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Cosmological AMR MHD with Enzo 

D. C. Collins1, H. Xu 1,2, M.L. Norman1, H. Li2, S. Li 2 

ABSTRACT 

In this work, we present EnzoMHD, the extension of the cosmological code Enzoto 

include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the com­

putation of interface fluxes. We use constrained transport methods of Balsara & Spicer 

(1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruc­

tion technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & 
Colella (1989) already used in Enzo, though formulated in a slightly different way for 

ease of implementation. This combination of methods preserves the divergence of the 

magnetic field to machine precision. We use operator splitting to include gravity and 

cosmological expansion. We then present a series of cosmological and non cosmologjcal 

tests problems to demonstrate the quality of solution resulting from this combination of 

solvers. 
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1. Introduction 

Enzo is an adaptive mesh refinement (AMR), gTid-based hybrid code (hydro . N-Body) which 

is designed to do simulations of cosmological structure formation . It uses the block-structured 

AMR algorithm of Berger & Colella (1989) to improve spatial resolution where required , such as in 

gravitationally collapsing objects. The method is attractive for cosmological applications because it: 

1) is spatially- and time-adaptive, 2) uses accurate and well-tested grid-based methods for solving the 

hydrodynamics equations and 3) can be well optimized and parallelized. The central idea behind 

AMR is to solve the evolution equations on a fixed resolution grid, adding finer grids in regions 

that require enhanced resolution. Mesh refinement can be continued to an arbitrary level, based 

on criteria involving any combination of (dark-matter and/or baryon) over density, Jeans length, 

cooling time, etc, enabling users to tailor the adaptivity to the problem of interest. Enzo solves 

the following physics models: collisionless dark-matter and star particles, using the particle-mesh 

N-body technique (Hockney & Eastwood 1985) ; gravity, using FFTs on the root grid and multigTid 

relaxation on the subgrids; cosmic expansion; gas dynamics, using the piecewise parabolic method 

(PPM) (Colella & Woodward 1984) as extended to cosmology by (Bryan et al. 1995); multi-species 

non-equilibrium ionization and H2 chemistry, using backward Euler time differencing (Anninos 

et al. 1997); radiative heating and cooling, using subcycled forward Euler time differencing (?); and 

a parameterized star formation/feedback recipe (Cen & Ostriker 1993). Enzo has been successfully 

used in many cosmological applications, including star formation (Abel et al. 2000, 2002; O'Shea 

et al. 2005; O'Shea & Norman 2007), Lyman-alpha forest((Bryan et al. 1999), (Jena et al .. 2005)), 

interstellar medium (Kritsuk & Norman 2002 , 2004) and galaxy clusters (I3ryan & Norman 1998; 

Loken et al. 2002; Motl et al. 2004; Hallman et al. 2006). More informations about Enw are available 

at http://cosmos.ucsd.edu/ enzo. 

One important piece of physics that is missing from this list is a proper treatment of magnetic 

fields. Magnetic fields have a broad range of impacts in a broad range of physical situations, 
from galaxy clusters to protostellar core formation. In this paper we will describe the numerical 

approximations both with and without cosmology in section 2 and present test problems in section 

3. Creating a functional cosmological MHD code takes more than a single algorithm. The purpose 

of this paper is to document the construction and performance of the algorithms that will be used 

in MHD simulations with Enzo in the future , as well as simulations that have already been done 

((Xu et al. 2008)) 

EnzoMHD is also a multi purpose code. In this version of this paper, we will discuss it as 

a cosmological code, but all the same machinery applies in non-cosmological mode. To treat this 
paper as a method for the non-cosmological MHD code, simply set a = 1 and a = 0, and ignore 

anything that says cosmology. 

http:http://cosmos.ucsd.edu
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2. Numerics 

2.1. Cosmological MHD Equations 

Enzo solves the following comoving MHD equations: 

ap 1 - + - "V . (pv) = 0 (1)at a 
apv 1 _ a 1 - + -"V. (pvv + p - BB) = --pv - -p"Vet> (2)at a a a 

aE 1 _ a 2 B2 p- + -"V. [v(p + E) - B(B · v)] = --(pv + 3p + -) - -v· "Vet> (3)at a a 2 a 
aB 1 a 
- - -"V x (v x B) = --B (4)at a 2a 

with the equation of state 

1 p 1
E = - pv2 + -- + - B2 (5)

2 1'-1 2 
_ 1 2 
p=p+-B (6)

2 

Here, p is the comoving density, p is the comoving ga<; pressure, v is the proper peculiar velocity, 

B is the comoving magnetic field, E is the total peculiar energy per unit comoving volume, j5 is the 

total comoving pressure, I' is the ratio of the specific heats, et> is the proper peculiar gravitational 

potential from both dark-matter and baryons , a = (1 + z;) / (l + z) is the expansion factor and t is 

time. 

For non-cosmological simulations, the same equations hold, with a = 1 and a = 0. This 

effectively removed each appearance of a from the left hand side, and eliminates the terms involving 

a from the right. 

In this formulation, the comoving quantities that are evolved by the solver are related to the 

proper observable quantities by the following equations: 

Pproper = P * a(t)3 (7) 

et>proper = et> - ~aax2 (8)
2 

B -3 
proper = BaT (9) 

To solve these equations, we operator split eqns (1)-(4) into four parts: the left hand side 

of equations (1)-(3) , the left hand side of equation (4), the gravitational acceleration (the two 

terms involving "Vet», and the expansion terms (the two terms involving a) These will be discussed 

in sections 2.6 - 2.7. In section 2.10 , we will discuss the Dual Energy formulation in Enzo for 
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hypersonic flows, and in section 2.11 we will discuss the Adaptive Mesh Refinement algorithm. We 

first discuss the data structures used to carryall this data in section 2.2 

In the following, we will often have cause to separate the purely fluid dynamical quantities 

p, V, E from the magnetic field B. Unless otherwise noted, 'fluid quantities' will refer to the former 

only. 

For ease of reference, we have supplied a schematic summary of the steps involved in appendix 

A. 

2.2. Data Structure 

In Enzo, both parallelism and AMR are done in block decomposed manner. Each patch of space, 

called a grid, is treated as a unique computational problem with Dirichlet boundary conditions 

which are stored in a number of Ghost Zones. The number of ghost zones depends on the method 

used. The pure-hydro methods in Enzo, ZEUS and PPM, use 3 ghost zones. The method we describe 

here uses 5 ghost zones. 

Grids are arranged in a strictly nested hierarchy, with each grid having a cell width half that 

of its parent (pure hydro Enzo can take any integer refinement, but the interpolation for MHD is 

restricted to factors of 2.) See figure 1. Each processor keeps a copy of the entire hierarchy, while 

only one of the processors actuall stores the data. 

For all physics modules described in this paper, an individual grid cares not for where it sits 

in space or the hierarchy, and communicates with other grids only through boundary condition fills 

(section 2.5) and the AMR cycle (section 2.11). 

EnzoMHD in its default mode tracks 14 fields, stored at 3 different points of the cell. The 

5 hydrodynamic quantities, p, Y, Etotal are stored at the center of the cell, denoted (i, j, k), and 

represent the volume average of the respective quantities. These are the same quantities stored in 

non-MHD Enzo. 

EnzoMHD tracks 2 copies of the magnetic field and the electric field. One copy of the magnetic 

field is stored in the face of the cell perpendicular to that field component, and represents the area 

average of that field component over that face. This is the primary representation of the magnetic 

field. So B j ,x is stored in the center of the x face , denoted (i - ~,j, k), B j,y in the y face at 

(i , j - ~,k), and Bj,z in the z face at (i,j,k - ~). It is this field that remains divergence free under 
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the cell centered divergence operator : 

1 
\7. Bf =-(Bj . 1 . k - . 1 . k)+Llx ,X,t+ 2 ,) , B j ,X,'l. -2,J, 

1 
- .. k .. 1 k) + (10)1 ­b..y (B j ,y,t ')+2' B j ,y,t,)-'2' 

1 
- (B j .. k 1 - .. k 1)
~Z ,Z,t ,) , +'2 B j ,Z, t ,J, -'2 

This data structure is one element longer in each longitudinal direction, so for an nx x ny x nz grid 

patch, the Bj,x structure is (nx + 1) x ny x nz. 

The second representation of the magnetic field is centered with the fluid quantities at the 

center of the cell . This field is used wherever a cell centered magnetic quantity is needed , most 

notably in the hyperbolic solver in section 2.6. It's equal to the first order average of the face 

centered magnetic field : 

n 1
B + ' k =0.5*(Bjxi+l)k+Bj Xi _l)k)C,X,t, J, 'J 2" l ' 2" 

n 1
B + . k = 0.5 * (B j "+ 1 k + B jy i )_l k) (11 )

e,Y ,?',] , ,Y,t ,) 2"' , " 2' 

Bn+l . = 0.5 * (B . . 1 + B . . -.dc,Z ,t,),k j,z,t,),k+'2 j ,Z,t,),k 2 

The final data structure used in EnzoMHD is the Electric Field , which is stored along the 

edges of the computational cell. This represents a linear average of the electric field along that line 

element. Each component is centered along the edge its parallel to, so Ex lies along the x edge of 

the cell at (i, j - ~ , k - ~) , etc. It is longer than the fluid fields by one in each transverse direction , 
so Ex would be nx x (ny + 1) x (nz + 1) . 

