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QUIET PLANTING IN THE LOCKED CONSTRAINTS 

SATISFACTION PROBLEMS 


LgNKA ZDEBOHOVA' AND FLORENI' KRZAKALAt;* 

Abstract. We study the planted ensemble of locked constraint satisfaction problems. We 
describe the connection between the random and planted ensembles. The llse of the cavity method is 
combined with arguments from reconstruction on trees and first and second moment considerations; 
in particular the connection with the reconstruction on trees appears to be crucial. Our main result is 
the location of the hard region in the planted ensemble, thllS providing hard satisfiable benchmarks. 
In a part of that hard region instances have with high probability a single satisfying assignment. 

Key words. Constraint Satisfaction Problems, Planted Ensemble, Belief Propagation, Recon­
struction on Trees, Instances with a Unique Single Assignment. 

AMS subject classifications. 90C27 68Q25 05C80 

Com,traint Satisfaction Problem;; (CSP) are very in nature: Consider a 
set of N discrete variable and a set of M Boolean constraints; the problem consists 
I;; finding a configuration of variables that satisfies all the con;;traints or in proving 
that no such configuration exists. As ;;uch, CSPs are subject of interest;; in many dif­
ferent fields such as computer discrete mathematics, physics, engineering and 
computational biology. Random ensembles of CSPs have proved to be a fertile source 
of research activity; as hard benchmarks 

they are used to create efficient coding schemes [10, 11], to model complex 
liquids [3, 19], or to understand the origin of average computational 

hardness [26, 34]. Combining know-how from many branche!> of mathematic!>, com­
puter science and statistical !>eems to be fruitful for understanding of these 

objects with very rich behavior. 
The most commonly studied random ensembles of CSPs are created by CIlomilllg 

the graph of variables and cOIL<·;traints as a random bipartite graph with a certain left 
and right di!>tribution!>. Another natural way of creating a random instance, 
called planting, is to first assign a configuration to variables and then to choose only 
constraints compatible with such a configuration. Both these en!>embles can be use­
ful to mimic instances created in some practical application!>. In particular 
instances maybe be created in adaptive situation!> when only con!>traints sati!>fied 
the current state of variables can b added. 

By planting we create by definition a satisfiable instance. Such imtances are in 
particular useful as benchmarks to evaluate the performance of incomplete solvers, 
such as stochastic local search [30]. Based on the example of the planted 
problem it is often anticipated that the planted ensemble is algorithmically easier than 
the random one as a bias towards the planted assignment is created in the graph. Also, 
for most of the studied problems it was proven that at large density of constraints is it 
indeed easy to find an satisfying assignment near to the planted one, see e.g. [2, 5, 9]. 
On the other hand if the planted ensemble would be algorithmically hard in some 

of the parameters than these instances could serve as one-way functioll!> and 
have aDDlication in crvptoaraDhv. Yet, compared to t.he random ensemble relatively 
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2 L. ZDEBOROVA AND F. KRZAKALA 

little is known about the existence, size and properties of algorithmically hard regions 
in the planted ensemble. 

In this paper we study a way of planting an assignment which changes only in a 
minimal way the properties of the random ensemble. We call this a "quiet planting". 
The concept of quiet planting was introduced in [20], but some of its consequences were 
already used as a tool for proofs in [1]. Both these works were mainly concentrated on 
the eoloring problems (and the hyper-graph bi-coloring). In this work we will focus on 
quiet planting in the so-called locked esp, introduced recently in [34, 33]. The locked 
esps have very interesting phase diagram which is much 
than the one of graph coloring or K-satisfiability. On the other hand 
they are much harder and the boundaries between the easy and hard regions are, 
unlike in the or K-satisfiability, well understood (at least on the heuristic 
level of the method). This special behavior stems from the fact that in the 

the space of solutions consists of ""f'CkLa.v~.U 
. we combine the idea of quiet planting with the behavior of the locked 

esps and obtain random esps ensembles with very properties. The paper 
is as follows: In Sec. 1 we summarize our main results in the context of 
related works, in Sec. 2 we introduce the necesl:iary definitions and notations and in 
Sec. 3 we summarize the phal:ie diagram of the locked problems derived in [34, 33]. 
In Sec. 4 we argue about the equivalence between the random and planted ensembles 
based on the cavity equations and on a second moment argument. In Sec. 5 we 
describe the phase where instances of our problems have with large probability a 
single solution. Finally, in Sec. 6 we discuss the algorithmical hardness of the planted 
instances. 

1. Main results and related works. The results of this paper apply to the 
/acto1'ized locked esp, see Defs. 2.2, 2.4. We list in five points the most important 
contributions of the present article: 

The idea of 
of a typical satisfying assignment on the graph. Such a 

related to the reconstruction on trees [22] where we 
taken uniform Iv at random from all the 

prob­
abilities can be obtained via the belief propagation algorithm. On random 

this can be achieved asymptotically if the belief propagation has a 
stable uniform fixed point, which this is the case on the factorized esps, see 
Def. 2.4. 

