
LA-UR- D1-0{)(o~01 

Approved for public release; 
distribution is unlimited. 

Title: I A Pressure Relaxation Closure Model for One-Dimensional, 
Two-Material Lagrangian Hydrodynamics Based on the 
Riemann Problem 

Author(s): I James R. Kamm, X-3 

Mikhail J. Shashkov, T-5 


Intended for: I 	To be submitted to Communications in Computational 
Physics 

~ 
J LosAlamos 

NATIONAL LABORATORY 
---- EST.1943 ---­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-ACS2-06NA2S396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty·free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



• 

... 


A Pressure Relaxation Closure Model for One-Dimensional, 
Two-Material Lagrangian Hydrodynamics Based on 
the Riemann Problem 

James R. Kamm1,*I and Mikhail J. Shashkov2 

1 Applied Physics Division, Los Alamos National lAboratory, Los Alamos, NM USA 
2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM USA 

Abstract. Despite decades of development, Lagrangian hydrodynamics of strength­
free materials presents numerous open issues, even in one dimension. We focus on the 
problem of closing a system of equations for a two-material cell under the assumption 
of a single velocity model. There are several existing models and approaches, each 
possessing different levels of fidelity to the underlying physics and each exhibiting 
unique features in the computed solutions. We consider the case in which the change 
in heat in the constituent materials in the mixed cell is assumed equal. An instanta­
neous pressure equilibration model for a mixed cell can be cast as four equations in 
four unknowns, comprised of the updated values of the specific internal energy and 
the specific volume for each of the two materials in the mixed cell. The unique con­
tribution of our approach is a physics-inspired, geometry-based model in which the 
updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are 
related to a local Riemann problem through an optimization principle. This approach 
couples the modeling problem of assigning sub-cell pressures to the physics associ­
ated with the local, dynamic evolution. We package our approach in the framework 
of a standard predictor-corrector time integration scheme. We evaluate our model us­
ing idealized, two material problems using either ideal-gas or stiffened-gas equations 
of state and compare these results to those computed with the method of Tipton and 
with corresponding pure-material calculations. 

AMS subject classifications: 35L65, 65M06, 76M20, 76N15 
Key words: Lagrangian hydrodynamics, compressible flow, multi-material flow, pressure relax­
ation. 

1 Introduction 

Multi-material Lagrangian hydrodynamics of strength-free materials continues to present 
numerous open issues, even in one dimension. We focus on the problem of closing a sys­
tem of equations for a two-material cell under the assumption of a single velocity modeL 
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We treat the constituents in these multi-material cells as distinct, i.e., we do not consider 
so-called "mixture" models, often associated with multi-phase flow, in which the individ­
ual species in a computational zone are modeled as fully or partially intermingled. The 
multi-material cells we consider invariably arise in multi-material Arbitrary Lagrangian­
Eulerian (ALE) methods [13,22], where the results of Lagrangian hydrodynamics are 
projected onto a new mesh during the remap phase, thereby making a Lagrangian step 
with a mixed cell a necessity. We consider three main design principles that govern clo­
sure models of interest. The first principle is preservation of contacts; this implies that if 
all materials in a mixed cell are initially at the same pressure, then that pressure does not 
change due to the closure model. The second principle is that of pressure equilibration; 
that is, after some transition time (possibly but notnecessarily a single timestep), all pres­
sures in the mixed cell equilibrate. The third principle is the exact conservation of total 
energy. We assume that a separate set of material properties is maintained for each ma­
terial in every multi-material cell, together with the materials' volume fractions, which 
can be used to reconstruct material interfaces inside a mixed celL The main challenge 
is to accurately assign the thermodynamic states of the individual material components 
together with the nodal forces that such a zone generates, pursuant to our design princi­
ples and despite a lack of detailed information about the velocity distribution within such 
cells. In particular, for the calculation of both the equation of state (EOS) and the resulting 
pressure forces, it is important that the calculation of the internal energy be accurate. 

There are several existing models for this problem. In one class of methods (see, e.g., 
Barlow [4], Delov & Sadchikov [9], Goncharov & Yanilkin [11]), one estimates the velocity 
normal to the interface between materials and then approximates the change in the vol­
ume for each material, with internal energy updated separately for each material from 
its own pdV equation. A common pressure for a mixed cell, which is used in the mo­
mentum equation, is computed using the equation of total energy conservation. Delov & 
Sadchikov [9] and Goncharov & Yanilkin [11] introduce an exchange of internal energy 
between the materials inside a mixed cell, thereby allowing some freedom in the defini­
tion of the common pressure. Other multi-material models impose either instantaneous 
pressure equilibration (such as that of Lagoutiere [17] and Despres & Lagoutiere [10]) or 
ascribe an implicit mechanism for pressure relaxation (such as described by Tipton [29] 
and summarized by Shashkov [27]). 

We restrict our attention to the approach in which the change in heat in the constituent 
materials in the mixed cell is posited to be equal, following Lagoutiere [17] and Despres 
& Lagoutiere [10]. Under this assumption, the mixed-cell model can be cast as four equa­
tions in four unknowns, consisting of the updated values of the specific internal energy 
and the specific volume for each of the two materials in the mixed cell. A solution to this 
set of nonlinear equations can be obtained, e.g., with Newton's method, which forms one 
element of an overall predictor-corrector scheme for solving the governing conservation 
laws. 

An unsatisfactory aspect of this model, however, is the imposition of instantaneous 
pressure equilibration among the mixed-cell constituents. We break this assumption us­
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ing a sub-cell dynamics model based on a local Riemann problem. Specifically, the unique 
contribution of our work is the development of this phYSics-inspired, geometry-based 
approach, using an optimization framework, both (i) to break instantaneous pressure 
equilibration by relaxing the individual sub-cell pressures to equilibrium and (ii) to de­
termine the single updated value of the relaxing-toward-equilibrium pressure assigned 
to the overall mixed cell. This approach couples the problem of assigning a single mixed­
cell pressure to the physics associated with the local dynamical evolution. We discuss 
several test problems, using either ideal-gas or stiffened-gas equations of state, on which 
we exercise this method, providing complete details of the setup for each problem to­
gether with qualitative and quantitative results of our approach on these problems. 

This paper is structured as follows. Section 2 describes the basic 1-D Lagrangian 
hydrodynamics equations and the predictor-corrector scheme we employ to obtain solu­
tions. We describe details of the two-material model, based on the work of Lagoutiere [17] 
and Despres & Lagoutiere [10], in §3. Extensions of this model to account for relaxation 
through the dynamics of a sub-cell Riemann problem are discussed in §4, which also con­
tains a brief description of Tipton's method. A specification of test problems and results 
for this method is provided in §5, which also contains comparisons with results for Tip­
ton's method and pure-material calculations. We summarize our findings and conclude 
in §6. 

2 One-dimensional Lagrangian hydrodynamics 

In this section, we describe the basic predictor-corrector algorithm that we use to obtain 
numerical solutions to the governing equations discussed in the previous section. We 
first restrict our attention to the single-material case, then discuss where modifications 
for multi-material cells are required. 

The partial differential equations governing the conservation of momentum and in­
ternal energy, written in the Lagrangian frame of reference, are (discussed, e.g., by Cara­
mana et al. [7]): 

du 
p dt + \7P = 0, (2.1) 

de 
pdt +P\7·u = O. (2.2) 

In these equations, u is the velocity and P=P(T,e) is the thermodynamiC pressure, where 
e is the specific internal energy (SIE) and T is the specific volume, which is given by the 
inverse of the mass density p of the fluid. In standard Lagrangian methods, the mass of 
a fluid parcel is constant, so that T can be expressed as the volume of that parcel divided 
by its mass. In this section, subscripts denote spatial position and superscripts indicate 
temporal indexing. In our staggered-mesh discretization, cell-centers (at index 1/2) 
are associated with cell masses Mi+1/2' cell volumes Vi+1/ 2, and thermodynamic state 
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variables of the cell, such as density Pi+] /2, specific volume Ti+1/2' SIB £i+1/2, pressure 
Pi+1/2, and sound speed CSi+] /2' The vertices of cell i are associated with edge positions 
Xi and Xi+1, edge velocities Ui and Ui+1, and node-centered control volume masses mi and 
mi+1. The volumes are determined from the edge positions, which evolve according to 
the trajectory equation, 

dXi 
Tt=Ui. (2.3) 

We assume that we have all the necessary information to completely specify the val­
ues of all state variables at time tn and seek to update the solution to time tn+1 tn +Ot, 
where at is the timestep chosen to satisfy necessary stability requirements (e.g., the CFL 
condition). The following set of coupled, implicit equations captures the dynamicS of the 
one-dimensional conservation equations by linking the updated values of the flow field 

current state: 

Un+1 _Un 
m' I I (2.4)-L1(P7+t}

I bt 

u?+1/2 ~(un+u~+l) (2.5)
1 2 It' 

x n+1 xn +at. un+ 1/ 2 (2.6)
I I I ' 

x?+l_xn+1 
1+1 I ' 

(2.7) 

(2.8) 

-( {I. *u n+1/2 (2.9)/2 = i+l/2 ' 

n+l P( n+1 n+1) (2.10)Pi+1/2 1i+l/2'£i+l/2 . 

Here, P is the relation that gives the pressure as a function of the density and SIE. Also, 
the operator {I. and its adjoint {I.* are defined on the appropriate discrete function spaces 
as: 

{I.~i ~i+1/2 -~i-l/2' (2.11) 

{I.*1]i+l/2 = 1]i+l- 1/i. (2.12) 

We propose the following iterative scheme by which to obtain a solution for the variables 
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at tnT1 in Eqs. (2.4)-(2.10): 

p n+1,oSet :- PI+1/2 and iterate for s = I, ... (2.13)i+1/2 

u n+1,5 -un 
m.1 1 -'" (pf +pt'-} (2.14)

I 6t 

Un+1/ 2,s ~ (un +un+1,5) (2.15)1 2 1 1 ' 

x n+1,s xn +6t. u l1+1/ 2,s (2.16)1 1 1 ' 
V n+1,s x n+1,5 _ x l1+ 1,5 (2.17)i+1/2 i+1 i ' 
T I1 + 1,5 V n+1,s / M (2.18)i+1/2 i+1/2 i+1/2, 

n+1,5 n 
£i+1/2 -£i+1/2 _ Pi+1/2 Pi+1I2 6 *U I1 +1/ 2,s

Mi+1/2 
6t 2 1+1/2 ' 

(2.19)(" + "+1'-1) 
p l1 +1,s P( n+1,5 11+1,5) (2.20)i+1I2 t;'+1/2'£i+1/2 . 

As shown by Bauer et al. [5], this iteration is stable under the usual constraints, e.g., CFL 
number between zero and one. Moreover, this scheme is nominally second order accurate 
in both space and time for sufficiently smooth initial conditions and sufficiently short 
times; the method invariably degenerates to first order as discontinuous flow features 
develop. 