Each grid also stores one copy of each of the above mentioned fields for use in assigning ghost 

zones to subgrids. This is described further in 2.5 . A temporary field for fluxes is also stored , which 

exists only while the hyperbolic terms are being updated. This data structure is also stored on the 

faces of the zone. There are three fluxes for all 7 MHD quantities. 

For other configurations of EnzoMHD, more or fewer zones may be used. In purely isothermal 
mode (which is at present an option only in EnzoMHD, not in Enzo) the total energy field is not 

tracked, and the isothermal sound speed is taken as a global scalar quantity. This reduces the 

number of fields tracked everywhere the total energy shows up. With dual energy formalism on (see 

section 2.10) an additional field corresponding to either gas energy or entropy is stored, giving an 

additional field where needed. 

2.3. Consistency 

In several places throughout the flow of Enzo, there may be more than one data structure using 

and writing to a given variable at a given point in space. Ghost zones and face centered fields 
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(fluxes and magnetic fields) are examples of this. In EnzoMHD, it is imperative that all data at 

a given point is identical, regardless of the data structure describing it. This may seem like an 

unnecessary comment, but it isn't; in pure hydro simulations, numerical viscosity will damp out 

small perturbations caused by slight inconsistencies in data description. Thus in practice, especially 

in large, stochastic simulations, errors can (and have) go (and gone) unnoticed. By construction 

EnzoMHD preserves \7 . B to machine precision, but it never forces \7 . B = 0; so if it's not 7,ero 

at the beginning of a time step, it's not going to be at the end, either. It is also worth mentioning 

that inconsistencies in and quantity will cause inconsistencies in the flow, which will in turn cause 

\7 . Bissues. Thus any improper handling of any fluid quantity will cause errors in \7 . B that will 

persist and usually grow to catastrophic proportions in a relatively short period of time. 

There is a prominent redundancy in the magnetic field, namely the field on the surface of the 

active zones of grids. See figure 2. Care is taken to include enough ghost zones, and frequent 

enough ghost zone exchange between grids, that after a time step, two neighboring grids have 

reached exactly the same answer on the surface between the two grids completely independently. 

For the record, and for a few pages of my thesis, these data inconsistencies have come about 

in the gravity and flux correction modules in Enzo, as well as necessitating several additional calls 

to the boundary condition routines. These have been fixed or kludged. More descriptions can be 

found in section ?? This appendix will likely not appear in the paper, but will in my thesis so is 

included in this draft. 

2.4. Time Stepping 

Enzo uses hierarchical time stepping to determine it's time step. For each level, the harmonic 

mean of the 3 Courant conditions is used. This was demonstrated to be the most robust time 

stepping criterion possible for multi dimensional flows 

t1t 1 
l/tx + l/ty + l/tz 

t1x 
tx =min(-) (12)

cf,x 
. t1y

ty =m~n(-) 
Cf,y 
t1z 

tz =min(-)
cf,z 

where the min is taken over the computational domain, and cf,x, Cf,y and cf,z are the fast MHD 
shock speeds along each axis: 

B·B2 _1 2 B·B (a2 + __ )2 - 4a2B2/p) (13)cf,x - "2(a + -- + p xp 
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and similar definition for the other two. 

Thus, if given level has a cell size ~x and the next level of refinement has cell size ~x, the more . 	 r 

refined gTid will have, in principle, time step size ~t. In Enzo, the step size is chosen for each level 

and each subgrid time step. In practice, owing to more finely resolved structures having slightly 

higher fast shock speeds, fine grids may in fact take more than r time steps for each parent grid 

step. 

Timesteps are taken in order of coarsest to finest, in a 'w' cycle. See figure 3 So given 3 levels , 

level 0 takes the first step of ~t . Then level 1 takes a single step of ~t/2. Then level 2 takes one 

step of ~t/4. Then, given that there are only three grids, it takes another. The last three steps 

repeat: level 1 then takes its second and final step of ~t/ 2 so it is now at the same time as level 0, 
followed by two steps on level 2. 

2.5. Boundary Conditions and Ghost Zones 

Ghost Zones are filled in one of three means. 

1. 	 Copying. The dominant mechanism for filling ghost zones copying from active zones that 

occupy the same physical space. This also takes into account periodic boundary conditions. 
For EnzoMHD , face centered fi elds are copied from the faces of all cells, including those that 

boarder on active cells. this is somewhat redundant for reasons described in 2.3. 

2. 	 External Root Grids that lie along the domain wall filled with the External Boundary routine. 
If the external boundary condition is not periodic, the grids zones are filled by a predeter­

mined algorithm; for instance, outflow boundary conditions set ghost zones to be equal to the 

outermost active zone, akin to a Neumann condition of zero slope. These involve outflow, 

reflecting, and a completely general 'i nflow'. Note that this is called only on the root grid, 

and not on subgrids that happen to lie on the edge. This can cause spurious waves at reflect­

ing or outflow boundaries with AMR. Also note for EnzoMHD, the only external boundary 

conditions that have been tested are periodic and outflow. 

3. 	 Interpolation The third mechanism is used on refined grids whose ghost zones do not occupy 

the active space of another grid; these grids have their ghost zones filled by interpolation from 

the parent grid. Since Enzo uses hierarchical time stepping, subgrid steps that begin in the 

middle of a parent grid step fill their ghost zones from a linear combination of the parent grid 
time steps at t n and tn+l. 
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2.6. Left Hand Side: Hyperbolic terms 

With the exception of the l / a term that appears in front of each \7. operator, the left hand side 

of equations 1-4 are the familiar Idea! MHD equations. A form of equations (1)- (4) more relevant 

for this treatment is the following: 
av + aF = 0 (14) 
at ax 

where 
p 

PVx 

PVy 

V = I PVz (15) 

By 
B z 
E 

P'Vx 

pv; + P + B 2 / 2 - B; 


P'VxVy - BxBy 

F= (16) 

Byvx - Bxvy = -Ez 
Bzvx - Bxvz = Ey 


(E + P + B 2 /2)vx - Bx(B . v) 


PVxVz - BxBz 

1 2 1 2
P = (E - - pv + - B (, - 1)) (17)

2 2 

These form a hyperbolic system of equations, which have been studied extensively in the literature. 

To take advantage of the work already done on this type of system of equations, we first mUltiply 

the cell width dx by a. We can then apply the hyperbolic solver of our choice as if nothing were 
wrong. Upon exiting the solver, dx is divided by a to restore it to the original proper value. 

Equation 14 is solved by first re-writing it in conservation form, that is taking suitable integrals 

in time and space. The resulting update is, in one dimension, 

vn+l = Vn _ ~t (Fn+~ _ Fn+~ ) (18)I ,) ,k t,J,k AX x i+l J. k x i- 1 J k U l 2 J , ' 2~ , 

where V represents the appropriate spatial average of the conserved quantities, and F represents 

an approximate average to the flux, centered in time at t = t + ~t/2. V is the quantity we store in 
the cells , and F comes from the hyperbolic solver . 

The solver we use to solve the hyperbolic equations is that of Li et al. (2008), which is comes 

in three parts: spatial reconstruction, time centering, and the solution of the Riemann problem. 

Spatia! reconstruction is done using piecewise linear monotonized slopes on the primitive variables 
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(p, V,p, B). Time centering of the interface states by t:::..t/2 is performed using either the MUSCL­

Hancock or Piecewise Linear Method integration . The lliemann problem is then solved using either 

the HLLC lliemann solver Li (2005), HLLD solver of Miyoshi & Kusano (2005), or the isothermal 

HLLD solver of Mignone (2007). These fluxes are computed for the conserved variables (p, pv, E, B). 
These fluxes are then differenced to obtain the update values of the fluid quantities only. The fluxes 

for the magnetic field are stored for use in the Constrained Transport algorithm, discussed in section 

2.7. This is done in one dimension on successive sweeps along the x, y, and z directions. To reduce 

operator splitting error, the order of the sweeps is permuted. For more details, see Li et al. (2008). 

In isothermal mode, the same method is used, but the energy terms in V and F are removed. 

In this step, the centered magnetic field Be is used. 

