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ABSTRACT 

The use of generalized polynomial chaos (gPC) expansions is investigated for uncertainty 
quantification in radiation transport. The gPC represents second-order random processes in terms 
of an expansion of orthogonal polynomials of random variables and is used to represent the 
uncertain input(s) and unknown(s). We assume a single uncertain input- the total macroscopic 
cross section- although this does not represent a limitation of the approaches considered here. Two 
solution methods are examined: The Stochastic Finite Element Method (SFEM) and the Stochastic 
Collocation Method (SCM). The SFEM entails taking Galerkin projections onto the orthogonal 
basis, which, for fixed source problems, yields a linear system of fully -coupled equations for the 
PC coefficients of the unknown. For k-eigenvalue calculations, the SFEM system is non-linear and 
a Newton-Krylov method is employed to solve it. The SCM utilizes a suitable quadrature rule to 
compute the moments or PC coefficients of the unknown(s), thus the SCM solution involves a 
series of independent deterministic transport solutions. The accuracy and efficiency of the two 
methods are compared and contrasted. The PC coefficients are used to compute the moments and 
probability density functions of the unknown(s), which are shown to be accurate by comparing 
with Monte Carlo results. Our work demonstrates that stochastic spectral expansions are a viable 
alternative to sampling-based uncertainty quantification techniques since both provide a complete 
characterization of the distribution of the flux and the k-eigenvalue. Furthermore, it is demonstrated 
that, unlike perturbation methods, SFEM and SCM can handle large parameter uncertainty. 

Key Words: Radiation Transport, Uncertainty Quantification, Polynomial Chaos Expansions 

1. INTRODUCTION 

We explore the use of stochastic transport formulations to quantify the uncertainty in the particle 
flux and, if fission is present, the k-eigenvalue, resulting from random uncertainties in input 
parameters such as cross sections. Given a stochastic representation of the input parameter, 
solution of the transport equation yields a stochastic characterization of the unknown(s) from 
which quantitative measures of output uncertainty (standard deviations, cumulative and 
probability density functions) can, in principle, be obtained. Sampling-based methods, where 
solutions are generated for individual realizations of the input parameters to construct a 
statistically significant sample space of outputs, are the easiest to implement but are also 
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computationally the most expensive. For practical computational purposes, the infinite 
dimensional probability space setting of phase-space random processes such as the particle flux 
must be replaced by a finite dimensional space using appropriate dimension reducing techniques. 

Truncated spectral representations of random inputs and outputs in terms of random orthogonal 
basis functions, particularly the so-called polynomial chaos expansions [3, 11], are powerful 
dimension reducing methods that are endowed with strong convergence properties which enables 
high accuracy to be achieved at much lower cost than sampling methods. The problem then 
reduces to developing and solving a finite number of deterministic equations for the expansion 
coefficients. In this work, we contrast two different stochastic projection methods to obtain the 
equations for the expansion coefficients: (i) Galerkin projection, also known as the stochastic 
finite element method (SFEM), which leads to a system of coupled transport-like equations, and 
(ii) averaging by standard or specially constructed quadrature rules, also known as the stochastic 
collocation method (SCM), which leads to independent transport equations. The SFEM and SCM 
approaches are widely used in modeling system response to random parametric excitations in 
diverse applications [1,3,5, 10, 11] but have been largely overlooked in radiation transport 
applications (see, however [2,9]). 

Our goal is to develop these methods for quite general random variations in physical parameters 
for both fixed source and k-eigenvalue calculations. The stochastic spectral approach is 
demonstrated on a one group transport problem with a single random cross section that has a 
prescribed probability distribution. Application to both the fixed source and the k-eigenvalue 
problems is demonstrated. After a brief discussion of the polynomial chaos expansion of random 
processes, the SFEM and SCM methods are applied to a specific transport problem. Numerical 
results are then presented for the mean, standard deviation and probability distribution of the 
scalar flux or k-eigenvalue. 

