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Anomalous diffusion and scaling in coupled stochastic processes 

Golan Bel* and Ilya Nemenman t 
Center for Nonlinear Studies and Computer, Computation and Statistical Sciences Division, 


Los Alamos National Laboratory, Los Alamos, NM 87545 USA 

(Dated: January 29, 2009) 

Ispired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin pro­
cesses with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out 
the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. 
Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. 
This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous 
diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling 
appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the 
same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numeri­
cal simulations and find an excellent agreement. The findings caution against treating biochemical systems with 
unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion. 

PACS numbers: 05.10.Gg,05.20.Dd,82.39.Rt 

Introduction: Single molecule kinetics has come within a 
reach of biophysical experiments [1-4], and theoretical and 
computational tools for analysis of such processes have ex­
perienced a corresponding growth [5-9]. It is clear that the 
combinatorially large number of microscopic steps involved 
in even the simplest of biochemical events makes their rigor­
ous stochastic treatment hard. For example. gene expression, 
often modeled as a single-step mRNA creation, in fact, in­
cludes transcription-factor-DNA binding. polymeraze recruit­
ment, transcriptional bubble formation, and multiple elonga­
tion steps, each of which is a complex process on its own. 

Therefore, any theoretical analysis of stochastic biochem­
ical processes necessarily involves coarse-graining: identify­
ing a small subset of dynamical variables that are modeled 
explicitly, while agglomerating the rest into an effective be­
havior. Such coarse-grained dynamics is often modeled us­
ing the master equation, the Fokker-Planck, or the Langevin 
approaches, which require Markoviness (the former two) or 
white-noise random forcing (the latter). Both of these assump­
tions are, generally, flawed, and quantitative corrections have 
been worked out in certains cases [10; 11). Less explored is 
the possibility that internal degrees of freedom can introduce 
qualitative differences, such as long-range temporal correla­
tions among state transitions, or the random forcing spectrum 
that diverges at zero frequency. 

A well-studied example shows that this is possible for a 
Langevin system. In Ref. [12], Weiss and Havlin have ana­
lyzed a two-dimensional diffusion model, known as the comb 
model. There diffusion along the y coordinate is unhindered. 
while motion along x is allowed only when y = O. This re­
sults in (x) = 0 and (x2 ) ex: Vi, that in a subdiffusive, 
long-memory process. This model is hardly realistic in a bio­
chemical context due to the discontinuos dependence of the 
diffusion coefficient on y. However, it is plausible that dif­
fusive dynamics of a real biological or chemical variable in 
the state or in the physical spaces depends on unobserved, 
decimated variables in some other non-trivial way. For ex­

ample, in a chemotaxing E. coli. the number of directly un­
observable signaling proteins CheY-P is coupled to the dis­
tribution of times a bacterial motor rotates counterclockwise, 
and the bacterium swims straight. For a fixed concentration 
of CheY-P, the distribution is essentially exponential, result­
ing in a regular diffusive motion of the bacterium. But as the 
number of CheY-P fluctuates (diffuses in the number space), 
the distribution becomes a power law [13], and bacteria ex­
hibit superdiffusive real-space motion. While not true in this 
particular system, the distribution of clockwise rotation times 
could have been strongly coupled to CheY-P as well, and, av­
eraged over the unobserved, fluctuating CheY-P, this would 
have resulted in a power law distribution of times that the bac­
terium spends reorienting itself without forward motion, and 
hence in its subdiffusive motion. In both cases, neglecting 
the CheY-P fluctuations and describing bacterial motion as a 
normal diffusion is qualitatively wrong. 

In this letter, we explore these types of phenomena in de­
tail, and we derive properties of a diffusion process, for which 
the diffusion coefficient depends on the stale of another, unob­
served, variable. We show that, quite generally, such depen­
dence leads to anomalous diffusion, suggesting that traditional 
stochastic approaches may fail, and that more thought should 
be given to modeling stochastic phenomena in complex in­
teracing systems, in particular in biophysics. 