2.7. Constrained Transport and the Divergence of B 

One of the biggest challenges for an MHD code is to maintain the divergence free constraint 

on the magnetic field (\7 . B = 0). Brackbill & Barnes (1980) found that non-zero divergence can 

grow exponentially during the computation and cause the Lorentz force to be non-orthogonal to the 

magnetic field . There are three major ways to assure the divergence remains zero. The first is a 

divergence-cleaning (or Hodge Projection) approach by Brackbill & Barnes (1980), which solves an 

extra Poisson's equation to recover \7 . B = 0 at each time step. But Balsara & Kim (2004) found 
that non-locality of the Poisson solver introduces substantial spurious small scale structures in the 

solution. Additionally, solving Poisson's equation on an AMR mesh is computationally expensive. 

The second method involves extending the MHD equations to include a divergence wave, as done 

by Powell et al. (1999), Dedner et al. (2002), which then advects the divergence out of the domain. 

As most of our solutions are done on periodic domains, this is also an undesirable solution. The 

third method, and the one we have employed in Enzo, is the constrained transport (CT) method of 

Evans & Hawley (1988) . This method centers the magnetic field on the faces of the computational 

cells and the electric field on the edges. Once the electric field is computed (more on this later) it's 

curl is taken to update the magnetic field. This ensures \7 . B = 0 for all time, provided it's true 

initially. 

'n+l 'n 1 ' ,B . 1 . = B . 1· - t:::..t(-(E . 1 . 1 k - E • . 1 . 1 k)+ (19)j,x,2- 2 ,),k X,2- 2 ,),k t:::..y Z,2- 2 ')+2' ~ , 1-2')-2' 

1 . ,
-(E . 1 . k 1 - E . 1 . k 1))t:::..Z y,1-2 ') ' +2 Y,1-2') ' -"2 

Plugging equation C13 into the divergence operator 10 to find \7. Bj+l, one finds all terms are 
eliminated except the initial divergence \7 . Bj. 

The CT algorithm of Evans & Hawley (1988) was extended to work with finite volume methods 

by Balsara & Spicer (1999). This method uses the fact that the MHD Flux ha..<; the electromotive 
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force as two of its components (see the 5th and 6th components of eqn. 16), so using these components 

then incorporates all the higher order and shock capturing properties of the Godunov solver into the 

evolution of the electric field . These components, which are centered at the face the computational 

cell, are then averaged to obtain an electric field at the edges of the cell. This wa..'i the first CT 

method applied to Enzo, so unless otherwise noted, the simulations presented here were done with 

this method . The reader is encouraged to read Dalsara & Spicer (1999) for the full details . 

Gardiner & Stone (2005) extended this idea to include higher order spatial averaging, which 

eliminates a number of numerical artifacts present in Balsara & Spicer (1999) and increases the 

accuracy of the method. This method uses the fluxes from the lliemann solver, plus additional 

information from the data in the cell to construct a linear interpolation from the cell face to the cell 

edge. The reader is encouraged to see that paper for the details . 

After the curl is taken and the face centered field Br is updated, it is then averaged to obtain 

Be, via equation 11. 

2.8. Right Hand Side: Gravitational Acceleration 

In cosmological simulations, Enzo tracks the proper pecuHar gravitational potential. 

47fG2
\7 1> = - (Pb + Pd - Po) (20)

a 

where Pb and Pd are baryonic and dark matter comoving density respectively, and Po is the comoving 

background density. For non-cosmological simulations, the dark matter and background density are 

ignored. 

The gravitational potential 1> is solved in Enzo using a combination of methods. First, the 

root grid potential (which covers the entire computational domain) is solved for using a fast Fourier 

transform. Then the subgrids (which hopefully do not cover the computational domain) are solved 

using a multigrid relaxation technique. This resulting potential 1> is then differenced to obtain the 

acceleration g = \7 1>. Specifically, 
1 

gi = 2 (1)i+l - 1>i-d (21) 

As mentioned before, the fluxes are computed at the half time point t + 1/ 2t::.t. In order to 

keep the velocity and consistent with this time centering, they are first advanced by a half time 

step: 
t::.t 

v =v+-g (22)
2 

After the fluxes are differenced to obtain the new state v~+l, these states are then updated 

with the accelerations. For the velocity update, a density field centered in time is used. We follow 



- 13­

the same formulation used by Colella & Woodward (1984) 

1 ( n+l + n)A
n+ 1 _ In+ 1 + At 2 P P x 

Vx - Vx L.l. pn+ 1 (23) 

E n+1 = E In+ 1 _ ~pn+l(VXIn+l)2 + ~pn+l(VXn+l)2 (24) 

2.9. Right Hand Side: Expansion Source Terms 

The cosmological expansion source terms are treated in much the same the same way as the 
gravitational source terms. First, a half time step is added to the values before the flux is computed. 

In n 1 av =v - -.6.t_pn (25)
2 a 

In n 1 a( )np =p - -.6.t-3 'Y - 1 p (26)
2 a 

Bin =Bn _ ~.6.ti:.-Bn (27)
C C 2 2a C 

The quantities v ln 
, pin and Bin are then used in the rest of the solver descri bed in section 2.6. 

After the fluxes are differenced, the source terms are then added to the fluid quantities in full. This 
is done in a semi-implicit manner, by averaging the quantities to be updated in time. For instance, 
the expansion contribution to the magnetic field is 

aB = -i:.-B (28)at 2a 

which is discretized 

B _ B a Bn+l + Bn+l)n+1 n+1 
exp .=: --( exp2a ---'--2-- ' ) (29) 

and solving for B n 
exp 
+1 we have 

a 
x=- (30)

4a 

B n +1 = (1 - x) Bn +1 (31) 
exp (1 + x) 

Pressure and velocity are updated in manner. See appendix A for the full update. 

2.10. Dual Energy Formalism 

Hypersonic flows are quite common in cosmologjcal simulations. Due to the extremely large 
gravitational forces, the ratio of kinetic energy Ek to gas internal energy e can be as high as 108 . 
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This leads to problems when computing the internal energy in this type of flow, as the universe does 

math with infinite accuracy, but computers do not. Higher order Godunov code typically track only 

the Total Energy (equation 5). Thus finding the internal energy 

Einternal = Etotal - Ekinetic - Emagnetic 

involves the small difference of two (or three) large numbers, which causes problems when the small 

number (Einternat) is near the roundoff noise of the original numbers (Etotal and Ekinetic +Emagnetic) . 

To overcome this, we have implemented two algorithms that solve an additional equation to 

track the small numbers; the modified entropy equation given in Ryu et al. (1993) and the internal 

energy equation given in Bryan et al. (1995). These two equations are: 

3b- 1)aas + ~y. (Sv) S (32)
8t a = a 

ape + ~y. (pev) 3b - l)a pe + Ey . v (33)
8t a 	 - a a 

where S == pi p"Y- 1 is the comoving modified entropy and e is the internal energy. The modified 

entropy equation is valid only outside the shocks where the entropy is conserved. Use of either (not 

both) of these equations is at the discretion of the simulator. 

Through the course ofthe simulation, the ratio ofInternal Energy to Total Energy is monitored. 

When this ratio is less than some pre-set value 7], one of the modified equations is used. As in Li 

et al. (2008), we use 7] = 0.008. Li et al. (2008) compared this two approaches and found almost 

identical results. 

2.11. Adaptive Mesh Refinement 

Structured AMR, initially devised by Berger & Colella (1989), is a technique for increasing 

resolution of a simulation in parts of a simulation that "need it most ," while conserving memory 

and CPU cycles in areas that don't. Refinement criteria will not be described here, as they vary 

from simulation to simulation. AMR has four basic necessary parts: 

1. 	 Patch Solver This is the algorithm that actually solves the finite volume PDEs in question , 

as described by sections 2.6 - 2.10. 

2. 	 Refinement Operator This is the routine that creates fine resolution elements from coarse 

ones. In Enza, we use conservative, volume weighted interpolation for the fluid quantities 

p, E, V. For the Magnetic Fields, we use the method described by Balsara (Balsara 2001), with 

some slight modifications in implementation. This method constructs a quadratic divergence 

free polynomial, and area-weighted averages are used for the fine grid quantities. This is 

described in more detail in appendix B. 
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3. 	 Projection Operator This is the routine that projects the fine grid data back to the parent 

coarse grid . For Enzo, the parent grid is simply replaced by a volume-weighted average of the 

fine cells. For the face centered Magnetic Field, this is an area weighted average, though in 

practice we don't explicitly average the magnetic field, as discussed in below andin appendix 

B.2 

4. 	 Correction Operator Once the projection operator replaces the solution on the coarse grids, 

the evolution on the coarse grids is no longer consistent with the underlying equations in the 

manner they were discretized. That is to say, the total change of any conserved quantity inside 

the region is no longer equal to the flux across its surface. For the Enzo hydro fields, this is 

corrected with the Flux Correction mechanism. 

This needs a pictme. Its coming. 

