LAUR. OF-CO0DIR7

Approved for public release;
distribution is unlimited.

Title: | Trailblazing with Roadrunner

Author(s): | Paul Henning
Andrew B. White, Jr.

Intended for: | Computing in Science and Engineering

ya
»@Alamos

NATIONAL LABORATORY
EST. 1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.8. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or fo allow others to do so, for U.S. Government purposes. L.os Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right 1o publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



Trailblazing with Roadrunner

Paul Henning and Andrew B. White, Jr.
Los Alamos National Laboratory

In June 2008, a new supercomputer broke the petaflop/s performance barrier, more than doubling
the computational performance of the next fastest machine on the Top500 Supercomputing Sites
list (http://top500.0rg). This computer, named Roadrunner, is the result of an intensive
collaboration between IBM and Los Alamos National Laboratory, where it is now located.

Aside from its performance, Roadrunner has two distinguishing characteristics: a very good
power/performance ratio and a “hybrid” computer architecture that mixes several types of
processors. By November 2008, the traditionally-architected Jaguar computer at Oak Ridge
National Laboratory was neck-and-neck with Roadrunner in the performance race, but it requires
almost 2.8 times the electric power of Roadrunner. This difference translates into millions of
dollars per year in operating costs.

As supercomputer designers push on towards the goal of exascale computing, power
consumption becomes a major challenge. Current power estimates for exascale computers range
from many tens to low hundreds of megawatts for the computer and memory alone, discounting
storage and environmental conditioning. For comparison, Roadrunner requires about 2.5 MW
for 1.45 petaflop/s peak. The combination of computing performance and power efficiency in
Roadrunner shows one of the principal advantages to considering hybrid architectures.

However, this advantage comes with the challenge of learning a new programming paradigm.
The November 2008 issue of CiSE [1] provided a glimpse into how computational scientists are
adapting to and exploiting a variety of novel architectures. It can be done. There are many
benefits, but there are challenges.

It would be nice to think that specialized processors and hybrid systems are simply fads
that will disappear soon. Scientific computing has enjoyed a fairly idyllic era since the transition
from vector processors to massively parallel processing several decades ago. While there has
been a shift to commodity clusters and changes in operating systems and communication
infrastructure, the basic structure of our applications has not needed significant change.
Unfortunately, challenges in processor design and fabrication are bringing this era to a close. In
many ways, Roadrunner is just as important as a glimpse into the future of scientific computing
as it is as a petaflop supercomputer. To support this claim, we’ll start with a look at the changes
occurring in processor design.


http://topSOO.org).This

Processors are changing, for good reason

As in any business, the driving force in processor design is profit. Without an improved user
experience to generate sales, companies have no economic incentive to bring new designs to
market. Traditionally, this improvement in user experience came through performance advances
in general-purpose processors. However, this path has bifurcated: the rapid proliferation of
embedded processors has created demand for specialized low-power designs, and a variety of
challenges to traditional means of improving performance is causing designers to re-think the
general purpose processor. This section will illustrate some of these challenges to provide a
rationale for the changes coming to hardware and software. This discussion follows that given
by John Manferdelli [2].

One traditional approach to improving processor performance is simply to increase the
clock frequencies of the processors. However, since power consumption is proportional to the
clock frequency, the heat density per fixed area of processor chip increased to the point where
simple cooling methods were inadequate. Designers are now lowering the clock frequencies of
processors, negating the “free” performance improvements that applications were getting from
successive generations of faster single processors.

Another technique for transparently improving performance is instruction-level
parallelism, common in general-purpose processors since the late 1990s, These “superscalar”
processors simultaneously execute multiple instructions on redundant functional units. In this
scheme, the processor must automatically detect and avoid data dependencies between sequential
instructions. Superscalar processors also employ pipelined, speculative and out-of-order
execution, leading to a combinatorial number of gates related to dependency checking, branch
prediction and instruction scheduling [3]. These techniques create processor designs that are
difficult to design and verify; yet the promised performance improvements are ultimately limited
by the nature of the instruction stream being executed. There is evidence that designers are
moving back to more simple instruction scheduling models, and using the newly freed space for
different purposes.

