‘LA;UR- OA —~ O\\\'S

Approved for public release;
distribution is unlimited.

Title: | Quiet Planting in the Locked Constraints Satisfaction
Probiems

Author(s): | | enka Zdeborova/226997/T-4/LANL
Florent Krzakala/229590/T-4/LANL

Intended for: | SIAM Journal on Discrede Mathematics

yaX
- Los Alamos

NATIONAL LABORATORY
E5T.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the Mational Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royaity-free license to publish or reproduce the
published form of this centribution, or to aliow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboraiory does not
endorse the viewpoint of a publication or guarantee its technical correciness.

Form 836 (7/06)



QUIET PLANTING IN THE LOCKED CONSTRAINTS
SATISFACTION PROBLEMS

LENKA ZDEBOROVA* AND FLORENT KRZAKALA! %

Abstract. We study the planted ensemble of locked constraint satisfaction problems. We
describe the connection between the random and planted ensembles. The use of the cavity methed is
combined with arguments from reconstruction on trees and first and second moment considerations;
in particular the connection with the reconstruction on trees appears to be crucial. Our main result is
the location of the hard region in the planted ensemble, thus providing hard satisfiable benchimarks.
In a part of that hard region instances have with high probability a single satisfying assignment.

Key words. Constraint Satisfaction Problems, Planted Ensemble, Belief Propagation, Recon-
struction on Trees, Instances with a Unique Single Assignment.

AMS subject classifications. 90027 68Q25 05C80

Constraint Satisfaction Problems (CSP) are very general in nature: Consider a
set of N discrete variable and a set of M Boolean constraints; the problem consists
is finding a configuration of variables that satisfies all the constraints or in proving
that no such configuration exists. As such, CS8Ps are subject of interests in many dif-
ferent fields such as computer science, discrete mathematics, physics, engineering and
computational biology. Random ensembles of CSPs have proved to be a fertile source
of research activity; as hard benchmarks they serve for testing new algorithmic ideas
[4, 27], they are used to create efficient coding schemes [10, 11}, to model complex
glass forming liquids [3, 19], or to understand the origin of average computational
hardness [26, 34]. Combining know-how from many branches of mathematics, com-
puter science and statistical physics seems to be fruitful for understanding of these
stunning objects with very rich behavior.

The most commonly studied random ensembles of CSPs are created by choosing
the graph of variables and constraints as a random bipartite graph with a certain left
and right degree distributions. Another natural way of creating a random instance,
called planting, is to first assign a configuration to variables and then to choose only
constraints compatible with such a configuration. Both these ensembles can be use-
ful to mimic instances created in some practical applications. In particular planted
instances maybe be created in adaptive situations when only constraints satisfied by
the current state of variables can b added.

By planting we create by definition a satisfiable instance. Such instances are in
particular useful as benchmarks to evaluate the performance of incomplete solvers,
such as stochastic local search [30]. Based on the example of the planted K-satisfiability
problem it is often anticipated that the planted ensemble is algorithmically easier than
the random one as a bias towards the planted assignment is created in the graph. Also,
for most of the studied problems it was proven that at large density of constraints is it
indeed easy to find an satisfying assignment near to the planted one, see e.g. {2, 5, 9].
On the other hand if the planted ensemble would be algorithmically hard in some
region of the parameters than these instances could serve as one-way functions and
have application in cryptography. Yet, compared to the random ensemble relatively
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2 L. ZDEBOROVA AND F. KRZAKALA

little is known about the existence, size and properties of algorithmically hard regions
in the planted ensemble.

In this paper we study a way of planting an assignment which changes only in a
minimal way the properties of the random ensemble. We call this a ”quiet planting”.
The concept of quiet planting was introduced in [20], but some of its consequences were
already used as a tool for proofs in [1]. Both these works were mainly concentrated on
the coloring problems (and the hyper-graph bi-coloring). In this work we will focus on
quiet planting in the so-called locked CSP, introduced recently in [34, 33). The locked
CSPs have very interesting phase diagram which description-wise is much simpler
than the one of graph coloring or K-satisfiability. On the other hand algorithmically
they are much harder and the boundaries between the easy and hard regions are,
unlike in the coloring or K-satisfiability, well understood (at least on the heuristic
level of the cavity method). This special behavior stems from the fact that in the
locked problems the space of solutions consists of separated points.

Here, we combine the idea of quiet planting with the special behavior of the locked
CSPs and obtain random CS8Ps ensembles with very interesting properties. The paper
is organized as follows: In Sec. 1 we summarize our main results in the context of
related works, in Sec. 2 we introduce the necessary definitions and notations and in
Sec. 3 we summarize the phase diagram of the locked problems derived in [34, 33].
In Sec. 4 we argue about the equivalence between the random and planted ensembles
based on the cavity equations and on a second moment argument. In Sec. 5 we
describe the phase where instances of our problems have with large probability a
single solution. Finally, in Sec. 6 we discuss the algorithmical hardness of the planted
instances.

1. Main results and related works. The results of this paper apply to the
factorized locked CSP, see Defs. 2.2, 2.4. We list in five points the most important
contributions of the present article:

(i) The idea of quiet planting is to plant a configuration which will have all the
properties of a typical satisfying assignment on the resulting graph. Such a
problem is very closely related to the reconstruction on trees [22] where we
broadcast an assignment taken uniformly at random from all the satisfying
ones. The quiet planting is always possible on a tree, as exact marginal prob-
abilities can be obtained via the belief propagation algorithm. On random
graphs this can be achieved asymptotically if the belief propagation has a
stable uniform fixed point, which this is the case on the factorized CSPs, see
Def. 2.4.