(ii) All 	the properties of the planted ensemble created via quiet planting can 
be deduced from the properties on the purely random ensemble, keeping 
in mind that in the planted ensemble of the locked problems there is the 
planted assignment on top of the other satisfying ones, which we would found 
on the random ensemble. Thus, among others, in the satisfiable phase the 
random and planted ensembles are asymptotically equivalent, see Def. 4.1. 
Such equivalence can also be established rigorously based on a second moment 
argument as in [1], and the result that in the factorized locked models the 
second moment is able to pin the satisfiability threshold 
Next to the interesting conceotual results. the most imoortant oractical result 

as the constraint is increased. We 
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on the hard phase correspond to two different reconstruction thresholds - the 
onset of hardness coincides with the small noise reconstruction with threshold 
[33], called the dynamical transition in the physics literature [18], and the end 
of the hard region is given by the threshold for the robust reconstruction [12]. 
This last point point also corresponds to the Kesten-Stigum bound for the 
canonical reconstruction on trees [15·, 16] and to the spin glass local instability 
in the purely random ensemble [25]. We also show that outside the hard region 
algorithms based on belief propagation are able to find solutions efficiently. 
In particular in the high average degree easy region, the Belief Propagation 
(BP) algorithm converges directly to the planted solution. 

(iv) 	 Given we have located the values of parameters where the instances of the 
planted ensemble are hard, these can serve as very challenging satisfiable 
benchmarks. Such benchmarks are in particular interesting for evaluation of 
the incomplete solvers, as most of the complete solvers use a variant of the 
unit clause propagation and as locked constraints produce relatively many 
implications they might not seem to be that hard for branch and bound 
based solvers. 

(v) 	 As the hard region in the planted ensemble extends to the phase which is 
unsatisfiable in the random ensemble, we show that in that phase the planted 
instances have with high probability a single satisfying assignment (or a pair 
of them in case a global symmetry is present). Moreover depending on the 
constraint density these unique satisfying assignment (USA) instances can be 
found in the hard or in the easy region. Some USA instances are extensively 
used in evaluation of quantum algorithms, see e.g. [32, 8]. In the current 
works these instances are, however, generated with exponential cost, and thus 
their classical computational hardness is almost impossible to be evaluated. 

Large part of our results are based on the heuristic cavity method approach 
[24]. Based on computations of the second moment we were able to prove part of 
our results for the R-in-K SAT problems on random regular graphs. This includes 
the equivalence between the planted and random ensembles in the satisfiable phase. 
Location of the satisfiability transition. And uniqueness on the satisfying assignment 
in the unsatisfiable phase. Extending these proofs to the other locked factorized CSP 
should be possible, however, more involved. 

TABLE 1.1 

Sketchy summary of the properties of the different phases in the random ensemble of the fac­
torized locked problems, the parameter l is the average number of constraints in which a variable 
appears. The three thresholds ld, ls and l[ are defined in detail later in the paper. 

BP, any init. converges converges 
fixed point uniform uniform 

solutions exponentially exponentially 
finding solution easy hard 

2. Definitions and notations. In this section we specify the class of constraint 
satisfaction problems to which our results apply. We state several necessary defini­
tions, the crucial notions will be the definition of a locked [34] and factorized constraint 
satisfaction problem. It is only on the factorized problems where there is a very close 
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TABLE 1.2 
The same as Tab. 1.1 faT the mndom planted ensemble, its definition is given in Sec. 4. 

BP, random init. cOIlverges converges converges converges 
fixed point uniform uniform uniform planted 

: BP, planted init. converges converges converges converges 
fixed point uniform planted planted planted 

solutions exponentially exponentially one/two one/two 
finding solution easy hard hard easy 

reconstruction not possible possible possible possible 
robust recons. not possible not possible not noss!hlp. nossihlp. 

relation between the usual random and the planted ensemble, as discussed in 
It is also the fact that in the locked problems solutions are far from each other 
which makes them particularly interesting for considerations in this context. 

DEFINITION 2. L A constraint a containing K variables, the domain each 
variable beinG X. is a function from X K to {O. I}. If the function evaluates to 1 

A constraint is locked if and 
variables which would differ in a 

In this paper we will consider for concreteness 
But the results are generalizable to domain size. 

A constraint satisfaction problem consists in if there 
exists a config'l1.mtion of N variables which would satisfy simultaneously a set M 
constraints. A constminl satisfaction problem is called locked if and only if all the 
Al constmint are locked and each of the N variables belonQ to at least two 
cons train ts. 

We shall illustrate our findings on the so called occupation constraint satisfaction 
problems [28, 33J. 

DEFINITION 2.3. In occupation problems every constraint a depends only on the 
surn of variables it contains. Thus every occupation constmint containing Ka. variables 
can be chamcterized by a binary J{a + 1 component vector Aa such that the constraint 
is satisfied if and only if the sum r of the Ka variables is such that Aa(r) l. 

An occupation constraint a is locked if and only if for all i = 0, ... , Ka 1 we have 
Aa(i)Aa(i + 1) = O. We will consider occupation problems where every constraint 
contains K variables and is given by the same vector A. To give and example for 
t.he notation vector A = 0100 would correspond to the 1-in-3 SAT problem (exact 
cover), which is locked, or A = 0110 would correspond to the hyper-graph bi-coloring 

which is not locked. More examples can be found in [33]. For which 
do not have other name established in the literature we use the notation ..-in-K 
SAT for vector A with non-zero components Ai ,Ai, etc. 