The final architectural challenge is the growing discrepancy between the time required to
execute an instruction and the time required to retrieve data from memory. For most current
processors, one can expect a single instruction to take ten or less clock cycles, while fetching
data from main memory may take several hundred cycles. This problem is compounded when
multiple instructions are being executed simultaneously. Traditionally, this difference has been
alleviated by using larger hierarchies of fast cache memory, which acts as a bridge between the
processor and the main system memory. However, this cache memory is expensive and



complex, and the deeper hierarchies appearing in contemporary processors are increasingly
difficult to verify for correctness. Designers are beginning to introduce new memory subsystems
to processors, including crossbar switches and programmer controlled local storage.

Looking beyond processor design, another broad category of challenges is related to the
increase in processor power consumption as the fabrication process size decreases. Companies
are currently using a “45nm process,” where a single transistor is approximately 6nm long and
contains a dielectric layer that is 1.2nm thick. There are many complicated physical effects at
this scale (cf. [4]), but the net effect is that transistors leak significant amounts of power.
Advances in material sciences should help stem this problem, but the shrinking process size
implies that there will soon be more transistors on a chip than we can afford to power
simultaneously. It is expected that fine-grained power management features will appear in
processors (or even to programmers), leading to heterogeneous performance across even
homogeneous processors.

Even in the face of these significant challenges, processor designers must still meet the
economic driver of providing a better user experience. Rather than pursuing even more complex
single processors, they are now placing multiple copies of a processor onto one chip to form a
“multicore” processor. Each of these cores tends to be slower and less complex than single
processors of even five years ago, but provide performance increases in aggregate. This trend
shifts more work to the applications programmer. Not only do they have to make up the loss in
single core performance through better optimization, but they also have to explore ways of
parallelizing their applications to take advantage of more cores. While this is nothing new for
the scientific computing community, it is a fundamental shift in the broader software industry.
Additional software development challenges will be discussed in the next section.

[n addition to moving to multicore designs, companies are introducing chips that contain
a mix of general purpose and special purpose cores. These are called heterogeneous multicore
chips, and they represent the most significant challenge (and opportunity!) for the software
developer. In contemporary heterogeneous multicore chips, the special purpose cores tend to be
short vector processors, which are especially useful in computer graphics applications. While
general-purpose processors have had some form of vector operations available for some time
(SSE, AltiVec, erc.), offloading this workload to a standalone processor allows for greatly
increased parallelism. Although vector processors are certainly of use to the scientific
programmer, it will not be surprising to see much more specialized processors appearing in the
future, such as cryptographic engines, compression, video decoding, efc. These will pose special
problems for the high-performance computing (HPC) community, both in terms of how (or if) to
utilize them, as well as managing the power they draw when not in use.



Hardware changes will disrupt software development practices

The changes occurring in computer architectures are creating a ripple effect in the software
development arena, even for traditionally serial applications. The availability of specialized
processors forces developers to decompose their program across functional units. Deep memory
hierarchies, especially coupled with disjoint address spaces, require special attention to data
motion costs. The short vector processors constrain data structure design. Developers must now
look to parallelism, often in terms of multithreading, for performance gains.

Even in the HPC community, where programming has always involved some level of
adaptation to distinctive hardware, programs will have to evolve to new levels of complexity.
One can no longer imagine that all processors have equal access to resources such as memory,
network or I/0: tasks need to be scheduled on the processors with the best balance of
functionality and resource access. Power management considerations may become explicit in
programs, such as putting an idle functional unit into a reduced power state. And, as system
sizes continue to increase, reliability and resilience become significant issues. Can we detect and
recover from hard, soft and even silent data corruption? How do we restart calculations on
systems with a mean time between interrupt measured in hours?

Compounding these technical challenges is the dire lack of parallelism experience among
the general software developer community. The state of the tools available to developers makes
this problem worse: threading libraries and primitives added to fundamentally serial languages
are challenging to use. Hardware vendors have recognized these problems, and are working on a
variety of solutions. In the hardware itself, transactional memory may remove some of the
challenges of thread programming, and innovations such as scout threads may provide more
transparent performance increases.

Software solutions are also being developed, from new compiler technologies, to libraries
and language extensions. For the most part, these tend to be proprietary solutions, useful on
only one vendor’s hardware. One exception to this is the OpenCL standard released by the
Khronos Group {5]. This is an API for programming attached accelerator processors, such as
GPGPUs. Companies are also pursing long-term strategies such as establishing research labs at
universities to directly tackle some of today’s challenging problems, as well as creating a stream
of talented and experienced graduates. Vendors are also introducing some forms of “declarative”
programming into their tools. This class of languages allows the programmer to focus on what
should happen, rather than how the computer should execute the task.