(ii) All the properties of the planted ensemble created via quiet planting can
be deduced from the properties on the purely random ensemble, keeping
in mind that in the planted ensemble of the locked problems there is the
planted assignment on top of the other satisfying ones, which we would found
on the random ensemble. Thus, among others, in the satisfiable phase the
random and planted ensembles are asymptotically equivalent, see Defl. 4.1.
Such equivalence can also be established rigorously based on a second moment
argument as in [1], and the result that in the factorized locked models the
second moment is able to pin the satisfiability threshold sharply.

(ili) Next to the interesting conceptual results, the most important practical result
is establishing the region where the instances from the planted ensemble are
computationally hard. It is anticipated that a easy-hard-easy pattern appears
as the constraint density is increased. We conjecture that the two boundaries
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on the hard phase correspond to two different reconstruction thresholds — the
onset of hardness coincides with the small noise reconstruction with threshold
[33], called the dynamical transition in the physics literature [18], and the end
of the hard region is given by the threshold for the robust reconstruction [12].
This last point point also corresponds to the Kesten-Stigum bound for the
canonical reconstruction on trees [15; 16] and to the spin glass local instability
in the purely random ensemble [25]. We also show that outside the hard region
algorithms based on belief propagation are able to find solutions efficiently.
In particular in the high average degree easy region, the Belief Propagation
(BP) algorithm converges directly to the planted solution.

(iv) Given we have located the values of parameters where the instances of the
planted ensemble are hard, these can serve as very challenging satisfiable
benchmarks. Such benchmarks are in particular interesting for evaluation of
the incomplete solvers, as most of the complete solvers use a variant of the
unit clause propagation and as locked constraints produce relatively many
implications they might not seem to be that hard for branch and bound
based solvers.

(v) As the hard region in the planted ensemble extends to the phase which is
unsatisfiable in the random ensemble, we show that in that phase the planted
instances have with high probability a single satisfying assignment (or a pair
of them in case a global symmetry is present). Moreover depending on the
constraint density these unique satisfying assignment (USA) instances can be
found in the hard or in the easy region. Some USA instances are extensively
used in evaluation of quantum algorithms, see e.g. [32, 8]. In the current
works these instances are, however, generated with exponential cost, and thus
their classical computational hardness is almost impossible to be evaluated.

Large part of our results are based on the heuristic cavity method approach

[24]. Based on computations of the second moment we were able to prove part of
our results for the R-in-K SAT problems on random regular graphs. This includes
the equivalence between the planted and random ensembles in the satisfiable phase.
Location of the satisfiability transition. And uniqueness on the satisfying assignment
in the unsatisfiable phase. Extending these proofs to the other locked factorized CSP
should be possible, however, more involved.

TaBLE 1.1
Sketchy summary of the properties of the different phases in the random ensemble of the fac-
torized locked problems, the parameter | is the average number of constraints in which a variable
appears. The three thresholds lg, ls and l; are defined in detail later in the paper.

| RANDOM [ i<ty [ la<i<l, Jlhi<li<b] bL<l |
BP, any init. converges converges converges | does not
fixed point uniform uniform uniform X
solutions exponentially | exponentially none none
finding solution easy hard x x

[ reconstruction || not possible |  possible | x | X |

2. Definitions and notations. In this section we specify the class of constraint
satisfaction problems to which our results apply. We state several necessary defini-
tions, the crucial notions will be the definition of a locked [34] and factorized constraint
satisfaction problem. It is only on the factorized problems where there is a very close
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TaBLE 1.2
The same as Tab. 1.1 for the random planted ensemble, its definition is given in Sec. 4.

]LOCKED H { <1y ] la<l <l eI <y h <! I
BP, random init. COnverges converges converges | COnverges

| fixed point uniform uniform uniform planted
BP, planted init. converges converges converges | converges
fixed point uniform planted planted planted
solutions exponentially | exponentially one/iwo one/two
finding solution easy hard hard easy
reconstruction not possible possible possible possible
robust recons. not possible not possible | not possible | possible

relation between the usual random and the planted ensemble, as discussed in [20].
It is also the fact that in the locked problems solutions are far from each other [34]
which makes them particularly interesting for considerations in this context.

DErFINITION 2.1. A constraint ¢ containing K wvariables, the domain of each
variable being X, is a function from X* to {0,1}. If the function evaluates to 1 (0)
we say that constraint a is satisfied (not satisfied). A constraint is locked if and only
if there are no two satisfying assignments of variables which would differ in a single
value (vut of the K ones). In this paper we will consider for concreteness binary
variables, that is X = {0, 1}. But the results are generalizable to general domain size.

DeriNITION 2.2. A constraint satisfaction problem consists in deciding if there
exists a configuration of N wvariables which would satisfy simultaneously a set of M
constraints. A constraint satisfaction problem is called locked if and only if all the
M constraint are locked and each of the N variables belong to at least two different
constramls.

We shall illustrate our findings on the so called occupation constraint satisfaction
problems [28, 33}.

DEFINITION 2.3. In occupation problems every constraint a depends only on the
sum of variables it contains. Thus every occupation constraint containing K, variables
can be characterized by a binary K, + 1 component vector A, such that the constraint
is satisfied if and only if the sum r of the K, variables is such that Ag(r) = 1.