2. POLYNOMIAL CHAOS EXPANSIONS 

Wiener [8] first demonstrated rigorously that any second-order random process could be 
expanded in a convergent sequence of Gaussian random variables using multidimensional 
Hermite polynomials as a basis and named this representation "Homogeneous Chaos". Much 
later this expansion made possible the numerical computation of the response of complex 
physical systems to Gaussian distributed random excitations in model parameters and inputs, and 
culminated in the stochastic finite element method (SFEM) of Ghanem and Spanos [3]. Xiu and 
Karniadakis [11] subsequently extended this approach to allow a broader class of orthogonal 
polynomial bases and developed the so-called "generalized Polynomial Chaos" (gPC) expansion. 
They specifically showed, in the context of structural mechanics and CFD applications, that if the 
distribution function of the excitation was identical to the weight function of a classical 
orthogonal polynomial belonging to the Askey family [4], then a generalized expansion 
constructed from these random polynomials was convergent and the SFEM method could be 
readily adapted to handle uncertainty distributions other than Gaussian. The Askey scheme, along 
with their corresponding random variable distributions and support, are listed in Table I. As can 
be seen, the gPC of the Hermite type reduces to Wiener's original homogeneous chaos. 

If Ip are Askey polynomials of order p and (ip are their corresponding random variables, the gPC 
expansion of a second-order random process indexed by phase space coordinates if is given 
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Table I. Continuous Wiener-Askey Polynomial Chaoses and their Underlying Random Variables 
and Corresponding Weight Functions 

Wiener-Askey Chaos Random Variables Weight Function Support 
{<P(()} 

Hermite 

Laguerre 

Jacobi 

Legendre 

<; 

Gaussian 

gamma 

beta 

uniform 
-­

w(() 
<2

1 -,­
,J21re 

( ",-le-< 
r (a) 

r (a+tJ+2)(1-()0 (H()P 
2o +il (b-a)r(a+l)I'(tJ+l) 

1 
(b-a) 

--­

(-00,00) 

[0,00) 

[a,b] 

[a,b] 

by [11]: 

K 

x(q, w) = CO(if) Io + L c;l (if) II ((it) 
il=1 

K il 

+ L L CiIi2 (if) 12 ((il ,(i2) + ... 
il = 1 i2=1 

K ip-l 

+ L' . . L c;l .. .ip(if)Ip((ill···' (ip) (1) 
il=1 ip=1 

where w denotes a member of the random event space, or a realization and c;l ...ip (if) are 
deterministic expansion coefficients that carry the phase space dependence. This expansion can 
be rewritten in a more compact notation as 

M 

X(w) = L c;(if) <I\( {(r }). (2) 
i=O 

where the c; (if) and <Pi ( {(r} ) denote various combinations of c;! ...i p and Ip( (ii , ... , (i p ) ' Invoking 
the orthogonality of the basis functions, the expansion coefficients in Eq. 2 are given by: 

Cj(if) = (X, <Pj(()) (3)
(<p; (()) 

where we have introduced the inner product 

U(() ,g(()) = Jf(()g(()w(()d(. (4) 

The weight function w(() in the above definition of the inner product is the weight function 
associated with the particular choice of Askey polynomials used. As, by definition, it is also the 
probability distribution function for the random variable, it follows that the inner product 
U(() ,g(()) is equivalent to the mathematical expectation of f (() g(() . 
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3. APPLICATION OF GPC TO THE TRANSPORT EQUATION 

3.1. Fixed Source Problem 

We now apply the gPC method to a steady-state, mono-energetic, fixed source homogeneous 
medium transport problem with a random total cross section. The appropriate random transport 
equation is given by: 

f-L 8'IjJ (x~ f-L ;w) + a(w)'IjJ(x, f-L ;w) = a(w) ~ 4> (x ; w) + Q(x, f-L) 	 (5) 

where 'IjJ(x, f-L; w) is the random angular flux and otherwise standard notation is used. Appropriate 
boundary conditions on the free surfaces are assumed. The uncertain input parameter is assumed 
to be the total cross section, with a known probability distribution function belonging to the 
Askey scheme, and the mean number of secondaries c is assumed nonrandom. Thus we are 
assuming that the uncertainty exists only in the atomic density. This model of input randomness is 
adopted here for illustration only and does not constitute a limitation of the approach. The angular 
flux and total cross section are first expanded in terms of the appropriate random polynomials, the 
gPC expansion, formally expressed as: 

p 

'IjJ(x, f-L ; w) = L 'ljJi(X, f-L )<Pi(((W)) 	 (6a) 
i=O 

P'7 

a(w) = 	 L aj <Pi(((W)), (6b) 
j=O 

where aj is known since the distribution of the cross section is known and the expansion 
coefficients 'ljJi (X, f-L ) represent deterministic unknowns. We describe two approaches for obtaining 
equations for these coefficients. In one, the gPC expansion given in Eqs. 6 is first substituted into 
the transport equation: 