EnzoMHD does all of these steps for the fluid quantities, but for the magnetic field it slightly 

alters this procedure. In order to overcome a shortcoming in the original data structures used in 

Enzo, we comhined the projection and correction operations for the magnetic fields in one step. 

The net effect of the correction operator is to ensure that all zones are updated by finest resolution 

fluxes available, even if they were updated by coarse data initially. For the magnetic field update, 

we don't project the actual magnetic field that is of interest, but rather the electric field (effectively 

the 'flux' for B f) , then take the curl of the newly projected electric field. Thus the coarse magnetic 

data co-located with the fine grids get updated with the fine data, and the bounding zones don't 

need correction at all. 

More detail on this process can be found in appendix C 
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Fig. 3.- A depiction of the timestep strateygy in Enza 
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3. Numerical Experiments 

EnzoMHD has many configurations available. Here, we test some of the possi ble configurations, 
to indicate the quality of solution possible with EnzoMHD . 

3.1. MHD Tests without AMR 

We first test our code in unigrid (fixed resolution) mode, in order to ensure consistency of the 
patch solver with the algorithm described in Li et al. (2008). We do two one dimensional cosmology 
tests (Caustics and Zel'dovich Pancake), two one dimensional non-cosmological tests (Brio and Wu 
and the Kim Isothermal), one 2d non-cosmological test (Orszag Tang) and one 3d cosmological test. 

.1.1.1. Brio and Wu shock tube 

The shock tube defined by Brio & Wu (1988) is a standard test of any MHD solver , as it 
displays a number of the important MHD waves, including a compound wave. Compound waves 
are not a property of pure hydrodynamics, because the system is convex. However, due do the more 
complex nature of the MHD equations, certain initial conditions can cause flows in which at one 
point the shock speed in a given family is higher than the wave speed for that family, causing a 
shock, but lower in the post shock region, causing a rarefaction immediately following the shock. 

This can be seen in figure 4. The problem was run with 800 zones to a time t = 0.2, using the 
HLLD solver in Enzo. This shock tube shows, from left to right, a fast rarefaction, slow compound 
(shock~rarefaction), contact, slow shock, and fast rarefaction. It can be seen that this solver 
captures this shock tube problem quite well. 

3.1.2. Isothermal Tests 

One of the primary application areas of Enzo MHD will be in simulating turbulence and star 
formation in cold molecular clouds. Due to the fast cooling time of these environments, an isothermal 
equation of state is a good approximation a large portion of these processes. In simulations done 

by Kritsuk et al . (2007) using Enzoand other works by the same authors an isothermal equation of 
state is approximated by using an adiabatic solver and setting I = 1.001. 

To test if this approximation is appropriate for this code, we ran the isothermal shock tube of 
Kim et al . (1999). One can see from figure 5 that this approach works well, as shock jumps and 
positions are all correct, and features are reasonably sharp. This test was run with 256 zones to a 

time of 0.1. 

However, in turbulent simulations with gravitational collapse, the measured value is initially 
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uniform, but after a few hundred timesteps, spreads in the measllfed sound speed -JP7P can be 
as large as 1000, which is far from isothermal. It is believed that the difference between this code 
and what ha..<; been done in the past with Enzo stems from the Bjemann solver. The HLL family 
of fuemann solvers assumes a particular wave structure in computing the interface flux. This 

wave structure, for HLLC and HLLD, contains a contact discontinuity which is not present in the 
isothermal Riemann fan, and does not reduce appropriately in the ~( --+ 1 limit. To combat this, 
we installed the Isothermal variant of HLLD by Mignone (2007). The resul ts of this code on the 

Kim test are nearly. identical to that in figure 5 and not reproduced here. The problem seen are, of 
course, eliminated as the sound speed is set as an input parameter. 

3.1.3. One-dimension MHD Caustics 

This test is taken from Li et al. (2008), which initially derived from a pure hydro version from 
Ryu et al. (1993). This problem is used to test the ability of the code to capture shocks and to 

deal with hypersonic flows . Initially, Vx = -~sin(21l'x) , p = 1 and p = 10-10 . Caustics are formed 
because of the compression by the velocity field. The Mach number of the initial peak velocity is 
1.2 x 104 . The pressure can easily become negative for such high Mach number flow. 

We performed the test with same magnetic field settings as in Li et al. (2008). The magnetic 
field in the x and z directions are always zero while By = 0,10- 3 ,0.02 and 0.05. The calculation 
was done with 1024 cells and the results at t = 3 are shown in figure 6. Our results match the 
results from CosmoMHD (Li et al. 2008) quite well, as expected. 

3.1.4 . The Zel'Dovich Pancake 

The Zel'Dovich pancake is a popular test problem for codes that include gravity in comoving 
coordinates. The problem setups are taken from Li et al. (2008). This takes place in a purely 

baryonic universe with n = 1 and h = ~. The initial scale factor ai = 1 corresponds to Zi = 20. The 
ini tial velocity field is sinusoidal with the peak value 0.65/ ( 1 + Zi), and v = 0 at the center of the 
box. The initial comoving box size is 64h- 1Mpc. The shocks forms at Z = 1. The initial baryonic 
density and pressure are uniform with p = 1 and p = 6.2 X 10-8 . The tests were run with 1024 

cells, both with and without magnetic fields . When the magnetic fields are present , Our results are 
almost identical to the results from CosmoMHD (Li et al. 2008), as expected. Results can be seen 
in figure 7. 
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Increasing the magnetic field strength increases the central magnetic pressure, reducing the density 

and changing the overal solution st rncture. Results match those of Li et al. (2008). 
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3.1.5. Orszag- Tang 

The Orszag-Tang Vortex was originally developed by Orszag & Tang (1979) to demonstrate 
that small scale structure can be generated by the nonlinearities in the MHD eqations. It now serves 
as a standard test problem to demonstrate the accuarcy and diffusivity of MHD codes. 

The initial conditions are on a 2 dimensional periodic box, 256 zones on a side. v = vo( -sin(271'Y)x+ 
sin(271'x)y,B = Bo(-sin(271'Y)x + sin(471'x)y),vo = 1, Bo = l//4ii,po = 25/(3671') Po = 5/(1271'), 

and I = 5/3 which gives a peak mach number of 1 and peak plasma beta f3 = po/(B'6/2) = 10/3. 
Figure 8 shows the density at t = 0.48, from which one can see that the solution agrees with other 
solutions to the problem in the literature. 

3.1.6. 3D Adiabatic Universe with MHD 

We have also performed the 3D adiabatic CDM Universe test described by Li et al. (2008) both 
with and without magnetic fields . We also compared the non-magnetized results with the results run 
using the PPM solver (Colella & Woodward 1984). Adiabatic evolution of a purely baryonic Universe 
was computed with an initial CDM power spectrum with the following parameters : D = Db = 1, 
h = 0.5, n = 1 and 0'8 = 1 in a compuational volume with side length L = 64h- 1Mpc. The transfer 
function from Bardeen et aL (1986) was used to calculate the power spectrum of the initial density 
fluctuations. Evolution was done from z = 30 to z = O. We used 2563 cells for each simulation. The 
comparisons are made at the final epoch, z = O. Though this test is identical to that of Li et al. 
(2008), our results can't compared with theirs directly since different random seeds were used for 
the realizatoin of the initial density and velocity. 

Figure 9 shows a comparison of the mass-weighted temperature distribution, figure lOis a 
comparison of the volume-weighted density distribution, and figure 11 shows a comparison of the 
baryonic density of a slice of 32h- 1Mpc x 32h- 1 Mpc. The contour lines are 0.1 x 10k, where 
k = 0,0.1,0.2, ... , 3. The discrepancies between PPM and MHD solvers are small, indicating the 
two codes perform roughtly the same. The nature of the differences is expected, since PPM solver 
has third order accuracy while the MHD solver has second order accuracy and larger numerical 
diffusion. This allows PPM to capture shocks in fewer zones, which causes the dense shocked gas 
to not only have a smaller volume fraction, but also be hotter and slightly less dense than in the 
MHD solver. 

We have done a run with an initial magnetic field, Bx = Bz = 0, By = 2.5 X 10-9 Gauss, which 
is 4.3176 x 10- 7 in code units . Figure 12 shows the density and magnetic energy density contours 
of a slice. The density contour levels are 0.1 x 10k , where k = 0, 0.2,0.4, ... , 6, and the magnetic 
energy density contours are 10- 14 x 10k , where k = 0,0 .2, 0.4, ... ,6 in code units. As expected, they 

are well correlated. Figure 13 shows the scaled divergence of the magnetic fields, averaged over the 
entire box, a'i a function of redshift. The divergence of the magnetic fields is close to the round-off 



0
0

 

~
 

c.n
 

I 



1.2 

- 26­

x 105 


1.4 

1.0 

..­
C 0.8 
0> o 
~ 

rE
"0 0.6 

r 
r 

I 

I 

r0.4 I 


I 


0.2 

0.0 

10° 101 102 103 104 105 106 107 108 


~J 
,r' 

" ,-

/ 
; 

I " 
I 

I 
I 

I 

I 
I 
I 
I 
I 
r 
r 
r 
~ 
r 
r 
I 
r 
r 
r 
I 

I 


T (K) 

Fig. 9.- Comparison of mass-weighted temperature histogram at z = 0 for the 3D purely baryonic 
adiabatic Universe simulation. The solid line is from the MHD code and the dashed line is from 
Enzo-PPM. 



