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ABSTRACT

A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete-ordinates (Sy)
approximation of the neutron transport problem solved with Richardson iteration (Source
Iteration) using the cell-wise Block-Jacobi (BJ) algorithm. The results of the Fourier analysis show
that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems
containing optically thin cells. For problems containing cells that are optically thick, instead, the
spectral radius tends to 0. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly
convergent even for problems that are scattering dominated, with a scattering ratio ¢ close to 1.
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1. INTRODUCTION

Computational methods for particle transport are very demanding, consuming the bulk of
computational resources in a range of multi-physics simulations, including astrophysics
calculations and nuclear reactor design. Current transport methods have evolved incrementally in
response to advances in hardware technology. This picture, though, may soon change
dramatically. It is understood by the scientific computing community that parallel, advanced
heterogeneous computing architectures may become the machines of choice for large scale
computing in the future. The new machines have different processors and communication layers
at different levels in their architecture, with different processing characteristics and capabilities at
each level. Heterogeneous computing platforms, like the Roadrunner [1] machine being
deployed at Los Alamos National Laboratory, require the development of new transport methods,
or to reconsider previously discarded methods, in order to make full use of their capabilities.

In this paper we conduct a study of the stability and convergence properties of the cell-wise BJ
algorithm, targeted at Roadrunner’s heterogeneous architecture. Fourier analysis is traditionally
used to study transport iteration schemes in a homogeneous infinite medium. In fact, it is a
valuable tool to understand the behavior of the iteration error modes of various iterative schemes.
Therefore, we conduct a Fourier analysis for the Sy approximation of the steady-state one-group
transport problem solved with Richardson iteration using cell-wise BJ. The spatial discretization
1s a Discontinuous Finite Element Method (DFEM) [2], specialized to triangular elements, and
the scattering is assumed to be isotropic. The analysis is verified with results from a 2D transport
code that implements cell-wise BJ on available parallel, homogeneous computing architectures.
Further research is envisioned to port the code on Roadrunner’s heterogeneous architecture.
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2. FOURIER ANALYSIS OF CELL-WISE BJ IN 2D GEOMETRY

2.1. Cell-Wise Block-Jacobi Splitting

The homogeneous transport equation is written, for isotropic scattering, in compact operator
notation:

Ly =S¢, (1

where L represents the “streaming plus total interaction” operator, S is the scattering operator,
v is the angular flux and ¢ is the scalar flux. Furthermore, the scalar flux is the integral of the

angular flux over all angles:
¢=Dy, ()
where D is the “discrete-to-moment” operator.

In the cell-wise BJ algorithm, the incoming angular fluxes at the boundaries between a
computational cell and its neighboring cells are “lagged” from the previous iteration.
Accordingly, we split the “streaming plus total interaction operator” into L_ (cell’s interior) and

L, (cell’s boundaries):

L=l 4L, (3)
The cell-wise BJ algorithm is then implemented through the following iteration scheme:

" =—(L,-sD)" Ly, ©)

where />0 is the iteration index. Consequently, a formulation of the transport problem in terms
of angular fluxes only is obtained. Not only is this formulation convenient in order to devise a
Fourier analysis for cell-wise BJ, but it is actually utilized in its practical implementation. In fact,
apart from the “lagging” of the contributions at a cell’s boundaries, the “full” transport operator
is locally inverted on each computational cell in order to compute the angularly and spatially
discretized angular fluxes in the present iteration. It is hoped that such formulation may result in
an arithmetic intensive algorithm for radiation transport particularly suited for large scale
computing on Roadrunner’s parallel, heterogeneous computing architecture.

2.2. Fourier Analysis

The equations representing the fixed-source-free 2D DFEM spatial discretization of the Sy
approximation to Eq. (1) are written for the system of four triangular cells over a Cartesian
element sketched in Fig. 1.
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Figure 1. Four-cell system for the Fourier analysis of cell-wise BJ.