P 8'IjJ .() P P'7 


f-L L ~8~' f-L <Pi(((W)) + LL'ljJi(x, f-L )aj <Pi(((w)) <Pj(( (w)) = 

i=O i=O j=O 


P P'7 

~ 	L L 4>i(x)aj <Pi (((w) <Pj (((w)) + Q(x, f-L ). (7) 
i=O j=O 

Projections are then taken over suitable test functions to eliminate the random functions. This 
procedure then yields the closed system of equations for the expansion coefficients 'ljJe , 
e= 0, 1, . . . P: 

8'IjJe P P 

f-L 8x + L bei'IjJi = ~ L bei 4>i + qe, e= 0, 1, .. . , P (8) 
i=O i=O 

",P'7 (<I>i<I>i<I>e) d (<I>eQ) A Q I' f th f b . . dwereh bei = L...J j=O aj (<I>;) an q£ = (<I>~) = ueo . n view 0 e use 0 aSls expanSIOns an 
projections over test functions in the random dimension, this approach is commonly referred to as 
the stochastic finite element method or SFEM. It 's use enables a stochastic transport equation to 
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be reduced to a system of (P + 1) fully-coupled deterministic equations for the expansion 
coefficients 'l/;e (x , /-L ). As Eq. 8 resembles a system of coupled transport equations, not unlike 
multigroup equations, standard numerical methods, direct or iterative, can presumably be 
employed for numerical solution. Of interest then is the order P of the expansion that is necessary 
to accurately describe the solution of the original random problem, with accuracy determined in 
the sense of convergence of ensemble averages of the flux and/or its probability distribution. 

An alternative approach to obtaining the expansion coefficients in Eq. 6a is to use quadrature to 
evaluate the projections over the gPC polynomials. If the weight functions correspond to classical 
orthogonal polynomials listed in Table I, appropriate Gaussian quadrature sets are available or can 
be constructed to compute the projections with potentially high accuracy. From Eq. 3, we then 
have for the gth moment of the flux: 

M 

nl. ('1/;, <pe) _1_ 2::: wm <P e,m'IjJm ' (9)
lYe = IX-~) 

r-.J 

( <p~) m=lr-.J 

where 'ljJm(x, /-L) is the angular flux corresponding to a deterministic value of the cross section crm 
from the quadrature set appropriate to the cross section pdf, with Wm the associated weight and 
<Pe,m the gth order polynomial evaluated at the m th abscissa. Like the SFEM method presented 
earlier, the SCM method yields a deterministic transport problem but with the added advantage 
that the equations for the angular fluxes {'I/;m(x, /-L ), m = 1,2·· . M } are uncoupled. This 
quadrature-based method of obtaining the coefficients is known as the Stochastic Collocation 
Method or SCM. 

Once the expansion coefficients have been obtained by either method, statistical realizations of 
the angular flux can be generated by sampling the random polynomials in Eq. 6a. Ensemble 
averages such as the mean and the variance can be constructed either by taking appropriate 
projections of the gPC expansion 

(10)W) ~ ( (t, ,pp(x, IL)4'P(W) ) ") 

where, from orthogonality of the basis functions <Pp , we have, for instance, ('IjJ) = '1/;0 and 
('ljJ2) = "L:=o '1/;; (x , /-L)(<p; (w)) , or directly by quadrature 

M 

('ljJn(x, /-L )) ~ 2::: wm'l/;;;'(x , /-L ), n = 1, 2, ... (11) 
m = l 

Finally, benchmark solutions were obtained by solving Eq. 5 for a large number of cross section 
realizations sampled from the total cross section pdf and performing suitable averages. As with 
the SCM method, this Monte Carlo approach yields independent transport equations but unlike 
the SCM method, all solutions are uniformly weighted in the averaging process. 