,,,,,, 

,, 
I, 

I,, 
I 

J 
I 

I 

- 27­

Fig. 10.- Comparison of volume-weighted density histogram at z = 0 for the 3D purely haryonic 

adiahatic Universe simulation. The solid line is from the MHD code and the dashed line is from 

Enzo-PPM. 
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error. 

3.2. MHD Tests with AMR 

8.2.1 . Three-dimension MHD Adiabatic Expansion 

This test is taken from Bryan et al. (1995). This test uses a completely homogenous universe 

with initial Ti = 200K and Vi = 100km/s in the x-direction at an initial redshift of Zi = 20 . In the 
code units , the initial density is 1.0 and initial velocity is 0.0027833915 and the initial pressure is 

1.2367812 x 10-9 . Additionally we have a uniform magnetic field Bx = By = Bz = 0.0001 in code 
units, which is 2.65710 x 10-7 C in cgs. 

The simulation used a 163 root grids with 2 levels of refinement in the center region and ran 

to Z = O. 

The expansion terms in eqns (1) - (4) operate like drag terms , so that in the. absence of a 
source, the velocity decreases as V = via-I , the temperature as T = T,.a- 2 and the magnetic field 
should decrease as a-1 / 2. 

The temperature at Z = 0 is 0.453406K, 0.024% below the analytic result of 0.453515K. The 
velocity at z = 0 is 4.76176km/s, compared to the analytic result 4.7619km/ s, a 0.0029% discrep­
ancy. The final magnetic field strength is 6.02513 x lO- lOC (2.1821651 X 10-5 in the code units) 
compared to the analytic result 6.02517e-10G, a 0.0006% difference. Figure 14 shows the By as a 
function of redshift, the solid line shows the theoretical value. 

8.2.2. One-dimensional MHD Caustics with AMR 

We also ran the the 1d MHD Caustic test with AMR, using 256 root grid zones with 2 levels 
of refinement, again by a factor of 2, giving an effective resolution is 1024 cells . Figure 15 shows 
comparisons of density and gas pressure of non-AMR and AMR runs with different initial magnetic 
field strengths, as described before. Figure 16 shows the comparisons of By for runs with different 
initial values of By. In both plots, the AMR result is sampled to the finest resolution . The AMR 
runs give almost identical results to the unigrid runs, while the CPU time and memory were greatly 
saved in the AMR runs. 

8.2.8. Zel'Dovich Pancake with AMR 

We also ran the pancake problem with AMR. The problem was set up with the same initial 
conditions as the unigrid run, but with a root grid of 256 root cells and 2 levels of refinement by 2. 

We compared these results having effectively 1024 cells to the results of our previous high resolution 
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which actually had 1024 cells. Figure 17 shows comparisons of density and gas pressure between the 
non-AMR and AMR runs, with different initial values for By. Figure 18 shows the comparisons of 
By with different initial values. Again, the AMR computation got very similar results, while saving 
CPU and memory resources . 

.9.2·4. MHD Galaxy Cluster Formations 

Cluster formation (without MHD) has been studied intensively by researchers using Enzo ((Nor­
man 2005),(Bryan & Norman 1998) , (Loken et al. 2002) , (Motl et al. 2004), (Hallman et al. 2006)) 
It is one of the most important applications of Enzo's high dynamic range. Many cluster simulations 

have been run with Enzo with a wide variety of physics (i.e. radiative cooling, star formation, etc) 
and we can compare these results to similar simulations run with MHD. More information about 

Enzo simulated cluster can be found in Simulated Cluster Archive at http://lca.ucsd.edu/data/scaj. 
Here, we present just one simulation to demonstrate the MHD code. 

This simulation uses a Lambda CDM cosmology model with parameters h = 0.7 , Om = 0.3, 
Ob = 0.026, OA = 0.7, U8 = 0.928. The survey volume is 256 h- 1 Mpc on a side. The simulations 
were computed from a 1283 root grid with 2 level nested static grids in the center where the cluster 
form. This gives an effective resolution of 5123 cells (0.5 h-1 Mpc per cell) and dark matter particle 
mass mass resolution of 1.49 x 1010 solar masses initially in the central region . Adaptive mesh 
refinement is allowed only in the region where the galaxy cluster forms, with a total of 8 levels of 
refinement beyond the root grid , for a maximum spatial resolution of 7.8125 h- 1Kpc. While the 
baryons are resolved at higher and higher spatial and mass resolution at higher levels, the dark 
matter particles maintain constant mass so as not to add any additional noise. The siinulations are 
evolved from z = 30 to z = 0, and all results are shown at the redshift z = O. We concentrate our 
study on a cluster of !vI = 1.2 x 1015 Ms. 

In order to isolate the effects of the numerical approximation from the effects of MHD, we first 
nm the simulations adiabatically without additional physics and the magnetic field set to zero , and 
compare to a PPM run with identical parameters. In table 1, we list the basic parameters for the 
clusters formed in each solver. The viral radius , Rvir is calculated for an over density §..E.p of 200. . 

M vir , Mdm and Mgas are the total mass, mass of the dark matter and mass of the baryon inside 
the virial radius, respectively. Tvir is the average of the temperature of the ICM inside the virial 
radius. Evidently, there is very little difference between the results from the two solvers. 

Figures 19-21 show the images of the logarithmic projections of the dark matter density, gas 
density, and X-ray weighted temperature, respectively, at z = O. Both PPM and MHD solvers show 

very similar images in all three quantities, differing only slightly in the small scale details. 

Figure 22-24 show the radial profiles of dark matter density, gas density, and x-ray weighted 
temperature. The profiles match quite well in all three quantities, with only minor differences . 
There is a slight deviation in the radial profiles of dark matter density near the center of the cluster, 

http://lca.ucsd.edu/data/scaj
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Fig. 18_- Comparisons of magnetic y component in non-AMR and AMR runs of the Pancake test . 
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but this is near the resolution limit of the simulation, so not a trustworthy data point. In the density 
profile, it can be seen that the MHD solver gives a slightly higher average density. The temperature 
agreement is good enough to not worry about. 

We have also run the simulations with non-zero initial magnetic field. A uniform initial magnetic 
field of 9.72753 x lO- lO G (1 x 10-7 in code units) in the y direction was added to the system at the 

start of simulation at z = 30. Since Dolag et al. (1999) has shown that the initial magnetic fields 

structures are not important to the final magnetic fields structures in their MHD SPH simulations, 
no other initial magnetic fields configuration will be used in this paper. Figure 25 shows 4 projections 
of the cluster center: gas density, temperature, magnetic energy, and synthetic Faraday rotation 

measurement RNI = 27r~2C4 fad neEds. We can see that the gas density and temperature images 
are almost identical to the MHD run with zero magnetic fields. As expected, the magnetic energy 
is concentrated in the cluster core. The maximum magnetic fields is 1.0630270 x 1O-8 G. The RM 
is about 2-3 -radm-2 at the cluster core . Figure 26 shows comparison of the radial profiles of the 

simulations with and without initial magnetic fields, while figure 27 depicts the volume weighted 
averaged radial profiles of the magnetic field strength and plasma {3. Since {3 is quite large, these 
small magnetic fields acts as a passive tracer of the plasma and has little effects on dark matter and 
gas dynamics. 

To further test our code, we also ran a simulation with a relatively large initial magnetic fields . 

We also included radiative cooling, star formation, and stellar feedback. The radiative cooling 
models X-ray line and bremsstrahlung emission in a 0.3 solar metallicity plasma. The star formation 

model turns cold gas into collisionless star particles at a rate PSF = TiSF (Pb ), where TiSF 
max 'Tcool,Tdyn 

is the star formation efficiency factor 0.1, and Tcool and Tdyn are the local cooling time and free 
fall time , respectively. Stellar feedback returns a fraction of stars' rest energy as thermal energy at 

a rate fSF = TiSNPSFc? to the ga.'i. We did two runs, one without initial magnetic fields and the 
other is with a large initial magnetic fields of Ey = 1.0 X 10-4 in code units (9.72753 x 10-7 Gauss.) 
Figure 28 shows the radial profiles of gas density and temperature of both runs and the magnetic 

field strength and the plasma {3 of the run with magnetic fields. 

