
()q -OoQ;;<7LA-UR-
Approved for public release; 
distribution is unlimited. 

Title: I Trailblazing with Roadrunner 

Author(s): I Paul Henning 

Andrew B. White, Jr. 


Intended for: I Computing in Science and Engineering 

A 
~ LosAlamos 

NATIONAL LABORATORY 
--- EST.1943 --­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
lor the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Trailblazing with Roadrunner 


Paul Henning and Andrew B. White, Jr. 

Los Alamos National Laboratory 

In June 2008, a new supercomputer broke the petaflop/s performance barrier, more than doubling 

the computational performance of the next fastest machine on the TopSOO Supercomputing Sites 

list (http://topSOO.org).This computer, named Roadrunner, is the result of an intensive 

collaboration between IBM and Los Alamos National Laboratory, where it is now located. 

Aside from its performance, Roadrunner has two distinguishing characteristics: a very good 

power/performance ratio and a "hybrid" computer architecture that mixes several types of 

processors. By November 2008, the traditionally-architected Jaguar computer at Oak Ridge 

National Laboratory was neck-and-neck with Roadrunner in the performance race, but it requires 

almost 2.8 times the electric power of Roadrunner. This difference translates into millions of 

dollars per year in operating costs. 

As supercomputer designers push on towards the goal of exascale computing, power 

consumption becomes a major challenge. Current power estimates for exascale computers range 

from many tens to low hundreds of megawatts for the computer and memory alone, discounting 

storage and environmental conditioning. For comparison, Roadrunner requires about 2.S MW 

for l.4S petaflop/s peak. The combination of computing performance and power efficiency in 

Roadrunner shows one of the principal advantages to considering hybrid architectures. 

However, this advantage comes with the challenge of learning a new programming paradigm. 

The November 2008 issue of CiSE [1] provided a glimpse into how computational scientists are 

adapting to and exploiting a variety of novel architectures. It can be done. There are many 

benefits, but there are challenges. 

It would be nice to think that specialized processors and hybrid systems are simply fads 

that will disappear soon. Scientific computing has enjoyed a fairly idyllic era since the transition 

from vector processors to massively parallel processing several decades ago. While there has 

been a shift to commodity clusters and changes in operating systems and communication 

infrastructure, the basic structure of our applications has not needed significant change. 

Unfortunately, challenges in processor design and fabrication are bringing this era to a close. In 

many ways, Roadrunner is just as important as a glimpse into the future of scientific computing 

as it is as a petaflop supercomputer. To support this claim, we'll start with a look at the changes 

occurring in processor design. 

http://topSOO.org).This


Processors are changing, for good reason 

As in any business, the driving force in processor design is profit. Without an improved user 

experience to generate sales, companies have no economic incentive to bring new designs to 

market. Traditionally, this improvement in user experience came through performance advances 

in general-purpose processors. However, this path has bifurcated: the rapid proliferation of 

embedded processors has created demand for specialized low-power designs, and a variety of 

challenges to traditional means of improving performance is causing designers to re-think the 

general purpose processor. This section will illustrate some of these challenges to provide a 

rationale for the changes corning to hardware and software. This discussion follows that given 

by John Manferdelli [2]. 

One traditional approach to improving processor performance is simply to increase the 

clock frequencies of the processors. However, since power consumption is proportional to the 

clock frequency, the heat density per fixed area ofprocessor chip increased to the point where 

simple cooling methods were inadequate. Designers are now lowering the clock frequencies of 

processors, negating the "free" performance improvements that applications were getting from 

successive generations of faster single processors. 

Another technique for transparently improving performance is instruction-level 

parallelism, common in general-purpose processors since the late 1990s. These "superscalar" 

processors simultaneously execute multiple instructions on redundant functional units. In this 

scheme, the processor must automatically detect and avoid data dependencies between sequential 

instructions. Superscalar processors also employ pipelined, speculative and out-of-order 

execution, leading to a combinatorial number of gates related to dependency checking, branch 

prediction and instruction scheduling [3]. These techniques create processor designs that are 

difficult to design and verify; yet the promised performance improvements are ultimately limited 

by the nature of the instruction stream being executed. There is evidence that designers are 

moving back to more simple instruction scheduling models, and using the newly freed space for 

different purposes. 