An occupation constraint a is locked if and only if for all¢ = 0, ..., K, — 1 we have
Ag(iYAy (i + 1) = 0. We will consider occupation problems where every constraint
contains K variables and is given by the same vector A. To give and example for
the notation vector A = 0100 would correspond to the 1-in-3 SAT problem (exact
cover), which is locked, or A = 0110 would correspond to the hyper-graph bi-coloring
problem, which is not locked. More examples can be found in [33]. For problems which
do not have other name established in the literature we use the notation i-or-j-...-in-K
SAT for vector A with non-zero components A;, A;, cte.

Let us now write the belief propagation (BP) equations {29, 21, 23] for the occu-
pation constraint satisfaction problems. The basic quantities in BP are messages. We
define ¢ as the probability that the constraint a is satisfied, conditioned to the
fact that the value of variable 7 is s;. Belief propagation equations approximate these
probabilities by assuming that the factor graph [21] underlying the CSP is a tree

g{’}_‘jf’é = Z—al_: Z 5A(sz~+23 AN H H 7’5’27j )

{s;} j€da—i bEBj~a

(2.1)
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where Z~ is a normalization constant assuring ¢¢™* + ¢¢~™* = 1. Fig. 2.1 shows

FiG. 2.1. Part of the factor graph to illustrate the meaning of indices in the belief propagation
equations (2.1).

the corresponding part of the factor graph. The belief propagation estimate of the
probability that a variables ¢ is occupied is then

Xz' — Haé@z‘ w;lﬂl i (2 2)
aea V17" + [lacai 967

Note that if an assignment {¢} is a solution of the problem then ¢2* =1, %' =0
is a fixed point of the BP equations (2.1).

DEFINITION 2.4. A given instance on o constraint satisfection problem is fac-
torized if and only if the belief propagation equalions initiclized rondomly converge
almost surely (with probability approaching one as the number of variables N — o)
to a uniform fized point, i.e., the value of ¥ does not depend on the indexes a andi.
Note that it is a non-trivial task to check if a problem satisfies this definition, and it
depends on the degree distribution. In what follows we will state two large groups of
locked problems which are factorized. Evaluation of the condition in Def. 2.4 is based
on the cavity solution of the problem.

Our derivations and proofs will hold only asymptotically (N — oo} on graphs
which are locally tree like, that is the shortest loop going trough a random variables
has diverging length ags N — oo. Families of sparse random graphs, i.e. the degree
distribution of variables Q{{) does not depend on N, are locally tree like. Examples
of the variable degree distribution we will be using are:

s Regular Q1) = 4.
e Truncated Poisson Q(0) = Q(1) =0, Q(l) = d/les—1-e)ll] for I > 3. The

average degree in this case is { = ¢{(1 — e ¢)/[1 ~ (1 +c)e™¢].
o Poisson Q1) = e™cct /1.

To generate random graphs with a given variable degree distribution we generate first
a degree sequence from @Q(I) such that it is compatible with number KM and then
consider a random permutation of KM numbers (which does not create double edges).

As follows from the analysis of the locked problems in [34], a locked CSP can be
factorized in two different cases

{a} On the regular graphs, that is every variable is contained in L constraints.
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On the regular graphs the fixed point of the BP equations then satisfies

1 & K-1
Yo = 7 Z 5A(r),1< , )%Lnl)? ?/)(()L_l)(Kml_T) , (2.3)

I\-l
~ 1\ (L1 (L-1K=1-1)
Py = Z Z (’A(r+1) 1( , )@95 ”wé X m, (2.4)

where Z is the normalization. For the probability that a variable in occupied
one has in this case

Py + g
Let us call 2, the probability that a constraint contains r occupied variables
then
r(L~1 K —~r)(L-1
( ) S a0, V] ) JL~-1)

Iy == (2.6)

/ K-
Zt:(}(s) A1), Wi 1)5'( O

(b) For the balanced locked problems [33], that is when the vector A is sym-
metric, A(i) = A(K — 1) for all £ = 0,..., K and this 0-1 symmetry is not
spontaneously broken (no ferromagnet-like transition). In this case the belief
are ¢ = Py = x = 1/2. For the probability that a constraint contains r
occupied variables we have here

(5)3am
€L 1L (2.7
Sio (5)dac.s :

In particularly simple case of (a) is the R-in-K SAT where 1 < R < K/2. If every
variable has L connections and every constraint have to contain exactly R occupied
variables then the number of occupied variables is exactly MR/L, and thus y = R/K.

Ty =

3. Basic properties of the random factorized locked problems. As was
shown in [34, 33] on the locked problems the belief propagation gives asymptotically
exact values of beliefs ¥. And thus also the Bethe entropy (21, 23] gives the asymptot-
ically correct logarithm of the number of solutions. It reads for the balanced locked
problems

s(l) = Iog2+—log{ KZ5Ar)1< )} (3.1)

and for the fixed degree of variables

ZOA(r) 1( ) (L l)rw(L-l)(Kwr)} ~(L-1)log [wg + d)ﬂ . (32)

=0

log

where 1y, v is a fixed point of egs. (2.3-2.4). This entropy simplifies further for the
R-in-K SAT on regular graphs where we get and explicit formula

(L) = £ log (;) —(L-1)H (g) , (3.3)
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where H{z) = —zlogx ~ (1 —2)log (1 — z) is the entropy function. The satisfiability
transition I is then defined by

satisflability threshold {;:  s{ls) =0. (3.4)

For I < I, the problem has almost surely exponentially many solution, the exponent
given by s(1), whereas for [ > I, the problem almost surely does not have any solution.