In all three methods, the angular flux is approximated using the discrete ordinates or SN method in 
angle and a linear discontinuous finite element representation in space. The resulting discretized 
system can be expressed as: 

Lf = MSDf + q (12) 
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where L is the streaming and removal operator, M is the moment-to-discrete operator, S is the 

scattering operator, D is the discrete-to-moment operator (i .e., Df = ¢), ,,;; = [";;o . .. ";;p] T and 

if = [ifo· .. £]pr ·In the SFEM case, the system of equations can be solved using an inexact block 
Gauss-Seidel (lBGS) iteration in which there are (P + 1) blocks corresponding to the (P + 1) 
flux moments or using a Krylov iterative method which can be preconditioned using this splitting. 
The SCM involves solving a series of deterministic transport equations, which can be 
accomplished using standard source iteration or a Krylov iterative method. 

3.2. k-Eigenvalue Problem 

We now apply the gPC to a mono-energetic k-eigenvalue problem, where the total cross section is 
once again random: 

a'ljJ(x, p;w) CJ (w) ( vj ) 
p '" + CJ (w)'ljJ(x, p;w) = -2- c+ k(w) cP(x;w) (13) 

where j is defined such that CJ j (w) = jCJ(w) so that, once again, there is a single random input. 
Eqs. 6 are substituted into Eq. 13 along with the additional condition 

1 p 

(14)k(w) = A(W) ~ L <P jAj 
)=0 

where k has been represented in terms of its inverse A = i in order to keep all of the basis 
functions in the numerator. This yields: 

p ( ) p p" C ) 
p L <Pi a'ljJia:' p + L L <Pi<P j ( 'ljJi(X, p ) - 2cPi(X) CJj = 


i=O z=O )=0 


vj P P ~ .. 
- L L L <Pm<Pi<PjAmcPz (X) CJJ (15) 
2 m=O i=Oj=O 

Taking a Galerkin projection onto the basis yields the following system of SFEM equations: 

a'ljJ P P P 

P axC + L bCi ( 'ljJi - ~ cPi ) = ~ LAm L femicPi, £= 0, . .. , P (16) 
i=O m=O i=O 

- ",P" (<Pe<Pi<Pj) d f - ",P" (<pe<Prn<P;.<Pj) A I' t' f th I dh b - 6j=0 CJj (<l?;) an Cmi - 6 j=0 (<p;) CJj . pp Ica Ion 0 e angu ar anwere Ci 
spatial discretization refashions Eq. 16 in the form of a matrix equation 

P P P 

L (Lei - MSCi D )";;i = LAm L MSj,£miDfi, f. = 0, ... , P (17) 
i=O m=O i=O 

where LCi is the streaming and removal operator, M is the moment-to-discrete operator, SCi and 
S j,Cmi are the scattering and fission source matrices, respectively, and D is the 
discrete-to-moment operator. Thus, in total there are 21N (P + 1) equations, where 1 is the 
number of spatial cells and N is the number of quadrature angles, while the solution vector, 

-+ ---I ---I T
X = ['ljJ0, ... ,'ljJp, Ao, .. . , Ap] , 
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contains (2IN + l )(P + 1) unknowns. The additional (P + 1) equations can be obtained using 
the normalization condition on the eigenfunction: 

41i = (D~) T (D~) = 1 (18) 

where ~ is the exact eigenfunction and is a function of the random dimension. Since the norm of 
~ is a deterministic quantity, Eq. 18 states that for each realization of the material, the L2-norm of 
the eigenfunction vector is unity. The eigenfunction can then be replaced by its PC expansion to 
yield 

P P T

L L (D~i) (D~j) q\1>j = 1. (19) 
i=O j=O 

Projecting onto the basis then gives the final (P + 1) equations: 

