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Anomalous diffusion and scaling in coupled stochastic processes

Golan Bel* and Ilya Nemenman!
Center for Nonlinear Studies and Computer, Computation and Statistical Sciences Division,
Los Alamos National Laboratory, Los Alamos, NM 87545 USA
(Dated: January 29, 2009)

Ispired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin pro-
cesses with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out
the latter, we derive the Focker-Planck the friction coefficient of the first depends on the state of the second.
Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former.
This has the form of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous
diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling
appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the
same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numeri-
cal simulations and find an excellent agreement. The findings caution against treating biochemical systems with
unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

PACS numbers: 05.10.Gg,05.20.Dd,82.39.Rt

Introduction: Single molecule kinetics has come within a
reach of biophysical experiments [1-4], and theoretical and
computational tools for analysis of such processes have ex-
perienced a corresponding growth {5-9]. It is clear that the
combinatorially large number of microscopic steps involved
in even the simplest of biochemical events makes their rigor-
ous stochastic treatment hard. For example, gene expression,
often modeled as a single-step mRNA creation, in fact, in-
cludes transcription-factor-DNA binding, polymeraze recruit-
ment, transcriptional bubble formation, and multiple elonga-
tion steps, each of which is a complex process on its own.

Therefore, any theoretical analysis of stochastic biochem-
ical processes necessarily involves coarse-graining: identify-
ing a small subset of dynamical variables that are modeled
explicitly, while agglomerating the rest into an effective be-
havior. Such coarse-grained dynamics is often modeled us-
ing the master equation, the Fokker-Planck, or the Langevin
approaches, which require Markoviness (the former two) or
white-noise random forcing (the latter). Both of these assump-
tions are, generally, flawed, and quantitative corrections have
been worked out in certains cases [10, 11]. Less explored is
the possibility that internal degrees of freedom can introduce
qualitative differences, such as long-range temporal correla-
tions among state transitions, or the random forcing spectrum
that diverges at zero frequency.

A well-studied example shows that this is possible for a
Langevin system. In Ref. [12], Weiss and Havlin have apa-
lyzed a two-dimensional diffusion model, known as the comb
model. There diffusion along the y coordinate is unhindered,
while motion along x is allowed only when y = 0. This re-
sults in (x) = 0 and (z%) o /%, that is, in a subdiffusive,
fong-memory process. This model is hardly realistic in a bio-
chemical context due to the discontinuos dependence of the
diffusion coefficient on y. However, it is plausible that dif-
fusive dynamics of a real biological or chemical variable in
the state or in the physical spaces depends on unobserved,
decimated variables in some other non-trivial way. For ex-

ample, in a chemotaxing E. coli, the number of directly un-
observable signaling proteins CheY-P is coupled to the dis-
tribution of times a bacterial motor rotates counterclockwise,
and the bacterium swims straight. For a fixed concentration
of CheY-P, the distribution is essentially exponential, result-
ing in a regular diffusive motion of the bacterium. But as the
number of CheY-P fluctuates (diffuses in the number space),
the distribution becomes a power law [13], and bacteria ex-
hibit superdiffusive real-space motion. While not true in this
particular system, the distribution of clockwise rotation times
could have been strongly coupled to CheY-P as well, and, av-
eraged over the unobserved, fluctuating CheY-P, this would
have resulted in a power law distribution of times that the bac-
terium spends reorienting itself without forward motion, and
hence in its subdiffusive motion. In both cases, neglecting
the CheY-P fluctuations and describing bacterial motion as a
normal diffusion is qualitatively wrong.

In this letter, we explore these types of phenomena in de-
tail, and we derive properties of a diffusion process, for which
the diffusion coefficient depends on the state of another, unob-
served, variable. We show that, quite generally, such depen-
dence leads to anomalous diffusion, suggesting that traditional
stochastic approaches may fail, and that more thought should
be given to modeling stochastic phenomena in complex in-
teracing systems, in particular in biophysics.