Authors of [34, 33} also argued about existence of a second critical point in the
locked problems, l;. This critical point separates regions where for {¢} being a satis-
fying assignment the 2% = 1, 27 = 0 is a stable fixed point of the BP equations
(2.1) if and only if { > ;. That is if an infinitesimal perturbation is introduced to
these messages, the iteration of (2.1} goes back to the solution-related fixed point.
Equivalently only for [ > Iy each solutions has a corresponding fixed point not only at
zero temperature, eq. (2.1), but also at infinitesimal temperature, that is if constraint
can be viplated with infinitesimal probability. Authors of [34, 33] also conjectured
that for I > Iy a typical solution does not have solutions up to an extensive Hamming
distance, whereas for [ < l; there are solutions at non-extensive Hamming distance.

For the locked problems on regular graphs it is always 2 < Iy < 3, in other words
at L = 2 the systems are in the non-separated phase, and for L > 3 the solutions
are always separated and solution-corresponding fixed point is stable etc. For the
balanced locked problems the expression for Iy follows from [33]

K-2 (K-
la 2K —1)—2 Yoy m (57 Sagena dagofap-n.0

Q2) SR S (671

where (J(2) is the fraction of variables of degree two. It thus follows that whenever
the degree of every variable is larger or equal to three the system is in the phase where
solutions are separated.

There is a deep connection between this dynamical threshold and the reconstruc-
tion problem. In the reconstruction problem one creates a tree with the same degree
properties as the graph. Then we broadcast a satisfying assignment chosen uniformly
at random from all the possible ones. Finally the reconstruction problem consist of
deciding whether the assignment on leaves of the tree contains some information about
the value of the root. In the locked problems the values of the root is always uniquely
implied by the values of the leaves. However, if an infinitesimal noise is introduced
on the leaves then there is no information left if an only if I < I;. Thus I; was called
the small noise reconstruction threshold in [33].

Note also at this point that the survey propagation equations [26] in the locked
problems have a solution given by the solution of the belief propagation, see [33]. This
is a reason why in this paper we do not discuss the survey propagation.

To summarize the random locked factorized problems are in the non-clustered
phase for I < Iy, which was shown to be algorithmically easy in [34, 33]. Forly <1 <
the space of solutions is clustered and it is hard to find any of the solutions. For > I,
no more solutions exist,

: (3.5)

4. Equivalence of the random and planted ensembles for { < [,. The
planted ensemble of graphs, which is the main subject of the present paper, is created
in the following way:

(i) Make each of N variables occupied with probability x (2.5), call the number
of occupied variables Ny.
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TABLE 3.1
The critical values for all the balanced locked problems up to K = 8 on the regular and truncated
Poissonian ensemble. The integer value Ly (resp. L} is defined as the first larger or equal to I
{resp. 1), the stars denote that Ly = Uy (resp. Ly = ;). The sign 'z’ means that the problem ceases
to be balanced before the instability arises. We remind here thatl the vector A codes for what are the
allowed sums of variables around a constraint.

A L, Ly cg Cy e ly Iy Iy
00100 3 4% 1.256 | 1.853 | 2.821 2.513 | 2.827 | 3.434
0001000 4 6% 1.904 | 3.023 | 4.965 2.856 | 3.576 | 5.144
000010000 5 8* 2.337 | 3.942 | 6.994 3.116 | 4.276 | 7.039
5-in-10 5 10* 2.660 | 4.794 | 8.999 3.325 | 4.944 | 9.009
6-in-12 6 12% 2.918 | 5.455 | 11.00 3.502 | 5.586 | 11.00
01010 4% o0 1.904 | 3.594 | o 2856 | 4 o)
0101010 6* o 2.660 | 5903 | 3.325 | 6 o0
010101010 8* o0 3.132 | 7978 | @ 3.654 | 8 o0
0010100 6 46* 2.561 | 5.349 | 45.00 3.260 | 5.489 | 45.00
000101000 7 29* 2.975 | 6.650 | 28.00 3.542 | 6.708 | 28.00
001010100 8 > 100 § 3.110 | 7.797 | > 100 || 3.638 | 7.822 | > 100
010010010 6 X 2173 | 4.896 | x 3.014 | 5.083 | x
TABLE 3.2

The critical values for all the regular (non-balanced) locked problems up to K = 6. The integer
value Ly (resp. L) is defined as the first larger or equal to s (vesp. 1), the stars denote that
Le=1s {T’ES})‘ [‘l = lz),

A L, L ‘
0100 3 3% A D L] L
01000 3 T4 010100 || 5 | > 50
010000 3 | BF 0101000 § 6 | >50
0100000 T 3 | 6% 010010 || 4 | 10
001000 15+ 0100106 || 4 | 14
0010000 4 3 0100010 | 4 7

{it) Choose a degree sequence from the probability distribution Q({) in such a
way that KM = Zil li.

(ii) For each constraint, according to probabilities 2, (2.6,2.6), choose the number
ro of occupied variables to which it is connected. Repeat until 22{:1 Tq =
Zﬁ_‘l l;, here i are indexes of the occupied variables.

(iv) Choose a random permutation of Zi\i 1 T numbers, choose a random permu-
tation of MK — Zgi , Te mumbers, and connect the constraints to variables
according to that permutations. Repeat until there are no double edges.

Note that there are several models how to plant a solution, we could have chosen any
other which behaves the same as the above one in the thermodynamic limit.