The final architectural challenge is the growing discrepancy between the time required to 

execute an instruction and the time required to retrieve data from memory. For most current 

processors, one can expect a single instruction to take ten or less clock cycles, while fetching 

data from main memory may take several hundred cycles. This problem is compounded when 

multiple instructions are being executed simultaneously. Traditionally, this difference has been 

alleviated by using larger hierarchies of fast cache memory, which acts as a bridge between the 

processor and the main system memory. However, this cache memory is expensive and 



complex, and the deeper hierarchies appearing in contemporary processors are increasingly 

difficult to verifY for correctness. Designers are beginning to introduce new memory subsystems 

to processors, including crossbar switches and programmer controlled local storage. 

Looking beyond processor design, another broad category of challenges is related to the 

increase in processor power consumption as the fabrication process size decreases. Companies 

are currently using a "45nm process," where a single transistor is approximately 6nm long and 

contains a dielectric layer that is l.2nm thick. There are many complicated physical effects at 

this scale (cf. [4]), but the net effect is that transistors leak significant amounts of power. 

Advances in material sciences should help stem this problem, but the shrinking process size 

implies that there will soon be more transistors on a chip than we can afford to power 

simultaneously. It is expected that fine-grained power management features will appear in 

processors (or even to programmers), leading to heterogeneous performance across even 

homogeneous processors. 

Even in the face of these significant challenges, processor designers must still meet the 

economic driver of providing a better user experience. Rather than pursuing even more complex 

single processors, they are now placing multiple copies of a processor onto one chip to form a 

"multicore" processor. Each of these cores tends to be slower and less complex than single 

processors ofeven five years ago, but provide performance increases in aggregate. This trend 

shifts more work to the applications programmer. Not only do they have to make up the loss in 

single core performance through better optimization, but they also have to explore ways of 

parallelizing their applications to take advantage of more cores. While this is nothing new for 

the scientific computing community, it is a fundamental shift in the broader software industry. 

Additional software development challenges will be discussed in the next section. 

In addition to moving to multicore designs, companies are introducing chips that contain 

a mix of general purpose and special purpose cores. These are called heterogeneous multi core 

chips, and they represent the most significant challenge (and opportunity!) for the software 

developer. In contemporary heterogeneous multicore chips, the special purpose cores tend to be 

short vector processors, which are especially useful in computer graphics applications. While 

general-purpose processors have had some form of vector operations available for some time 

(SSE, AltiVec, etc.), offloading this workload to a standalone processor allows for greatly 

increased parallelism. Although vector processors are certainly of use to the scientific 

programmer, it will not be surprising to see much more specialized processors appearing in the 

future, such as cryptographic engines, compression, video decoding, etc. These will pose special 

problems for the high-performance computing (HPC) community, both in terms of how (or if) to 

utilize them, as well as managing the power they draw when not in use. 



Hardware changes will disrupt software development practices 

The changes occurring in computer architectures are creating a ripple effect in the software 

development arena, even for traditionally serial applications. The availability of specialized 

processors forces developers to decompose their program across functional units. Deep memory 

hierarchies, especially coupled with disjoint address spaces, require special attention to data 

motion costs. The short vector processors constrain data structure design. Developers must now 

look to parallelism, often in terms ofmultithreading, for performance gains. 

Even in the HPC community, where programming has always involved some level of 

adaptation to distinctive hardware, programs will have to evolve to new levels of complexity. 

One can no longer imagine that all processors have equal access to resources such as memory, 

network or 110: tasks need to be scheduled on the processors with the best balance of 

functionality and resource access. Power management considerations may become explicit in 

programs, such as putting an idle functional unit into a reduced power state. And, as system 

sizes continue to increase, reliability and resilience become significant issues. Can we detect and 

recover from hard, soft and even silent data corruption? How do we restart calculations on 

systems with a mean time between interrupt measured in hours? 

Compounding these technical challenges is the dire lack of parallelism experience among 

the general software developer community. The state of the tools available to developers makes 

this problem worse: threading libraries and primitives added to fundamentally serial languages 

are challenging to use. Hardware vendors have recognized these problems, and are working on a 

variety of solutions. In the hardware itself, transactional memory may remove some of the 

challenges of thread programming, and innovations such as scout threads may provide more 

transparent performance increases. 

Software solutions are also being developed, from new compiler technologies, to libraries 

and language extensions. For the most part, these tend to be proprietary solutions, useful on 

only one vendor's hardware. One exception to this is the OpeneL standard released by the 

Khronos Group [5]. This is an API for programming attached accelerator processors, such as 

GPGPUs. Companies are also pursing long-term strategies such as establishing research labs at 

universities to directly tackle some of today' s challenging problems, as well as creating a stream 

of talented and experienced graduates. Vendors are also introducing some forms of "declarative" 

programming into their tools. This class of languages allows the programmer to focus on what 

should happen, rather than how the computer should execute the task. 