The model: Our model is described by two variables - and
y, which may represent, in particular, concentrations of two
interacting chemical species. Particles of both species can be
created and destroyed, which results in an overdumped dif-
fusive motion of the system in the concentration space (we
disregard the directional drift for simplicity, but it can be rein-
tronduced casily). Just like in the original comb model [12],
we assume that the difusion of z is y-dependent. That is,

dy 1

dr  C(y)
& . £(t). (2)
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Here vz, 7y, are the effective friction coefficients (assumed to
be homogeneous) corresponding to z, y and 77 (¢) and € (t) are
independent, zero-mean white noise forces such that

(n(t)n(t') = 2Dy7yd (¢t ~t')
() E(t") = 2Dz (1 —t") 3)
The Focker-Planck equations for the probability distribu-

tion functions (PDFs) of z and y can be derived. The PDF of
y is that of normal diffusion
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where the initial condition is y(t = 0) = yo. The PDF of z is
more complicated due to the dependence on y, satisfying

P (y,tlyo,0) =

5

In the equation above we introduced the notation D (t) =
D, C?(y) and 7=~ stands for the ensemble-average over y.
Since C? (y) is time dependent, we see that p(x) obeys the
diffusion equation with a time dependent diffusion coefficient.

It is also possible to derive directly the equation describing
the dynamics of the mean square displacement (z (t)%), where
{---} stands for the average over the white noises n and £. We
start by writing the formal solution for z (¢) as

fc
7:1:

Multiplying Eq. (2) by 2z(t), given by Eq. (6), yields

QC y)g(t/(*

Averaging over the noise £() yields the dynamics of the mean
squared displacement of x conditional on y(t),

)& () dt". (6)

dz (t)*
dt
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To get the marginal expectation (z (t)°), we now average the
conditional expectation over ¥, distributed as in Eq. (4):

Hell) _opy = 22z \/W [T

dt
9
The function C(y} may take different forms for different
systems. The simplest case is when the dynamics of z is in-
dependent of y and C (y) = C = const. Substituting this in
Eq. {9) vields the expected trivial result (z2) = 2D, C?t.
Another scenario is that x can evolve in time only for a
given value of y, which resembles the original comb model
of Weiss and Havlin [12). Indeed, substituting C(y(t))? =

o=0 a=0.625

500

-500

-10 0 20

Figure 1: Typical diffusive trajectories for C(y) = 1/(1 + [Ay|™)
and Dy = Dy = v, = <, = 1, ilustrating suppression of diffu-
sion in z. The left panel shows the case of o = 0, namely decou-
pled Langevin processes. The right panel shows & = 0.625, when

(z (t)?) ~ +/f. The inset on the right shows x and y scaled equally.

Cé (y — 1) (C is a constant with length units, and 6(y) is the
Dirac delta function) into Eq. (9), we get

AN
diz (t)7) _ 2D.C &‘q‘%%gﬁ (10
dt dr Dt
which, for t > (y1 — o)’ / (4Dy), gives (x )% ~ Vin

agreement with [ 12]. Similarly, if C{y) falls off exponentially
at y — oo, the same sub-diffusion exponenet is recovered.

A more interesting case is when, at large y, C(y) falls off,
but not too fast. We consider a power law form, namely

H

[ ¥ Ay ()

Clyt)) =

were A is a constant with the units of inverse length, and o is
a dimensionless parameter. Typical diffusive trajectories with
this C(y), A = 1, and & == 0,0.625 are shown in Fig. 1.

Assuming that the behavior of C(y) for large vy (ie.,
C{y) ~ |y|~*) dominates the ¢ — oo dynamics of (z(¢)2), a
smple scaling argument suggests that (z (t)%) ~ t!=. How-
ever, this is clearly wrong for large a, suggesting that (x (t

must pick up an anomalous scaling due to the y — 0 proper-
ties of C(y). In what follows, we derive the long time behav-

iorof {z (t)z) in a more rigorous way.
Equation (9) with C'(y) as in Eq. (11) gives
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sdy.  (12)



For \/—% < 1, we rewrite the above equation as
v
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In the first integral, we approximate the integrand as a constant
fort — oo, and, in the second integral, we neglect 1 compared

to (/4Dyt | Ayl)", thus obtaining

d@z?) = 2Dx L 2Dst7e <_1__a 1 )
dt A\/mDyt  (4A2D,)" %z \2 T4A Dyt )’

(14)
where T (a,b) = [[“7%le~"dr is the incomplete Gamma
function. Integrating Eq. (14) over { results in the long time
behavior of (z(t)?)