One can interpret the first two iterations of this algorithm as a predictor-corrector 
method. Indeed, each of these steps conserves momentum and total We write the 
resulting numerical scheme as follows: 

Predictor 
11+1,* _un 
! n 

mj 
u· 

6t 
1 

-6Pi' (2.21) 

::::} 
n n M(n n)u +l,* = u __ Pi+l/2-Pi-1/2 ' (2.22)
I 1 mi 

u~+1/2,* l1~ (un +u +1'*) (2.23)
I 2 I 1 ' 

Xn+1,* x n+6t·un+1/ 2,* (2.24)
I 1 1 ' 

Vn+1,* n+1,* n+1 * 
1+1/2 X i+1 -Xi ' (2.25) 

T n+1,* V n+1'*/M (2.26)1+1/2 i+1/2 i+1/2' 

£n+1,* _ n 


Mi+1/2 1+1/2 £i+1/2 _pn 6* n+1/2* 
 (2.27)i+1/2 u i+1/ 2 ',6t 

::::} n bt ( l1 1
£i+1/2 - M. PI+1/2 u~+11/2,* u + /2,*) (2.28)

1+1/2 1+ 1 ' 

P (Tn+ 1,* £11+ 1.*) (2.29)1+1/2' i+1/2 . 

http:2.4)-(2.10
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Corrector 

n+1_U~
U i I (P7+ ~?+l,') , (2.30)mj ot 

:::} un+1 1 Ot ( n n+1 * 11 n+1 *) (2.31)
1 -.2 mi Pi+1/2+Pi+112 Pi-1/2- Pi-1/2 ' 

1 ( 11 (2.32).2 ui + 
xn+1 x~+ot'UIl+1/2 (2.33)

1 1 1 ' 

vn+1 _XIl+1 (2.34)i+1/2 i ' 
n+1 

Ti+1/2 Vi~i~2/ Mi+1/2' (2.35) 

f'!+l _ n 11 + n+1'*)
Mi+1/2 1+1/2 Ei+1/2 Pi+1/2 Pi+1/2 11*U n+1/ 2 (2.36)

( 2 i+1/2 ' ot 

:::} n+1 1 Ot (11 11+1,*)
£i+1/2 2 M Pi+l/2 +Pi+1/2

i+1/2 

X (U'!+1/2_ UII+l/2) (2.37)1+1 I ' 

n+1 n+1)P( Ti+1/2,fi+1/2 . (2.38) 

This predictor-corrector scheme can be made more efficient and equally as accurate 
(at least formally) by replacing the EOS call in Eq. (2.29) with a predictor pressure assign­
ment based on an adiabatic relation among pressure, density, and SIE. In this case, we 
replace Eq. (2.29) by: 

n )2oVn+1,*(n+1,* _ pn _ CS i+1/2 i+1/2 (2.39)Pi+1/2- 1+1/2 Til Vn' 
i+1/2 1+1/2 

where oVi:i}; =vj:i}; - V;~1/2' One must, however, retain the full EOS call in the cor­
rector step of Eq. (2.38), to ensure thermodynamic consistency and conservation at the 
updated time. 

To decrease non-physical results for problems with nominally CO solutions (e.g., shock­
waves), the pressure in these expressions can be augmented by an artificial viscosity 
to provide additional numerical dissipation. In practice, we modify each occurrence 
of the pressure P in the above approach by adding an additional term q: notionally, 
Pi+1/2 +-- Pi+1/2+qi+l/2 in Eqs. (2.4), (2.9), etc. For example, to calculate the artificial 
viscosity qi+1/2 at cell centers at til, used in Eqs. (2.22) and (2.28), the classical linear-plus­
quadratic model of von Neumann & Richtmyer [23] (see also Landshoff [18]), active only 
in compression, is evaluated as: 

0, if Ui 2: 0, (2.40)n = { 11 n ull (U1+1- otherwise,Iqj+1/2 -VIPI+l/2csi+1/2 (u1+1 I) 
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where VI (numerically, nominally rv 1) and V2 (,-...,0.1) are the coefficients of the linear and 
quadratic contributions, respectively, and P7+I/2 =1/Ti~112 . Similar expressions apply 
to predictor values of artificial viscosity, used, e.g., in Eqs. (2.31) and (2.37). While more 
sophisticated artificial viscosity models are available (as described, e.g., by Campbell & 
Shashkov [6J), the simple linear-plus-quadratic model is sufficient to demonstrate the 
efficacy of the numerical methods for the I-D gasdynamics problems discussed here. 

3 Two-Material Instantaneous Equilibrium Model 

We now examine a specific instantaneous pressure equilibrium model for a two-material 
mixed cell. We make the fundamental assumption that the fluids are not intermingled; 
that is, we assume that there is a scale on which the two fluids are separated. We first 
review the model based on the work of Lagoutiere [17] and Despres & Lagoutiere [10J, in 
which the overall specific volume and SIE in a mixed cell are distributed to the separate 
materials, and discuss how to use this model with the above algorithm. 

A schematic of the mixed cell is shown in Fig. I, which indicates material 1 to the left 
of an idealized (massless) interface, which separates it from material 2 to the right. In 
the following discussion, we largely suppress the subscript index of the mixed cell, imix ; 

instead, subscripts refer to the two materials in the multi-material cell. In keeping with 
the single-material algorithm discussed in the previous section, assume that we have the 
following quantities, consistently updated to time tn+l: 

1. 	 T n+l : the updated value of the overall specific volume of the mixed cell, from 
Eqs. (2.26) and (2.35); and 

2. 	 En+1: the updated value of the overall SIE of the mixed cell, from Eqs. (2.28) and 
(2.37). 

We also know a common pressure at the previous timestep, pn, for the mixed cell; we dis­
cuss later how to update this common pressure from the constituent materials' updated 
pressures. In addition to those values, we know the specific volume and SIE of the mixed 
cell's constituent materials at the previous timestep, i.e., T1,T2,E1,E2. 

The quantities that we seek are the updated values of these properties, viz., 

1. 	Tr+1, Tf+l: the updated specific volumes of materials 1 and 2, and 

En+12. . the updated SIEs of materials 1 and 2,
1 	 ' 

to be apportioned in some conservative fashion. With these values, the individual mate­
rials' EOSs define the associated thermodynamic variables. In the mixed cell, denote the 
mass fractions ("concentrations") by C1 and C2 for materials 1 and 2, respectively: 

C1 =m1 / Mi· and C2 m2 / MimIX. , 	 (3.1)
mix 
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where in the mixed cell 

m1 = mass of material 1 , m2=mass of material 2, (3.2) 

total mass = ml +m2. (3.3)Mjmix 

Since the masses in the Lagrangian cells are fixed, the mass fractions Cl and C2 do not vary 
with time. 

The governing equations of the closure model discussed by Lagoutiere [17] and De­
spres & Lagoutiere [10] are the following. 

• Conservation of mass (expressed with the specific volume): 

Cl +C2T;+1 =Tn+1. (3.4) 

• Conservation of internal energy (expressed with the SIE): 

C1 e:~+1 +C2e:~+1=e:n+1 . (3.5) 

• Equality of change in heat ofthe two materials: with dQk=de:k +PkdVb this require­
ment implies: 

-e:1 +P1(Tf+l Tn =e:~+1-e:~+P2(T;+1- ). (3.6) 

• Equality of thermodynamic pressure Pk (T,£) of the two materials (k = 1,2):t 

p=p~+l=p~+l ::::} Pl(Tf+l,e:~+1)_P2(T;+1,e:~+1) O. (3.7) 

The four relations (3.4), (3.5),+ (3.6), and (3.7) form a set of four nonlinear equations in 
four unknowns: Tf+l, £~+l, T;+l, and e:~+1. 

A choice must be made in how to model the pressure in Eq. (3.6). Among the obvious 
options are the following (where 1,2 for the two materials): 

• "Fully Implicit": Pk = p~+l, the pressure at the updated time; 

• "Fully Explicit": Pk =Pi:, the pressure at the previous time; or 

, the arithmetic mean of the • "Thermodynamically Consistent": Pk = ~ 
previous-time and updated-time pressures. 

For a polytropic gas, closed-form solutions of this set of equations can be obtained in each 
of these three cases. Kamm & Shashkov [16] provide explicit expressions for these solu­
tions, which, though algebraically complicated, can be used to verify the software imple­
mentation of this algorithm. For general EOSs, Eqs. (3.4)-(3.7) do not admit a closed-form 
solution, whether one considers the fully implicit, fully explicit, or thermodynamically 
consistent closure models. In this case, Newton's method can be used to obtain numerical 
solution to this set of coupled nonlinear equations. 

tThis relation explicitly specifies the common pressure of the mixed cell. 

tAs explained by Despres & Lagoutiere [10], Eqs. (3.4) and (3.5) are consistent with the assumption that the 

fluids are separated at some scale. 
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4 Two-Material Riemann ProblemlPressure Relaxation Model 

The model of the previous section provides an approach in which the pressures of the 
constituents of a two-material cell are equilibrated at the end of each timestep. In this 
section, we describe a sub-cell dynamics model that leads to schemes by which to relax 
the constituent pressures to equilibrium. That is, given an initial state with a discrep­
ancy between the pressures of material 1 and material 2, we seek a model with which to 
update material pressures pr+1 and p~+1 such that the difference between these values 
approaches zero as time increases.§ We do so with a purely dynamical model that does 
not appeal to any explicit dissipation terms, per se. 

Conceptually, we posit a relaxation operator n that takes as input the thermodynamic 
states of the constituent materials at time tn together with values for the overall specific 
volume and SIE at time tn+1. On output, this operator returns the thermodynamic states 
of the individual materials updated to time t"+l and an estimate of an updated common 
cell pressure. Schematically, we write this as: 

In this section we describe in detail the relaxation operator n. 

4.1 Two-Material Riemann-Problem/Relaxation Model: Equations 

The foundation of this approach is to consider the evolution of the multi-material cell 
over one time step to be related to a local Riemann problem. This cell is identified by 
the index imix, with the states of the two materials assumed to be available at time tn. 
The location of the interface between the materials at this time determined by the local 
volume fraction of, material I, given by 

n ,T; ={ }. (4.1) 

x!1 = x~ +/1 (x~ x~) E (4.2)mtfc lmix Imix+1 Imix 

In higher dimensions, the interface configuration must be estimated with an interface 
reconstruction technique. Specifically, the two states in this cell at tn are given by: 

(P1,e1,P1,UI), ifxi. <x<x~tfc' 
(0~~U ) m~ (4.3){ (P2,e2,p2,U2), ifx~tfc<x<ximix+1 

There is an obvious choice for the velocities in I-D, viz., 

and U2 (4.4)Ul =Uimix 

§This idealized picture is for the special case of stationary flow, i.e., in the absence of external flow per­
turbations. More generally, when there are persistent external flow effects one should not expect pressure 
equilibration in a mixed cell to necessarily obtain. 
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More sophisticated models that involve spatial variation of the velocity could be used, 
but we use this piecewise-constant assumption in the following. The solution to this one­
cell Riemann problem problem at time tn+1 can be computed for polytropic gases accord­
ing to the method of Gottlieb & Groth [12], for stiffened gases following Plohr [24], and 
for more general equations of state as described by Colella & Glaz [8J and Quartapelle et 
al. [25]. 

A schematic of the initial conditions and idealized solution to this problem is shown 
in Fig. 2, which depicts the pressure for the mixed cell at tn on the bottom and at tn+1 on 
the top, in the particular case of a rarefadion-contact-shock configuration. In this figure, 
the top (tn+1) diagram exhibits, from left to right, the left tn state, the leading left-most 
Riemann wave (WL), the contact discontinuity (W*), the leading right-most Riemann 
wave (WR), and the right tn state. The states outside of the leading waves are unchanged 
from their values at tn during the timestep t5t. If the left- or right-most wave is a shock, 
then the precise location of this wave is unambiguous; if this wave is a rarefaction, how­
ever, then we do not use the exact solution but instead choose either the head or tail of the 
rarefaction as defining the location of this wave (as in Fig. 2). In the domains delimited 
by these waves, i.e., between the left-most wave and the contact, and between the contact 
and the right-most wave, we assume the Riemann-problem pressure is constant in space 
at time tn+1; outside these waves, we assume that the pressure retains its initial (Le., at tn) 
values. Depending on the initial conditions of the Riemann problem, these assumptions 
may not be strictly valid (e.g., when rarefactions are present); nonetheless, they can be 
used in the optimization method that we describe below. 'H 

Let the region to the left of the contact contain two sets 01 and 021 defined as 

0 1 {x:xr~~<X<X~t} and O2 {X:X~~<X<X~nt}' (4.5) 

where x~ is the position of the left-most wave WL and X~t is the contact position, 
both determined from the solution to the Riemann problem (identified by the superscript 
"RP"). Denote similar subsets to the right of the contact as 03 and 04: 

03 {x:x~:nt<X<X~ht} and 04 {X:X~ht<X<X~~+l}' (4.6) 

where x~ght is the position of the right-most wave WR of the Riemann problem solution. 
The key assumption of our approach is the following: we seek a single updated pres­

sure values for each material (Le., on each side of the contact) that minimizes the dis­
crepancy between that value and the pressure given by the Riemann problem solution 
in that domain. A mathematical expression of this statement replaces the instantaneous 
pressure equilibration equation (Eq. (3.7) in §3) while the other constraints of the model 
(Eqs. (3.4)-(3.6» still apply. 