While the intensity of these activities is encouraging and will certainly bring advances, 

they are not a sufficient solution for high-performance computing. Most of this work focuses on 



programming a single chip or a desktop: large clusters of these complicated nodes do not 

command enough market share to warrant the investment. Another, somewhat subtle, challenge 

for the HPC market is a forced change in programming languages. The majority of the 

investment for new software tools is being focused on C/C++ compilers. While some of these 

developments will trickle down into Fortran tools, it is unlikely that Fortran will be well suited to 

take advantage ofthe new hardware. 

Exploring the future with Roadrunner 

Perhaps the greatest challenge that software developers face at this time can be simply termed 

"diversity". Hardware designers are providing a dizzying array of options, and each option may 

encourage several different programming approaches. Eventually, this period of rapid 

innovation win settle to smaller set of stable technologies, but we don't have the luxury of 

waiting until that happens. Fortunately, the HPC community already has a tool that is flexible 

enough to confront most of our programming challenges in Roadrunner. This section contains 

only a very brief overview of the physical architecture ofRoadrunner, preferring to concentrate 

on programming models. More details of the system can be found at 

http://www.lanl.gov/roadrunner. 

2 PCI·E x8 links. 2 
GBIs, 2jJs each 

Figure 1: Schematic of a Roadrunner node. Communication channels are characterized by 

bandwidth and latency. 

http://www.lanl.gov/roadrunner


Overall, Roadrunner is configured as a relatively traditional cluster-of-clusters of node 

that uses InfiniBand for the interconnect and supports the HPC-standard MPI communications. 

At the node level, however, Roadrunner becomes unique. Figure 1 provides a conceptual 

schematic of the node. The "root" ofthe node, at least with respect to the network, is a blade 

server with two dual-core AMD Opteron processors. Attached to that are two "accelerator" 

blade servers based on the IBM PowerXCe118i processor. This processor conforms to the Cell 

Broadband Engine Architecture specification created by Sony, Toshiba and IBM [6], and is itself 

a heterogeneous multi core chip as illustrated by the exploded view in the figure. 

The PowerXCell 8i has a general-purpose core (the "PPE") and eight short-vector 

engines (the "SPEs"). The PPE has a traditional two-level cache, while the SPEs use a 

programmer-managed local store: 256 KB for program text and data. The programmer explicitly 

moves data from main memory to the local store using asynchronous communication calls, 

allowing truly overlapped communication and computation. Each SPE contains 128 128-bit 

registers and a statically scheduled, in-order, dual-issue instruction pipeline, and can achieve 

12.8 Gflop/s in double precision. This gives each Roadrunner node over 400 Gflop/s peak. 

The design of Roadrunner allows developers to gracefully transition their existing 

applications to the new architecture: MPI applications can run unchanged on the Opteron cluster­

of-clusters. While this makes a nice starting point for developers, such applications can access 

only a small fraction (3.5%) of the peak performance of the machine. Accelerating these 

applications requires identifYing portions of the code to move to the PowerXCell processors. As 

provisioned, Roadrunner has equal numbers of Power XC ell processors and Opteron cores, and 

the same amount of memory available to each. This admits the conceptually simple pairing of 

one Opteron core with one PowerXCell processor. Developers can incrementally accelerate their 

applications by moving more and more functions from the Opteron to the PowerXCell. 

Moving a function to the SPE can seem a daunting task at first. The small local store and 

the need to explicitly move data between it and the main memory are constraints that have not 

been relevant for some time in general-purpose programming. Confronting the data structure 

and alignment implications of the vector-only SPE instruction set can shake the confidence of 

skilled scalar instruction programmers. The key observation to overcoming these challenges is 

simply that the SPE makes many operations explicit for the programmer. It is not that a general­

purpose processor isn't doing these same tasks; it just has more hardware to do them with. SPE 

programs need to be cognizant of data locality, and see data motion in explicit instructions. But 

awareness of these issues is exactly what is needed to achieve high performance on cache-based 

general-purpose processors! We invariably obtain performance increases on our general-purpose 

processors when we apply the optimization lessons learned from porting the code to the SPE. 

This is a substantial benefit that will out-live any particular architecture. 