The model: Our model is described by two variables x and 
y. which may represent, in particular. concentrations of two 
interacting chemical species. Particles of both species can be 
created and destroyed, which results in an overdumped dif­
fusive motion of the system in the concentration space (we 
disregard the directional drift for simplicity, but it can be rein­
tronduced easily). Just like in the original comb model [12), 
we assume that the difusion of x is y-dependent. That is, 

dy 1 
- -T/ (I)
dt IY 

dx = C(Y)~(t). (2)
Ix 
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Here 'Yx, 'Yy are the effective friction coefficients (assumed to 
be homogeneous) corresponding to x, y and 1/ (t) and e(t) are 
independent, zero-mean white noise forces such that 

(1/ (t) 1/ (t'») = 2Dy'Y;J (t - t ' ) 


(e(t)e(t'») =2Dx'Y;J(t_t') (3) 


The Focker-Planck equations for the probability distribu­
tion functions (PDFs) of x and y can be derived. The PDF of 
y is that of normal diffusion 

(11_ "0)2
1 e 4Dytp (4)tlyo, 0) = J 41fDyt 

where the initial condition is yet = 0) Yo. The PDF of x is 
more complicated due to the dependence on y, satisfying 

[j2p (x, t)
----"--'---'- = D (5)ax2 

In the equation above we introduced the notation D (t) 
D x C2 (y) and ~ stands for the ensemble-average over y. 
Since C2 (y) is time dependent, we see that p(x) obeys the 
diffusion equation with a time dependent diffusion coefficient. 

It is also possible to derive directly the equation describing 
the dynamics of the mean square displacement (x (t) 2), where 
(- .. ) stands for the average over the white noises 1/ and e. We 
start by writing the formal solution for x (t) as 

x (t) 1 C (y (t')) e(t') (6)
'Yx 

Multiplying Eq. 2x(t), given by Eq. (6), yields 

2C ~y) e C(y(t'»e (7) 
'Yx 

Averaging over the noise e(t) yields the dynamics of the mean 
squared displacement of x conditional on yet), 

d(X(t)2 Iy (t)} 2DxC(y(t»2. (8) 

To the marginal expectation (x (t)"), we now average the 
conditional expectation over y, distributed as in Eq. 

00 

d(x(t)2) 2D (t) = 2Dx 1 e C(y(t»2dy.
& -00 

The function C(y) may take different forms for different 
systems. The simplest case is when the dynamics of x is in­
dependent of y and C (y) C = const. Substituting this in 
Eq. (9) yields the expected trivial result 2DxC2t. 

Another scenario is that x can evolve in time only for a 
given value of y, which resembles the original comb model 
of Weiss and Havlin [12]. Indeed, substituting 
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Figure 1: Typical diffusive trajectories for C(y) 1/(1 + 
and Dx = Dli "Ix = "Ill 1, ilustrating suppression of diffu­
sion in x. The left panel shows the case of a = 0, namely decou­
pled Langevin processes. The right panel shows a 0.625, when 

{x (t?> rv ..;t. The inset on the right shows x and y scaled 

CJ (y yd is a constant with length units, and J(y) is the 
Dirac delta function) into Eq. (9), we get 

d(X(t)2) 2D C _ (111-110)2x -===e 4Dyt (10)
dt J41fDyt 

for t »(Yl yor' / (4Dy), gives (x "-' Vi in 
agreement with [12]. Similarly, if C(y) falls off exponentially 
at y 00, the same sub-diffusion exponenet is recovered. 

A more interesting case is when, at large y, C(y) falls off, 
but not too fast. We consider a power law form, namely 

1
C(y(t» ~. -,.-,. ,~., (II) 

were A is a constant with the units of inverse length, and a is 
a dimensionless parameter. Typical diffusive trajectories with 
this C(y), A 1, and a 0,0.625 are shown in Fig. 1. 

Assuming that the behavior of C(y) for large y (i.e., 
C(y) rv Iyl-") dominates the t 00 dynamics of (x(t)2), a 

asimple scaling argument suggests that (x (t)2) rv t l - . How­

ever, this is clearly wrong for large a, suggesting that (x 
must pick up an anomalous scaling due to the y ---4 0 proper­
ties of C(y). In what follows, we derive the long time behav­

ior of (x (t)2) in a more rigorous way. 

Equation (9) with C(y) as in Eq. (11) gives 

00d(x(t)2} 2Dx 1 e (-~r 
(12) 

dt ,fii -00 [1 + (J4Dyt "r dY 
, 
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For &« 1, we rewrite the above equation as 
y4Dyt 

d(i(t)2) = 4Dx { [Ay'!Dyt _____-" 

dt ft In . 

y2 

+JOO e- 2dY}. (13) 

Ay'!Dyt [1 + (j4DytAyr] 

In the first integral, we approximate the integrand as a constant 
for t --> 00, and, in the second integral, we neglect 1 compared 
to (j4Dyt IAyl)"', thus obtaining 

a
2Dxt­ (1 1)

dt ~ (4A2Dy)-a 2" a, 4A2Dyt ' 

