2331635e-01 | 1.2331795e-01 || 1.2346672¢e-01

V—Mon!cCarln
7 —PCx=1l
e PC =3

---pC=15
-~ PC=31
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'
1
e
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m .
1 1.2 13

Figure 4. PDF of the k-eigenvalue: Laguerre Chaos expansion of the Gamma Distribution (‘/”_;' =

(o
1
)
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In Table I'V, run times are also shown for \(/j): = é (run times are almost identical for ‘@’? = \};
and are therefore not shown) for various tolerances and PC orders. Although it is much more
expensive to use a smaller tolerance in SCM, it is not nearly as expensive as doing even a single
SFEM Newton-Krylov iteration. Although doing that SFEM iteration does produce more accurate
results for P = 1 and 3, these solutions are not converged therefore there is little point in doing
the extra work.

Table V shows the mean and standard deviation of the k-eigenvalue computed using the PC
coefficients of k, up to order P, which were computed using SCM with a quadrature order of

M = (P + 1). As can be seen, the SCM yields accurate results with respect to Monte Carlo and,
as in the fixed source case, the mean converges for smaller gPC and SCM quadrature order than
the standard deviation does. Fig. 4 shows the distribution of the k-eigenvalue for the same gamma
distribution used in Fig. 2, albeit for a different 4. The pdf was computed by sampling the random
variable, computing k from its PC expansion and tabulating the results. As can be seen, the gPC
agrees well with the Monte Carlo.

5. CONCLUSIONS

In small scale applications for independent, uncorrelated random variables, such as those
explored, the use of gPC expansions is shown to be efficient and effective. The SCM was also
shown to be much more efficient than the SFEM, yielding comparable results for M = (P + 1) at
a fraction of the cost. In addition, the SCM requires a series of independent deterministic
transport computations and can therefore be ‘wrapped around’ an existing transport code,
requiring no modification to the tranport computation itself. SFEM, on the other hand, produces a
coupled system of transport equations and its solution requires an entirely new algorithm. In
multiplying media, the SFEM equations are nonlinear and even a single Newton-Krylov iteration
is far more time-consuming than an SCM initialization, which can achieve a high level of
accuracy quite cheaply.

In small scale applications for independent, uncorrelated random variables, such as those
explored, the use of gPC expansions is efficient and effective. The advantage to using gPC
expansions to represent problem outputs is that those quantities can be completely characterized
using the gPC coefficients. Thus, a relatively small dataset contains all of the information
necessary to construct pdfs and cdfs, define responses of specific outputs to inputs, and compute
statistical moments. In short, it is capable of producing the same results as sampling-based
approaches and can additionally handle large uncertainties unlike the perturbation methods
typically employed in nuclear applications for uncertainty quantification. The disadvantage is
that, in order to extract anything more than the moments of the output, it is necessary to sample
the random variables involved. Thus post-processing can be quite computationally demanding,
although not as demanding as conducting a Monte Carlo simulation on the entire system.
Furthermore, computationally demanding analyses such as risk assessments for nuclear reactors
and the Department of Energy’s nuclear waste repository in Yucca Mountain can require 10s to
100s of uncertain inputs, which may in addition be correlated [6]. As the number of dimensions
increases, the number of quadrature points required by SCM and the number of terms in the gPC
expansion increase rapidly. If the variables are correlated, it is possible to use principal
component analysis to reduce the number of random variables. Even so, it may be that an
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optimized multi-dimensional sampling method such as Latin Hypercube, which is already in
widespread use for problems of this sort, may be more efficient than SCM for large-scale
applications. It would be enlightening to conduct an analysis on a real-world system of this scale.
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