P P _ T _ 

L L (D1jJi ) (D~h ) (1)i1>j1>e) = 8eo , .e = 0, . .. , P. (20) 
i=O j = O 

As can be seen in Eq. 17, the matrix equation is non-linear since both the eigenvalue and the 
eigenfunction are unknown, therefore it is necessary to use a non-linear iterative solver such as 
Newton-Raphson. The system of equations is first written in the form 

F(x) = [Fo(x)· ·· Fp (x) Fp+1 (X)]T = 0 

where x is the solution vector, and the Fe are given by 

p p p 
Fe (x) L (Lei - MSeiD ) ~i - L Am L MSf,emiD~i (21a) 

i=O m=O i=O 

P P T 

Fp +1 ,e(x) L L (D~i) (D~j) (1)i1>j1>e) - 8eo (2Ib) 
i=O j = O 

for .e = 0, ... , P. The iteration then takes the form 

J. 8;(z) = -F(x(z») (22) 

( ) XC z +1) = xz + 8x - (z) 
(23) 

where z is the iteration index and Jij = ~~i . 
J 

Newton-Raphson shows quadratic convergence near the solution point, but can diverge if the 
initial guess is not sufficiently accurate. Here, the solution is initialized using SCM, although 
there are other possible intializing algorithms. It is also possible to compute the PC coefficients of 
k using SCM in the same manner that the PC coefficients of '!jJ were computed in Eq. 9. 
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4. NUMERICAL RESULTS 

4.1. Fixed Source 

To illustrate the stochastic spectral approach described above, we assume that the pdf of the total 
cross section is given by the two-parameter gamma distribution: 

P( ) = 1 a a- l exp (_~) (24)a n f - \ 0 ", (3 

We set ex = 5 and (3 = 1 so as to obtain a cross section mean of 5 cm- 1 and a variance of 5 cm- 2 . 

An attractive feature of this distribution is that the support is positive so that, unlike the Gaussian 
distribution, negative cross sections cannot arise. Also, as can be seen in Fig. 1, the pdf is 
unimodal and the parameters can be tuned to yield a symmetric or skewed distribution to cover a 
range of uncertainty models . 

0.45 ,1 --.,--~~-~-

0.4 

035 

0.3 

0.25 

0.2 

0.1" : !
• ! 

0.05"/ 

o~ 
o 

-a= l. ~-5~ 
-- -a = 2. ~ = 25 

-- a = 5.~ =1 

-a= 25 .~ = O 

-~-llleall 

12 14 16 18 20 

Figure 1. Gamma Distribution for Various Values of ex and (3 

Shown in Fig. 2 are the mean and relative standard deviation of the scalar flux for an incident 
beam on the left face of a 5 cm slab. Results were computed using Monte Carlo for 3.8934 x 106 

realizations to achieve a relative sample standard deviation of 1%, Gauss-Laguerre quadrature for 
various quadrature orders M , and SFEM with Laguerre chaos for various PC orders P. As can be 
seen, a PC order of Pin SFEM is equivalent to a quadrature order of !VI = (P + 1), a result that 
can be proven using matrix manipulation and numerical results, but which is not shown here. 
Although the mean scalar flux is seen to converge at P = 7 and M = 8, the standard deviation 
requires a higher order expansion or quadrature. A similar observation can be made for the pdf of 
the scalar flux, as shown in Fig. 2(b) for several depths, generated using both Monte Carlo and PC 
expansions. It is interesting to observe how rapidly the flux pdf becomes skewed with increasing 
depth into the slab, requiring an expansion order of P = 31 before the PC-generated distributions 
converge. The distributions also show a long tail towards flux values considerably larger than the 
mean indicating the existence of a "transmission window" when random fluctuations in the total 
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Figure 2. Scalar Flux: SFEM with a Laguerre Chaos expansion and SCM with Gauss-Laguerre 
Quadrature (ex = 5, (3 = 1, ((5) = 5.0 em-I, Va = 5.0 cm- 2

, c = 0.5) 
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Table II. IBGS Iteration Count and Run Time in Seconds: Average over 25 Runs for a Gamma Dis­
tributed Cross Section for SFEM with Laguerre Chaos and SCM with Gauss-Laguerre Quadrature 
(a = 5, E = 10- 9 ) 