Let us now write the belief propagation (BP) equations [29, 23] for the occu­
constraint satisfaction problems. The basic quantities in BP are messages. We 

define as the probability that the constraint a is conditioned to the 
fact that the value of variable i is Si. Belief propagation equations these 

that the factor graph r21] underlying the CSP is a tree 

1 
8),1 I1= Za~, L 

{8., } .iE&a-i bE8j-a 
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where is a normalization constant as!:Hlring + ~)g~i 1. 2.1 shows 


v 


FIG. 2.1. Part of the factor graph to illllstmte the meaning of indices in the belief pmpagation 
eqllations (2.1). 

the corresponding part of the factor graph. The belief propagation estimate of the 
probability that a variables i is occupied is then 

x' 	 (2.2) 

Note that if an assignment {a} is a solution of the problem then 1, V/:,;:l == 0 
is a fixed point of the BP equations (2.1). 

2.4. 	 A given instance on a constraint satisfaction problem is fac­
if the belief propagal'ion equations initialized randomly converge 
probability approaching one as the number of variables N --? (0) 

to a uniforrn fixed point, i. e., the value does not depend on the indexes a and i. 
Note that it is a non-trivial task to check if a problem satisfies this definition, and it 
depends on the degree distribution. In what follows we will state two large groups of 
locked problems which are factorized. Evaluation of the condition in Def. 2.4 is based 
on the cavity solution of the 

will hold only asymptotically (N (0) on 
which are locally tree like, that is the shortest loop going trough a random variables 
has diverging length as N -. 00. Families of Hparse random graphs, i.e. the degree 
distribution of variables Q(l) does not depend on N, are locally tree like. Examples 
of the variable degree distribution we will be using are: 

• 	 R.egular Q(l) 
• 	 Truncated Poisson Q(O) = Q(l) = 0, Q(l) d /[(e C 

- 1 - ell!] for 1 ::::: 3. The 
average degree in this case is I c(l - e-C)/[l (1 + c)e-cJ . 

• 	 Poisson Q(l) = 

To generate random graphs with a given variable degree distribution we generate first 
a sequence from Q(l) such that it is compatible with number K M and then 
conHider a random permutation of K M numbers (which does not create double 

As follows from the analysis of the locked problems in [34], a locked CSP can be 
factorized in two different ca..<;es 

On the regular that is every variable is contained in L constraints. 
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On the regular graphs the fixed point of the BP equations then satisfies 

1 K-I 
1/IiL - 1)1'

1/Io=-Z L 
T

1'=0 

, 1 K-l 
1/I(L-1)(K-1-1')

o , (2.4)1/!1 -" 6 (K­Z ~ A(1'+l),l T 

where Z is the normalization. For the probability that a variable in occupied 
one has in this case 

x 

Let us call :X:r the that a constraint contains T variables 
then 

K)6 11,,,(L-1) , (K-r)(L-l)
( " A(r),l 'Yl 1f!o (2.6)

:X:r 	 ",K (K)6 ,t(L-1) /(K-t)(L-I) . 
L.Jt=o t A(t),l1f!l 1f!0 

For the balanced locked problems [33], that is when the vector A is sym­
metric, A(i) A(K - i) for all i 0, ... ,K and this 0-1 symmetry is not 
spontaneously broken (no ferromagnet-like transition). In this case the belief 

= X 1/2. For the probability that a constraint contains T 

(~)OA(l'),l 
(2.7):x:" = K (K)6

Lt=o t A(t.)'l 

In particularly simple case of (a) is the R-in-K SAT where 1 ::; R ::; If every 
variable has L connections and every constraint have to contain exactly R occupied 
variables then the number of occupied variables is exactly Iv! R/L, and thus X R/K. 

3. Basic properties of the random factorized locked problems. As was 
shown in [34, :33J on the locked problems the belief propagation asymptotically 
exact values of beliefs And thus also the Bethe entropy [21, 23] gives the 

. correct logarithm of the number of solutions. It reads for the balanced locked 
problems 

I K 

s 2+ K [TK ~ 6A(1'),1 \ T 

and for the fixed degree of variables 

UCCUPltCU variables we have here 

L log [K (L 1) [1/15' + = K ~ (~) 
where 1/11, VJo is a fixed point of eqs. (2.3-2.4). This entropy simplifies further for the 
R-in-K SAT on regular graphs where we and explicit formula 

L R 
- (L 1) H 	 (3.3)8(L) K 
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where II (x) = -x log x - (1 - x) log (1 - x) is the entropy function. The satisfiability 
transition ls is then defined by 

satisfiability threshold ls : =0. (3.4) 

For I < Is the problem has almost surely exponentially many solution, the exponent 
given by s(I), whereas for I > (, the problem almost surely does not have any solution. 

Authors of [34, also argued about existence of a second critical point in the 
locked problems, ld. This critical point separates regions where for {()} a satis~ 
fying assignment the 1, 1jJ'!.:;,i 0 is a stable fixed point of the BP equations 

if and only if I > ld. That is if an infinitesimal perturbation is introduced to 
these messages, the iteration of (2.1) goes back to the solution-related fixed 
Equivalently only for I > ld each solutions has a corresponding fixed point not only at 
zero temperature, eq. (2.1), but also at infinitesimal temperature, that is if constraint 
can be violated with infinitesimal probability. Authors of 33] also conjectured 
that for I > ld a typical solution does not have solutions up to an extensive 
distance, whereas for I < ld there are solutions at non-extensive Hamming distance. 