(z(£)2) ~ D1Vt + Dot' e, (15)
where D) 4 are constants depending on the model parameters
Dy, Dy, o and A. This implies that, for ¢ < 1/2, the long
time behavior is dominated by {z:(t)?) ~ t1~*, as the scaling
argument suggests. However, for o > 1/2, the scaling argu-
ment breaks and (z(t)2) ~ v/t. Note that when the C (y) falls
faster than 1/,/y, the.diffusion exponent is exactly as for the
comb model, in which the dynamics of z is limited to y = 0.

The case of @ = é— is special since the result of the integral
can’t be expressed in terms of the incomplete Gamma func-
tion. Here Eq. (13) may be written as
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where G denotes the Meijer G function [14]. The leading
order term of the mean square displacement is then

(x()2) ~ Vtint.

dy

(16)

amn
So far we cosidered only situations. in which the motion of

x was slowed at large y, but we can also consider the opposite
scenarios, when large y promotes diffusion in z, as in [13]:
Cy)=y",8>0. (18)

Now from Eq. (9), we get

e 2
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Figure 2: Leading order diffusion exponent v defined by {z(¢)?) ~
t¥ for the coupled stochastic processes model with different types of
coupling between the diffusion of z and y, measured by the exponent
&. For the case of hindered diffusion of z (see Eq. (1)), & = q,
while for the enhanced diffusion (see Eq. (18)), x = —f. Numerical
simulations (points) and theoretical predictions (line) agree well for
both scenarios.

Taking the long time limit yields d{2(t)2)/dt ~ t°, and

(@(t)?) ~ 17 (20)

To confirm our analytical results, we performed numerical
simulations for the different cases considered above. InFig. 2,
we present a comparison of the diffusion exponent v (defined
by (z(t}?) ~ t) versus the coupling parameter & (for the sub-
diffusion scenario Eq. (11}, < = «, and for the superdiffusion
scenario Eq. (18), k = —/3) between simulation and analytical
results. The simulation dynamics was according to Egs. (1, 2),
with vy, o = 1, Dz, = 1 and dt = 1. We averaged the results
over 10* trajectories, each of length 107 ... 10%dt.

A simple linear regression to log (z(t)?) = viogt + const
was performed to estimate ». Since the standard parameter
errors obtained for the regressions were negligible, the error
bars of v were estimated from the variability of the fitted val-
ues as we changed the domain of ¢, for which the fits was per-
formed. Fig. 2 shows a clear agreement between our theoret-
ical results and the simulations. Note that in certain cases the
convergence to the leading behavior of (z(t)?) ast — oo is
slow since the difference between the exponents of the leading
and the subleading terms is small. This slowness determined
the lengths of the simulations.

Time Averaged Mean Square Displacement: There are
many models of anomalous diffusion, including time depen-
dent friction coefficient in the Langevin equation, continuous
time random walk (CTRW) [ 15], fractional Brownian dynam-
ics [16] and fractional Langevin dynamics [17-19], Langevin
dynamics with colored noise {20], to name a few. For a new
model resulting in an anomalous diffusion, it is important to
seeif it can be reduced to one of these more familiar construc-
tions. For example, the ¢ — oo behavior of the original comb
model is equivalent to CTRW [21], with power law tails of the
distribution of the times between successive jumps along z.
However, in our model, the analogy is not as straightforward




since the continous dynamics of y induces temporat correla-
tions among successive motions along .