While the intensity of these activities is encouraging and will certainly bring advances,
they are not a sufficient solution for high-performance computing. Most of this work focuses on



programming a single chip or a desktop: large clusters of these complicated nodes do not
command enough market share to warrant the investment. Another, somewhat subtle, challenge
for the HPC market is a forced change in programming languages. The majority of the
investment for new software tools is being focused on C/C++ compilers. While some of these
developments will trickle down into Fortran tools, it is unlikely that Fortran will be well suited to
take advantage of the new hardware.

Exploring the future with Roadrunner

Perhaps the greatest challenge that software developers face at this time can be simply termed
“diversity”. Hardware designers are providing a dizzying array of options, and each option may
encourage several different programming approaches. Eventually, this period of rapid
innovation will settle to smaller set of stable technologies, but we don’t have the luxury of
waiting until that happens. Fortunately, the HPC community already has a tool that is flexible
enough to confront most of our programming challenges in Roadrunner. This section contains
only a very brief overview of the physical architecture of Roadrunner, preferring to concentrate
on programming models. More details of the system can be found at

http://www.lanl.gov/roadrunner.

infiniBand 4x DDR
PowerXCell 8i 2 GB/s, 2us

PowerXCell 8i

]

gea |
Opteron x2 '

8C3

PowerXCell 8i \
468 2 PCI-E %8 links, 2

GBfs, 2us each

Figure 1: Schematic of a Roadrunner node. Communication channels are characterized by
bandwidth and latency.


http://www.lanl.gov/roadrunner

Overall, Roadrunner is configured as a relatively traditional cluster-of-clusters of node
that uses InfiniBand for the interconnect and supports the HPC-standard MPI communications.
At the node level, however, Roadrunner becomes unique. Figure 1 provides a conceptual
schematic of the node. The *“root” of the node, at least with respect to the network, is a blade
server with two dual-core AMD Opteron processors. Attached to that are two “accelerator”
blade servers based on the IBM PowerXCell 8i processor. This processor conforms to the Cell
Broadband Engine Architecture specification created by Sony, Toshiba and IBM [6], and is itself
a heterogeneous multicore chip as illustrated by the exploded view in the figure.

The PowerXCell 8i has a general-purpose core (the “PPE”) and eight short-vector
engines (the “SPEs”). The PPE has a traditional two-level cache, while the SPEs use a
programmer-managed local store: 256 KB for program text and data. The programmer explicitly
moves data from main memory to the local store using asynchronous communication calls,
allowing truly overlapped communication and computation. Each SPE contains 128 128-bit
registers and a statically scheduled, in-order, dual-issue instruction pipeline, and can achieve
12.8 Gflop/s in double precision. This gives each Roadrunner node over 400 Gflop/s peak.

The design of Roadrunner allows developers to gracefully transition their existing
applications to the new architecture: MPI applications can run unchanged on the Opteron cluster-
of-clusters. While this makes a nice starting point for developers, such applications can access
only a small fraction (3.5%) of the peak performance of the machine. Accelerating these
applications requires identifying portions of the code to move to the PowerXCell processors. As
provisioned, Roadrunner has equal numbers of PowerXCell processors and Opteron cores, and
the same amount of memory available to each. This admits the conceptually simple pairing of
one Opteron core with one PowerXCell processor. Developers can incrementally accelerate their
applications by moving more and more functions from the Opteron to the PowerXCell.

Moving a function to the SPE can seem a daunting task at first. The small local store and
the need to explicitly move data between it and the main memory are constraints that have not
been relevant for some time in general-purpose programming. Confronting the data structure
and alignment implications of the vector-only SPE instruction set can shake the confidence of
skilled scalar instruction programmers. The key observation to overcoming these challenges is
simply that the SPE makes many operations explicit for the programmer. It is not that a general-
purpose processor isn’t doing these same tasks; it just has more hardware to do them with. SPE
programs need to be cognizant of data locality, and see data motion in explicit instructions. But
awareness of these issues is exactly what is needed to achieve high performance on cache-based
general-purpose processors! We invariably obtain performance increases on our general-purpose
processors when we apply the optimization lessons learned from porting the code to the SPE.
This is a substantial benefit that will out-live any particular architecture.