DEFINITION 4.1. Two ensembles of random graphs are asymptotically equivalent

if and only if in the thermodynamic limit every property which is almost surely true
on a graph from one ensemble is also almost surely true on a graph from the other
ensemble.

DEFINITION 4.2. The planting is called quiet if the corresponding planted and

random ensembles are equivalent.  In this section we argue about the asymptotic
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equivalence of the planted and the random ensembles for the factorized locked prob-
lems in the range of parameters corresponding to the satisfiable phase on the random
ensemble. We will use two different approaches, the first one based on analogy between
planting and the reconstruction on tress [22] and the other one on the computing of
the second moment method and using theorems from [1].

4.1. Planting and the reconstruction on trees. The formulas created by
planting a solution are locally tree-like, just as the random formulas. Thus the planted
problems can be solved via the cavity method [24], the first step in that solution is
writing the belief propagation equations. The BP equations on a planted formulas
are the same as on a random formula, thus given by eq. (2.1). The difference comes
when one wants to find the typical fixed point without resorting to the single formula
experiments. A standard way to do this is the population dynamics technigue [24],
where the distribution of messages over edges P(i)) is represented by a pool drawn
from the distribution. On the planted formulas one has to distinguish if the value
planted on the corresponding variable was 0 or 1. In the population dynamics one thus
needs to keep two populations, one Py {¢) (second Fy{)) representing the messages
¥*~* for variables ¢ where we planted value 1 (0). The closed iterative equation for
the two distributions read

K-1 1§

Pw) =3 al{ish) ZE’T (=) Zéfzw/HHdP W) 8~ FUW D),
=0

{4} 1»5 {s:} i=1 j=1
(1.1)

where the y.(s) is the conditional probability that in the planted solution there is
r — s occupied variables within K — 1 ones, conditioning on the fact that the Kth
variable has value s.

(K — r) T (1) = 7Ty

Zt" - f) lL’g f{:O i(L’t ’

where the z, are the probabilities that a constraint contains r variables occupied in
the planted solutions, egs. (2.6,2.7). The ¢({l;}) = H;.K:;l(li +1)Q(l; + 1) /1 represents
the distribution of K — 1 excess degree, i.e. number of edges coming from a size of
a random edge. And the sum over {s;} is over all values of variables such that r — s
of them are occupied. The function F({¥7}) is defined by the belief propagation
eq. (2.1).

After a detailed inspection of these equations we realize that the very same equa-
tions would be obtained from analysis of reconstruction on trees [22]. Reconstruction
on trees is defined in the following way: First construct a rooted tree factor-graphs
with the degree distribution of variables J({) and degree of constraints K. Consider
all the constraints to be given by the vector A (nonzero elements of A are possible
numbers of occupied variables around the constraint). Second consider a random sat-
isfying configuration chosen uniformly from all the possible ones, call it broadecasted
configuration. The problem of reconstruction consists in deciding what is the infor-
mation the values of the leaves of this tree carry about the value of the root? If this
information is nonzero then we say that reconstruction is possible if the information
is zero that the reconstruction is not possible.

To generate a configuration uniformly at random over all possible ones we choose
a values of the root according to (2.5) and then broadcast a configuration towards
leaves, choosing the number of occupied variables according to probabilities (4.2).

yr(0) = (4.2)
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Following the derivation of [22] we obtain eq. {4.1). In the reconstruction context the
P,() is interpreted as the probability distribution of messages 1 going from clauses
to variables which had value s in the broadcasted configuration. Authors of [22] also
pointed out the equivalence between eq. {(4.1) and the formalism of one-step replica
symumetry breaking. A lot is known about the solutions of this equation.

In the case of factorized locked problems eq. (4.1) can have only two possible
fixed points. The first possible fixed point is equivalent to the solution of the BP
equations and reads

Po() = Py () = 8 [w - (:ﬁ);)} , (13)

where g, vy is the factorized fixed point of the BP equations (2.1). The second fixed
point is given by the planted configuration

Po() =4 {w - (‘D} L PW) =6 {w - ((1))} . (4.4)

The reconstruction on trees is possible if and only if this second fixed point is stable
under perturbations, according to [33] this happens for | > Iz, where l4 was defined in
eq. 3.5. Both these fixed points have physical meaning also on the planted ensemble
and the consequence of their existence is that all the properties of the space of solution
in the planted ensemble can be induced from the fact that is looks like union of the
space of solution in the purely random ensemble and the planted configuration.
Thus in particular in the region { < [, the planted ensemble is asymptotically
equivalent to the purely random ensemble, as for [ < {, there are exponentially many
solutions and the existence of the planted configuration does not change their prop-
erties. For { > l,, on the other hand, this means that there exists only the single
planted solution (pair of solutions in case of balanced problem a couple of solutions).

4.2. Second moment argument. The conclusion of the previcus paragraph
can also be obtained in a different and more rigorous, but maybe less intuitive, way.
The asymptotic equivalence of the planted and purely random ensembles follows from
the theorem of [1}

THEOREM 4.3 (Achlioptas and Coja-Oghlan (1}). If for a given set of paremeters
{vector A, constraint degree K, variables degree distribution Q(1), N — o) the second
moment of the number of solutions in the purely random ensemble is smaller than
some constant C times the square of the first moment, 1.e. EN?) > CEW))?,
then the planted and random ensembles are asymptolically equivalent for that set of
parameters.  Proof of this theorem can be found in [1], and its consequences are
discussed for the coloring and bi-coloring of factor-graphs problems.