While accelerating applications through function offload provides an expedient path to 

perfonnance, the research potential of the machine is realized when developers start with a fresh 

look at application design. Rather than looking at the SPEs as accelerators for the Opterons, one 

can reverse the model and think of the Opterons as communication managers for the PowerXCeli 

processors. While it is easiest to think of every SPE running the same instructions on different 

portions of data, they are independently programmable and can communicate with each other 

directly. This admits a variety of streaming and process ganging models. More opportunities 

arise when one discards the Opteron-PowerXCell pairing, and finds ways of distributing the 

work of one process across all forty processors on the node. By treating the node as a many-core 

processor, developers can better understand the mismatch between high on-processor 

perfonnance and slow access to off-processor resources that will be seen in many-core designs. 

All of these design techniques are being exploited in the development of high­

perfonnance applications for Roadrunner. As a result ofa peer-reviewed competition, a number 

of research teams have been awarded time on Roadrunner for a variety of open-science 

applications. These applications cover a gamut of scientific fields (and scales!), from simulations 

of cellusomes and viral phylogenetics to supernovae light curves and the large-scale structure of 

the universe. In addition to the direct scientific contributions that will be made by these teams, 

we are studying the process of application development on each team, to better inform the next 

generation of application and tool developers. 

Moving high-performance computing into the future 

Bringing a new large-scale computational resource online takes considerable time and effort. 

This fact alone buffers the HPC community from the most rapid technological changes, as 

technology choices are often made well in advance of the delivery of the system. While this 

provides some continuity for the HPC community, we should not be complacent to the changes 

occurring in the broader market. Computer technology is changing, and while we cannot predict 

which technology path will become dominant, we can be assured that we will be programming 

differently in the future. 

To make this transition as smooth as possible, we need to start by preparing ourselves. 

As you are designing an application, think about the implications of running on heterogeneous or 

hybrid architectures. Try to maximize the use of the short-vector and multithreaded processors 

that we have today, without assuming that a compiler will take care of this for you. Think about 

the costs of moving data around the system, whether that is between local memory and a 

processor, or between nodes in a parallel system. 



The next step is to experiment and add to the body of knowledge in the community. 

Write applications for alternative processors, such as FPGAs or Cell processors. Learn to 

program a small, accelerated system, such as a workstation with a GPGPU or a cluster of Sony 

PLA YST A TION®3 consoles. Experiment with functional programming languages, such as 

Clojure or Haskell, to see how this class of languages can provide a powerful abstraction from 

the hardware. These sorts of investments prepare us for the future, but they also can pay 

dividends in terms of better utilization oftoday's technology. 

Finally, we need to engage the broader community to ensure that standards and tools will 

support the needs of HPC. People are just beginning to consider how to develop tools that can 

alleviate some of the new burdens placed on the programmer; now is the time to share our 

experience gained from years of programming parallel systems. As the industry struggles with 

the rapid rise of parallel computing, we can act as mentors, helping avoid the mistakes that we 

have made, while looking for the insights that will come from a fresh perspective on our long~ 

standing problems. 

References 

1. Computing in Science & Engineering, 10, no. 6 (Nov~Dec 2008). 

2. 	 Manferdelli, John L. "The Many~Core Inflection Point for Mass Market Computer Systems," 

CTWatch Quarterly 3, no. 1 (February 2007), 

http://www.ctwatch.org/quarterly/articles/2007/02/the-many-core-inflection-point-for­

mass-market -computer-systems. 

3. 	 Cotofana, Sorin and Vassiliadis, Stamatis. "On the Design Complexity of the Issue Logic of 

Superscaler Machines," Proceedings of the 24th Euromicro Conference 1 (August 1998): 

227-284. 

4. 	 Tsividis, Yannis. Operation and Modeling ofthe MOS Transistor, 2nd ed. New York: Oxford 

University Press, 2003. 

5. 	 Munshi, Aaftab, ed., The OpenCL Specification. Version 1.0, Revision 29. 

http://www.khronos.org/registry/cl/specs/opencl-l.0.29.pdf 

6. Cell Broadband Engine Architecture. Version 1.02. October 11,2007. 

http://www.khronos.org/registry/cl/specs/opencl-l.0.29.pdf
http://www.ctwatch.org/quarterly/articles/2007/02/the-many-core-inflection-point-for


Paul Henning is a research scientist at Los Alamos National Laboratory. His research interests 

include high performance computing and domain-specific languages for scientific computing. 

Henning has a PhD in computer science from the University ofIowa. He is a member ofSIAM 

and the ACM Contact him at phenning@lanl.gov. 

Andrew B. White is the deputy associate director for theory, simulation and computation at Los 

Alamos National Laboratory. White has a PhD in applied mathematics from the California 

Institute ofTechnology. Contact him at abw@lanl.gov. 

mailto:abw@lanl.gov
mailto:phenning@lanl.gov