For the locked problems on regular graphs it is always 2 < ld < 3, in other words 
at L 2 the systems are in the non-separated phase, and for L 2: 3 the solutions 
are separated and solution-eorresponding fixed point is stable ete. For the 
balanced locked problems the expression for ld follows from 

l ",K-2 (K-I)
d = 2(K 1) _ 2 Dr-I T . r 8A (r+l),1 OA(r),O OA(r 1).0 ­

\:,K 28 (K 1) (3.v) 
Dr=O A(r+l),l r 

where Q(2) is the fraction of variables of degree two. It thus follows that whenever 
the degree of every variable is or equal to three the system is in the »hase where 
solutions are separated. 

There is a deep connection between this dynamical threshold and the reconstruc­
tion problem. In the reconstruction problem one creates a tree with the same 
properties as the graph. Then we broadcast a satisfying assignment chosen uniformly 
at random from all the possible ones. Finally the reconstruction problem consist of 
deciding whether the assignment on leaves of the tree contains some information about 
the value of the root. In the locked problems the values of the root is always 

by the values of the leaves. However, if an infinitesimal noise is introduced 
on the leaves then there is no information left if an only if I < ld. Thus ld was called 
the small noise reconstruction threshold in [33]. 

Note also at this point that the survey propagation equations [26] in the locked 
have a solution given by the solution of the belief propagation, see [33]. This 

is a reason why in this paper we do not discuss the survey propagation. 
To summarize the random locked factorized problems are in the non-clustered 

phase for lid, which was shown to be algorithmically easy in [34, 33). For ld :s I :S ls 
the space of solutions is clustered and it is hard to find any of the solutions. For I 2: ls 
no more solutions exist. 

4. Equivalence of the random and planted ensembles for I < Is. The 
planted ensemble of graphs, which is the main subject of the present paper, is created 
in the following way: 

Make each of N variables occupied with probability X (2.5), call the number 
of occupied variables 
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TABLE 3.1 
The critical values for all the balanced locked problems up to K 8 on the regular and truncated 

Pois80man ensemble. The 'integer value L" (resp. LI) is defined as the first larger or equal to Is 
(n,sp. II), the stars denote that Ls = Is {resp. Ll = II}' The s'ign 'x' means that the problem ceases 
to be balanced before the instability arises. We remind here that the vector A codes for what are the 
allowed sums of variables around a constraint. 

,,-' ,,-----, 

A L8 Ll Cd Cs q ld l" li 
I 00100 3 4* 1.256 1.853 2.821 2.513 2.827 3.434 

0001000 i 4 6* 1.904 3.023 4.965 2.856 3.576 5.144 
000010000 5 8* 2.337 3.942 6.994 :~.116 4.276 7.039 
5-in-1O 5 10* 2.660 4.794 8.999 3.325 4.944 9.009 
~-"--

6-in-12 6 12* 2.918 5.455 11.00 3.502 5.586 11.00 
01010 4* 00 1.904 3.594 00 2.856 4 00 

0101010 I 6* 00 2.660 5.903 00 3.325 6 00 
- ­

1010101010 8* 3.132 7.97800 3.654 800 00 

0010100 6 46* 2.561 5.349 45.00 3.260 5.489 45.00 
I 000101000 7 29* 2.975 6.650 28.00 3.542 6.708 28.00 

001010100 8 > 100 3.110 7.797 > 100 3.638 7.822 >lOO 
lOlOQ,!OOlQ" L"" 6 X 2.173 4.896 

----­ '-----­
x 3.014 5:083 x 

The critical values 
value Ls (resp. Ll) is 
['" = Is (resp. ['1 = 11)' 

A 
oioo 
01000 
010000 
0100000 
001000 
0010000 

as 

TABLE 3.2 
{non-balanced} locked problems up to K = 6. The integer 

first larger 01' equal to Is (I'eSp. I, J. the stars denote that 

0100010 

Ls 
3 
3 
3 
3 
4 
4 

Ll 
3* 
4* 
5* 
6"*" 
5* 
6* 

(ii) 	 Choose a degree sequence from the probability distribution in such a 

way that KM I.:~lli' 

For each constraint, according to probabilities Xl' (2.6,2.6), choose the number 

I'a of occupied variables to which it is connected. until Ta = 


li, here i are indexes of the occupied variables. 
(iv) 	 Choose a random permutation of I'a numbers, choose a random permu­

tation of !vI K - I.:~~l 1'0 numbers, and connect the constraints to variables 
according to that permutations. Repeat until there are no double edges. 

Note that there are several models how to plant a solution, we could have chosen any 
other which behaves the same as the above one in the thermodynamic limit. 

DEFINITION 4.1. Two ensembles of random graphs aTe asymptotically equivalent 
if and only if in the thermodynamic limit every property which is almost surdy tT'1~e 
on a graph from one ensemble is also almost surely fme on a gmph from the otheT 
ensemble. 