While accelerating applications through function offload provides an expedient path to
performance, the research potential of the machine is realized when developers start with a fresh
look at application design. Rather than looking at the SPEs as accelerators for the Opterons, one
can reverse the model and think of the Opterons as communication managers for the PowerXCell
processors. While it is easiest to think of every SPE running the same instructions on different
portions of data, they are independently programmable and can communicate with each other
directly. This admits a variety of streaming and process ganging models. More opportunities
arise when one discards the Opteron-PowerXCell pairing, and finds ways of distributing the
work of one process across all forty processors on the node. By treating the node as a many-core
processor, developers can better understand the mismatch between high on-processor
performance and slow access to off-processor resources that will be seen in many-core designs.

All of these design techniques are being exploited in the development of high-
performance applications for Roadrunner. As aresult of a peer-reviewed competition, a number
of research teams have been awarded time on Roadrunner for a variety of open-science
applications. These applications cover a gamut of scientific fields (and scales!), from simulations
of cellusomes and viral phylogenetics to supernovae light curves and the large-scale structure of
the universe. In addition to the direct scientific contributions that will be made by these teams,
we are studying the process of application development on each team, to better inform the next
generation of application and tool developers.

Moving high-performance computing into the future

Bringing a new large-scale computational resource online takes considerable time and effort.
This fact alone buffers the HPC community from the most rapid technological changes, as
technology choices are often made well in advance of the delivery of the system. While this
provides some continuity for the HPC community, we should not be complacent to the changes
occurring in the broader market. Computer technology is changing, and while we cannot predict
which technology path will become dominant, we can be assured that we will be programming
differently in the future.

To make this transition as smooth as possible, we need to start by preparing ourselves.
As you are designing an application, think about the implications of running on heterogeneous or
hybrid architectures. Try to maximize the use of the short-vector and multithreaded processors
that we have today, without assuming that a compiler will take care of this for you. Think about
the costs of moving data around the system, whether that is between local memory and a

processor, or between nodes in a parallel system.



The next step is to experiment and add to the body of knowledge in the community.
Write applications for alternative processors, such as FPGAs or Cell processors. Learn to
program a small, accelerated system, such as a workstation with a GPGPU or a cluster of Sony
PLAYSTATION®3 consoles. Experiment with functional programming languages, such as
Clojure or Haskell, to see how this class of languages can provide a powerful abstraction from
the hardware. These sorts of investments prepare us for the future, but they also can pay
dividends in terms of better utilization of today’s technology.

Finally, we need to engage the broader community to ensure that standards and tools will
support the needs of HPC. People are just beginning to consider how to develop tools that can
alleviate some of the new burdens placed on the programmer; now is the time to share our
experience gained from years of programming parallel systems. As the industry struggles with
the rapid rise of parallel computing, we can act as mentors, helping avoid the mistakes that we
have made, while looking for the insights that will come from a fresh perspective on our long-

standing problems.

References

1. Computing in Science & Engineering, 10, no. 6 (Nov-Dec 2008).

2. Manferdelli, John L. “The Many-Core Inflection Point for Mass Market Computer Systems,”
CTWatch Quarterly 3, no. 1 (February 2007),
http://www.ctwatch.org/quarterly/articles/2007/02/the-many-core-inflection-point-for-

mass-market-computer-systems.

3. Cotofana, Sorin and Vassiliadis, Stamatis. “On the Design Complexity of the Issue Logic of
Superscaler Machines,” Proceedings of the 24™ Euromicro Conference 1 (August 1998):
227-284.

4. Tsividis, Yannis. Operation and Modeling of the MOS Transistor, 2™ ed. New York: Oxford
University Press, 2003.

5. Munshi, Aaftab, ed., The OpenCL Specification. Version 1.0, Revision 29.
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

6. Cell Broadband Engine Architecture. Version 1.02. October 11, 2007.



http://www.khronos.org/registry/cl/specs/opencl-l.0.29.pdf
http://www.ctwatch.org/quarterly/articles/2007/02/the-many-core-inflection-point-for

Paul Henning is a research scientist at Los Alamos National Laboratory. His research interests
include high performance computing and domain-specific languages for scientific computing.
Henning has a PhD in computer science from the University of lowa. He is a member of SIAM
and the ACM. Contact him at phenning@lanl. gov.

Andrew B. White is the deputy associate director for theory, simulation and computation at Los
Alamos National Laboratory. White has a PhD in applied mathematics from the California
Institute of Technology. Contact him at abw@lanl. gov.


mailto:abw@lanl.gov
mailto:phenning@lanl.gov