The magnetic fields reached 20 J.k G in the core region, a few times larger than the observations 
(Carilli & Taylor 2002). In the center where (3 reaches a minimum, the kinetic energy is a few 

Table 1: Cluster Properties 

Parameter Hydro PPM MHD 

Rvir(Mpc) 2.22946 2.22674 

Mvir (1v1.$ ) 1.26462e - 15 1.2599ge·- 15 


Mdm(Ms) 1.09746e - 15 1.09683e - 15 


Mgas(Ms) 1.67158e-14 1.6316e·- 14 


Tvir(K) 8.68422e· 07 8.66301e·- 07 
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Fig. 19.- Logarithmic projected dark matter density at z = O. The images cover the inner 4 

Mpcjh of cluster centers. The left panel shows the result from the PPM solver and the right panel 

shows the result from the MHD solver. The color bar is in Mo Mpc- 3 . 
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Fig. 20.- Logarithmic projected gas density at z = O. The images cover the inner 4 Mpcjh of 
cluster centers. The left panel shows result from PPM solver and the right panel shows result from 
MHD solver. The color bar is in Mo Mpc- 3 . 
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percent of the thermal energy, as expected from (Iapichino & Niemeyer 2008). The magnetic field 

has hecome dynamically important in the cluster center. The effect is not significant in the density, 

as seen in the llpper right plot in figure 28, but definitely noticable in the temperature field , as 

some of the thermal pressure that was halancing the collapse is replaced hy magnetic pressure. In 
this way, magnetic fields may help to cool cluster cores, giving a hetter match to observations. 

Detailed analysis of the magnetic field structure and their influence on the cluster will be presented 
in forthcoming paper. 
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Fig. 21.- Logarithmic projected X-ray weighted temperature at z = O. The images cover the inner 

4 Mpcj h of cluster centers. The left panel shows result from PPM solver and the right panel shows 
result from MHD solver. The uni t is Kelvin. 
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4. Conclusion 

In this work , we have presented the implementation of MHD in the AMR cosmology code Enzo 
in order to serve as a single complete document for future simulations done with Enzo MHD . For 

the fixed resolution patches, we used the PDE solver of Li et al. (2008) to solve the ideal MHD 
equations (section 2.6); we have operator split the gravitational (2 .8) and cosmological expansion 
(2.9) terms; and we have used the CT methods of Balsara & Spicer (1999) and Gardiner & Stone 
(2005) to maintain 'V. B = O. We use a slightly modified version of the AMR algorithm procedure 
of Balsara (2001 ) to create fine grids and communicate the more accurate fine grid data to the 
cheaper coarse grid data. A broad array of tests were done in section 3 to demonstrate that the 
implementation correctly matches the expected results. 

We present this work as a reference for future work to be done with EnzoMHD. Currently 

underway are simulations involving protostellar core formation , MHD Turbulence, and galaxy cluster 
formation and evolution with magnetic fields, and work has begun to include cosmic ray acceleration 

into the code. 

The authors gratefully acknowledge support from NSF grants Gram 1m 1)m· id and Los Alamos 
National Lab I[ow ro c j H~ lfa(J ·s '; llp p o rt ' , and \\·c prol mhl v Ilc('d t l) cite S()Jl1f' Ln .\ C a\\·..m l" 
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5. Discussion 

A. Schematic for the Cosmological MHD Code 

In this section, wepresent a schematic of the MHD code, for clarity and easy reference. 

Step 0.- We start with conserved quantities density, total energy, and momentum (PEM' E~tal' PDM), 
and primitive quantities velocity and gas pressure (vEM' P;as) for the baryonic matter; face and 
cell centered magnetic fields (E;;, EI ); and Lagrangian dark matter mass, position , and velocity 
(PDM , Xn,Y DM ). These are all at time tn. Where needed, primitive quantities will be described 

by U = (PDM, Pgas,YDM , B), and conserved quantities by V = (PDlv[, Etotal , PDM,B) . Conversion 
between the two is done as needed. 

Step 1. Solve Poisson's equation for the acceleration field at tn +~ 

¢n ¢=PEM + PDM (A I) 

b. n b. n 
n+l /2 _ n( t ) _ ,+,n-l __t_ (A2)¢ -¢ 1 + 2b.tn- 1 '+' 2b.tn- 1 

n+l/2 1 (¢n+l/2 _ ¢n+ l / 2) (A3)gi 2an+1/ 2oXi 2+1 2-1 

Step 2.- Update particle positions and velocities. (Strictly speaking, this happens after the 
Expansion step, but the narrative works better if it's here .) 

b.tn Iin+ 1/2 b.tn
n+l/2 yn yn gn+ l / 2 YDM DA'[ - -2- an+1 /2 DM - -2- (A4) 

n+l xn + b.{n(yn+l /2jan+1/ 2) (AS)x DM DM 2,DM 

n+l n+l /2 b.tn an+1/
2 

n+ l/2 b.tn n+l /2 (A6)vi ,DM vi ,DM - --2-an+l /2vi,DM - -2-gi 

Step 3.- Apply half of the gravitational and expansion update to the fields that require it, to 

obtain the temporary state (; = (p, Pt~tal' "EM' 13;;) 

-n n b.tn an n b.tn 1 n+l /2 
YBM Y BM - ---YBM - ---g (A 7) 

2 an 2 an 
n b.tn 21in npet p ---p (A8)2 an 

_ t5tn 
lin BEn B n (A9)c c 4 an C 

U (p, Pt~tal ' "EM ' 13~) (AlO) 

Step 4. Compute interface states at i ± ~,n + ~ using linear spatial reconstruction and second 
order time integration: 

n+ 1 n+l - - - ­
U. l2 L ,U l2R<==Ui-l,Ui,Ui+l,Ui+2 (All)

2+ 2 , 2+ 2 , 
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Step 4. Compute approximation of the flux in equation 15 at the interface i + ~. This is done 

by solving the Riemann problem using one of the solvers mentioned in section 2.5 

. n~ _. n+~ n+~
F 1 - R2emann(U. 1 L' U. 1 R) (A12)

t+ 2 t + 2 , t + 2 · 

Step 5. Update the conserved quantities with the new fluxes: 


n+1 _ n 6.t · •
(Vi ) M HD - Vi - ~[Fi+1 - Fi_.d (A13) " 
L.l.X 2 2 

Step 5. Compute Electric field from Fluxes 

E n+z 
1 

{== F
, 

1 (A14)"+1 +1t 2 ,] 2 t+ 2 

Step 5.-Gravitational step for the baryonic matter, with time centered density 

( n + n+1 )
n+1 ) ( n+1 ) 6. n P PMHD n+1/2( (A15)P i,BM MHD ,Grav = Pi ,BM MHD - t 2 9i 

Step 7.-Expansion step for the baryonic matter , 

1 - (6.tnj2)(an+1/2jan+1/2)
( n+1) _---'-_-'----''--'---:---='"__~ (vn+ 1 )
VBN! MHD,Grav,erp (A15)1 + (6.tn j 2)(an+1/2jan+1 /2) BM MHDGrav 

1 - (6.tn)(O,n+1/2j an+1/2) n+1pn+1 (A17)1 + (6.tn) (O,n+1/2 j an+1 /2) (p ),.4 H D 

Step 8. Recurse to finer grids. Integrate fine grids from tn to tn +1 


vn+1 V n 
 (A18)FineGrids {== FineGrids 

Step 9.-Flux correction step for conserved baryon field quantities 


vn+1 <== (pn+1 /2 ) (pn+1/2) " " Vn+1 
 (A19)A4HD,Grau,expljc ' , F'l,neGr'ldSl NIHDGrav,exp 

Step 10.-Project conserved baryon field quantities and electric field from fine grids to coarse 

grids. This is done after the flux correction step to avoid any bookkeeping errors. The average is 

taken over 6.tn and the surface of each FineGrid. 

v n +1 vn +1 
ParentGrid - < FineGrid >t,sur face (A20) 
n+1 n+~ 

E Par~ntGrid = < EFineGrid >t,surface (A2l) 

Step 8.-Update magnetic fields from electric fields , 


Bn+1 - B n _ 6.t v x En+~ 
 (A22)f - f a ParentGrid 
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Step 9. Apply expansion to the Face Centered Fields 

B n + 1 1 - (6.tn j 4)(an+] / 2 j an+ 1/ 2 ) n+1 
(A23)

J,ex p 1 + (6.tn j 4) (an + 1/ 2 j an+1 / 2) (BJ ) 

Step 10. Compute cell centered magnetic field from face centered (with the expansion subscript 

from step 9 dropped for c1ari ty) 

Bn+1. = 0.5 * (B . I· + B .' I . )c,X,t,),k J,X,t+'2,),k J,X,t-'2,),k 

Bn+1 . = 0.5 * (B .. I + B .. 1 ) (A24)c,y,l,) ,k J,y,t')+'2,k J,y,l,) - '2 ,k 

1B n + . = 0 5 * (B .. 1 + B .. 1 ) C,z ,l ,) ,k . J,z,t,),k+'2 J,z, t ,) ,k-'2 

Step 11. vVe have now finished an update of this level. Rebuild the hierarchy from this level 

down. 

vn +1 1 
New FineGrids ¢== vn+ (A25) 

Bn +1 n 1 
J ,New FineGrids ¢==BJ+ (A26) 
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B. AMR MHD Reconstruction 

B.l. Hydrodynamic Reconstruction 

I don't have any idea how the hydro reconstruction works. I've never looked into it. I prohably 

should, before the paper comes out. 