DEFINITION 4.2. The is called quiet if the cOTTesponding planted and 
randorn ensem.bles are p.(mwn.Lp.nl, In this section we argue about the asymptotic 

http:p.(mwn.Lp.nl


9 QUIET PLANTING IN THE LOCKED CONSTRAINT SATISFACTION PROBLEMS 

lv"lpn('p of the planted and the random ensembles for the factorized locked 
lems in the range of parameters corresponding to the satisfiable phase on the random 
ensemble. We will use two different approaches, the first one based on analogy between 
planting and the reconstruction on tress [22] and the other one on the comput.ing of 
the second moment method and using theorems from 

4.1. 	Planting and the reconstruction on trees. The formulas created by 
a solution are locally tree-like, just as the random formulas. Thus the 
can be solved via the cavity method [24], the first step in that solution is 

writing the belief propagation equations. The BP equations on a planted formulas 
are the same as on a random formula, thus given by eq. (2.1). The difference comes 
when one wants to find the typical fixed point without resorting to the single formula 

A standard way to do this is the population 
where the distribution of mesHages over edges P(Vi) is represented by a pool drawn 
from the distribution. On the planted formulas one has to distinguish if the vallie 

on the corresponding variable was 0 or 1. In the population dynamics one thus 
needs to keep two populations, one (V)) (second Po('1i")) representing the messages 

for variables i where we planted value 1 (0). The closed iterative equation for 
the two distributions read 

K ( ) jK-1 Ii 
('1i") = Yr S 15 II II (VJj )15('1i"­~ <Li Si +S 

{Id ,.=0 ("-8) {8j} i=l j=l 

where the Yr(S) is the conditional probability that in the planted solution there is 
r - S occupied variables within K - lones, conditioning on the fact that the Kth 
variable has value s. 

(K r) x,. 
K ' Yr(1) 	 (4.2) 

Lt=o(K t) Xt 

where the XI' are the probabilities that a constraint contains r variables occupied in 
the planted solutions, eqs. (2.6,2.7). The q( {li}) = rr~~l(li + l)Q(li +1)// represents 
the distribution of K - 1 excess degree, i.e. number of edges coming from a size of 
a random And the sum over {sd is over all values of variables such that r - s 
of them are occupied. The function F( {'1i"j}) is defined by the belief propagation 
eq. (2.1). 

After a detailed inspection of these equations we realize that the very same equa­
tions would be obtained from analysis of reconstruction on trees [22]. Reconstruction 
on trees is defined in the following way: First construct a rooted tree factor-graphs 
with the degree distribution of variables Q(l) and degree of constraints K. Consider 
all the constraints to be given the vector A (nonzero elements of A are possible 
numbers of occupied variables around the constraint). Second consider a random sat-

configuration chosen uniformly from all the pOHsible ones, call it broadcasted 
configuration. The problem of reconstruction consists in deciding what is the infor­
mation the values of the leaves of this tree carry about the value of the root? If this 
information is nonzero then we say that reconstruction is Dossible if t.he information 
is zero that the reconstruction is not possible 

To generate a configuration uniformly at random over all possible ones we choose 
a values of the root according to (2.5) and then broadcast a configuration towards 

choosing the number of occupied variables according to probabilities 
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the derivation of [22] we obtain eq. (4.1). In the reconstruction context the 
is interpreted as the probability distribution of messages 1/) going from clauses 

to variables which had value .5 in the broadcasted configuration. Authors of [22] also 
pointed out the equivalence between eq. (4.1) and the formalism of one-step replica 
symmetry breaking. A lot is known about the solutions of this equation. 

In the case of fadorized locked problems eq. (4.1) can have only two possible 
fixed points. The first possible fixed point is equivalent to the solution of the BP 
equations and reads 

Po(1/J) = PI 8 [1/J- (4.3) 

where is the factorized fixed point of the BP equations The second fixed 
by the planted configuration 

Po(1/J) = 8 PI 8 (4.4)] , G)] . 
The reconstruction on trees is possible if and only if this second fixed point is stable 
under perturbations, according to [33] this happens for I > ld, where ld was defined in 
eq. 3.5. Both these fixed points have physical meaning also on the planted ensemble 
and the consequence of their existence is that all the properties of the space of solution 
in the planted ensemble can be induced from the fact that is looks like union of the 
space of solution in the purely random ensemble and the planted configuration. 

Thus in particular in the region I < Is the planted ensemble is asymptotically 
equivalent to the purely random ensemble, as for I < ls there are exponentially many 
solutions and the existence of the planted configuration does not change their prop­
erties. For I > Is, on the other hand, this means that there exists only the 
planted solution (pair of solutions in case of balanced problem a couple of solutions). 

4.2. Second moment argument. The conclusion of the previous 
can also be obtained in a different and more rigorous, but maybe less intuitive, way. 
The asymptotic equivalence of the planted and purely random ensembles follows from 
the theorem of [1] 

THEOREM 4.3 (Achlioptas and Coja-Oghlan [1]). If for a given set of pammeters 
constmint K, variables degree distribution Q(l), N (0) the second 

moment of the number of solutions in the pUTely random ensemble is smalleT than 
some constant C times the square of the fiTst moment, i.e. JE(N2) > C [JE(N)]2, 
then the planted and random ensembles are asymptotically equivalent fOT that set 
pammeters. Proof of this theorem can be found in [1], and its consequences are 
discussed for the and bi-coloring of factor-graphs problem 

Note that in the factorized locked problems the following proposition holds 
PROPOSITION 4.4. The Tela/ion JE(N2 ) > C[JE(N)J2 holds in all the factoTized 

locked pmblems on the purely mndom ensemble as long as I ~ Is. The first and second 
moment of the number of solutions in the occupation problems has been 
for a general distribution in [33]. It has been also argued in [33] that the above 
proposition holds in the balanced locked problems. Here we illustrate that it also 
holds in the R-in-K SAT on random L-regular graphs for L < Is. The first moment 
entropy defined as Slst log JE(N)/N is in the R-in-K SAT on random 

given eq. (3.3). The second moment entropy .52nd logJE(N2)/N is given 
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by SZdn = maXtSZnd where 

I { R [(~r [(1-~)RrR-S) [1 + (t-i)Rr-ZR+S] 1-1; } 

~ log K' L -=----:-=----:-~--:--:---:~--=--~-=---
K 's=o (R-8)!(R s)!s!(K 2R 8)! . 