The equations for the projections of the discrete-ordinates angular fluxes onto the linear basis
functions of the finite element method, in the four neighboring cells, are grouped together for the
discrete-ordinates in the four quadrants respectively. An infinite homogeneous medium, in which
the four-cell system is periodically repeated, is considered in the Fourier analysis. Therefore, a
suitable ansatz must be introduced at the boundaries of the Cartesian element. To fix ideas, the

following Fourier ansatz is formulated for the discrete-ordinates with cosines x4, <0 and
n, > 0. Analogous expressions are introduced for the discrete-ordinates in the remaining
quadrants.

Fourier Ansatz (u, <0,7, >0)

VO =yt exp(-j,00), 1= k=21,

m

()

P =yl Oesp(jaotn), 112 k=21

1
>

(6)

In the above equations, j =+/—1 represents the imaginary unit, o is the macroscopic total cross-
section, while dx (dy) is the width of the Cartesian element in the x (y) direction. Finally, A,
(4,) 1s the wave-number of the Fourier modes in the x (y) direction. The Fourier ansatz accounts

for the “lagging” of the incoming angular fluxes on face (1) of both cells 1 and 2 from the
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previous iteration. Similar “lagged” boundary conditions are written for the angular fluxes that
are incoming on faces that the triangles share in the interior of the Cartesian element.

Substitution of the boundary conditions and of the Fourier ansatz into the original DFEM
equations produces, after considerable algebra, the iteration matrix Ty, for the cell-wise BJ

algorithm. Given a certain quadrature order, and values for ¢ and the scattering ratio c, the
spectral radius p of Ty, is finally obtained as a function of dx and dy:

p(dx,dy)= rerlii((abs(Eig(TBJ (dx,dy,lx,ky)))) . )

In Fig. 2, we plot the spectral radius as a function of element widths obtained for a level-
symmetric Sy quadrature with equal weights, assuming o =1 and ¢=0.5.

Spectral Radius, S4, sig=1, ¢=0.5

Magnitude

Figure 2. Fourier analysis for cell-wise BJ: p.

The results in Fig. 2 point to the fact that convergence of cell-wise BJ can degrade for problems
containing optically thin cells, even for values of the scattering ratio ¢ less than 1. In fact the
spectral radius, as the element widths are decreased, tends to 1 independent from the value of c.
This is similar to the behavior that was observed for the inexact Parallel Block-Jacobi (PBJ)
algorithm in [3]. It appears to be a consequence of the “lagging” of the information on the
incoming angular fluxes at the cells’ boundaries as the cells are made thinner and become more
“strictly coupled”. Preconditioning of the PBJ algorithm with Transport Synthetic Acceleration
(TSA) proved to be effective in improving the spectral properties of PBJ, especially for optically
thin problems, and is envisioned as a possible remedy for the cell-wise BJ algorithm too.
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As the computational cells become optically thicker, memory of the information exchanged at
the boundaries is lost, and the spectral properties of cell-wise BJ are dominated by the fact that
the “full” transport operator is locally inverted on each computational cell. This explains why, as
evident in Fig. 2, the spectral radius tends to 0 in the optically thick-cell regime. Hence, for
sufficiently optically thick problems the cell-wise BJ algorithm is rapidly convergent even for
“diffusive” problems that are scattering dominated with ¢ close to 1; see Fig. 3.
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Figure 3. Spectral radius of cell-wise BJ for various scattering ratios.

2.3. Numerical Results

The predictions from the Fourier analysis for cell-wise BJ have been compared with the
numerical results obtained from the implementation of the “Jacobi-Sweeper” in a 2D transport
code. For each computational cell in the spatial mesh, the matrix corresponding to the angular

(Sw) and spatial discretization of the (L, —SD) transport operator in Eq. (4) is directly inverted

via an LU decomposition.