'lIOne could utilize the entire non-piecewise-constant solution pressure when a rarefaction fan is present. 
Such a model introduces additional complexity to the relaxation model presented below. 
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We express this relation mathematically as the following optimization problem: 

min 2
{	 

,e~+l} (1Ipl+1-pfPW+llp~+1 pf
P

11 ) (4.7)Tf+l 

subject to the constraints given by Eqs. (3.4)-(3.6): 

/1 - (4.8) 

+C2e~+1-en-j-l 0, (4.9)h 
/3 	 £~+1-el+P1(Tf+l Tl) 

[£~+1-£~+P2(T;+1- )] O. (4.10) 

In Eq. (4.7), pfP and pr are the solutions of the Riemann problem for the pressure in 
materials 1 and 2, respectively. These quantities may vary as a function of position in 
each of the these materials. 

Using the L2 norm, the components of the expression in Eq. (4.7) can be written in 
terms of the locally constant pressure values in each domain: 

2 2 

pFW (h and 

Ip~+l pfPI12 03(P~+1-pfPr +04(p~+1 pfP)2. (4.12) 

Here, the nondimensional quantity OJ equals the measure of the set OJ divided by the 
entire cell length, bxn+1: 

0·= (maxx-minx) /(x~+l x~+l). 	 (4.13)
J xEO XEO Imix+ 1 Imix'

J 	 J 

with this definition, 
4 

0-> and EOj 1. 	 (4.14)J-
j=l 

Outside of the leading waves, i.e., on sets 01 and 04, the Riemann problem pressure 
equals the pressure at the start of the timestep: 

pF =p~ for XEOI and pF p~ for XE 0 4. 	 (4.15) 

Between the contact and these waves, we assign the pressure to be the so-called "star­
state" pressure of the Riemann problem solution, described, e.g., by Toro [30] and LeV­
eque [19]: 

pfP =p* for XE02 and pfP p* for XE03. 	 (4.16) 
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Therefore, Eqs. (4.11) and (4.12) imply the following relations: 

Ipl+ 1 prl12 .01 (Pl+1- pI) 2+.02(Pl+1 p* f and (4.17) 

Ilp~+1_p~112 .o3(P~+l_p*)2 +.o4(P~+1_p~f. (4.18) 

We recast this constrained minimization problem as simple minimization through the 
use of Lagrange multipliers. Specifically, to the expression to be minimized we add each 
of the constraint terms multiplied by an unknown parameter (the Lagrange multiplier) 
and then seek to minimize that composite function. The overall minimization statement 
then becomes the following: 

min f'.( n+l n+1 n+1 n+1 1 1)1rn+1 £n+1 rn+I £n+l All} '::I Tl '£1 ,T2 '£2 ,/q,/~2,1\3 (4.19)
{ 1 ' 1 '2 I 2 ' l,I\2,/~3 

where g= Ilpl+1-prI12+llp~+1_p~112+Adl +A2/2+ A3/3. (4.20) 

A possible extremum of the function 9 is obtained by finding a solution that corresponds 
to a zero of the coupled set of nonlinear equations given by: 

aglaXj=O, i=l, ...,7, where X [Tf+l,e~+I/T~+l,£2+1,Al,A2,A3r. (4.21) 

Since the derivative of 9 with respect to a Lagrange multipliers is just the corresponding 
constraint equation, parameter values that satisfy ag I axi=o perforce obey the constraint 
equations. Numerical solutions to this problem can be sought with Newton's method for 
the system of equations given in Eq. (4.21). 

In practice, the terms in the objective function 9 are nondimensionalized by local 
representative values, so that the contributions to 9 are roughly comparable. One such 
nondimensionalization is: 

9 == .01 (Pl+1- P1 f i'p2+.o2(Pl+1-p*f /;i 

+ .o3(P~+I_p*)2 Ip2+.o4(P~+1_p~f Ip2 

+ Al [(CITf+l+C2T~+1) ~+1] IT 

+ A2 [(Cle~+1+C2£~+1) _£n+l] te 

+ A3 { [e1+1-£1 + PI (Tf+l Tf)] 

[£2+I-e2+P2(T;+I-Tn] }/e, (4.22) 

where p, T, and eare a representative (non-zero) values of the pressure, specific volume, 
and SIE, respectively, of the entire zone at tn (e.g., pi . , etc.). The properties of the 

ffilX 

individual constituents that result from this minimization process are used to define the 
common cell pressure, which we discuss in the next section. 

http:i'p2+.o2
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4.2 Relaxation to a single pressure 

Unlike the instantaneous pressure equilibration model, this approach does not imply an 
unambiguous value for the pressure of the mixed cell. Consistent with the solution of the 
set of coupled model equations, one could assign the overall mixed-cell pressure value 
as a spatial average of the two updated pressures: 

pn+l =p= (01+(2)pn (4.23)l+1+ (03 +04 ) pn2+1.
lmlx 

Alternatively, one could use the information from the sub-cell dynamical evolution model 
to assign a single pressure to the mixed cell pressure based on the extent of the wave 
propagation in the associated Riemann problem: 

n+l - 0- n (0- +0- ) *+0- np. . = p= 1 PI + 2 3 P 4 P2 . (4.24)
lmlx 

These values enter into the overall algorithm in Eqs. (2.22), (2.28), (2.31), and (2.37). In 
the results of §5, the common pressure given in Eq. (4.23) is used. For the test problems 
examined, the difference in results between these two definitions of the common pressure 
is negligible. 

To motivate heuristically why this approach leads to pressure equilibration with in­
creasing time, we consider the structure of the Riemann problem solutions. For poly­
tropic gases, the four non-degenerate Riemann problem solution configurations can be 
denoted, following Gottlieb & Groth [12], as RCS, RCR, SCR, and SCS, where the order 
corresponds to the wave family from left to right, and the letter identifies the particu­
lar wave: "R" means a rarefaction fan, "c" denotes a contact (across which the pressure 
equals the star-state value and is continuous), and "S" indicates a shock. II There are two 
cases: (1) the star-state pressure, p*, is bounded by the pressures on the left and right 
(as happens, e.g, in the case of equal polytropic indices for the RCS and SCR solutions 
with no initial velocity) and (2) p* exceeds the extremal left and right pressures (i.e., p* is 
either less than the minimum pressure or greater than the maximum pressure, e.g., in the 
case of equal polytropic indices for the RCR and SCS solutions with no initial velocity). 

Consider the first case and assume that p~ < p* < pz (the case with p~ > p* > pz is 
similar). For material I, the result of the minimization process, p~+I, must be bounded 
by p~ and p*: if it were not, then one could always find a value p~+1 that would give a 
smaller value of the convex combination in Eq. (4.17). An analogous argument holds for 
material 2. Thus, at the end of the timestep we have the ordering, p~ < p~+1 < p* < p~+1 < 
pz. Therefore, the pressure difference at the end ofthe timestep, ip~+I- p~+li, is less than 
the pressure difference at the start of the timestep, ipr -Pzi, i.e., the pressures are relaxing 
toward equilibrium. 

IIWe ignore the vacuum boundary case. Additionally, the fifth case of the polytropic gas Riemann solutions 
is the degenerate situation in which a vacuum region develops between the opposing rarefaction waves, i.e., 
RCVCR, in the above notation. The consequences of this situation with respect to pressure equilibration are 
comparable to those of the RCR case. 

http:2)pn(4.23
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Consider now the second case and assume, without loss of generality, that p* < p7, 
pz; for the sake of argument, further assume that PI < pz. In material 1, the result of 
the minimization process, p~+l, must again be bounded by PI and p*, and similarly for 
materia12: p* < p~+l < PI and p* <p~+l < pz. Considering possible values of the positive 
numbers OJ in Eqs. (4.17) and (4.18), it is conceivable that the pressure difference could 
increase during the timestep (not accounting for the effect of the other constraints). This 
analysis leads us to conclude that these inequalities alone are insufficient to ensure that 
the pressures necessarily tend toward equlibrium, i.e., one cannot immediately infer that 
Ip~+l_p~+ll < IpI pzl. Additional special cases are those of a uniformly translating con­
tact and a uniformly propagating shock. The former perforce obeys pressure equilibrium 
from tn to tn+1, while the latter necessarily maintains pressure non-equlibrium through 
the timestep. 

Therefore, while it is plausible that some initial (i.e., tn) mixed-cell conditions lead 
to a decrease in pressure difference over the course of a timestep with our model (i.e., 
relax toward pressure equlibrium), other initial conditions in the mixed-celIlead to the 
pressure difference between materials 1 and 2 increasing, at least temporarily. This (local) 
increase in the pressure difference between materials 1 and 2 is evident in some of the 
mixed-cell pressure time history results of §5; see, e.g., Fig. 24. All of the test problems 
we consider in §5, however, lead to pressure equilibrium in the multi-material cell at late 
times. We speculate that the constituent pressures are driven, at late time, to the star­
state pressure of a Riemann problem toward which the mixed cell evolves over many 
cycles. This speculation assumes that there are no other perturbations that enter the cell 
and drive it from equilibrium (such as occurs, e.g., in the problem of §5.4 and evident in 
Fig. 32). In future work, we plan to perform more rigorous tests of this hypothesis. 

4.3 	 2-Material Riemann-Problem/Relaxation Model: Numerical Implementa­
tion 

The (single) pressure of a (two-material) mixed cell, p7 . ,where imix is the index of the 
mix 

mixed cell, enters into the overall algorithm, influencing the updated velocities at the 
edges of the mixed cell. Therefore, the manner in which an overall pressure for the multi­
material mixed cell is assigned will have a direct impact on the overall results. In the 
predictor phase, this value enters in the evaluation of the predictor velocity u7+1,* in 
Eq. (2.22), which influences the cell edges positions in Eq. (2.24), cell volumes in Eq. (2.25), 
etc., as well as in the predictor SIE in Eq. (2.28). Similarly, in the corrector phase, the cell 
velocities, edges, volumes, etc., are affected by the predictor value of the sole mixed-cell 
pressure in Eqs. (2.31)-(2.37). The pressures of the individual constituents in a multi­
material cell are used to generate a single, overall pressure for the entire cell. In addition 
to this value, the updated values of the state of the two materials (viz., the specific vol­
umes and SIEs) must be carried along into the next computational cycle. 

We now describe an algorithmic implementation of the mixed cell model. As men­
tioned earlier, assume that we have, at time tn, a common pressure value, pi . ,for the 

mIX 

http:2.31)-(2.37


15 

mixed cell as well as the thermodynamic variables for the individual constituents, 
E1, T£, E2. In the predictor phase, the steps listed in Eqs. (2.21)-(2.28) are followed ex­
actly, where the common pressure value from the previous timestep, p7 . ,is used for the 

mIX 

mixed celL After the step in Eq. (2.28), predictor values for the overall mixed cell specific 
volume and SIE are generated. Instead of the single-material pressure evaluation given 
in Eq. (2.29), one invokes the mixed-cell model. 

The full evaluation of the predictor values for the mixed cell is as follows. 

1. 	 Starting with the initial conditions specified by the mixed-cell state at tn, solve the 
mixed-cell predictor Riemann problem over the timestep bt, which we represent 
notionally as ~(Tl ,E1,T£ ,E2;t5t). 

2. 	Use those results to determine the the star-state pressure and the extent of wave 
propagation: ~(Tr ,E1, T£ ,E2;Ot) ::::} p* and OJ, j = 1,... ,4 (see Eq. (4.13»; these quan­
tities are used in the evaluation of the pressure-difference expressions in Eqs. (4.17) 
and (4.18). 

3. 	Obtain a solution of the associated minimization problem, given in Eqs. (4.19) and 
(4.20), for predictor values of the thermodynamic state ofthe individual constituents, 

nT1 + 1,*, E~+1,*, T;+1,*, E~+1,*, using the values at tn as an initial guess. 

4. 	 Evaluate the predictor component pressures with EOS calls: p~+1,*='P (T;'+ 1,* 


k= 1,2. 