B.2. MHD Reconstruction 

For completeness, we will briefly outline the AMR reconstruction used in EnzoMHD. The reader 

is encouraged to see the details in the original paper by Balsara (2001). 

In this appendix, we have dropped the subscript f from the face centered fields, as the face 

centered field is the only one in question. 

13alsara's reconstruction method for the magnetic field is a 3 dimensional , quadratic recon­

struction of all 3 vector fields simultaneously. If we let b he the polynomial fit to the discrete face 

centered field field B, the general reconstruction is 

bx(x, y, z) = ao + axx + ayY + azz + axx x2 + axyxy + axzxz 	 (TIl) 

by(x, y, z) = bo + bxx + byY + bzz + bxyxy + byyy2 + byzYz (B2) 

2bz(x, y , z) = CO + cxx + Cyy + CzZ + Cxzxz + Cyzyz + czz z	 (133) 

The coefficients are found by the following constraints: 

1. 	 The analytic reconstruction should be divergence free. 

2. 	 At the faces of the parent cell, the reconstruction should reduce to a bilinear reconstruction, 

where the slopes are monotonized with the min mod slope limiter. For instance, 

,0. x ,0.y B x,i+4 ,0.zBx,i+4 
bx(x=-2 , y)=Bxi+!Jk+ ,0. y+ ,0. z (B4) 

, 	 2 " Y z 

where 

,0.yB x t'+! = minmod(Bx ;+1 J'+ l - Bx i+1. J', Bx i+1. J' - Bx i+1 J-1) (135)
, 2 	 l' 2 ' · 1 2' ' 2 ' 1 2' 

X, Ixl < Iyl and xy > 0 

minmod(x, y) = y , Iyl < Ixl and xy> 0 (B6) 
{ 

0, xy < 0 
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The minmod slope is used in order to minimize oscillations. Area weighted averages over these 

polynomials are then used to assign the fine grid values. 

Often , a fine grid patch will encroach on unrefined territory. This results in the refinement 

of coarse zones that a.) share a face with fine grids but b.) don't have corresponding fine grids 

of their own. Balsara refers to this as "Prolongation" of the fine grid. To avoid generating any 

divergence at the boundary of the face, the interpolation polynomials need to match the old fine 

data. The interpolation equations above (eqns 131 - B3) do not have enough degTees of freedom to 
accommodate that many data points . In this case, Balsara describes a new polynomial that DOES 

have enough degTees of freedom, by adding 3rd order cross terms to equations Bl - 133: 

2bx(.x, y , z) =ao + axx + ayY + azz + a.rxx + axyxy + axzxz 

+ ayzYz + axyzxyz + axxzx 2 z + axxyx 2Y (B7) 

by(x, y, z) =bo + bxx + byy + bzz + bxy xy + byyy2 + byzyz 

+ bxzxz + byyzy2 Z + bxyzxyz + bxyy xy2 (138) 

bz(x, y, z) =co + cxx + Cyy + czz + cxzxz + Cyzyz + czz z 2 

+ cxyxy + Cyzzyz2 + +Cxzzxz2 + cxyzxyz (B9) 

The yet undetermined coefficients are found by matching the polynomial to a bilinear fit on 
the face : 

b.x b.yBx,i+~ tJ.ZBx,i+~ b.yzBx,i+~
b(.x=- , y,z) = Bxi+'!')"k+ b. y+ b. z+ b. b. yzp (1310)

2 ., 2" Y z Y z 

and now the finite differences are taken from the finest gTid: 

b.yzBX,i+~ = 4((Bx,i+~,j+~ ,k+~ - Bx,i+~ ,j-~,k+~)-

(Bx i+l )"+l k-l - Bx i+.!. )_.!. k-l)) (Bll)
) 2' 2' 2 ' 2' 2 1 2 

b. B " I = (( B " I " I k I - B " I " I k+ t) +y X,2+2 X,2+ 2')+2' +2 x,z+2')-2' 2 

(B " I I k I - B . I " I k I)) (BI2)x,z+2')+2' -2 x,z+2')-2' "-2 

where B is the field on the fine grid. Note that since this is now a centered difference , the minmod 
slope limiter is not used. 
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B.3. Implementation in Enzo 

In order to avoid complicated book keeping routines to determine which cells are being Pro­
longed into, and from which direction, we formulate only one interpolation polynomial, given by 

equations B7-B9. The necessary finite differences for a given refinement region are taken from the 

finest data available, as in equations 1311 and 1312. The last four terms in each reconstruction 

polynomial are there exclusively to ensure consistency of Old Fine Grid Data, so for faces that have 

no Fine Data before the reconstruction, these are set to zero. Since the reconstruction polynomial 

exactly matches the old fine grid data, this aJso eliminates the need to copy the old fine grid data 

to the newly refined patch. 
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C. Flux Correction 

At any given time in an AMTI simulation, there are points in space that are described by 

more than one data structure. In a finite volume hydro calculation, with cell centered data fields, 

this occurs at the boundary between coarse and fine gTids in the Flux fields, F. In an AMR MHD 

calculation, with face centered magnetic fields, this occurs at the same boundary, in the face centered 

magnetic field, and the edge centered electric field . Ensuring consistency between data is vital for 

the conservation of quantities like mass, energy, momentum, and \7 . B. Flux Correction is essential 

for this consistency. 

C.l. Conservation Form 

I thought it would be useful to briefly describe the basic formulation of the methods used in 

Enzo and EnzoMHD before moving on to the flux correction mechanism. 

Take any conservative system, such as ideal MHD. It can be written in a differential form as 

oV + \7. F = 0 (C1)at 
where V and F are suitably defined , in our case by 15 and 16. Here we ignore any source terms. 

In finite volume methods, we store average quantities of V and F, and re-write the conservation 

law in Conservation Form, using the Fundamental Theorem and Stokes Theorem. Starting with 

eqn C1, and integrating, we get : 

t

It+.6.t 1oV 1+.6.t1
~dVdt = - F · dAdt (C2) 

. t v ut t A 

where the volume V is taken from the point (x,y,z) to (x + .6.x,y+.6.y,z+.6.z). Now let 

An 1 r ( n)
V =.6.V Jv V x, y, z, t dV (C3) 

- 1 1!FxJ+l JK = A F(x=I+- ,y,z)·xdydz (C4)A 
, 2" LJ.yLJ.X . .6.y ,.6.z. 2 

where i; is the unit vector in the x direction. Similar definitions apply Fy and Fz., and 

A ll -
Fx = - Fxdt (C5)
.6.t .6.t 

The averaging here was taken explicitly in two steps to emphasize that .6.x ,.6.y and .6.z are possibly 

functions of t, as the are in cosmological hydrodynamics . Putting this all together, we get the 
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equations in their final analytical form before oiscretization (also the last form we'll be using here) 

, l ' 1 ' ,
V n V n+ = - 6.t(-(F 1 - F 1 )+I,J,K I ,J,K 6.x x.I+7.,J,K x,I-"2,J,K 

1 ' 
-(F 1 - F 

A 

1)+ (C6)6.y y,!,J+"2 ,K y./,J - 7. ,K 

1 A , 

F 1))-(F6.z z.I,J,K+"21 - z, I ,),K-"2 

Note that equation C6 is an exact equation, since only averages ano the funoamental theorem of 

calculus have been used up to this point. The trick in finite volume methods such as our MHD is 

finding finding appropriate approximations to P that are both accurate and stable. 

C.2. Conservation Form and AMR: Enter Flux Correction. 