The results for p obtained for a level-symmetric Sy quadrature with equal weights, a unit
macroscopic total cross-section and scattering ratios of 0.5 and 0.99 are compared with the
Fourier analysis in Tables I and II, respectively.
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Table I. Theoretical and computed p of cell-wise BJ for c=0.5

dx=dy | 10° 10~ 10" 10 10" 10** 10" 10™

1x1 0.005 0.017 0.057 0.181 0.194 0.039 0.004 4x10~°

2x2 0.162 0.251 0.390 0.523 0.341 0.073 0.008 g

4x4 0.475 0.571 0.679 0.701 0.381 0.083 0.009 9x10~*

8x8 0.724 0.785 0.842 0.781 0.396 0.088 0.010 0.001

16x16 0.864 0.897 0.923 0.812 0.400 0.089 0.010 0.001

32x32 0.936 0.952 0.958 0.822 0.401 0.089 0.010 0.001

64x64 0.970 0.978 0.973 0.825 0.402 0.089 0.010 0.001

128128 | 0.986 0.990 0.978 0.826 0.402 0.089 0.010 0.001

Fourier | 0.999 0.998 0.981 0.827 0.402 0.089 0.010 0.001

Table II. Theoretical and computed p of cell-wise BJ for ¢=0.99

dx=dy | 10° 10~ 10’ 10 10" 10" 10" 10™

1x1 0.007 0.024 0.085 0.327 0.759 0.718 0.237 0.032

2x2 0.184 0.288 0.462 0.725 0.910 0.789 0.308 0.043

4x4 0.502 0.607 0.740 0.897 0.947 0.805 0.323 0.046

8x8 0.742 0.808 0.889 0.965 0.957 0.813 0.328 0.047

16x16 0.875 0.911 0.957 0.987 0.960 0.816 0.330 0.047

32x32 0.941 0.961 0.985 0.994 0.960 0.816 0.330 0.047

64x64 0.973 0.984 0.995 0.995 0.960 0.816 0.330 0.047

128x128 | 0.988 0.994 0.998 0.996 0.960 0.816 0.330 0.047

Fourier | 1.000 1.000 0.999 0.996 0.961 0.817 0.330 0.047

To reproduce the conditions of the Fourier analysis, the 2D transport code was used to solve a
sequence of Cartesian meshes, with vacuum boundary conditions, characterized by increasing
mesh size. Every Cartesian element in the mesh is subdivided into four triangular cells. Hence,
the 1x1 mesh corresponds to the four-cell system depicted in Fig. 1. The results shown in Tables
I and II can be understood in view of the fact that, while the theoretical spectrum from the
Fourier analysis is obtained for an infinite medium, the actual spectrum incorporates the effect of
particle leakage at the boundaries of the finite 2D domain. As the mesh size is increased, for a
given element width, the effect of leakage is less and less important. Therefore the values
obtained from the code are coincident with one another and with the theoretically predicted p in
the optically thick regime. As the element width is decreased, the effect of leakage becomes
dominant and the estimates of the spectral radius obtained with the code depart from the infinite
medium value. As expected, though, the actual spectral radius approaches the theoretical value as
the number of cells in the mesh is incrcased, making the overall domain thicker. The theoretical
values would ideally be obtained in the limit as the number of cells in the mesh goes to infinity.
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3. A GLANCE BEYOND THE CELL-WISE BJ PARADIGM

The results discussed in the previous section indicate that convergence of cell-wise BJ can
degrade in problems containing optically thin cells. In this section we present preliminary results
from the investigation of two alternative approaches, with respect to the cell-wise BJ paradigm,
that can result in a faster transition to the optically thick-cell regime. The first approach is
resorting to Gauss-Seidel (GS) instead of the BJ algorithm, so that the most up-to-date
information available on the incoming angular fluxes is used at a cell’s boundary. This approach,
namely cell-wise GS, is discussed in Sec. 3.1 for the most favorable case of a single processor,
Np=1. The second approach entails a “clustering” of cells leading from cell-wise (or single-cell)
BJ to an n-cell BJ, in which the incoming angular fluxes are only “lagged” at the boundaries of
the n-cell “cluster”. Specifically, the case n=4 is illustrated in Sec. 3.2.