Note that in the factorized locked problems the following proposition holds

PROPOSITION 4.4. The relation B(N?) > C{EWN)]? holds in all the factorized
locked problems on the purely random ensemble as long asl < 1,. The first and second
moment of the number of solutions in the occupation problems has been computed
for a general degree distribution in [33]. It has been also argued in [33] that the above
proposition holds in the balanced locked problems. Here we illustrate that it also
holds in the R-in-K SAT on random L-regular graphs for L < [;. The first moment
entropy defined as sy = log E(N)/N is in the R-in-K SAT on random L-regular
graphs given by eq. (3.3). The second moment entropy sgnq = log E(A?)/N is given
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by $2dn = max.sand{f) where

. 1
sT(1-OR 2(R—s) MR K~2R+s 1
o[ feer [ e
sana(t) = — log ¢ K1Y . (4.5)
K por (B—s){—s)!s!(K~2R~—g)!
The interpretation of the parameter 0 < ¢ < 1 follows from expression
EWNE) = Y Plo) SAT, 02 SAT), (4.6)

G102

where ¢y and oy are configurations and P(+) is a probability over the graph ensemble.
Parameter ¢ in (4.5) is then number of sites occupied in both o1 and oo divided by
number of sites occupied in one of the solutions, RN/K. We remind that in the
R-in-K SAT the satisfiability threshold is given by cancellation of th entropy (3.3)

ly = [1 - -}%’I%J—l : (4.7)

ProrosSITION 4.5. For all the reqular R-in-K SAT problems holds: For L < I
we have 2815 = 8ana, ond for L >y we have s1q = Sang. We were not able to prove
this statement using formal algebra, but as sspg is 2 maximum of a function of one
varijable t we can persuade oursell by plotting s). and sznq(f) that the statement is
correct, see e.g. Fig. 4.1.

It is easy to persuade ourself that in the ratio E(A?)/[E(N)]? the non-exponential
term do not depend on the system size N. Thus from the fact Proposition 4.4 follows
from the relation 28,4 = Sang.

We also investigated numerically general formulas for the second moments method
presented in [33} and concluded that Proposition 4.5, and thus the asymptotic equiva-
lence of the planted and random ensemble, holds also for all the other locked factorized
problems.
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Fia. 4.1. The second moment entropy function sona{t) (4.5) atls for several values of K, in
the K-in-2K SAT problem on the left, and 1-in-K SAT on the right.

5. Single solution instances for I > I, As we argued in the introduction there
it is very important to be able to create hard instances which have a single solution
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with large probability. Based on the relation between planting and reconstruction on
trees we concluded that in the region I > I, with high probability there is a single
solution to the problem on the large typical instances from the planted ensemble (or a
couple in case of balanced problems). This statement can also be supported by more
Tigorous argurments.

In this section we go trough this argumentation for the R-in-K SAT on random
regular graphs. We believe that generalization of the proofs from this section is
possible also to the other factorized locked problems.

First note that the first moment in the planted R-in-K SAT is related in a simple
way to the first and second moment in the purely random ensemble. 1t holds for the
entropies

slst,pl(t) = San({») + Sist - (51)

See an example of the function syg pi(¢) in Fig. 5.1. From Proposition 4.5 it follows
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F16. 5.1. The first moment entropy in the 4-in-8 SAT on L regular planted ensemble.

that for L > I, the first moment entropy in the planted ensemble is a negative function
for all 0 < t « 1. The parameter ¢ is in the planted ensemble interpreted as the
distance from the planted solution. Thus for L > [, there are no solution at an
extensive distance from the planted solution (except the solution at distance one in
the balanced problems).

THrEOREM 5.1. Consider a large instance of the R-in-K SAT problem drawn from
the planted ensemble, degree of variables be L > 2. Then there exist en ¢ > 0 such
that with high probability there is no solution at distance smaller than eN from the
planted solution We will use the expander properties of regular bipartite graphs. The
following theorem is well known in the theory of expanders [31]

THEOREM 5.2. [Sipser and Splielman [31]] Consider a random factor-graph with
degree of variables L and degree of constraints K. Then, for anyé < L—1, there exists
a constant ¢ > 0, such that with high probability for every set of N < eN wvariables the
number of neighboring constraints is larger than 6N, in other words the factor graph
s a {¢,8) expander.

Proof. [of Theorem 5.1} Now consider the factor-graph and the planted solution.
In order to find another solution a certain number Ny of variables have to be changed.
The property defining a locked constraint is that if a variable is changes at least one
other have to be changed in order to satisfy the constraint again. If Ny < e/N where
¢ 18 the value from Theorem 5.2 then variables have been changed in at least 6Ny
clauses. Thus the total degree of changed variables LN; > 25N;. But as é can be
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as near to L — 1 as we wish this inequality is impossible. This proofs that with high
probability there is no solution at distance smaller than ¢ from the planted one. O

The properties of the first moment in the planted ensemble together with Theorem
5.1 imply that in the planted R-in-K SAT on random regular graphs there is almost
surely a single solution {or a pair of solutions for R = K/2).