( 
1where r (a, b) It r a - e- r dr is the incomplete Gamma 

function. Integrating Eq. (14) over t results in the long time 
behavior of (x( t)2) 

a(X(t)2) rv Dnli + D2t 1
- . (15) 

where D 1,2 are constants depending on the model parameters 
D x , D y , a and A. This implies that, for a < 1/2, the long 
time behavior is dominated by (x(t)2) rv t1- a , as the scaling 
argument suggests. However, for a > 1/2, the scaling argu­
ment breaks and (.7:(t )2) rv Vi. Note that when the C (y) falls 
faster than 1/..fij, the,diffusion exponent is exactly as for the 
comb model, in which the dynamics of x is limited to Y = O. 

The case of a ~ is special since the result of the integral 
can't be expressed in terms of the incomplete Gamma func­
tion. Here Eq. (13) may be written as 

00 

- 4Dx1 1/2]--'-d~t- - ft 0 [1 + ( j4Dytl/2lAyl)) 

I In t (16)0 .! .!)1 -4" l' 3 rv -,G~~ ( 4A2Dyt IO,O'£'2'~ Vi 

where G denotes the Meijer G function [14]. The leading 
order term of the mean square displacement is then 

(X(t)2) rv Vilnt. (17) 

So far we cosidered only situations. in which the motion of 
x was slowed at large y, but we can also consider the opposite 
scenarios, when large y promotes diffusion in x, as in [I 

C(y(t)) = fJ> O. (18) 

Now from Eq. (9), we get 

d(i(t)2) = 2Dx (4D yt)f3jOO e-(Y- y':gytf y2f3dy. 

dt ft (19)-00 

3 
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Figure 2: Leading order diffusion exponent v defined by (x(tF) ~ 
tV for the coupled stochastic processes model with different types of 
coupling between the diffusion of x and y, measured by the exponent 
K,. For the case of hindered diffusion of x (see Eq. (11), K, = Q, 

while for the enhanced diffusion (see Eq. (18», K, -(3. Numerical 
simulations (points) and theoretical predictions (line) agree well for 
both scenarios. 

t f3Taking the long time limit yields d(x(t)2) / dt rv , and 

(x(t)2) rv (20) 

To confirm our analytical results, we performed numerical 
simulations for the different cases considered above. In Fig. 2, 
we present a comparison of the diffusion exponent v (defined 
by (X(t)2) '" tV) versus the coupling parameter K. (for the sub­
diffusion scenario Eq. (11), K. 0:, and for the superdiffusion 
scenario Eq. (18), K. -fJ) between simulation and analytical 
results. The simulation dynamics was according to Eqs. (1,2), 
with "/x,y = 1, Dx,y = 1 and dt 1. We averaged the results 
over 104 trajectories, each of length 107 ... 108dt. 

A simple linear regression to log v log t + const 
was performed to estimate v. Since the standard parameter 
errors obtained for the regressions were negligible, the error 
bars of v were estimated from the variability of the fitted val­
ues as we changed the domain of t, for which the fits was per­
formed. Fig. 2 shows a clear agreement between our theoret­
ical results and the simulations. Note that in certain cases the 
convergence to the leading behavior of (X(t)2) as t --> 00 is 
slow since the difference between the exponents of the leading 
and the subleading terms is small. This slowness determined 
the lengths of the simulations. 

TIme Averaged Mean Square Displacement: There are 
many models of anomalous diffusion, including time depen­
dent friction coefficient in the Langevin equation, continuous 
time random walk (CTRW) [15), fractional Brownian dynam­
ics [16] and fractional Langevin dynamics [17-19], Langevin 
dynamics with colored noise [20], to name a few. For a new 
model resulting in an anomalous diffusion, it is important to 
see if it can be reduced to one of these more familiar construc­
tions. For example, the t 00 behavior of the original comb 
model is equivalent to CTRW [21], with power law tails of the 
distribution of the times between successive jumps along x. 
However, in our model, the analogy is not as straightforward 
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since the continous dynamics of y induces temporal correla­
tions among successive motions along x. 