3.1. Fourier Analysis of Cell-Wise GS (Np=1)

For cell-wise BJ the incoming angular fluxes at all the boundaries of a computational cell are
“lagged” from the previous iteration. Therefore, whether a cell boundary is coincident or not
with the interface between two different processors, in the parallel implementation of the
“Jacobi-Sweeper”, has no consequence on the spectral properties of the cell-wise BJ algorithm.
Hence, no mention on the number of processors was made either in devising the Fourier analysis
for cell-wise BJ or in discussing the results contained in Tables I and II. For the same reason, the
order in which the four triangular cells over the Cartesian element depicted in Fig. 1 are swept by
the “Jacobi-Sweeper” has no impact on the spectral properties of cell-wise BJ.

Since in the cell-wise GS algorithm the most up-to-date information available on the incoming
angular fluxes is used at any of the cell’s boundaries, the above circumstances no longer hold
true. Under the assumption of a single processor, a Fourier analysis for cell-wise GS can be
devised by referring to the system of four triangular cells over a Cartesian element sketched in
Fig. 1. We also assume the sweeping sequence 4-1-2-3 for the triangular cells. This implies, for
example, that the information on the angular fluxes incoming on cell 1 from cell 4 is already

available at (£+1) while that from cell 2 is only available at (£). To further fix ideas, while Eq.

(5) for the Fourier ansatz previously formulated for cell-wise BJ remains the same for cell-wise
GS, Eq. (6) needs to be replaced by:

l//;(‘l) = y/:’ff”) exp(+jAodx), i=12; k=2,1. (8)
Therefore, the cell-wise GS algorithm is based on splitting the L operator into two contributions
L, and L, which are different from L_ and L, for cell-wise BJ, respectively; see Egs. (3) and
(4). Since part of the contributions originally “lagged” from the previous iteration for cell-wise
BJ via L, are attributed to L, it is expected that the iteration operator T for cell-wise GS
should display improved spectral properties with respect to T,, . The latter expectation is verified

by the comparison of the spectral radii of cell-wise BJ and GS presented in Fig. 4 for different
values of the scattering ratio.
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Figure 4. Spectral radii of cell-wise BJ and GS for various scattering ratios.

For all the values of ¢ attempted the curve for cell-wise GS lies below the corresponding curve
for cell-wise BJ, except for sufficiently optically thin problems where both curves approach a
value of 1. In particular, cell-wise GS enters the optically thick-cell regime, characterized by a
value of p vanishing to 0, at a faster rate than cell-wise BJ.

A straightforward way of numerically implementing the cell-wise GS algorithm is obtained by
modifying the “Jacobi-Sweeper” in the 2D code. For cell-wise BJ the values of the discrete
angular fluxes computed in the previous iteration must be available to compute the updated
angular fluxes in the present iteration. Hence, the “Jacobi-Sweeper” makes use of two vectors to
store the two sets of discrete variables. The vector containing the old values of the angular fluxes
is then overwritten with the new values obtained at the end of the present iteration, before
initiating a new iteration. Cell-wise GS is implemented by eliminating the vector containing the
old values. A single vector is employed instead that is overwritten as soon as a new value for an
angular flux is available. The so implemented “Gauss-Seidel-Sweeper” was used to verify the
predictions from the Fourier analysis for cell-wise GS with the 2D transport code. To reproduce
the conditions of the Fourier analysis, the code ran on a single processor to solve the sequence of
Cartesian meshes, with vacuum boundary conditions, first introduced in Sec. 2.3. The values for
p predicted by the Fourier analysis for the level-symmetric Sy quadrature, a unit macroscopic
total cross-section and scattering ratios of 0.5 and 0.99 are verified by the estimates of p obtained
from the code in Tables III and IV, respectively.
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Table III. Theoretical and computed p of cell-wise GS for c=0.5