II Iteration Count ]n= Run Tim:~ II 
p 

c M Richardson GMRES(8) BiCGStab Richardson GMRES(8) BiCGStab 

1 32 15 8 0.0116 0.014 0.0116 
2 52 22 12 0.0072 0.0088 0.0076 

3 54 25 13 0.0472 0.052 0.0444 
4 104 43 25 0.0144 0.018 0.0156 

0.5 7 112 52 32 0.288 0.2492 0.2432 
8 208 83 49 0.0304 0.036 0.0316 

15 242 11 2 62 1.6896 1.352 1.1996 
16 415 158 92 0.0624 0.0732 0.064 

31 466 199 NC 9.214 6.372 NC 
32 827 298 l74 0.138 0.151 0.135 

1 1267 117 51 0.4424 0.0976 0.0628 
2 2321 198 60 0.302 0.0712 0.0308 

3 1385 20 1 89 1.1768 0.4004 0.272 
4 4674 397 141 0.609 0.143 0.0716 

0.99 7 1537 338 158 3.8676 1.588 1.1628 
8 9531 752 293 1. 24 0.273 0.15 

15 1529 560 217 10.3232 6.606 4.0132 
16 19630 1450 618 2.57 0.533 0.321 

31 1516 626 NC 29.9836 19.7056 NC 
32 40593 2700 1229 5.33 0.999 0.652 

---~ -_ .. - -­ -­

cross section are allowed. Also, it will be noted that the flux appears to be nonrandom near the 
incident boundary, as reflected in the moments plot and the very peaked pdf plot. This can be 
attributed to the fact that the flux in 1 D slab geometries depends only on the optical depth 
variable, into which all randomness is subsumed and which is zero at the surface. There is a 
residual dependence on the optical thickness of the slab which is random but which, in our 
example, is sufficiently large as to have a negligible effect. 

Table II shows iteration counts and run times given as an average over 25 runs for this same test 
case. An inexact block Gauss-Seidel splitting is employed and three different iteration schemes 
are tested: Richardson iteration and two Krylov methods, restarted generalized minimum residual 
(GMRES(n)) and bi-conjugate gradient stabilized (BiCGStab). For both SFEM and SCM, the 
iteration counts given are totals. Thus, for the SCM quadrature solution, the count is the total 
number of deterministic transport iterations for all quadrature abscissas. For the SFEM solution, 
the count is the total number of iterations for the coupled SFEM equations. As can be seen, larger 
iteration counts, hence larger run times, are required for larger scattering ratios, as expected in a 
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transport setting when the material becomes more diffusive. Since the SCM involves a series of 
deterministic transport computations, for which convergence is strongly influenced by the 
scattering ratio, the iteration count per quadrature point varies only slightly with quadrature order 
and variance and the lUn time per transport computation remains constant provided c does not 
change. On the other hand, for SFEM, the lUntime per iteration more than doubles each time the 
number of PC coefficients doubles. Although there are always fewer SFEM iterations than SCM 
iterations, each SFEM iteration involves inverting a much larger matrix, and is therefore more 
computationally extensive. Therefore, without exception, an Aif-term SCM quadrature solution 
always lUns in a shorter time than an SFEM solution for P = (M - 1). Since these solutions are 
equivalent, SCM is shown to be the more efficient solution method when there is a single random 
variable. 

4.2. k-Eigenvalue 

Numerical results were obtained for a critical reactor with uncertain macroscopic cross sections. 
The test problem was taken from an analytical benchmark test set originally intended for 
criticality code verification [7]. The system is a bare slab reactor composed of uranium dioxide 
with material parameters l/ = 1.70, OJ = 0.054628 cm- I

, ac = 0.027314 cm- I
, as = 0.464338 

cm- I and at = 0.54628 cm- I . The analytic critical size of the reactor is given as 20.74213 cm 
in [7]. Using 100 spatial cells and 32 discrete ordinates, by trial and error the critical size was 
found to be 20.742942196391 cm. Using this critical size and the mean cross sections listed 
previously, the total cross section is assumed to be randomly distributed according to a known pdf. 