0 1 ' T D.07 — ” ]— — M=45 ¥
I3 i K™ =60+
3 g 8 % e oos |V i ] :
g o038 goxt k| 5 : M=100
e L § 005} % M=120
2 o z n* asymptotic value -
z 06 L & po4 s
& X o . : .
o : g * B}
& o B £ 003 WK
5 : ¥ x
e M=40 s % ooz % 3 lx .
| : ML : I
| 7 ¥ M=80 = 5 oot e o T % o x ox %
E] L T M=100  ® RURA A I
g L% M=120 v :
a 0 b & ® % 0 . s 23 : .
26 27 28 29 3 31 32 26 27 28 2¢ 3 31 832
average degree average degree

Fic. 5.2. Left: Probability (over 5000 instances) that there is o single puir of solutions in the
2-tn-4 SAT as e function of the average degree and the size of the graph. Right: Datae ure the
average entropy density (logarithm of the number of solutions per variebles) of the instances. The
line represents the entropy density in the thermodynamical imit, eq. (3.2). The data are obtained
with the relsat algorithm [14]. In both parts we marked the threshold I; = 2.827,

6. Average computational hardness. One of the most interesting aspects of
the study of random constraint satisfaction problems is the average computational
hardness of a given ensemble. This has been discussed extensively in both the com-
puter science and physics literature in particular for the K-satisfiability or coloring
problems. The situation in the planted factorized locked problems is very interesting,
as the average degree is changed the problem undergoes easy-hard-easy transition and
moreover the first threshold can be pined more sharply than in the more commonly
studied problems.

We argued that in the satisfiable phase [ < I, the planted and random ensemble
are asymptotically equivalent, this includes average behavior of algorithms. It was
argued in [34, 33] that for average degree [ < Iy the locked problems are algorithmically
easy whereas for Iy < ] < I, they are on average hard.

The second hard-easy transition is particular to the planted ensemble and happens
in the phase I > I,. We study the behavior of the BP equations initialized randomly
to locate this transition.

6.1. The spinodal point. By definition of the factorized locked problems the
belief propagation equations (2.1} initialized randomly converge to a uniform fixed
point. But as the average degree is growing this ceases to be true. In the problems
that we are studying here, it actually exists a critical average degree {; beyond which
beliefl propagation converges spontaneously towards the planted solution. This yields
a clear hard-easy transition in the algorithmic complexity. In statistical physics terms
this threshold I; corresponds to a spinodal point of the liquid state. The spinodal
point also corresponds to the Kesten-Stigum bound [15, 16], and to the robust recon-
struction threshold on trees [12]. This is yet another important connection between
the reconstruction and the planted ensemble.

In order to compute the spinodal point let us first define matrix z(s’

). Consider
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a variable and one of its neighbors, z(s'|s) is then the probability that in the planted
coufiguration the variable was assigned s" given that its neighbors was s. In the terms
on reconstruction on trees z(s’{s) is the probability that in the broadcasting a variable
was assigned s’ given its parent was s. Components of z(s'|s) can be computed using
the quantities y,(s) from eq. {4.2) and reads

2(0l0) = i (1 S ) ¥ (0) 2(110) = 1 — 2(0|0) {6.1)
~ K . 1 dr b o Y
X r—1
A1) =Y w1, 2(011) = 1- (1) (6.2)
r=0

explicit formulas for the regular problems

K—2 (K3 r(L—-1 K—r-1)(L-1
Zv‘:O ( r )6/1(7‘)’1?’[)1( )’k/)(g : :

Z(D}O) = - o (L — K—y— F. b (63)
S () By aud gt TR
K - W L=1} (K =7)(L~1
W(lll)—Zmz(‘f_f)&s(r»l%’ A A (6.4)
“ T K _ I E— K- (L-1) -
s (K28 ag i DET Doy

The first eigenvalue of this matrix is equal to one, and is associated with a trivial
homogeneous eigenvector. The second eigenvalue of the matrix z is given by

A= z{0]0) + z(1]1) = 1. (6.5)

A well-known property of the reconstruction on a tree is that reconstruction is
always possible beyond the so0 called Kesten-Stigum (K8) threshold [15, 16]. In our
notation the KS condition says that if (L — 1}(K - 1)A% > 1 then the reconstruction
is possible, i.e., the leaves asymptotically contain some information on the variable
sent by the root. On random graphs the Kesten-Stigum condition is equivalent to
the spin-glass local instability [22, 18], that is for (L — 1)(K ~ 1}A% > 1 the belief
propagation equation 2.1 do not converge. This can be seen from the fact that

_ oyt
- b—j
]

(6.6)

where 7 € a\ 4, and b € 97\ a.

The eigenvalue A and the condition for solvability (L — 1)(K — 1)A* > 1 also
appear in the problem of robust reconstruction on trees {12]. In the problem of robust
reconstruction it is required that even in arbitrary large fraction of the values on the
leaves is erased there is still an information about the root left.

The analysis of the instability o the uniform BP fixed point towards the planted
solution then goes as follows. Consider a part of the factor-graph as depicted in
Fig. 2.1. Denote the values of the messages in the uniform fixed BP fixed point by
over-bars. Consider the incoming message to be perturbed from the uniform value as

bj _
(W-2R20): o

Note that € can be both negative or positive. The equation 6.6 then implies that the
outgoing message will be

2&‘1’"”'—“——1[1.'%)\6 .
(-IRI): %)
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In other words, any infinitesimal noise in one of the incoming message is multiplied
by A in the recursion.