The prccaclOn of the parameter 0 S t S 1 follows from "vnrp,""irm 

JE(N6) = L SAT,O"zSAT) , (4.6) 
OllC12 

where 0"1 and o"z are configurations and P(·) is a probability over the graph ensemble. 
Parameter t in (4.5) is then number of sites occupied in both 0"1 and O"z divided 
number of sites occupied in one of the solutions, RN/ K. We remind that in the 
R-in-K SAT the satisflability threshold is given by cancellation of th entropy (3.3) 

(~)] I 

ls ~ [ 1- KH (~) 

PROPOSITION 4.5. For all the r'egular' R-in-K SAT problem8 holds: For L < I., 
we have 2s1st S2nd, and for' L > ls we have Hist S2nd. We were not able to prove 
this statement using formal algebra, but as S2nd is a maximum of a function of one 
variable t we can persuade ourself by plotting Blst and SZnd(t) that the statement is 
correct, see e.g. 4.l. 

It is easy to persuade ourself that in the ratio JE(NZ) / [JE(N)]2 the non-exponential 
term do noi depend on the system size N. ThuH from the fact Proposition 4.4 follows 
from the relation 281st 82nd. 

We aL'lo investigated numerically general formulas for the second moments method 
presented in [33] and concluded that Proposition and thus the a..'lymptotic equiva­
lence of the planted and random ensemble, holds also for all the other locked factorized 
problems. 

-0.01 

-fUJ2 
..:f" 

-OJJ4 ',I ~ -0.03" " 13 
n Ji'} r -fW4 

-OJJ5 

-0.116 

0 (U 1l.4 0.6 (J.8 

FIG. 4.1. The second moment entTOpy function 82nd(t) at is for seveml values of K, in 
the J( -in-2K SAT pTOblem on the left, and l-in-K SAT on 

5. Single solution instances for I> Is. As we argued in the introduction there 
it is very important to be able to create hard instances which have a single solution 
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with large probability. Based on the relation between planting and reconstruction on 
trees we concluded that in the I > 18 with high probability there is a single 
solution to the problem on the large typical instances from the planted ensemble (or a 

in case of balanced problems). This statement can also be supported by more 
arguments. 

In this section we go trough this argumentation for the R-in-K SAT on random 
regular \Ve believe that generalization of the proofs from this section is 
possible also to the other factorized locked problems. 

First note that the first moment in the planted R-in-K SAT is related in a 
way to the first and second moment in the purely random ensemble. It holds for the 
entropies 

Slst,pl(t) = S2nd(t) + Slst· 1) 

in Fig. G.l. From Proposition 4.G it followsSee an example of the function 

0.5 

0.4 

] 0.3 


.l! 0.2
Q. 

Ji 
0.1:t­

0 

-n.I 

-0.2 
0.2 0.4 n.6 0.8 

FIG. 5.1. The jint moment entropy in the 4-in-8 SA T on L regular planted ensemble. 

that for L > l8 the first moment entropy in the planted ensemble is a negative function 
for all 0 < t < 1. The parameter t is in the planted ensemble interpreted as the 
distance from the planted solution. Thus for L > Is there are no solution at an 
extensive distance from the planted solution (except the solution at distance one in 
the balanced problems). 

THEOREM 5.1. Consider a large 'instance of the R-in-K SAT problem drawn 
the planted ensemble, of variables be L > 2. Then there exist an E > 0 such 
that with high pr'obability the're is no solution at distance smaller than EN from the 
planted solution We will use the expander properties of regular bipartite graphs. The 
following theorem is well known in the of expanders 

THEOREM G.2. (Sipser and Splielman Consider a random factor-gmph with 
of variables L and degree of constraints K. Then, any 5 < L -1 ,ther'c cxists 

a const(lnt E > 0, such that with high probability for every set of IV ~ EN 1J(l'riables the 
number of neighboring constraints is la'rger than , in other words the facto'" 
is a 5) expander. 

Proof. [of Theorem 5.1] Now consider the factor-graph and the planted solution. 
In order to find another solution a certain number Nl of variables have to be changed. 
The property defining a locked constraint is that if a variable is at least one 
other have to be changed in order to satisfy the constraint again. If Nl < EN where 
E is the value from Theorem 5.2 then variables have been changed in at least 
clauses. Thus the total degree of variables LNI > 25N l . But as 0 can be 
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as near to L - 1 as we wish this inequality is impossible. This proofs that with 
probability there is no solution at distance smaller than f from the planted one. 0 

The properties of the first moment in the planted ensemble together with Theorem 
that in the planted R-in-K SAT on random regular graphs there is almost 

a single solution (or a pair of solutions for R = K/2). 
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FIG. 5.2. Left: Probability (over 5000 instances) that there is a single pair of solutions in the 
2-in-4 SAT as a function of the average degree and the size of the graph. Right: Data are the 
average entropy density (logarithm of the number of solutions per variables) of the instances. The 
line represents the entropy density in the therrnodynamical limit, eq, (3.2). The data are obtained 
with the relsat algorithm !14}. ln both parts we marked the threshold I, 2.827. 