5. 	Evaluate the predictor common pressure, pn+1,*, according to either Eq. (4.23) or 
Eq. (4.24). 

For the corrector phase, the steps listed in Eqs. (2.30)-(2.37) are followed, where the 
predictor common pressure value, pn+1,*, is now used for the mixed celL Instead of the 
single-material pressure evaluation given in Eq. (2.38), the corrector phase of the mixed­

model is evaluated. 

1. 	Starting with the initial conditions specified by the mixed-cell state at tn, solve the 
mixed-cell Riemann problem over the timestep Ot: ~(Tr ,E1,T£,E2;Ot). 

2. 	Use the results of this problem to determine the star-state pressure and the extent of 
wave propagation: ~(Tr,E1,T£,E2;Ot) ::::} p* and OJ, j=l, ... ,4 (see Eq. (4.13», with 
which one can evaluate terms of the pressure-difference expressions in Eqs. (4.17) 
and (4.18). 

3. 	 Solve the associated minimization problem, given in Eqs. (4.19) and (4.20), for up­
dated values of the thermodynamic state of the individual constituents, Tf+1, E~+1, 

, E~+1; here, the predictor values of these quantities can be used as an initial 
guess. 

http:2.30)-(2.37
http:2.21)-(2.28
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4. 	Evaluate the corrector component pressures with EOS calls: Pk+l = P(T:+l ,eZ+1), 

k= 1, 2. 

5. Model the final common pressure, pn+1, according to either Eq. (4.23) or Eq. (4.24). 

4.4 Tipton's method for pressure relaxation 

The underlying integrator for our implementation of Tipton's approach is based on a 
two-step method, in which certain quantities are first updated to the half-time step level, 
and then all flow field quantities are updated to the final time. More specifically, half­
timestep updates are made for node positions (using the trajectory equation), as well as 
cell volumes and cell densities (both based on updated node positions); the half-time step 
pressure is evaluated using an adiabatic approximation. The final timestep updates be­
gin with the velocity (updated from the momentum equation using the half-timestep 
pressures), followed by the position (using the trajectory equation with time-centered 
velocities), cell volumes and densities (using updated node positions), and the SIB (using 
the updated pdV work); for consistency, the final pressure is obtained with a full EOS 
call. 

Specifically, this algorithm can be written as follows for pure material cells. 

Half-timestep Update 

x
1 

n+1 /2 xi +(MI2) (4.25) 
V.n+1/2 xn+l/2 _ x?+1/2 (4.26)1+1/2 1+1 1 ' 

Vn+1/2/M (4.27)i+1/2 i+1/2, 

n )2 J:Vn+l/2 
Pn+l/2 n (CS i+1/2 U i+l/2 (4.28)i+1/2 Pi+l/2 - n vn . 

Ti+1/2 i+l/2 

Full-timestep Update 

un+1_u~
m.1 -~ (p7+112) , 	 (4.29)

! 6t 
1 

=> un+1 _ un_ 6t (pn+I/2_ pn+I/2) 	 (4.30)
! - 1 mi i+1/2 i-I/2' 

un+l/2 ~ 2 (u~+un+1) 	 (4.31)
1 1 I ' 

xn+l 
! 

xn +6t·u n+1/2 	 (4.32)
! 1 ' 

xn+1x~+l-	 (4.33)1+1 '1 

~~i~2/Mi+1/2 , 	 (4.34) 

http:x~+l-(4.33
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n+1/2
Mi+l/2 -el+1/ 2 ) - Pi+1/2 (4.35) 

~.. I 1 n=> fi+l/2 b"i~1)2/Mi+l/2 (4.36) 

P( n+1 n+l) (4.37)T i+1/ 2,ei+1/2 ' 

V n+j;;Vn+j - vn . h .-1/2 1where 0 i+1/2= i+l/2- i+l/2wlt}- or. 
Tipton's multi-material model is based on this two-step scheme. In the following 

presentation of the multi-material model, subscripts indicate the material identifier, not 
the cell index. For this algorithm with k materials, there are k+ 1 unknowns, the first k 

of which consist of the volume changes of the kth materials in the mixed cell at the half­
timestep, bV;+1/2. The next assumption of the model introduces the k+ 1st unknown 
as the overall half-timestep pressure, pn+l/2, which is the same for all materials and is 
assumed equal to the sum of the half-timestep pressure and a half-timestep relaxation 
term: 

pn+1/2 pZ+l/2+RZ+1/2, 'Ilk. (4.38) 

The first term on the RHS of this equation, the half-timestep pressure of the kth mate­
rial, is evaluated with an adiabatic approximation (as in the pure-material half-timestep 
update of Eq. (4.28» that includes this material's unknown volume change: 

( CS n )2 
pZ+1/2 = Pk -~ --':'=::-- (4.39) 

Tk 

The second term on the RHS of Eq.(4.38), the relaxation term for the kth material, is 
posited to be of a form evocative of a traditional linear artificial viscosity that also is 
based this material's unknown volume change: 

csn Ln bv:n +1/ 2 
Rn+1/2 _k _ _ -,k,,--_ (4.40)

k Tk bt 

where P is a characteristic length for the mixed cell (typically the overall cell size). To 
close this model, one enforces that the sum of the (unknown) volume changes of all ma­
terials must equal the overall volume change of the mixed cell, V n+1/2, which is known 
from a standard the half-timestep update (using the expression in Eq. (4.26) and the over­
all volume at tn): 

EbV;+1/2 bVn+1/2. (4.41) 
k 

As was done for the single-material cells in the rest of the half-timestep update, the 
new volumes and corresponding volume changes can now be computed for the each 
material. To achieve this for a multiple-material cell, one combines the above expres­
sions and writes the governing relations for the mixed cell as the following set of linear 
equations in the unknowns bV;+1/2 and pn+l/2: 

Pn Bn (bv.n+l/2/ vn) _ 1)V;+1/2=bVn+1/ 2, (4.42)k k k k-

k 


http:Eq.(4.38
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where 
13k pi [(CSk)2 [l+Ln / (cSk (4.43) 

This linear system of equations has the solution: 

v:n [ Jvn+1/2]pn+1/2= fin _ Bn JV~~1/2 and Jv,n+1/2 =..J- (pn _ p-n) +Bn ___ (4.44)
k Bn k Vn' 

k 

where the barred values are the volume-fraction-averaged quantities given by: 

(4.45)p""~(1;;) /~(~) [~(~Dr
and 8" 

with /k == VdV representing the volume fraction of the kth material. Equation (4.44) for 
JV;+l12 indicates that two factors contribute to the volume change in the k-th material. 
The first component is the difference between the pressure in the k-th material and the 
"averaged" pressure given by fin, while the second factor is related to the overall volume 
change of the entire mixed cell. 

The volume of the kth material is related to the overall cell volume V via the volume 
fraction ,/b i.e., Vk= Ik V. Thus, one can derive the following equation for the change in 
the volume fraction at the end of the half-timestep: 

J1:+1/2 = If [(Pk fin) /13k]+If [(Bn / 13k) -1] (Jvn+112/vn) . (4.46) 

These relations provide the necessary information at the half-timestep to update val­
ues to the end of the timestep. TO'do so, we invoke the last assumption of this modet 
namely, that the individual materials' volume changes at tn+1 = tn+Jt = tn+2· (Jt/2) 
equal twice the half-timestep values: 

J/:+1=2J/:+1/2. (4.47) 

. The individual volume fractions are updated according to: 

fk+1 = If+J/:+1. (4.48) 

Using these values, the corresponding volumes of each material in the mixed cell are 
evaluated (using the updated overall cell volume from Eq. (4.33)) : 

V;+l = 1:+1 Vn+l, (4.49) 

along with each material's density and volume change: 

pz+1= MdV;+l and JV;+l V;+l Vr (4.50) 
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As in the overall cell case, the SIE for each material is obtained from the updated pdV 
work: 

=e'k - pn+l/2Jv:+l I Mk. (4.51) 

Lastly, the individual pressures are consistently evaluated with full EOS calls: 

Pk(Tr+1 (4.52) 

In the actual implementation, one adds an artificial viscosity term (e.g., to Eq. (4.30)), 
the specific form of which will affect the computed results. Furthermore, one can con­
ceive of modifications to this method, e.g., by altering the relative contribution of the 
terms in Eq. (4.46) in order to account, say, for the sub-cell interaction of materials having 
disparate properties (e.g., small volume fractions). Such modifications may change the 
results for Tipton's method on the test problems, to which we now tum. 

5 Test Problems and Results 

We examine several different test problems found in the compressible flow literature in 
order to evaluate the methods described above. We focus on problems with exact so­
lutions, so that we can rigorously compare the quantitative errors associated with dif­
ferent methods. While several test problems exist and are used by the single-material 
compressible flow algorithm development community (see, e.g., the overview by Liska 
& Wendroff [20])" fewer problems are available for code verification of multifluid com­
pressible flow. 

For results of both the Riemann-relaxation and Tipton's methods on the test prob­
lems consider, the mesh consists of Nx zones, each of identical dimension 1/(Nx +1), 
with the exception of a single multi-material zone, which is of width 2/(Nx +1). In that 
multi-material zone, the mass and volume fractions are assigned to be consistent with the 
initial conditions, and the initial interface between materials 1 and 2 is located in the ge­
ometric center of that cell. We also compare with a pure-material calculation, i.e., with no 
mixed cell, in which all cells are initially the same width; these calculations contain one 
more cell than the multi-material calculations, so that for pure-material calculations with 
Nx +1 zones, each zone is of width 11 (Nx + 1), with the multi-material zone of the other 
methods effectively split into two pure-material zones of equal dimension. All problems 
were run with the same value of CFL constant, equal to 0.25. When Newton's method is 
used, we imposed an absolute Ll convergence tolerance of at least 10-10 in the nondimen­
sional test cases and 10-7 in the dimensional water-air shock tube problem of §5.5. For 
the results presented here, we assign the single mixed-cell pressure as the spatially av­
eraged value of the two sub-cell pressures of the constituent materials, i.e., as that given 
in Eq. (4.23). We present graphical results consisting of snapshots of the computed and 
exact flow fields at the final time along with time-histories of the material state properties 
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of the two materials in the multi-material cell or, in the pure-material calculation, adja­
cent to the interface. Additionally, we quantify the error between the computed results 
and the exact solution. 

5.1 The Sod Shock Tube 

The Sod shock tube problem [28] is defined as the behavior of a polytropic gas with the 
following non-dimensional initial conditions: 

(1.4,1, 2.5,1,0), if 0 <x<O.5, 
(5.1)

(/,p,e,p,u)= { (1.4,0.125,2, 0.1,0), if O.5<x<l, 

with a final time of t final 0.2. This single-material problem is run to verify our basic im­
plementation of the two-material algorithms. We refer to the material to the left of x=0.5 
("the interface") as "material 1/1 and the material to the right as "material 2." The initial 
condition of the mixed cell, centered at x = 0.5, consists of these two disparate states. The 
developing structure consists of a rarefaction wave moving to the left, a contact discon­
tinuity (corresponding to the initial discontinuity between the two states) moving right, 
and a shockwave moving right (faster than the contact). The exact solution to this prob­
lem is evaluated and used to quantify the error in the computed solution. 