To understand the relation of the coupled diffusion model 
to the others in the literature, we note that all of them yield 
the same behavior for the ensemble averaged mean square 
displacement (MSD) in the long time limit. However, they 
still differ from each other at short times and even in the long 
time behavior of time averaged quantities (for example the 
CTRW exhibits ergodicity breaking [22]). In particular, the 
time averaged MSD (TAMSD) is an important property (It is 
the TAMSD that is observable in typical single molecule dif­
fusion experiments in biological systems [4,23], and the num­
ber of recorded trajectories is usually insufficient to estimate 
ensemble averages). 

t-C!. 
l 

(ll,t)=t j[X(r+ll) x dr. (21) 

o 

For CTRW, the TAMSD is a random quantity and even its 
ensemble average still exhibits aging, depending on the mea­
surement duration t in Eq. (21) [24]. On the contrary. for 
the fractional Brownian and Langevin dynamics, the TAMSD 
converges to the ensemble average MSD for long times [25]. 

We investigated the behavior of the TAMSD in our model 
with repressive coupling numerically. We find that, when the 
scaling argument holds, namely for a ::; 1/2 (see Eq. II), 
the TAMSD is not a random quantity, but it still shows ag­

as we would expect for Langevin dynamics with a time 
dependent friction. On the other hand, when a :::: 1/2, and 
the diffusion exponent is 1/2, the TAMSD is similar to that 
of the CTRW. In Fig. 3, we show the TAMSD for a 0.75 
and a = 0.25. For a 0.25, the TAMSD lines converge as 
the time grows, while for a = 0.75. the lines remain random. 
This is a clear indication of ergodicity breaking in our model 
for a > 0.5. Further, this analysis suggests that the coupled 
diffusion stands as its own class among other anomalous diffu­
sion models, exhibiting time-dependent diffusion coefficient 
Langevin dynamics for certain forms of coupling. and some 
aspects of ergodicity-braking CTRW for the others. 

Discussion: In this leter. we itroduced a model of coupled 
diffusive processes, where the diffusion of the observed vari­
able x is coupled to the value of a hidden variable y. We 
showed that the dynamics of x exhibits anomalous diffusion 
even for arbitrarily weak coupling between the variables. De­
pending on the nature of the interaction, the motion of x 
can be sub- or super-diffusive (and even super-ballistic as is 
the case of frictionless particle subject to white noise). Fur­
ther, even for an arbitrary strong repressive xy coupling, the 
x diffusion exponent v is limited from below by ~ 
lous scaling), so that full localization of .1: is impossible. 
Even though the long-time ensemble-averaged behavior of the 
model is similar to that of many others describing anomalous 
diffusion, the model does not reduce to either one of them, 
exhibiting an effective time-dependent diffusion coefficient, 
aging, and ergodicity breaking for different values of its pa­
rameters. 

=0.25 a.~O.75 

.,/
,/ .!'1 

./.'/ ····'j3 ~ 
····1 

o 	

.:~' .' 

-/."~&'" 2.;::; . .#j 	 ,
11 

2 
logw (L'\) 

Figure 3: The time averaged mean square displacement (6., t) 
for a 0.25, 0.75 (left and right panels, respectively). All other 
dynamical parameters are the same as for the previous figures. We 
used 20 trajectories each of duration 105 (solid lines, red color on­
line) and 20 trajectories of duration 106 (dashed lines, blue 
For a 0.25, the TAMSD over differen trajectories converge as the 
measurement time increases. However, for a = 0.75, there is no 
such convergence, just like for CTRW. In both cases, the ensemble 
average of the TAMSD decrease as the measurement time increases. 
indicating aging. 

The anomalous scaling and the ergodicity breaking appear 
in the model for the coupling parameter a > when the 
long-time behavior of the model is similar to that of the comb 
model. This is because, for a < 1/2, motion of particles away 
from y 0 contributes substantially to the ensemble averaged 
MSD of :1:. On the other hand, for a> 1/2, only motion near 
y 0 is important 

While important in its own right, the coupled diffusion 
model raises its most important questions in the biological do­
main. Unobservable dynamical quantities can lead to anoma­
lous ditfusion in E. coli chemotaxis [13], or in mRNA diffusion 
in cells [4]. Further, some of the best established models of 
cellular regulation involve coarse-graining of dynamical vari­
ables. For example, for the lac operon in E. coli, dynamics 
of the lac repressor itself is an unobservable variable [26J. 
But this is coupled to the speed of production of the lactose 
permease and the lactose-utilizing ezyme j1-galacosidase and, 
through them, to the import and the degradation of lactose in 
the cell. Since even arbitrary weak such couplings may lead to 
anomalous diffusion, it begs the question whether relying on 
the field-dominating Langevin or master equation analysis of 
stochasticity of the lac repressor, as well as other regulatory 
circuits, such as the A-phage [5, 9J, marRAB [I], and others, 
is warranted. 
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