6. Average computational hardness. One of the most interesting aspects of 
the study of random constraint satisfaction problems is the average computational 
hardness of a given ensemble. This has been discussed extensively in both the com­
puter science and physics literature in particular for the K-satisfiability or coloring 
problems. The situation in the planted factorized locked problems is very interesting, 
as the average degree is changed the problem undergoes easy-hard-ea..,>y transition and 
moreover the flrst threshold can be pined more sharply than in the more commonly 
studied problems. 

We argued that in the satisfiable phase I < ls the planted and random ensemble 
equivalent, this includes average behavior of algorithms. It was 

in 33] that for average degree I < ld the locked problems are algorithmically 
easy whereas for ld < I < 18 they are on average hard. 

The second hard-easy transition is particular to the planted ensemble and happens 
in the phase I > ls. We study the behavior of the BP equations initialized randomly 
to locate this transition. 

6.1. The spinodal point. definition of the factorized locked problems the 
belief propagation equations (2.1) initialized randomly converge to a uniform fixed 

But aH the average degree is growing this ceases to be true. In the problems 
that we are studying here, it actually exists a critical average degree II beyond which 
belief propagation converges spontaneously towards the planted solution. This 
a clear hard-easy transition in the algorithmic complexity. In statistical phYHics terms 
this threshold It corresponds to a spinodal point of the liquid state. The spinodal 
point also corresponds to the Kesten-Stigum bound [15, 16], and to the robust recon­
struction threshold on trees [12]. This is another important connection between 
the reconstruction and the planted ensemble. 

In order to compute the spinodal point let us first define matrix z{s'ls). Consider 
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a variable and one of its neighbors, z(s'ls) is then the probability that in the J?l1tmeu 
configuration the variable was assigned s' given that its neighbors was s. In the terms 
on reconstruction on trees z(s'ls) is the probability that in the broadcasting a variable 
was assigned s' given its parent was s. Components of z(s'ls) can be computed 
the quantities Yr(s) from eq. (4.2) and reads 

K 
r

z(OIO) = z(110) = 1
K

r=O 

K r-1 
= 1 ­1) = L K 1 z(OI1) (6.2) 

1'=0 

explicit formulas for the regular problems 

",K -2 (K -2)8 ,/,r(L-l),/,(K-1"-I)(L-l)
L..,·=o r A(r),1 '1/1 'I/O 

",K-l (K-l)8 ,/,1'(L-I) h(K-T-l)(L-l) , 
L..r=O r A(r),ln VO 

",K (K.-Z)8 ,1,(r-l)(L-1),I,(K-r)(L-l) 
~(111) _ L..r=2 1'-2 A(1'),I'1/1 'fO (6.4)
'" - ",K (K-l)t5 W(r-I)(L-I),I,(K-r)(L-l) . 

L..r=1 1'-1 A(T),! . I 'I/O 

The first eigenvalue of this matrix is equal to one, and is associated with a trivial 
homogeneous eigenvector. The second eigenvalue of the matrix z is given by 

'\=z(QIO)+ 11)-1. 

A well-known property of the reconstruction on a tree is that reconstruction is 
always possible beyond the so called Kesten-Stigum (KS) threshold [15, 16]. In our 
notation the KS condition says that if 1)(K 1),\2 > 1 then the reconstruction 
is possible, the leaves asymptotically contain some information on the variable 
sent by the root. On random graphs the Kesten-Stigum condition is equivalent to 
the spin-glass local instability [22, 18], that is for (L 1)(K 1),\2 > 1 the belief 
propagation equation 2.1 do not converge. This can be seen from the fact that 

,\ 81/J~~i 
(6.6)

81/J~~j : 

where j E 8a \ i, and b E oj \ a. 
The eigenvalue ,\ and the condition for solvability (L - l)(K - l),\<l > 1 also 

appear in the problem of robust reconstruction on trees [12]. In the problem of robust 
reconstruction it is required that even in arbitrary large fraction of the values on the 
leaves is erased there is still an information about the root left. 

The analysis of the instability a the uniform BP fixed. 
solution then goes as follows. Consider a part of the factor-graph 

2.1. Denote the values of the messages in the uniform fixed BP fixed point by 
over-bars. Consider the incoming message to be perturbed from the uniform value as 

( +c) (6.7)
1/!0 c 

Note that c can be both negative or positive. The equation 6.6 then implies that the 
outgoing message will be 

= l/J! +'\c ) . (6.8)( = 1/)0 '\E 

as depicted in 
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In other words, any infinitesimal noiiSe in one of the incoming message is 
,\ in the recursion. 
We call the perturbation of the incoming message c+ is j was in the 

planted configuration, and otherwise. If the variable i was planted in the occupied 
state, then j was planted occupied with probability z( 111), and empty with proba­
bility z(011). Similarly, if the variable i was planted in the empty state, then j was 
planted empty with probability z(OIO) and occupied with probability z(110). Thus the 
evolution of the perturbation is governed by the equations: 