Results of our method on this problem are shown in Figs. 3-10. Shown in Fig. 3 are, 
clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE at 
the final time. These plots contain the computed values (solid line) and exact solution 
(dashed line) plotted against the left ordinate and the signed difference between the ex­
act and computed results (dotted line) plotted against the right ordinate. The values 
corresponding to the individual material in the mixed cell are indicated with the sym­
bol •. Errors are present at the usual locations, e.g., at the head and tail of the rarefaction 
and at the shock, together with overshoots and undershoots at the contact. The SIE in 
Fig. 3(c) exhibits obvious overshoot on the rarefaction-side of the contact. Correspond­
ing plots of results for the mixed-cell method of Tipton and the pure-cell calculation are 
given in Figs. 4 and 5. Comparison of the three methods' results (without the errors) for 
the mass density, pressure, and SIE is provided in Fig. (6), which shows that the results 
for all methods exhibit slight diffferences: the tail of the rarefaction is less accurate with 
Tipton's method, which also undershoots density and overshoots SIE at the contact most 
significantly. Table 1 catalogues the Ll norm of the error between the computed results 
and the exact solution for the same flow variables, for each of the three methods on all 
meshes. Also included in that table is the outcome of fitting these results to the error 
ansatz, 

IIYcomputed -Yexactl II A !::.xcr 
, (5.2) 

where!::.x is the initial, uniform mesh spacing of the problem (in all but the mixed cell). 
These values are depicted graphically in Fig. 7. These results suggest overall first-order 
convergence of the method in all cases. 
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Figure 8 contains time-history plots for the new method of the (from left to right) 
pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from 
top to bottom) 99-, 199-, 399-, and 799-cell calculations. In these figures, the solid line 
indicates the left material (material 1) and a dotted line represents the right material (ma­
terial 2). It is clear from these results that pressure equilibrium obtains for this problem 
by this method. Note that relaxation to pressure equilibrium is not monotonic in time. 
Moreover, the zoning study shows that the effective relaxation effect is proportional to 
the mesh spacing. Figure 9 contains plots of these time-histories on the coarsest grid 
for the three methods. The relaxation time is comparable for all methods, with Tipton's 
method perhaps slightly slower. The approach to equilibrium differs among the meth­
ods, however, with the final values of the new method closer those of the pure-material 
calculation than to those of Tipton's method. Table 2 gives the values adjacent to the ma­
terial interface at the final time on the finest grid, together with the exact solution at the 
contact interface. The Tipton locations and pressures are slightly closer to exact values, 
while the new method's locations and pressures are closer to the pure-material calcula­
tion; additionally, the density and SIE of the new method are closer to both the exact and 
pure-material values. Figure 10 shows the position of the material interface as a function 
of time. The methods' results vary slightly at early time (shown on the right), with the 
results of the new method very similar to those of the pure-material calculation at late 
time. 

5.2 The Modified Sod Shock Tube 

Various authors have proposed modifications to the standard Sod shock tube problem 
discussed in the previous section. We consider the variant introduced by Barlow [41 and 
described by Shashkov [27], with the following non-dimensional initial conditions: 

(2, 1, 2, 2, 0), if 0 < x <0.5 , 
(5.3)(,,(,p,e,p,u) = { (1.4, 0.125, 2, 0.1, 0), if 0.5 < x <1 , 

with a final time of tfinal 0.2. As for the standard Sod case, the initial condition of the 
mixed cell, again centered at x = 0.5, contains both of these two distinct states; unlike the 
that case, however, this is a genuine two-material problem. The solution structure is the 
same as the standard Sod case; however, this modified problem allows one to test the 
truly multi-material aspects of our algorithm. 

Results of our method on this problem are shown in Figs. 11-18. Shown in Fig. 11 
are, clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE 
at the final time. These plots contain the computed values (solid line) and exact solution 
(dashed line) plotted against the left ordinate and the signed difference between the exact 
and computed results (dotted line) plotted against the right ordinate. The values corre­
sponding to the individual material in the mixed cell are indicated with the symbol •. The 
stronger initial pressure difference of this problem leads to greater over- and undershoot 
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at the shock than the standard Sod problem; as in the standard Sod results, undershoot in 
the rarefaction-side SIE is seen. Corresponding plots of results for the mixed-cell method 
of Tipton and the pure-cell calculation are given in Figs. 12 and 13. Figure 14 contains 
results for all three methods. As for the standard Sod problem, the results are similar 
with the Tipton method results standing out with the least accurate rarefaction tail, and 
greater density undershoot and SIE overshoot at the contact. 

Table 3 shows the L1 norm of the error between the computed results and the exact 
solution for these flow variables, for each of the three methods on all meshes, together 
with the fit of those results to the ansatz in Eq. (5.2). The convergence results are slightly 
more uniform for this problem than for the standard Sod problem. These values are 
plotted in Fig. 15. 

Figure 16 contains time-history plots of the (from left to right) pressure, the mass den­
sity, and SIE of the two materials in the mixed cell, for the (from top to bottom) 99-, 199-, 
399-, and 799-cell results. In these figures, the solid line indicates the left material (mate­
rial 1) and a dotted line represents the right material (material 2). These results are qual­
itatively very similar to those of the standard Sod problem, with slight non-monotonic 
behavior in the pressure difference, which ultimately goes to zero. Plots of time-histories 
on the coarsest grid for all three methods are shown in Fig. 17. The nature of the pressure­
equilibration varies among the three methods. The final values of density and SIE differ 
slightly among methods, with those of the new and pure-material calculation being more 
similar to each other than to the Tipton values. Table 4 gives the values adjacent to the 
material interface at the final time on the finest grid, together with the exact solution at 
the contact interface. The results for the new method are, in general, closer to the corre­
sponding values for both the exact and pure-material calculations. Figure 18 shows the 
position of the material interface as a function of time. These results are similar to the 
standard Sod problem results, with the results of the new method similar to those of the 
pure-material calculation at all but the earliest times. 

5.3 Moving Shock Problem 

Like the first Sod problem, the moving shock problem is a single-material test, but of a 
fundamentally different phenomenon. This problem tests the steady propagation of a 
shock wave in a uniform material and is used to assesses the impact of the multi-material 
algorithm on the otherwise uniform flow. The non-dimensional initial conditions are: 

(5/3,4, 0.5, 4/3, 1), if -1 < x <0 , (5.4) 
(J,p,e,p,u) { (5/3, I, 10-4, 2/3xl0-4, 0), if O<x< 1 , 

with a final time of tfinal = 0.5. These initial conditions approximate an infinitely strong 
shock wave moving into quiescent gas at speed Us = 4/3. The default mesh for this 
problem contains 255 cells on -1 ::;x::; 1. The mixed cell is initially centered at x=O.O and 
contains the two states indicated above. 
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Results of our method on this problem are shown in Figs. 19-26. Shown in Figure 19 
are, clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE at 
the final time; again, the computed values (solid line) and exact solution (dashed line) are 
plotted against the left ordinate and the signed differences between these values (dotted 
line) are plotted against the right ordinate, with the mixed-cell values indicated by the 
symbol •. The perturbation in the results to the right of the origin in these plots is a 
residual of the start-up error associated with the initial shock location at the origin. ** 
The additional discrepancies in the solutions are associated with the original interface 
(at x = 0.5) and the shock (at x 2/3), where, again, over- and under-shoots occur, with 
the SIE overshoot being most pronounced. Corresponding plots of results for the mixed­
cell method of Tipton and the pure-cell calculation are given in Figs. 20 and 21. Note 
that the pure-material case shows perturbations in both density and SIE near the original 
interface. These features, related to the discontinuous initial conditions, manifest the 
inability of the underlying hydro algorithm's discretized equations to faithfully represent 
the uniformly propagating shock on the staggered mesh. Both closure models capture the 
shock nearly as well as the pure-material algorithm, with only slightly greater error than 
the pure-material result at the shock and the initial interface. Comparison of coarse-grid 
results for these quantities in Fig. 22 indicate that both the new method and Tipton's 
method produce the most significant discrepancies near the contact in mass density and 
SIE. Table 5 shows the Ll norm of the error between the computed results and the exact 
solution for these flow variables, for each of the three methods on all meshes, together 
with the fit of those results to the ansatz in Eq. (5.2). These values are depicted graphically 
in Fig. 23. These results again suggest overall first-order convergence of the method. 

Figure 24 contains time-history plots of the (from left to right) pressure, the mass den­
sity, and SIE of the two materials in the mixed cell, for the (from top to bottom) 255-, 511-, 
and 1023-cell results. In these figures, the solid line indicates the left material (material 1) 
and a dotted line represents the right material (material 2). These results present clear 
examples of the pressure difference decreasing at early time, increasing at intermediate 
time, and then relaxing to zero at late times. The pressure histories for this problem sup­
port the contention posited in §4.2, that the pressures computed with this model do relax 
to equillibrium, but in a possibly non-monotonic manner. Time-histories on the coarsest 
grid for the three methods, given in Fig. 25, show notable differences in behavior. While 
the pressure for each method equilibrates to approximately the same value, the time­
dependence of that relaxation clearly differs among the methods. The mass density and 
SIE show notably different behavior: the new method and pure-material calculation give 
final values that are more similar than the Tipton values, which are of reversed order. 
Table 6 gives the values adjacent to the material interface at the final time on the finest 
grid, together with the exact solution at the contact interface. For both Tipton and the 
pure-material calculation, the interface is slightly to the left of (behind) where it should 
be; however, the new method gives slightly greater (resp., smaller) point-wise error in 

**Evocative of this phenomenon are post-shock oscillations, as discussed by Arora & Roe (2J and LeV­
eque (19J for Eulerian shock capturing schemes. 
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material 1 (2) than Tipton and the pure-material result. Figure 26 shows the position of 
the material interface as a function of time. The methods' results differ slightly, even at 
early time (shown on the right): the pure-material calculation and Tipton's method have 
a similar time-history, with the interface slightly behind that of the new method at all 
times. 

5.4 Shock-Contact Problem 

This problem tests the transmission and reflection of a Mach 2 shock through an initially 
stationary contact discontinuity between two materials with disparate adiabatic indices. 
This problem was used by Banks et al. [3] to evaluate high-resolution Godunov algo­
rithms for multi-material, compressible flow in the Eulerian frame. To three significant 
figures, the non-dimensional initial conditions are given by: 

(1.35, 2.76,4.60, 4.45, 1.48) , if 0 < x < 0.1 , 

('Y,p,e,p,u) = (1.35, 1.0, 2.86, 1.0, 0.0), if 0.1 < x < 0.5 , (5.5)
{ 

(5.0, 1.9, 0.132, 1.0, 0.0), if 0.5 < x < 1 , 

with a final time of tfinal 0.25. The default mesh for this problem has 274 cells on the 
initial domain -0.37.:s; x 1. In the calculations we use high-precision initial conditions, 
given in Table 7, corresponding to a Mach number of two with to a shock speed of Us = 
2.32. The mixed cell is initially centered at x = 0.5 and contains the quiescent states of 
the materials with differing adiabatic indices. The shock meets this material interface at 
t = 0.172. The numerical solution for the flow state at any time can be obtained using 
standard shock relations (see, e.g., the report by Hurricane & Miller [14]); high-precision 
results for the final time are given in Table 8. 

Results 6f our method on this problem are shown in Figs. 27-34. Shown in Fig. 27 
are, clockwise from the upper left, plots of the computed (solid line) and exact (dashed 
line) mass density, pressure, velocity, and SIE at the final time, together with the signed 
difference between these values (dashed lines), as well as the mixed-cell values (e). The 
residual of the start-up error is evident near the origin. The reflected shock is somewhat 
noisier in both density and SIE than the transmitted shock, while the contact exhibits a 
notable undershoot in the constituent density. Corresponding results for the mixed-cell 
method of Tipton and the pure-cell calculation are shown in Figs. 28 and 29. Compari­
son of coarse-grid results for all methods in Fig. 30 shows that, near the contact in this 
problem, the new method has slightly greater undershoot in mass density than Tipton's 
method (the pure-material calculation has none). Also at the contact, the overshoot in 
SIE of Tipton's method is greater than either the new method or pure-material calcula­
tion. Table 9 catalogues the L} norm of the error between the computed results and the 
exact solution for these same flow variables, for each of the three methods on all meshes, 
together with the fit of those results to the ansatz in Eq. 5.2. These values are plotted in 
Fig. 31. These results again suggest overall first-order convergence for this problem. 

http:2.76,4.60
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Figure 32 contains time-history plots of (from left to right) close-ups of the pressure, 
mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom) 
274-,549-,1099-, and 2199-cell results for the initial domain -0.37~x~ 1. In these figures, 
the solid line indicates the left material (material 1) and a dotted line represents the right 
material (material 2). The mixed cell, initially in pressure equilibrium, is disturbed by 
the passing shock, leading to slight pressure non-equlibrium, which rapidly diminishes. 
Figure 33 contains time-histories on the coarsest grid for all three methods. For all meth­
ods, the approach to equilibrium is roughly similar; however, the pressure equilibration 
for the new method and pure-material calculation bear greater similarity to each other 
than to Tipton's method, which exhibits a longer relaxation time and notably different 
time-dependence. Table 10 gives the values adjacent to the material interface at the final 
time on the finest grid, together with the exact solution at the contact interface. For both 
Tipton and the pure-material calculation, the interface is slightly to the right (ahead) of 
where it should be; however, the new method gives slightly smaller (resp., larger) point­
wise error for density and SIE in material 1 (2) than Tipton and the pure-material result. 
Figure 34 shows the position of the material interface as a function of time. The results for 
all methods are similar, although, unlike the other problems, the pure-material interface 
(dashed line) and that of Tipton's method (dotted line) are slightly ahead of the interface 
of the new method (solid line). 