To understand the relation of the coupled diffusion model
to the others in the literature, we note that all of them yield
the same behavior for the ensemble averaged mean square
displacement (MSD3} in the long time limit. However, they
still differ from each other at short times and even in the long
time behavior of sime averaged quantities (for example the
CTRW exhibits ergodicity breaking [22]). In particular, the
time averaged MSD (TAMSD) is an important property (It is
the TAMSD that is observable in typical single molecule dif-
fusion experiments in biological systems [4, 23], and the num-
ber of recorded trajectories is usually insufficient to estimate
ensemble averages).

t—4
S‘f(a,t)zi—}gf w(r+A) —z(r)2dr. Q1)
0

For CTRW, the TAMSD is a random quantity and even its
ensemble average still exhibits aging, depending on the mea-
surement duration ¢ in Eq. (21) [24). On the contrary, for
the fractional Brownian and Langevin dynamics, the TAMSD
converges to the ensemble average MSD for long times [25].

We investigated the behavior of the TAMSD in our model
with repressive coupling numerically. We find that, when the
scaling argument holds, namely for o < 1/2 (see Eq. 11),
the TAMSD is not a random quantity, but it still shows ag-
ing, as we would expect for Langevin dynamics with a time
dependent friction. On the other hand, when o > 1/2, and
the diffusion exponent is 1/2, the TAMSD is similar to that
of the CTRW. In Fig. 3, we show the TAMSD for a = 0.75
and o = 0.25. For o = 0.25, the TAMSD lines converge as
the time grows, while for o = 0.75, the lines remain random.
This is a clear indication of ergodicity breaking in our model
for & > (1.5. Further, this analysis suggests that the coupled
diffusion stands as its own class among other anomalous diffu-
sion models, exhibiting time-dependent diffusion cocfficient
Langevin dynamics for certain forms of coupling, and some
aspects of ergodicity-braking CTRW for the others.

Discussion: In this leter, we itroduced a model of coupled
diffusive processes, where the diffusion of the observed vari-
able x is coupled to the value of a hidden variable y. We
showed that the dynamics of x exhibits anomalous diffusion
even for arbitrarily weak coupling between the variables. De-
pending on the nature of the interaction, the motion of x
can be sub- or super-diffusive (and even super-ballistic as is
the case of frictionless particle subject to white noise). Fur-
ther, even for an arbitrary strong repressive zy coupling, the
x diffusion exponent v is limited from below by % {anoma-
lous scaling), so that full localization of x is impossible.
Even though the long-time ensemble-averaged behavior of the
maodel is similar to that of many others describing anomalous
diffusion, the model does not reduce to either one of them,
exhibiting an effective time-dependent diffusion coefficient,
aging, and ergodicity breaking for different values of its pa-
rameters.
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Figure 3: The time averaged mean square displacement 82 (A, ¢)
for o = 0.25,0.75 (left and right panels, respectively). All other
dynamical parameters are the same as for the previous figures. We
used 20 trajectories each of duration 10° (solid lines, red color on-
line) and 20 trajectories of duration 10% (dashed lines, blue online).
For o = 0.25, the TAMSD over differen trajectories converge as the
measurement time increases. However, for a = 0.75, there is no
such convergence, just like for CTRW. In both cases, the ensemble
average of the TAMSD decrease as the measurement time increases,
indicating aging.

The anomalous scaling and the ergodicity breaking appear
in the model for the coupling parameter o > 1/2, when the
long-time behavior of the model is similar to that of the comb
model. This is because, for & < 1/2, motion of particles away
from y = O contributes substantially to the ensemble averaged
MSD of z.. On the other hand, for v > 1/2, only motion near
y = ( is important.

While important in its own right, the coupled diffusion
model raises its most important questions in the biological do-
main. Unobservable dynamical quantitics can lead to anoma-
lous diffusion in E. coli chemotaxis [13], or in mRNA diffusion
in cells [4]. Further, some of the best established models of
cellular regulation involve coarse-graining of dynamical vari-
ables. For example, for the /ac operon in E. coli, dynamics
of the lac repressor itself is an unobservable variable [26].
But this is coupled to the speed of production of the lactose
permease and the lactose-utilizing ezyme 3-galacosidase and,
through them, to the import and the degradation of lactose in
the cell. Since even arbitrary weak such couplings may lead to
anomalous diffusion, it begs the question whether relying on
the field-dominating Langevin or master equation analysis of
stochasticity of the lac repressor, as well as other regulatory
circuits, such as the A-phage [5, 9], marRAB [1], and others,
is warranted.
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