Table III. Iteration Counts, Run Times and Errors for the SCM and a Single SCM-initialized 
SFEM Iteration in a Multiplying Material: Uniform Random Variable and Legendre Chaos (SCM 
tolerance =10- 6) 

...;:;;;; 
To) PC 

SCM Initialize SFEM 

M GMRES(8) run time (s) II FSCM 112 GMRES(25) run time (s) II FSFEM 11 2 

1 
5 

I 2 102 0.2 17 3.2355e-04 20 0.723875 2.6288e-07 

3 4 211 0.45 3.0228e-04 39 5.9535 2.3297e-07 

7 8 420 0.904 3.2456e-04 90 60.283 2. 5748e-07 

15 16 847 1. 8 3.2652e-04 125 536.956 1.973ge-07 

1 

7s 

I 2 108 0.228 2.2224e-03 21 0.7538 1.44lOe-06 

3 4 2 14 0.457 1.3736e-03 98 9.4105 8.5795e-07 

7 8 433 0.924 4.33 I 5e-04 187 130.33 4. 8508e-07 

15 16 862 \. 84 4.2298e-04 253 11 48 .068 5. 2655e-07 

We first compare the accuracy and computational efficiency of SCM-initialized Newton 's method 
for SFEM and SCM for this problem. Table III shows iteration counts, lUn times and L2-Norms of 
F for the SCM initialization and a single Newton-Krylov SFEM iteration. The SCM initialization 
produces a solution with II FSCM 112 on the order of 10- 3 or 10- 4 in all cases. A single 
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Figure 3. II F SCM 112 as a Function of Tolerance for Various PC Orders (Solid Lines: '{:J = i, 
O h d L· .as e meso ~ «(7) 

-
-

1 ) vis 

6 7Newton-Krylov SFEM iteration then produces an II F SFEM 112 on the order of 10- or 10- . Note, 
however, that these are L2 norms-the individual elements of F SCM and F SFEM are generally 
smaller than the notID. 

In the previous section, it was shown that SCM using a quadrature order of M is equivalent to 
SFEM using a PC order of P = (M - 1). The same cannot be said for multiplying media due to 
the non-linear nature of the SFEM equations. As can be seen in Fig. 3, the size of II F SCM 112 is 
strongly dependent on the tolerance set for the power iteration used to compute the k-eigenvalue 

and the inner source iteration used to compute the flux updates. For '{:J = i, as the tolerance 

decreases, II F SCM 112 decreases as well and is on the order of 10- 8 for a tolerance of 10- 12 for 
5P = 7 and 15. However, for P = 1 and 3, II F SCM 112 is approximately 10- 4 and 10- , 

respectively. Even with a very small tolerance, II FSCM 112 is quite large for small P , indicating 
that SCM with a quadrature order of M = (P + 1) is not in fact equivalent to SFEM with a PC 
order of P. (In comparison, consider that if OJ and v are set to zero and a volume source is placed 
in the system, SCM with a quadrature order of M = (P + 1) yields II FSCM 112 on the order of 
10- 12 or 10- 13 for P = 1, 3, 7 and 15.) However, the fact that II F SCM 112 gets very small for 
P = 7 as the tolerance gets small indicates that the solution is essentially converged and that the 
two methods do eventually converge to the same answer, as would be expected. Similar 

conclusions can be drawn for '{:J = Js' although clearly the solution does not converge as 
quickly as it does for the smaller variance. 
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Table IV. Runtime for SCM for M = (P + 1) in seconds: Uniform Random Variable and Legendre 
Chaos ( ..;v; = 1.)

(0-) 5 

I tolerance I P = 1 I P = 3 I P = 7 1P ~ 15 1 

10- 3 0.08 0.16 0.39 0.64 

10- 6 0.217 0.45 0.904 1.8 

10- 9 0.36 0.76 1.44 2.9 I 

10- 12 0.66 1.29 2.58 5.04 I 

Table V. Gamma Distribution: Mean and standard deviation of the k-eigenvalue calculated using 

M -dimensional Gauss-Laguerre quadrature and Monte Carlo with 106 realizations (0:' = 5, '{;j = 


jg ). 