5.5 Water-Air Shock Tube 

The water-air shock tube has become a standard test problem in the multi-material com­
pressible flow community, as it tests inherently compressible flow features, uses a slightly 
more complicated and stiffer EOS than the standared polytropic gas, and possesses a di­
rectly computable solution. Variations of this problem have been evaluated by several 
researchers, including, e.g., Andrianov [1], Johnson & Colonius [15], Luo et al. [21], and 
Saurel & Abgrall [26]. 

The thermodynamic properties of water in this problem are given by the stiffened-gas 
EOS: 

p= ("(-l)pe-,poo, (5.6) 

for which the square of the sound speed is given by 

cs2 =,("(-1) (e- P;) ="f(p+poo)lp. (5.7) 

The initial conditions for this problem, in rnks units, are: 

_{(4.4,6X108
, 103

, 1.07 x 106
, 109,0), if 0 <x<O.7, (8)

("poo,p,e,p,u ) - ( 4 6) 5.
1.4, 0, 50, 5 x 10 , 10 ,0, if 0.7 < x < I, 

with a final time of t final =2.2 X10-4 s. The multi-material cell is initially centered at x=0.7 
and contains the two materials specified above. The exact solution we use here is based 
on the solver described by Plohr [24]. 
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Results of our method on this problem are shown in Figs. 35-42. Shown in Fig. 35 are, 
clockwise from the upper left, plots of the computed (solid line) and exact (dashed line) 
mass density, pressure, velocity, and SIB at the final time, together with the signed dif­
ference between these values (dashed lines), as well as the mixed-cell values (e). Notable 
are the undershoot in density and overshoot in at the contact; the strong rarefaction 
is reasonably well captured. Corresponding plots of results for the mixed-cell method of 
Tipton and the pure-cell calculation are given in Figs. 36 and 37. Figure 38 shows results 
for all methods: the new method results are, again, closer to the pure-material calcula­
tion, while Tipton's method has greater under- and overshoots at the contact in mass 
density and SIB, respectively, together with a slight "bump" in pressure at the tail of the 
rarefaction. Table 11 gives the Ll norm of the error between the computed results and 
the exact solution for these flow variables, for each of the three methods on all meshes, 
together with the fit of those results to the ansatz in Eq. (5.2). These values are depicted 
graphically in Fig. 39, showing that the magnitude of the errors for Tipton's method are 
notably greater than the other two approaches. Overall, these results imply first-order 
convergence of the method for this problem. 

Figure 40 contains time-history plots of the (from left to right) pressure, the mass den­
sity, and SIB of the two materials in the mixed cell, for the (from top to bottom) 249-, 
499-, and 999-cell results. In these figures, the solid line indicates the left material (mate­
riall) and a dotted line represents the right material (material 2). The pressure difference 
monotonically relaxes to zero for this problem, although the pressure of material 1 is non­
monotonic. Plots of time-histories for the three methods on the coarsest grid are shown 
in Fig. 41. The new method equilibrates monotonically in all quantities, while both Tip­
ton's method and the pure-material calculation exhibit pressure undershoot (including 
negative pressure values) before equilibration. The new method and pure-material cal­
culation are monotonic in material 2 (air), while the Tipton results are not. Also, the new 
method relaxes to final values that are closer to those of the pure-material calculation 
than to those of Tipton's method. Table 12 gives the values adjacent to the material in­
terface at the final time on the finest grid, together with the exact solution at the contact 
interface. These point-wise values for the new method are closer to both the exact results 
and the pure-material calculations for all field quantities. Figure 42 shows the position 
of the material interface as a function of time. In this case, the position of the material 
interface is very similar for all methods at all times. 

6 Summary and Conclusions 

We have considered the problem of closing the system of equations for a two-material 
cell under the single velocity, single pressure assumption in one dimensional Lagrangian 
hydrodynamics with mixed cells. We treat the constituents in these multi-material cells as 
distinct, which presents the problem of how to assign the thermodynamic states of the in­
dividual material components together with the nodal forces that such a zone generates, 
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despite a lack of detailed information within such cells. Our approach is motivated by 
the work of Lagoutiere [17] and Despres & Lagoutiere [10], in which the change in heat in 
the constituent materials in the mixed cell is assumed to be equaL nus mixed-cell model 
can be described by a set of four nonlinear equations in four unknowns consisting of the 
updated values of the specific internal energy and the specific volume for each of the 
two materials in the mixed cell. A solution to this set of nonlinear equations comprises 
one part of an overall predictor-corrector scheme for solving the governing conservation 
laws. 

We break the assumption of instantaneous pressure equilibration among the mixed­
cell constituents in the work of Lagoutiere [17] and Despres & Lagoutiere [10] by impos­
ing a sub-cell dynamics model that uses a minimization approach based on a local Rie­
mann problem. The unique contribution of our work is the use of this physics-inspired, 
geometry-based approach both (i) to break instantaneous pressure equilibration by re­
laxing the individual sub-cell pressures to equilibrium and (ii) to determine the single 
updated value of the relaxing-toward-equilibrium pressure assigned to the overall mixed 
cell. We have provided the full equations for our method as well as a description of the 
algorithmic implementation. 

We present results of our method for several test problems, each having a directly 
computable solution with either ideal-gas or stiffened-gas equations of state, together 
with complete details of the initial conditions for each problem. These results are com­
pared with outcome of a pure-material (Le., no mixed-cell) calculation (with two pure­
material cells in place of the single multi-material cell) and with the results based on a 
standard implementation of Tipton's method [29]. Quantitative evaluation of the dif­
ference between our computed results and the exact solutions demonstrates very nearly 
first-order convergence on each of these five problems. The mixed cell pressures in all 
problems evolve smoothly-but not necessarily monotonically-toward equilibrium on 
a timescale that decreases approximately linearly with mesh size. The mixed-cell solu­
tions exhibit slight over- or undershoots in density (most noticeable in the shock-contact 
and water-air shocktube problems) and SIB overshoot (seen in the Sod, modified Sod, 
moving shock, and water-air shock tube problems). Comparison of these results with 
those using the Tipton's method or with those corresponding to a pure-material calcu­
lation indicate that the results of the new method are, overall, more similar to the pure­
material calculations than to those using Tipton's method. While the overall L1 norm of 
the errors are comparable on almost all problems, the challenging water-air shock tube 
problem exhibits a notable difference among the methods, with the new method having 
notably smaller L1-error than the Tipton results and being qualitatively more similar to 
the pure-material calculation. 

There remain other tests of these methods, e.g., on problems for which the material 
interface is not precisely in the center of the mixed cell; in particular, the case of a very 
small initial volume fraction of one material poses a challenge for the class of methods 
we have considered. Further analysis of our approach, compared with and contrasted 
to a comparable analysis of Tipton's method, may provide valuable insights by which 
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improved multi-material Lagrangian compressible flow algorithms can be developed. 
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2.40 0.97 
2.04 0.98 
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6.33 x 10 3 3.48x10 3 1.75 x 10 3 8.73 x 10 4 0.68 1.00 

6.92 X 10-3 3.19x 10-3 1.61 x 10-3 8.01 X 10-4 0.62 0.99 

2.05 x 10-2 1.05 x 10-2 5.32 x 10-3 2.54 x 10-3 2.11 1.00 

2.05 X 10-2 1.04 X 10-2 5.29 x 10-3 2.39 x 10-3 2.37 1.03 


Table 1: Ll norms of the difference between exact and computed Sod problem results, computed pointwise at 
t=0.2, for the given variables with the indicated number of points on the unit interval for, from top to bottom. 
the new method, Tipton's method. and the pure-material calculation. The prefactor A and convergence rate 
(T are least-squares fits to the relation given in Eq. (5.2). The values of (T close to unity suggest first-order 
convergence. 
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P2 
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e2 

6.85764 X 10-1 6.85635 X 10-1 6.85745 x 10-1 


3.03130 X 10-1 3.03123 X 10-1 3.03128 x 10-1 3.03119 x 

3.03130 X 10-1 3.03123 X 10-1 3.03128 10-1 3.03119 10- 1 


4.26319 X 10-1 3.89645 X 10-1 3.89070 x 10-1 4.25102 x 10-1 


2.65574 X 10-1 2.53451 X 10-1 2.29711 X 10-1 2.49489 X 10-1 


1.77760 1.94487 1.94777 1.78263 

2.85354 2.98996 3.29902 3.03740 


Table 2: Sod problem at t = 0.2: the top two rows give the contact location for the exact solution and the 
material-centered positions adjacent to the interface for the computed results on the finest grid (new method 
in the mixed cell, Tipton's method in the mixed ceil, and the pure-material calculation), while the subsequent 
rows con~ain the corresponding flow field values for the various approaches. 
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New Method 
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Tipton's Method 
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Pure Material 

100 200 400 800 A (]" 

P 1.17 x 10 2 5.84 x 10 3 2.93 x 10 3 1.47 x 10 3 1.15 1.00 

P 5.92 x 10-3 2.98 x 10-3 1.50 x 10-3 7.49 X 10-4 0.58 0.99 
e 2.33 x 10-2 1.21 X 10-2 6.01 X 10-3 2.95 x 10-3 2.32 1.00 
u 2.11 X 10-2 1.13x 10-2 5.55 x 10-3 2.67x 10-3 2.15 1.00 

Table 3: Ll norms of the difference between exact and computed modified Sod problem results, computed 
pointwise at t 0.2, for the given variables with the indicated number of points on the unit interval for, from 
top to bottom, the new method, Tipton's method, and the pure-material calculation. The prefactor A and 
convergence rate (T are least-squares fits to the relation given in Eq. (5.2). The values of (T close to unity suggest 
first-order convergence. 
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Exact New Tipton Pure 
7.53723 x 10 1 7.53528 x 10 1 7.53760 x 10 


Xl 17.55142 x 10-1 


X2 

P2 
PI 
P2 
el 

e2 

7.55615 X 10-1 7.55485 X 10-1 7.55384 X 10-1 


4.30332 X 10-1 4.30325 X 10-1 4.30329 X 10-1 4.30323 X 10-1 


4.30332 X 10-1 4.30325 X 10-1 4.30329 X 10-1 4.30323 X 10-1 


4.63860 X 10-1 3.84173 X 10-1 3.79078 X 10-1 4.60497 X 10-1 


3.25380 X 10-1 2.94700 x 10-1 2.54108 x 10-1 2.92835 x 

9.27720 x 10-1 1.12013 1.13520 9.34476 x 10-] 

3.30638 3.65053 4.23372 3.67377 


Table 4: Modified Sod problem at t = 0.2: the top two rows give the contact location for the exact solution 
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new 
method in the mixed cell, Tipton's method in the mixed cell, and the pure-material calculation), while the 
subsequent rows contain the corresponding flow field values for the various approaches. 
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255 
6.77x10 3P 
2.12 x 10-2