As mentioned at the beginning of the section, an AMR simulation has multiple data structures 
representing a single point in space. In entirely cell centered cooes such as PPM, the only such 
instance is at the surface of a fine grid boundary, where both the fine grid and coarse grid represent 
the flux at that point. Moreover, after the fine grid field is projected into the coarse, there's a 

mismatch on the coarse grid itself as to the value of the flux at the surface. The value of that 

discrepancy can be easily found. After the projection, a coarse grid at a point (1, J) has the value 
(restricting to 2d, for clarity) 

vn+1 = '" qn+l
t,] (C7)I ,J L 

i=I± 
j=J± 

where lower case quantities denote the value of the fine grid data. Expanoing the time update for 
qn+l in space and time, we find that 

n+l "tm n+l 6.tm 
An+ 1 _ '" An _ '" '" _'-l jm 

A 

(C8)VI,J - L qi,j (L L 6. vm I+~ ,J+ - L L 6.vmf7'-~) 
i=I±~ m=n x,j=J±i m=nx,j=J±i 
j=J±~ 

- (y and z terms) (C9) 

By construction of the interpolation polynomial (ano projection at the last timesteps) the first term 

is just equal to VrJ' which means that, by equation C6 VI,) effectively sees, at the point 1 + ~, 

6.t n+l 6.tm ,A 

6.V Fx = L L 6.vmf;:~,j :=< fx > (CI0) 
m=n x,j=J±~ 

However, for the cell (1-1, J) depicted in figure (\Vorking on this figmp) , which has no corresponding 

fine grid flux, PJ+l come from the discretization method on the coarse grid. There is absolutely
2 

no reason for the two to match, so we have a discrepancy in the descriptions of the data. This can 
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be solved by simply replacing the less refined data that V1+1,J used with the more refined average, 

given by equation C10: 

A , A6.t ,,~ 6.tm jm 
(Cll)V1+1,J,jC = V1+1,J + 6.VFx,1+~ , J - L L 6.vm x ,1+~,j 

m 	 ] 

~ow every place Fx.! ,J show up in or method, the exact same approximation is used. 

C.3. Flux Correction and MHD 

A similar formalism to that described in C.1 is used for to advance the magnetic fields in 

EnzoMHD, but instead of using volume averages, we use area averages. The magnetic evolution is 

given by the induction equation: 
aB ­-	 = -\7 x E (C12)at 

When discretized, equation C12 yields the equation 

A 	 An+ 1 • n 6.t· 
B 1 = B . 1 - --(6.z(E I 1 J 1 K - Ell J-1 K)+ (C13)

x.I+ 2 .J x,l+2,J 6.y6.z Z, +2' + 2' Z, +2' 2' 

6.y(EYI+l JK+1 - EYI+l JK_1))) 2' l 2 ) 2)) 2 

where 
An 1 1l ­B 1 =-- Bx=! - n' 	 (C14)x,l+2,J,K 6.y6.z. A ( + 2' y , z, t ). xdydz 

A I I t
+t>.t 1 1­En 	= - -- E . dldt (CI5) 

. 6.t t 6.x x 

which is also exact, and the main problem is finding a suitable approximation for E. 

Again, after the area-weighted projection of the fine grid field bx into the coarse grid Bx , there's 

a discrepancy between the electric field at a refined point on the surface of a refined grid, as it's seen 

by both grids that have subgrids and grids that don't. In Balsara (2001), he suggests a similar flux 

correction mechanism to that of the standard hydro, described in C.2. However, due to an issue 

with the initial implementation of Flux Correction in Enzo (which has since been fixed), we chose a 

different route. In EnzoMHD, instead of projecting fine zones into coarse zones and then correcting 

zones in the coarse grid , we project as before, but then take the curl of the entire coarse grid. Thus, 

all coarse grid magnetic fields see the most accurate data at the same time, and no a-posteriori 

correction needs to be done. Where there are no subgrids, the coarse grid sees an electric field that 
comes from the CT module in section 2.7, and where there are subgrids it sees 

An 6.tn n+~ n+~
E . 1 . 1 k = --(e . 1 . 1 k 1 + e . 1 . 1 k 1)+

Z,l-2')-2 ' 6.t Z,l-2 ')-'j ' -4 ' Z,l-2')-'j ' + 4 

6.tn +2 
1 

n+~ n+.:1 
--- (e . 41 . 1 k 1 + e . 41 . 1 k+ 1 ) 	 (C16)

6.t Z,l-2')-2' -4 Z,l-2']-2' 4 
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While a complete flux correction treatment would potentially save on memory and flops, in practice 

the extra memory is negligible compared to the total memory and time used by the rest of Enzo , and 

the extra floating point operations done here are offset by increase cache utilization of the data, as 

the entire grid is done in a single stride one sweep instead of an essentially random access pattern. 



- 59 ­

REFERENCES 

Abel, T., Bryan, G. 1., & Norman, M. 1. 2000, ApJ, 540, 39 

- . 2002 , Science, 295, 93 

Anninos, P., Zhang, Y., Abel , T., & Norman, M. 1. 1997, New Astronomy, 2,209 

Balsara, D. S. 2001, Journal of Computational Physics, 174, 614 

Balsara, D. S. & Kim , .1 . 2004, Ap.J, 602 , 1079 

Balsara, D. S. & Spicer, D. S. 1999, Journal of Computational Physics, 149, 270 

Bardeen, .1. M., Bond, J. R, Kaiser, N., & Szalay , A. S. 1986, ApJ , 304, 15 

Berger, M. J. & Colella, P. 1989, Journal of Computational Physics, 82, 64 

Brackbill , .1. U. & Barnes , D. C. 1980, Journal of Computational Physics, 35 , 426 

Brio, M. & Wu, C. C. 1988, Journal of Computational Physics, 75, 400 

Bryan, G. 1., Machacek, M., Anninos, P ., & Norman, M. L. 1999, Ap.1 , 517,13 

Bryan, G. 1. & Norman , M. 1. 1998, ApJ, 495, 80 

Bryan, G. L., Norman, M. 1. , Stone, J. M., Cen, R, & Ostriker, J. P. 1995, Computer Physics 

Communications, 89, 149 

Carilli, C. 1. & Taylor, G. B. 2002, ARA&A, 40, 319 

Cen, R. & Ostriker, J. P. 1993, Ap.1, 417, 404 

Colella, P. & Woodward, P. R. 1984, Journal of Computational Physics, 54, 174 

Dedner, A., Kemm , F ., Kroner, D., Munz, C.-D. , Schnitzer, T., & Wesenberg, M. 2002, Journal of 
Computational Physics, 175, 645 

Dolag, K., Bartelmann, M., & Lesch, H. 1999 , A&A, 348, 351 

Evans, C. R. & Hawley, J. F. 1988, ApJ, 332, 659 

Gardiner, T. A. & Stone, J. M. 2005 , Journal of Computational Physics , 205, 509 

Hallman, E. .1., Motl, P. M., Burns, .1.0., & Norman, M. L. 2006, ApJ , 648 , 852 

Hockney, R & Eastwood, j. 1985, Computer Simulation Using Particles (McGraw Hill, New York) 

Iapichino, 1. & Niemeyer, J. C. 2008 , MNRAS, 388, 1089 



- 60­

.Jena, T., Norman, M. 1., Tytler, D., Kirkman, D., Suzuki, ~., Chapman, A., Melis, C., Paschos, 

P., O'Shea, B., So, G., Luhin, D., Lin, W.-C., Reimers, D., .Janknecht, E., & Fechner, C. 

2005, MNRAS, 361, 70 

Kim, J., Ryu, D., .Jones, T. W., & Hong, S. S. 1999, ApJ, 514, 506 

Kritsuk, A. G. & Norman, M. 1. 2002, Ap.J, 569, 1127 

-. 2004, ApJ, 601, L55 

Kritsuk, A. G., Norman, M. 1., Padoan, P., & Wagner, R. 2007, ApJ, 665, 416 

Li, S. 2005, .Journal of Computational Physics, 203, 344 

Li, S., Li, H., & Cen, R. 2008, ApJS, 174, 1 

Loken, C., Norman, M. 1., Nelson, E., Burns, .1., Bryan, G. 1., & Motl, P. 2002, Ap.J, 579, 571 

Mignone, A. 2007, .Journal of Computational Physics, 225, 1427 

Miyoshi, T & Kusano, K. 2005, AGU Fall Meeting Abstracts, B1295­

Motl, P. M., Burns, J. 0., Loken, C., Norman, M. 1., & Bryan, G. 2004, ApJ, 606, 635 

Norman, M. 1. 2005, in Backgroun.d Microwave Radiation and Intracluster Cosmology, ed. F. Mel­

chiorri & Y. Rephaeli, 1-58603 

Orszag, S. A. & Tang, C.-M. 1979, Journal of Fluid Mechanics, 90, 129 

O'Shea, B. W., Abel, T, Whalen, D., & Norman, M. 1. 2005, ApJ, 628, L5 

O'Shea, B. W. & Norman, M. 1. 2007, ApJ, 654, 66 

Powell, K. G., Roe, P. 1., Linde, T. .1., Gombosi, T I., & de Zeeuw, D. 1. 1999, Journal of 

Computational Physics, 154, 284 

Ryu, D., Ostriker, J. P., Kang, H., & Cen, R. 1993, Ap.1, 414, 1 

Xu, H., O'Shea, B. W., Collins, D. C., Norman, M. 1., Li, H., & Li, S. 2008, Ap.J, 688, L57 

This preprint was prepared with the AAS u\TEX macros v5.2. 