dx=dy | 10° 10 10’ 10’ 10" 10** 10" 10™*

1x1 5x10~ | 0.003 0.013 0.062 0.065 0.007 | 3x107™* | 2x10~

2x2 0.037 0.078 0.172 0.295 0.131 0.010 | 4x10™ | 2x10™

4x4 0.231 0.333 0.469 0.503 0.168 0.013 5x10 | 2x18°

8x8 0.524 0.618 0.712 0.618 0.182 0.014 sx10° | 2x10™

16x16 0.747 0.806 0.852 0.665 0.186 0.015 5x107* | 2x107

32x32 0.875 0.907 0.919 0.681 0.187 0.015 5x10% | 2x107°

64x64 0.941 0.957 0.947 0.686 0.188 0.015 §x107 | 2x167

128x128 | 0973 | 0.980 | 0.957 | 0.688 | 0.188 | 0.015 | 5x10° [ 2x107

Fourier | 0.999 0.996 0.962 0.688 0.188 0.015 5x10~ | 2x107°

Table IV. Theoretical and computed p of cell-wise GS for c=0.99

dx=dy | 10” 10~ 10’ 10° 10" 10" 10" 10"

1x1 8x10~ 0.004 0.022 0.146 0.587 0.528 0.080 0.004

2x2 0.046 0.100 0.231 0.535 0.830 0.626 0.108 0.005

4x4 0.258 0.375 0.555 0.807 0.896 0.650 0.119 0.005

8x8 0.552 0.655 0.791 0.931 0916 0.664 0.123 0.005

16x16 0.766 0.831 0.916 0.974 0.921 0.668 0.124 0.005

32x32 0.886 | 0.924 0.970 0.987 0.922 0.669 0.125 0.005

64x64 0.947 0.970 0.990 0.991 0.923 0.670 0.125 0.005

128x128 | 0.976 0.988 0.996 0.992 0.923 0.670 0.125 0.005

Fourier | 1.000 0.999 0.999 0.992 0.923 0.670 0.125 0.005

The dependence of the spectral properties of cell-wise GS on Np is due to the fact that the
information on the angular fluxes incoming on an interface between two adjacent processors,
available in the present iteration, was communicated at the end of the previous iteration. As a
simple illustration of the impact of an interface on the Fourier analysis for cell-wise GS, imagine
that face (1) of cell 2, in Fig. 1, lies at the interface between two different processors. Under this
assumption, for example, Eq. (8) is no longer valid and must be replaced by Eq. (6). Part of the

cell’s interior contribution exerted via L, is therefore reattributed back to L, . This leads in turn
to a new splitting of the L operator and to a different iteration operator, Tj,,,,, whose spectral
properties are expected to be intermediate between those of T, and T, , respectively. This

reasoning helps understanding the results presented in Fig. 5 for c=0.5. The GS and BJ curves
are the same as in Fig. 4. The curve for two interfaces was obtained for the case in which both
face (1) of cell 2 and face (1) of cell 3 coincide with the interface between different processors.

Further research is needed in order to possibly tie the parameter Np into the Fourier analysis for
cell-wise GS. It is expected, though, that the curves obtained from this more refined analysis for
a given ¢ would have to lie somewhere in between the GS curve and the BJ curve; see Fig. 5.
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The former curve is the lower envelope obtained for the most favorable case of Np=1. The latter
is the upper envelope and is equivalent to cell-wise GS for the worst case of Np =Nc, where Nc
is the number of cells in the mesh.
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Figure 5. Effect of processor interface on the spectral properties of cell-wise GS.

3.2. Fourier Analysis of n-cell BJ (n=4)

To illustrate the intuition behind applying the BJ algorithm to “clusters” of cells, as opposed to a
single cell in order to improve its spectral properties, it is convenient to refer to the following
ideal situation. Assume the discretized computational domain of a transport problem
characterized, for ease of reasoning, by explicit boundary conditions is given. Imagine then that
the BJ splitting is applied to the entire domain. If one were indeed able to construct L, (domain’s

interior) and L, (domain’s boundaries) then inversion of (L, —SD) on the known incoming

boundary fluxes and fixed source contributions would directly produce the solution to the
transport problem, without the need for an iterative procedure. Consequently, the spectral radius
for the BJ operator would be 0, independent from the optical properties of the computational
cells comprising the domain. We conjecture then that an »-cell iterative BJ algorithm, in which
the BJ splitting is applied to a “cluster” of n cells, should be characterized by spectral properties
that are intermediate between the ideal case considered above (n=Nc) and cell-wise BJ (n=1).