P 
e 2.29 x 10-3 

u 3.83 x 10-3 

255 
6.39 x 10 3P 
1.98 x 10-2

P 
e 2.13x 10-3 

3.80 x 10-3u 

256 
9.93x10 3P 
2.56 x 10-2

P 
e 2.53 x 10-3 

4.70 x 10-3u 

New Method 

511 1023 A (J 

3.34 x 10 3 1.80 x 10 3 

1.09 X 10-2 5.55 X 10-3 

1.22 X 10-3 5.98 X 10-4 

2.05 x 10-3 9.89 x 10-4 

Tipton's Method 

511 1023 
3.21 X 10 3 1.70x10 3 

1.04x 10-2 5.26 x 10-3 

1.15 x 10-3 5.61 X 10-4 

1.98 x 10-3 9.84 X 10-4 

Pure Material 

512 1024 
6.99 x 10 3 2.59 x 10 3 

1.67 x 10-2 6.73 x 10-3 

2.03x 10-3 6.69 x 10-4 

2.62 x 10-3 1.20 X 10-3 

0.69 0.96 
2.30 0.97 
0.25 0.97 
0.45 0.98 

A (J 

0.65 
2.09 
0.23 
0.43 

A 

0.96 
0.95 
0.96 
0.97 

(J 

1.22 
2.98 
0.31 
0.58 

0.97 
0.96 
0.96 
0.99 

Table 5: Ll norms of the difference between exact and computed moving shock problem results, computed 
pointwise at t = 0.5, for the given variables with the indicated number of points on the unit interval for, from 
top to bottom, the new method, Tipton's method, and the pure-material calculation. The prefactor A and 
convergence rate fT are least-squares fits to the relation given in Eq. (5.2). The values of cr close to unity suggest 
first-order convergence. 
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Exact New Tipton Pure 
4.98560 x 10-1 4.98419 x 10 4.98302 x 10­

Xl 14.99987 x 10-1 

X2 5.00058 X 10-1 4.99900 x 10-1 4.99676 x 10-1 

1.33341 1.33338 1.33338 1.33336 

P2 1.33341 1.33338 1.33338 1.33336 

PI 4.00014 3.10224 3.47524 3.50964 

P2 3.99925 4.09120 2.73574 3.73359 
e1 5.00012 x 10-1 6.44716 X 10-1 5.75520 X 10-1 5.69870 X 10-1 

e2 5.00123 x 10-1 4.88870 X 10-1 7.31090 X 10-1 5.35687 X 10-1 

Table 6: Moving shock problem at t 0.5: the top two rows give the contact location for the exact solution 
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new 
method in the mixed cell, Tipton's method in the mixed cell, and the pure-material calculation)' while the 
subsequent rows contain the corresponding flow field values for the various approaches. 
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'Y 
P 
P 
e 
u 

0< x<O.l 0.1 <x <0.5 0.5<x<1 
1.35 1.35 5.0 

4.44680851064 1.0 1.0 
2.76470588235 1.0 1.9 
4.59548599884 2.85714285714 0.131578947368 
1.48327021770 0.0 0.0 

Table 7: High-precision initial conditions for the shock-contact problem. This configuration corresponds to a 
Mach number of 2.0 and an initial shock speed of Us = 2.32379000772, so that the shock hits the material 
interface at t=O.l72132593165. 
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l' 
P 

P 

e 
u 

4.44680851064 7.24980870307 7.24980870307 1.0 
2.76470588235 3.95808583566 2.57856549437 1.9 
4.59548599884 5.23327184191 0.702891658064 0.131578947368 
1.48327021770 0.930386423194 0.930386423195 0.0 

Table 8: High-precision solution for the shock-contact problem at t = 0.25. Here, the reflected shock po­
sition is xRS = 0.472708981241754, the contact position is Xc = 0.572446778128859, and the transmitted 
shock position is xTS = 0.775299530851478. The speed of the reflected shock in the laboratory frame is 
uRS = -0.350480642253781, and the speed of the transmitted shock is uTS =3.53549118996649. 
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P 
P 
e 
u 

P 
P 
e 
u 

New Method 

274 549 1099 2199 A cr 
6.89x10 2 

1.97 x 10-2 

1.43 x 10-2 

1.22 x 10-2 

274 
7.34 x 10-2 

2.04 x 10-2 

1.56 x 10-2 

1.24 x 10"2 

275 

3.09 x 10 2 1.61 x 10 2 

1.05 x 10-2 5.85 x 10-3 

6.76x 10-3 4.84 x 10-3 

7.01 X 10-3 3.71 X 10-3 

Tipton's Method 

549 1099 
3.13x 10-2 1.61 x 10-2 

1.10 x 10-2 5.64 x 10-3 

1.02 x 10-2 5.12x 10-3 

6.83 x 10-3 3.60x 10-3 

Pure Material 

550 1100 

8.05 x 10 3 

2.71 X 10-3 

1.99 X 10-3 

1.74 x 10-3 

2199 
8.09 x 10-3 

2.88 x 10-3 

2.87x 10-3 

1.68 x 10-3 

2200 

15.0 1.02 
2.97 0.94 
1.66 0.80 
1.79 0.93 

A cr 
18.2 1.05 
3.09 0.94 
1.34 0.83 
2.06 0.96 

A cr 

P 
P 
e 
u 

7.07 x 10 2 3.08x 10'-2 1.59 x 10 2 7.94 x 10 3 16.8 1.04 
1.76 x 10-2 1.00 x 10-2 5.20x 10-3 2.62 x 10-3 2.38 0.92 
1.37x 10-2 9.29x 10-3 4.70 x 10-3 2.68 x 10-3 1.05 0.81 
1.20 x 10-2 6.82 x 10-3 3.60x 10-3 1.70 x 10-3 1.93 0.94 

Table 9: Ll norms of the difference between exact and computed shock-contact problem results. computed 
pointwise at t = 0.25. for the given variables with the indicated number of points on the unit interval for. from 
top to bottom. the new method. Tipton's method. and the pure-material calculation, The prefactor A and 
convergence rate [T are least-squares fits to the relation given in Eq. {5.2}, The values of [T close to unity suggest 
first-order convergence. 
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Xl 
X2 

PI 
P2 
PI 
P2 
e1 
e2 

Exact New Tipton Pure 

5.72280 x 10-1 


7.24981 

7.24981 

3.95809 

2.57857 

5.23327 

7.02892 x 10-1 


Table 10: Shock-contact problem at l 

5.72245 x 10 

5.72597 X 10-1 


7.24972 

7.24972 
3.97299 
2.16434 

5.21358 

8.37405 x 10-1 


5.72284 x 10 1 


5.72623 X 10-1 


7.24978 
7.24978 

3.53063 

2.36322 

5.86685 

7.66939 X 10-1 


5.72286 x 10 

5.72595 X 10-1 


7.24969 
7.24969 
3.78162 
2.61504 
5.47739 

6.93077 X 10-1 


0.25: the top two rows give the contact location for the exact solution 
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new 
method in the mixed cell. Tipton's method in the mixed cell. and the pure-material calculation). while the 
subsequent rows contain the corresponding flow field values for the various approaches. 
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New Method 

249 499 999 A (xlO-2 ) cr 
p (x10-6 ) 2.90 

1.43P 
e (xlO-3 ) 1.20 

2.81u 

249 
4.77P (xlO ) 
3.47P 

e (xlO-3 ) 3.72 
u 6.23 

250 
p (x 10-6 ) 3.18 

1.04P 
e (xlO-3) 5.00 x 10-1 

2.60u 

1.46 7.33x10 
6.84 3.53 x 10-1 

5.62 2.96 x 10-1 

1.25 6.75x 10-1 

Tipton's Method 

6.95 0.99 
3.63 1.01 
3~09 1.01 
7.98 1.03 

499 999 A (xlO-2) cr 
2.42 
1.68 
1.83 
2.93 

1.23 
8.65 x 10-1 

9.31x10-1 

1.53 

10.7 
8.67 
9.17 

16.4 

0.98 
1.00 
1.00 
1.01 

Pure Material 

500 
1.60 
5.21 x 10-1 

2.61 X 10-1 

1.35 

1000 
8.03x 10 
2.71 X 10-1 

1.44 x 10-1 

7.29 x 10-1 

A (x10-2) 

7.65 
2.18 
0.70 
4.12 

cr 
0.99 
0.97 
0.90 
0.92 

Table 11: Ll norms of the difference between exact and computed water-air problem results, computed pointwise 
at t=2.2 x 10-4 , for the given variables with the indicated number of points on the unit interval for, from top to 
bottom, the new method, Tipton's method, and the pure-material calculation. The prefactor A and convergence 
rate IT are least-squares fits to the relation given in Eq. (5.2). The values of IT close to unity suggest first-order 
convergence. 
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Xl 


X2 


PI 
P2 
PI 
P2 
e1 
e2 

Exact New Tipton Pure 

8.05906 x 10-1 


1.59868 X 107 


1.59868 X 107 


8.04979 X 102 


2.20407 X 102 


9.70426 x lOS 

1.81333 x lOS 


8.05311 x 10 1 


8.06174 x 10-1 


1.59876 X 107 


1.59876 X 107 


7.35249 X 102 


1.36417 X 102 


1.06246 X 106 


2.92991 x lOS 


8.05284 x 10 1 


8.06390 x 10-1 


1.59817 X 107 


1.59834 X 107 


7.31464 X 102 


5.90643 X 101 


1.06796 x 106 

6.76523 x lOS 


8.05300 x 10 

8.06076 x 10-1 


1.59867 X 107 


1.59867 x 107 


7.98342 X 102 


1.66948 X 102 


9.78494 x 105 


2.39395 x 


Table 12: Water-air shock tube problem at t = 2.2 X 10-'': the top two rows give the contact location for the 

exact solution and the material-centered positions adjacent to the interface for the computed results on the 

finest grid (new method in the mixed cell, Tipton's method in the mixed cell, and the pure-material calculation), 

while the subsequent rows contain the corresponding flow field values for the various approaches. 
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Ximix Ximix+l 

Figure 1: Schematic of the idealized mixed cell, which has material 1 (to the left) separated from material 2 

(to the right). 
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Figure 2: Schematic of the pressure associated with the 1-D Riemann problem used to model the dynamics of 
the two-material mixed cell. The bottom shows the initial pressure, i.e., at time tn, of materials 1 (left) and 
2 (right), while the top figure is the updated solution, i.e., at time tn+1 The tn +1 state exhibits, from left to 
right, the left fl value, the leading left-most Riemann wave (WL, in this case corresponding to a rarefaction 
fan), the contact discontinuity (W*), the leading right-most Riemann wave (WR, in this case corresponding to 
a shock), and the right tn quantity. 
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Figure 3: Computed results (solid line) for the Sod shock tube problem with the new method for 99 zones on 
[0,1] at t=0.2, The difference (dotted line) between the computed and exact (dashed line) solutions is plotted 
against the right ordinate, The values corresponding to the individual materials in the mixed cell are denoted 
by the symbol •. 
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Figure 4: Computed results (solid line) for the Sod shock tube problem with Tipton's method for 99 zones on 
[0,1] at t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted 
against the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted 
by the symbol •. 
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Figure 5: Computed results (solid line) for the Sod shock tube problem with pure cells for 100 zones on [0,1] at 
t=O.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against 
the right ordinate. The values for the individual materials adjacent to the interface are denoted by the symbol •. 



47 

Pressure Density SIE 

12 12 35 

oo~~ 
CIJ 

Z 
d •. 

i"~ 
Q 4 ~ .. 

L 

~ 

~ 
"' " ~ 25 
E 
~ 

~ 2

'" 

C2 O. C6 DB 
0 

0 02 O. 06 
, 5 

0 02 04 06 06 

'! 2 35.' Il(;: 08 

\0.... 
0­
~ 0' 

"-­

08 

~ " ~ 
n 

0' 

!,,~~ , 
J; 2 I 

'­ , 
0 

0 02 0' 06 08 
0 

0 02 O. 06 08 
1 5 

0 02 04 06 08 

12 12 35 

i:: " ~ 25 

P.. 04 

;;O<~ lOO~ ! 
~ 

::I 

~ 
'" L 

0 15 
02 O. 06 08 0 02 O' 06 08 a 02 O. 06 08 

Figure 6: Results for the Sod shock tube problem on [0,1] at t 0.2 for (from left to right) pressure, mass 
density, and SIE, with (from top to bottom) the new method (99 zones), Tipton's method (99 zones), and the 
pure-cell calculation (100 zones). The computed results are the solid line and the exact solution is the dashed 
line. 
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Figure 7: Plot of the Ll norm of the difference between the computed results and exact solution on [O,IJ at t=0.2 
for the Sod shock tube problem with the new method (left), Tipton's method (center) and the pure-material 
calculations (right), The values of the norm for the 99-, 199-, 399-, and 799-zone multi-material calculations 
and the 100-,200-,400- and SOO-cell pure-material calculation are shown for the pressure (0), density (ol. SIE 
(<», and velocity (6), The curve fit parameters corresponding to these data are given in Table 1. 
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Figure 8: Time-history plots for the Sod shock tube problem on [0,1] with the new method of the (from left to 
right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom) 
99-, 199-, 399-, and 799-cell results_ The solid line indicates the left material (material 1) and a dotted line 
represents the right material (material 2). 
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Figure 10: Plot of the position of the material interface as a function of time for the Sod shock tube problem 
on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right plot shows 
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton's method, 
and the dotted line to the pure-material calculation. 
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Figure 12: Computed results (solid line) for the modified Sod shock tube problem with Tipton's method for 99 
zones on [O,lJ at t=0.2, The difference (dotted line) between the computed and exact (dashed line) solutions 
is plotted against the right ordinate. The values corresponding to the individual materials in the mixed cell are 
denoted by the symbol e. 