We call the perturbation of the incoming message e, is 7 was occupied in the
planted configuration, and e otherwise. If the variable i was planted in the occupied
state, then j was planted occupied with probability z(1]1), and empty with proba-
bility 2(0|1). Similarly, if the variable i was planted in the empty state, then 7 was
planted empty with probability 2(0]0) and occupied with probability z(1|0). Thus the
evolution of the perturbation is governed by the equations:

(@i 2(111)  2(0]1) b

( c;f”i ) = /\( 2(110)  z(0|0) ) ( ea}". ) ’ (6:9)

Moreover there are (K — 1){(L — 1) of possible incoming messages in the regular

graphs, thus the criterion (K — 1)(L — 1)AZ = 1. If (K — 1){L — 1)4% < 1 then the

perturbation decreases and we find only the uniform BP fixed point, if on contrary

(K — 1)}{L — 1)A? > 1 the the uniform BP fixed point is unstable and BP converges

instead to the planted solutions. Fig. 6.1 confirms that this is true even on rather

small graphs. On the balanced locked problems, where we are not restricted to the

regular graphs, the correct condition is (K — 1)yA% = 1, where ~ is the mean of

the excess degree distribution q(l) = (! + 1)Q(! + 1)/I. The spinodal point {;, see
Tabs. 3.1,3.2, is then define by

(K-l -1x32=1 (6.10)
for the regular graphs, and

—emt
(K—1p2= 12" (6.11)
o

for the truncated Poissonian distribution.

6.2. Belief propagation as a solver. Belief propagation reinforcement is a
good solver in the region [ < lg as shown empirically in [34, 33] in the random
ensemble, as the two ensemble are equivalent in that region nothing changes for the
the planted ensemble. We indeed verified this numerically.

Based on the above arguments, the beliel propagation equations converge to the
uniform fixed point for { < I; and directly to the planted solution for {> ;. In order
to verify that on finite size instances, we have performed the following numerical
experiment: we have generated many planted instances for different sizes and average
degree (5000 instances for each set of parameters). We then iterated the BP equations
{2.1) starting from random initial condition. For numerical stability reasons we used
dumping in the iterations, i.e. each time we computed a new message we kept one half
of the sum of the new and old message. As a convergence criterion we used that the
messages should not change more that 2.107% per message (we checked that a smaller
criterion does not change the quality of results, only slows down the computation).
This way every iteration converged either to a configuration where the bias of each
variable pointed towards the planted solution (or its negation) or a point very near
to the uniform fixed point. Fig. 6.1 shows in what fraction of the runs we were able
to find the planted solution and in particular it confirms that for I > [ is is easy to
find it in linear time. On the right of the same figure we plot the average convergence
time (given the criterion 2.107% per message). We see that around the spinodal point
l; the convergence time diverges from both the sides (slightly faster from the large
degree side).
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Fic. 6.1. Belief propagation on the 2-in-4 SAT problem. Left: Probability that the belief
propagation algorithm finds the planted configuration when initialized randomly plotted as a function
of the average degree for several system sizes. Right: The convergence time dependence on the
average degree. In both cases, we have stopped the BP iterations when the average change per
message was less than 2.1073. In both parts we marked the spinodal threshold |} = 3.434.

7. Conclusions and perspectives. In this work we have studied a class of
constraint satisfaction problems on a planted ensemble. The solution is planted in a
quiet way, i.e. the planted configuration is one of the typical solutions of the resulting
instance. We know how to realize such planting only on the factorized problems. We
describe several connections between this quiet planting and the problem of recon-
struction on trees.

We study the locked problems because of the simple structure on the space of
their solutions — solutions are isolated points instead of clusters. This property
makes the locked problems, however, very hard algorithmically. We focused on the
class of occupation locked problems in this manuscript, all our result generalize to
any factorized locked problem, on non-binary variables for example.

On the non-locked but factorized problems, as e.g. the graph coloring, the concept
of quiet planting stays valid [20], however the random and planted ensembles are
not equivalent up to the satisfiability threshold. And in the unsatisfiable phase the
planted ensemble has exponentially many solutions, instead of a single one as is the
case in the locked problems. Also the non-locked problems are much less friendly for
first and second moment considerations. The phase diagram of the locked but non-
factorized problem will not be very different from the one presented here. However,
the thresholds will be different in the planted and random ensembles and the two
ensembles are not equivalent.

One of the most important result of our work is the location of the algorithmically
hard region, between iy < I < [;, in the problems under investigation. It would be
in particular interesting to design an algorithm which would provably find solutions
in the region { > I;, we have only heuristic and numerical arguments. This is also
challenging in the non-locked problems, as e.g. the graphs coloring, where we predicted
the planted Poisson ensemble to be easy above I; = (¢—1)? (on planted regular graphs
L; = (¢ — 1)? + 1), where ¢ is the number of colors. Results establishing that the
planted ensemble on coloring is easy above Cq?, where C is some constant quite larger
that one, are already known [17, 6].

Another interesting aspect of the planted ensemble is to compare it with the
ensemble of satisfying instances from the random ensemble. This issue has been
addressed e.g. in [5, 7] and certain relations of the two ensembles were discovered.
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Some remaining open questions are: Is there a region of average degree, and if yes
what are its boundaries, where these two ensembles are asymptotically equivalent?
And how does that property depend on the problem in question?

Finally, another consequence of our work worth discussing is that we know how to
generate unique satisfying assignment instances - both in the hard and easy regions.
Such instances are often used for evaluating the performance of the quantum anneal-
ing algorithm, but so far they have been generated with an exponential cost from an
ensemble with unknown classical average computational complexity [32, 8]. In our
opinion, these works should be repeated on instances on the locked problems. We
conjecture that in the classically hard region also the quantum annealing will be ex-
ponential (this is because we anticipate a first order phase transition in the transverse
magnetic field, as in [13}).
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