I M (P) I 2 (1) 4(3)- 1 8 (7) 16 (15) 32 (31) Monte Carlo 

mean 9.62249ne-01 

stdev 7.4869877e-02 

- -_. __ . -

9.5207180e-01 9.5 190828e-0 1 

1.1745105e-Ol 1.2343850e-0 I 

9.5191928e-01 

1.2331635e-Ol 

- ­

9.5191913e-0 1 9 .5179068e-0 1 

1.2331795e-0 1 1.23466ne-O 1 

9 

8 


-

7 I- pc=! 


---PC=3 


61 
 1-- PC=7 

_._.pc
5 

~ 
4: 

3 


2 


8.4 0.5 0.6 1.3 

Figure 4. PDP of the k-eigenvalue: Laguerre Chaos expansion of the Gamma Distribution ('{;j = 

jg) 

k 
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In Table IV, run times are also shown for :f = t (run times are almost identical for :f = )g 
and are therefore not shown) for various tolerances and PC orders. Although it is much more 
expensive to use a smaller tolerance in SCM, it is not nearly as expensive as doing even a single 
SFEM Newton-Krylov iteration. Although doing that SFEM iteration does produce more accurate 
results for P = 1 and 3, these solutions are not converged therefore there is little point in doing 
the extra work. 

Table V shows the mean and standard deviation of the k-eigenvalue computed using the PC 
coefficients of k, up to order P, which were computed using SCM with a quadrature order of 
M = (P + 1). As can be seen, the SCM yields accurate results with respect to Monte Carlo and, 
as in the fixed source case, the mean converges for smaller gPC and SCM quadrature order than 
the standard deviation does. Fig. 4 shows the distribution of the k-eigenvalue for the same gamma 
distribution used in Fig. 2, albeit for a different {3. The pdf was computed by sampling the random 
variable, computing k from its PC expansion and tabulating the results. As can be seen, the gPC 
agrees well with the Monte Carlo. 

5. CONCLUSIONS 

In small scale applications for independent, uncorrelated random variables, such as those 
explored, the use of gPC expansions is shown to be efficient and effective. The SCM was also 
shown to be much more efficient than the SFEM, yielding comparable results for M = (P + 1) at 
a fraction of the cost. In addition, the SCM requires a series of independent deterministic 
transport computations and can therefore be 'wrapped around' an existing transport code, 
requiring no modification to the tranport computation itself. SFEM, on the other hand, produces a 
coupled system of transport equations and its solution requires an entirely new algorithm. In 
multiplying media, the SFEM equations are nonlinear and even a single Newton-Krylov iteration 
is far more time-consuming than an SCM initialization, which can achieve a high level of 
accuracy quite cheaply. 

In small scale applications for independent, uncorrelated random variables, such as those 
explored, the use of gPC expansions is efficient and effective. The advantage to using gPC 
expansions to represent problem outputs is that those quantities can be completely characterized 
using the gPC coefficients. Thus, a relatively small dataset contains all of the information 
necessary to construct pdfs and cdfs, define responses of specific outputs to inputs, and compute 
statistical moments. In short, it is capable of producing the same results as sampling-based 
approaches and can additionally handle large uncertainties unlike the perturbation methods 
typically employed in nuclear applications for uncertainty quantification. The disadvantage is 
that, in order to extract anything more than the moments of the output, it is necessary to sample 
the random variables involved. Thus post-processing can be quite computationally demanding, 
although not as demanding as conducting a Monte Carlo simulation on the entire system. 
Furthermore, computationally demanding analyses such as risk assessments for nuclear reactors 
and the Department of Energy 's nuclear waste repository in Yucca Mountain can require lOs to 
100s of uncertain inputs, which may in addition be correlated [6]. As the number of dimensions 
increases, the number of quadrature points required by SCM and the number of terms in the gPC 
expansion increase rapidly. If the variables are correlated, it is possible to use principal 
component analysis to reduce the number of random variables. Even so, it may be that an 
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optimized multi-dimensional sampling method such as Latin Hypercube, which is already in 
widespread use for problems of this sort, may be more efficient than SCM for large-scale 
applications. It would be enlightening to conduct an analysis on a real-world system of this scale. 
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