54 

\ ·008 

'-----L ·016 

12 	 2.4 008 

0.08 
1.8 •• , :\.. 	 0 

~-

~,.~.. ~'~ 	
.... 

til .. "':'. 
"'.. ~, # • "5i " . ;"" •••••••••. •• j •..•• ·····i: .. 0 ~ 12 

~ 

C _ ~ Q. 


04' 	 ! 
06 

..0.08 
L 

0 	 0 ·0.24 
0 0.2 0.4 0.6 0.8 	 0 0.2 04 06 0.8 

(a) Density 	 (b) Pressure 

1.5 

4 	 0.5 

~ 3 c.···......_.........··..···.. ! : 

~ 

e> 1....'... 0 

~ • -05 

~ 
i!t 
V) -1 

05 

a ..os 

o 	 -- -1.5 ..05 
o 	 0.2 0.4 06 08 o 0.2 04 0.6 08 

x 

Specific Internal Energy 	 (d) Velocity 
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t=0.2 for the modified Sod shock tube problem with the new method (left), Tipton's method (center) and the 
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Figure 16: Time-history plots for the modified Sod shock tube problem with the new method for the (from left 
to right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom) 
99-, 199-, 399-, and 799-cell results. The solid line indicates the left material (material 1) and a dotted line 
represents the right material (material 2). 
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and the pure-cell calculation (100 zones): the top two rows are for the two materials in the mixed cell, while 
the bottom row is for the cells immediately adjacent to the material interface. The solid line indicates the left 
material (material 1), the dotted line represents the right material (material 2), and the bullets represent the 
exact solution at the final time. 



59 

0.8 0.55 

054 

§ c: o 

~ ;;:; 
~ 

053 . 
a. a. 
Q) 
OJ 

Q) 
OJ 

~ ~ 0.52 
2
E 

0.6 ~ 
0.51 

;(,' 
r~ ~/ 

r / 

./ 
./ 

./ 
./ 

_/ 
;' /

#,'/ 
,.)I' 

./0.5 0.5 
o 0.05 0.1 0.15 0.2 o 0.01 0.02 0.03 0.04 

Figure 18: Plot of the position of the material interface as a function of time for the modified Sod shock tube 
problem on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right 
plot shows the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton's 
method, and the dotted line to the pure-material calculation. 



60 

'g 04 ...--........................----.1.••.• -••• 0 
£ 
'" 08l -015 .. 
<l > 
~ , 

~ 04' -03 -02
'" 

0.-­ " ..",,"--- -045 -04. -0,4 
-O.S a 05 -0.5 a 0,5 1 

x 

(c) Specific Internal Energy (d) Velocity 

Figure 19: Computed results (solid line) for the moving shock with the new method for 255 zones on [~1,1 J at 
t=O.5. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against 
the right ordinate. The values corresoondinlI to the individual materials in the mixed cell are denoted by the 

1.6 

1.2 _ 

4 ~~__-;~ 0.5 


......___ 0 08 ­~c: 3 r----··--·----, , ••,.r---·--·.,
Cl 

-052 
o4 ...----------...... \~ r.. -w~---- ........ 


'..
-11 

o 
-05 os -0 S o 05 

(a) Density (b) Pressure 

1.6 0.15 12 

08
Ei> 1 2 f--·-·--...•• •••••• ·····-··i-t....... 0 
~ , 
w , 

~ '" 

06 

0.4 

02 

_••••••• 0 

-02 
1 

04 

02 



61 

1.6 0.6 

s c 
L\ 

0.412 
4 .....; 05 

~ 

I
~ 

0 £ 
" ~ 0,8 0.2 

a 

-0.5 OA _••____________ .--·----.------4-·---·-.- 0 
.... : 
\J 

1 ·1 

-0.2o 
·0.5 o o.s -OS 05 1 

(a) Density (b) Pressure 

1.6 015 2 0.4 

0.6 0.2 
c ; 
~ 12 ----------------.-.----.---l--L------.. 0 

ill • 
iij i ~ 

~ 08· ! -015 g OA .--.--.------.---.\•• -------••• --L ••••••••• 0 
:1:: >.g " 
u 
Q) 

-03 -02.% 04 

-OA5 ·0.4 -0.4 
-0.5 0.5 ·o.s o 0.5 1 
o 

(c) Specific Internal Energy (d) Velocity 
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Figure 21: Computed results (solid line) for the moving shock with pure cells for 256 zones on [-1,1] at t=O.S. 
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Figure 22: Results for the moving shock problem on [-1,1] at 1=0.5 with (from left to right) the new method 
(255 zones), Tipton's method (255 zones), and the pure-cell calculation (256 zones), for (from top to bottom) 
density, pressure, SIE, and velocity. The computed results are the solid line and the exact solution is the dashed 
line. 
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calculations (right). The values of the norm for the 255-. 511-. and 1023-zone multi-material calculations and 
the 256-. 512-, and 1024-cell pure-material calculation are shown for the pressure (0), density (D). SIE (0). 
and velocity (6). The curve fit parameters corresponding to these data are given in Table 5. 
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Figure 24: Time-history plots for the moving shock problem with the new method of (from left to right) pressure, 
mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom) 255·, 511-, and 
1023-cell results, The solid line indicates the left material (material 1) and a dotted line represents the right 
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Figure 26: Plot of the position of the material interface as a function of time for the moving shock problem on 
the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right plot shows 
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton's method, 
and the dotted line to the pure-material calculation. 
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Figure 27: Computed results (solid line) for the shock-contact problem with the new method at t 0.25 for 
274 zones initially on [-0.37,1]. The difference (dotted line) between the computed and exact (dashed line) 
solutions is plotted against the right ordinate, The values corresponding to the individual materials in the mixed 
cell are denoted by the symbol e, 
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Figure 28: Computed results (solid line) for the shock-contact problem with Tipton's method at 1=0.25 for 
274 zones initially on [-0.37,1]. The difference (dotted line) between the computed and exact (dashed 
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the 
cell are denoted by the symbol •. 
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Figure 29: Computed results (solid line) for the shock-contact problem with pure cells at t=0.25 for 275 zones 
initially on [-0.37,1]. The difference (dotted line) between the computed and exact (dashed line) solutions is 
plotted against the right ordinate. The values for the individual materials adjacent to the interface are denoted 
by the symbol •. 
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Figure 30: Results for the shock-contact problem at t 0.25 with (from left to right) the new method (274 
zones), Tipton's method (274 zones), and the pure-cell calculation (275 zones), for (from top to bottom) 
density, pressure, SIE. and velocity. The computed results are the solid line and the exact solution is the dashed 
line. 
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Figure 31: Plot of the Ll norm of the difference between the computed results and exact solution at t 0.25 
for the shock-contact problem with the new method (left), Tipton's method (center) and the pure-material 
calculations (right). The values of the norm for the 274-, 549-, 1099-, and 2199-zone multi-material calculations 
and the 275-,550-, 1100-, and 2200-cell pure-material calculation are shown for the pressure (0), density 
SIE (ot and velocity (6). The curve fit parameters corresponding to these data are given in Table 9. 
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Figure 32: Close-up of time-history plots for the shock-contact problem with the new method of the (from left 
to right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom) 
274-, 549-, 1099-. and 2199-cell results. The solid line indicates the left material (material 1) and a dotted line 
represents the right material (material 2). 
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Figure 33: Close-up of time-history plots for the shock-contact problem for (from left to right) pressure, mass 
density, and SIE with (from top to bottom) the new method (274 zones), Tipton's method (274 zones), and 
the pure-cell calculation (275 zones). The solid line indicates the left material (material 1), the dotted line 
represents the right material (material 2), and the bullets represent the exact solution at the final time. 
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Figure 34: Plot of the position of the material interface as a function of time for the shock-contact problem on 
the coarsest mesh. The left plot show!\ the behavior for the entire simulation time, while the right plot shows 
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton's method, 
and the dotted line to the pure-material calculation. 
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Figure 35: Computed results (solid line) for the water-air shock tube problem with the new method for 249 
zones on [0,1] at t 2.2x 10-4 . The difference (dotted line) between the computed and exact (dashed line) 
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed 
cell are denoted by the symbol _. 
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Figure 36: Computed results (SOlid line) for the water-air shock tube problem with Tipton's method for 249 
zones on [0,1] at t=2.2xlO·-4 . The difference (dotted line) between the computed and exact (dashed line) 
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed 
cell are denoted by the symbol •. 
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Figure 37: Computed results (solid line) for the water-air shock tube problem with pure cells for 250 zones on 
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Figure 38: Results for the water-air shock tube problem on [O,IJ at t=2.2x 10-4 for (from left to right) pressure, 
mass density, and SIE with (from top to bottom) the new method (249 zones), Tipton's method (249 zones), 
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Figure 39: Plot of the norm of the difference between the computed results and exact solution on lO,lj at 
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calculations and the 250-,500-, and 1000-cell pure-material calculation are shown for the pressure (0), density 
(D), SIE (<», and velocity (1':,). The curve fit parameters corresponding to these data are given in Table 11. 



81 

" 


10~ 

en 
10'~ o 

N 
0\ 

10' 

Pressure Density 	 SIB 

1200 	 1210'" 

900 	 ~ 910f. 

~ 
WJ 

~ eoo ~ IS 105 

i'l :c 
.g 

, 	 2~ , 	 300 & 310'" , 	 -~-----.---~-----, I " 
I 	 ,

~--~---------------- I610 : 	 o o 
o 	 5 ,'W,5 110~ 1510.4 210.4 2510.4 a 110'" 15 ~O-~ 210. 4 25 o 510'~ 1 10.4 1 2510.4 

! t 

1200 12 

en 
~ 
o 
N 

~ 
~ 

10' 

10' 

~ 600 
a 

300 

Ei 9 10~ 
~ 

UJ 

]j 
4.i 6105 

S 
.g 
~ 
t!i 3 

510.5 110''; 1510-4 210.4 2510.4 

1 
510'~ 1 10"4 15 1{r4 2 

I 
2 5 10'~ 110 4 1510.4 210.. 1 25 

t 

10" 210' 

en 900 ;;; 9 

~ ~ 
o 
N ~600 

~ 

11lj € 10 
5 

~ 10' 
.g 
o 

0\ , g. 310? 

I 
I 

10tl : 
o 51O"~ 110'· 1510-~ 210~ 2510.4 510 5 '10-' 1510.4 ;no 4 2510 4 510.5 110'~ 1510 4 210-.1; 2510-' ­

I I 

Figure 40: Time-history plots for the water-air shock tube problem on [0,1] with the new method of the 
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bottom) 249-, 499-, and 999-cell results. The solid line indicates the left material (material 1) and a dotted 
line represents the right material (material 2). 
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Figure 41: Time-history plots for the water-air shock tube problem on [0,1] for (from left to right) pressure, 
mass density, and SIE with (from top to bottom) the new method (249 zones), Tipton's method (249 zones), 
and the pure-cell calculation (250 zones). The solid line indicates the left material (material 1), the dotted line 
represents the right material (material 2), and the bullets represent the exact solution at the final time. 
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Figure 42: Plot of the position of the material interface as a function of time for the water-air shock tube 
problem on the coarsest mesh, The left plot shows the behavior for the entire simulation time, while the 
plot shows the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton's 
method, and the dotted line to the pure-material calculation, 