( ),\ ( z(l Z(Oll))( ). (6.9) 

Moreover there are IIlCUlIllllg messages in the 
< I then the 

decreases and we find only the uniform BP fixed if on contrary 
> 1 the the uniform BP fixed point is unstable and BP converges 

instead to the planted solutions. Fig. 6.1 confirms that this is true even on rather 
small graphs. On the balanced locked problems, where we are not restricted to the 
regular graphs, the correct condition is (K - 1h,\2 1, where 'Y is the mean of 
the excess degree distribution q(l) = (I + l)Q(1 + 1)/7. The spinodal point tl , see 
Tabs. :3.1,3.2, is then define by 

(K 1)(11 - 1),\2 = 1 (6.10) 

for the regular and 

1- e- q 

q 

for the truncated Poissonian distribution. 

6.2. Belief propagation as a solver. reinforcement is a 
good solver in the I < ld as shown empiriclil in the random 
ensemble, &'l the two ensemble are equivalent in that changes for the 
the planted ensemble. We indeed verified this numerically. 

Based on the above arguments, the belief propagation equations converge to the 
uniform fixed point for I < II and directly to the planted solution for I > t/. In order 
to verify that on finite size instances, we have performed the following numerical 
experiment: we have many planted instances for different sizes and average 
degree (5000 im;tances for each set of parameters). We then iterated the BP equations 
(2.1) starting from random initial condition. For numerical stability reasons we used 
dumping in the i.e. each time we computed a new message we kept one half 
of the sum of the new and old message. As a convergence criterion we used that the 
messages should not more that 2.10- 3 ner message (we checked that a smaller 
criterion does not the quality of 
This way every iteration either to a where the bias of each 
variable pointed towards the planted solution (or its or a point very near 
to the uniform fixed point. Fig. 6.1 shows in what fraction of the runs we were able 
to find the planted solution and in particular it confirms that for I > II is is easy to 
find it in linear time. On the right of the same figure we plot the average convergence 
time (given the criterion 2.10-3 per message). We see that around the spinodal point 
II the convergence time diverges from both the sides (slightly faster from the large 
degree side). 
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FIG. 6.1. Belief propagation on the 2-in-4 SAT problem. Left: Probability that the belief 
propagatwn algorithm finds the planted configumtion when initialized randomly plotted as a function 
of the average degree for seveml system sizes. Right: The convergence time dependence on the 
average degree. In both cases, we have stopped the BP itemtions when the avemge change per 
message was less than 2.lO-3 . In both parts we marked the spinodal threshold II = 3.434. 

7. Conclusions and perspectives. In this work we have studied a class of 
constraint satisfaction problems on a planted ensemble. The solution is planted in a 
quiet way, i.e. the planted configuration is one of the typical solutions of the resulting 
instance. We know how to realize such planting only on the factorized problems. We 
describe several connections between this quiet planting and the problem of recon­
struction on trees. 

We study the locked problems because of the simple structure on the space of 
their solutions - solutions are isolated points instead of clusters. This property 
makes the locked problems, however, very hard algorithmically. We focused on the 
class of occupation locked problems in this manuscript, all our result generalize to 
any factorized locked problem, on non-binary variables for example. 

On the non-locked but factorized problems, as e.g. the graph coloring, the concept 
of quiet planting stays valid [20], however the random and planted ensembles are 
not equivalent up to the satisfiability threshold. And in the unsatisfiable phase the 
planted ensemble has exponentially many solutions, instead of a single one as is the 
case in the locked problems. Also the non-locked problems are much less friendly for 
first and second moment considerations. The phase diagram of the locked but non­
factorized problem will not be very different from the one presented here. However, 
the thresholds will be different in the planted and random ensembles and the two 
ensembles are not equivalent. 

One of the most important result of our work is the location of the algorithmically 
hard region, between ld :::; I :::; II, in the problems under investigation. It would be 
in particular interesting to design an algorithm which would provably find solutions 
in the region I > II, we have only heuristic and numerical arguments. This is also 
challenging in the non-locked problems, as e.g. the graphs coloring, where we predicted 
the planted Poisson ensemble to be easy above II = (q _1)2 (on planted regular graphs 
Ll = (q - 1)2 + 1), where q is the number of colors. Results establishing that the 
planted ensemble on coloring is easy above Cq2, where C is some constant quite larger 
that one, are already known [17, 6]. 

Another interesting aspect of the planted ensemble is to compare it with the 
ensemble of satisfying instances from the random ensemble. This issue has been 
addressed e.g. in [5, 7] and certain relations of the two ensembles were discovered. 
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Some remaining open questions are: Is there a region of average degree, and if yes 
what are its boundaries, where these two ensembles are asymptotically equivalent? 
And how does that property depend on the problem in question? 

Finally, another consequence of our work worth discussing is that we know how to 
generate unique satisfying assignment instances - both in the hard and easy regions. 
Such instances are often used for evaluating the performance of the quantum anneal­
ing algorithm, but so far they have been generated with an exponential cost from an 
ensemble with unknown classical average computational complexity [32, 8]. In our 
opinion, these works should be repeated on instances on the locked problems. We 
conjecture that in the classically hard region also the quantum annealing will be ex­
ponential (this is because we anticipate a first order phase transition in the transverse 
magnetic field, as in [13]). 
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