The system of four triangular cells over the Cartesian element depicted in Fig. 1 is used to test
the above conjecture for n=4. Specifically, the Fourier analysis originally devised for cell-wise
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BJ is modified by assuming that the incoming angular fluxes are only “lagged” at the boundaries
of the 4-cell “cluster”, not at the cells’ boundaries that lie inside the “cluster”. In other words, the
discrete angular fluxes for the four cells as a whole are computed altogether simultaneously
rather than one cell at a time. The curves for the spectral radii of cell-wise BJ and 4-cell BJ are
compared in Fig. 6 for different values of the scattering ratio.
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Figure 6. Spectral radii of cell-wise BJ and 4-cell BJ for various scattering ratios.

For all the values of ¢ attempted the results presented in Fig. 6 verify the conjecture formulated
at the beginning of this section. Specifically, 4-cell BJ is characterized by a faster transition to
the optically thick-cell regime than cell-wise BJ. Also, it appears that the “clustering” has a nice
“smoothing” effect, especially for ¢=0.5, on the curves for the spectral radius in the transition
region. We presently lack a thorough understanding of the origin of the “peaks” displayed by the
curves for the spectral radii of BJ and GS in this region.

Further research is required to fully understand the potential advantages of the n-cell BJ strategy.
From a numerical implementation stand-point, the improved spectral properties of #-cell BJ with
respect to cell-wise BJ may come at the price of identifying an optimal “clustering strategy” for
the computational mesh, especially for unstructured meshes. For example, assuming n=4 for an
unstructured triangular mesh, in which order should four triangles at a time be ‘“clustered”
together in order to ensure optimal spectral properties and performance of the algorithm? Also,
the computational burden and the storage requirements associated with the inversion of the n-cell
BJ operator scale with ». While the high computational burden makes such algorithm appealing
for advanced heterogeneous computing architectures, the storage requirements may impose a
significant limitation on ». Finally, it is desired to study the impact on BJ’s spectral properties of
coupling the “clustering” with overlap strategies in which a cell is shared by multiple “clusters”.
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4. CONCLUSIONS

A Fourier analysis has been implemented for the cell-wise Block-Jacobi (BJ) algorithm. The
results of the Fourier analysis show that cell-wise BJ is rapidly convergent, with a spectral radius
vanishing to 0, in problems containing optically thick cells. Interestingly, this feature holds also
for scattering dominated problems (c~1). It is well known that for systems containing “diffusive”
spatial regions that are optically thick and scattering dominated the traditional Source Iteration
(SI) algorithm converges slowly. Since many important applied problems do contain “diffusive”
regions it has long been desired to accelerate the iterative convergence of SI. The cell-wise BJ
algorithm can overcome such limitations at the higher computational cost resulting from its
numerical implementation. In this connection, cell-wise BJ could be a suitable algorithm for
deterministic transport computations on the parallel, advanced heterogeneous computing
architectures that are gradually becoming available to the computational transport community.

In the opposite limit of optically thin-cells, the spectral radius of cell-wise BJ tends to a value of
1, independent from the scattering ratio ¢. Hence, convergence of cell-wise BJ can degrade in
problems containing optically thin cells and preconditioning of the basic iterative scheme, to be
investigated in future research, may be needed to improve its spectral properties in this regime.
In this paper we presented preliminary results for two non-accelerated iterative schemes,
alternative to cell-wise BJ, that result in a faster transition to the optically thick-cell regime. The
first iterative scheme is based on Gauss-Seidel (GS) instead of the BJ algorithm, so that the most
up-to-date information available on the incoming angular fluxes is used at a cell’s boundary. The
second iterative scheme exploits a “clustering” of cells, leading from cell-wise (or single-cell) BJ
to an n-cell BJ, in which the incoming angular fluxes are only “lagged” at the boundaries of the
n-cell “cluster”. For the two alternative schemes the improvement in spectral properties with
respect to cell-wise BJ comes at the expense of introducing a suitable cell-ordering either in the
“sweeping” or in the “clustering” of the computational cells in the mesh, respectively. Also, the
spectral properties of GS depend on the number of processors used in the parallel computation.
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