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Charged pion form factor between Q2
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The charged pion form factor, Fπ(Q2), is an important quantity which can be used to advance our
knowledge of hadronic structure. However, the extraction of Fπ from data requires a model of the
1H(e, e′π+)n reaction, and thus is inherently model dependent. Therefore, a detailed description
of the extraction of the charged pion form factor from electroproduction data obtained recently
at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this
procedure. Results for Fπ are presented for Q2=0.60-2.45 GeV2. Above Q2 = 1.5 GeV2, the Fπ

values are systematically below the monopole parameterization that describes the low Q2 data used
to determine the pion charge radius. The pion form factor can be calculated in a wide variety
of theoretical approaches, and the experimental results are compared to a number of calculations.
This comparison is helpful in understanding the role of soft versus hard contributions to hadronic
structure in the intermediate Q2 regime.

PACS numbers: 14.40.Aq,13.40.Gp,13.60.Le,25.30.Rw,11.55.Jy

I. INTRODUCTION

There is much interest in trying to understand the
structure of hadrons, both mesons and baryons, in terms

of their constituents, the quarks and gluons. However,
this structure is too complicated to be calculated rig-
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orously in Quantum Chromodynamics (QCD) because
perturbative QCD (pQCD) methods are not applicable
in the confinement regime. Chiral Perturbation Theory
can give valuable insights, but it is limited to small val-
ues of the photon virtuality Q2. Hence, in the inter-
mediate Q2 regime one has to resort to models like the
constituent quark model or methods employing Light-
Cone (LC) dynamics or the Bethe-Salpeter (plus Dyson-
Schwinger) equation, or to other approaches such as the
use of dispersion relations or (QCD or LC) sum rules.

Transitions and (transition) form factors are crucial
elements for gauging the ideas underlying these QCD-
based models. For example, the constituent quark model
gives a fairly good description of the meson and baryon
spectrum and some transitions, but quark effective form
factors are typically required when describing hadronic

form factors in the experimentally accessible Q2 region.
In this framework, the study of hadronic form factors
can thus be viewed as a study of the transition from
constituent to current quark degrees of freedom. As ex-
emplified by the many calculations of it, the electric form
factor of the pion, Fπ, is one of the best observables for
the investigation of the transition of QCD effective de-
grees of freedom in the soft regime, governed by all kinds
of quark-gluon correlations at low Q2, to the perturba-
tive (including next-to-leading order and transverse cor-
rections) regime at higher Q2.

In contrast to the nucleon, the asymptotic normaliza-
tion of the pion wave function is known from pion decay.
The hard part of the π+ form factor can be calculated
within the framework of pQCD as the sum of logarithms
and powers of Q2 [1]

Fπ(Q2) =
4πCF αs(Q

2)

Q2

∣
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[1 + O(αs(Q
2), m/Q2)], (1)

which in the Q2 → ∞ limit becomes [1, 2]

Fπ(Q2)−−−→Q2
→∞

16παs(Q
2)f2

π

Q2
, (2)

where fπ = 93 MeV is the pion decay constant [3].
Because the pion’s q̄q valence structure is relatively

simple, the transition from “soft” (non-perturbative) to
“hard” (perturbative) QCD is expected to occur at sig-
nificantly lower values of Q2 for Fπ than for the nucleon
form factors [4]. Some estimates [5] suggest that pQCD
contributions to the pion form factor are already signifi-
cant at Q2 ≥ 5 GeV2. On the other hand, a recent analy-
sis [6] indicates that non-perturbative contributions dom-
inate the pion form factor up to relatively large values of
Q2, giving more than half of the pion form factor up to
Q2=20 GeV2. Thus, there is an ongoing theoretical de-
bate on the interplay of these hard and soft components
at intermediate Q2, and high quality experimental data
are needed to help guide this discussion.

In this work, we concentrate exclusively on the space-
like region of the pion form factor. For recent measure-
ments in the timelike region see Ref. [7]. At low values of
Q2, where it is governed by the charge radius of the pion,
Fπ has been determined up to Q2=0.253 GeV2 [8, 9] from
the scattering of high-energy pions by atomic electrons.
For the determination of the pion form factor at higher
values of Q2, one has to use high-energy electroproduc-
tion of pions on a nucleon, i.e., employ the 1H(e, e′π+)n
reaction. For selected kinematic conditions, the longi-
tudinal cross section is very sensitive to the pion form
factor. In this way, data for Fπ have been obtained for
values of Q2 up to 10 GeV2 at Cornell [10, 11, 12]. How-
ever, those data suffer from relatively large statistical

and systematic uncertainties. More precise data were ob-
tained at the Deutsches Elektronen-Synchrotron (DESY)
[13, 14]. With the availability of high-intensity electron
beams, combined with accurate magnetic spectrometers
at the Thomas Jefferson National Accelerator Facility
(JLab), it has been possible to determine L/T separated
cross sections with high precision. The measurement of
these cross sections in the regime of Q2=0.60-1.60 GeV2

[Experiment Fpi-1 [15, 16]] and Q2=1.60-2.45 GeV2 [Ex-
periment Fpi-2 [17]] are described in detail in the pre-
ceding paper [18]. In this paper, it is discussed how to
determine Fπ from measured longitudinal cross sections,
the values determined from the JLab and DESY data are
presented, and the results of various theoretical calcula-
tions are compared with the experimental data.

Since the pion in the proton is virtual (off its mass-
shell), the extraction of Fπ from the measured electropro-
duction cross sections requires some model or procedure.
In the next section, the methods that have been used to
determine Fπ from the data are discussed. Section III
presents the adopted extraction method and the values
of Fπ thus determined, including a full discussion of the
uncertainties resulting from the experimental data and
those from the adopted extraction procedure. Various
model calculations of Fπ are discussed and compared to
the data in section IV. In the final section, some conclu-
sions are drawn and an outlook for the future is given.
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II. METHODS OF DETERMINING THE PION

CHARGE FORM FACTOR FROM DATA

The measurement of the pion form factor is challeng-
ing. As stated in the introduction, at low Q2 Fπ can be
measured in a model-independent manner via the elastic
scattering of π+ from atomic electrons, such as has been
done up to Q2=0.253 GeV2 at Fermilab [8] and at the
CERN SPS [9]. It is not possible to access significantly
higher values of Q2 with this technique because of limi-
tations in the energy of the pion beam together with the
unfavorable momentum transfer. Therefore, at higher
values of Q2 Fπ must be determined from pion electro-
production on the proton. The dependence on Fπ enters
the cross section via the t-channel process, in which the
incident electron scatters from a virtual pion, bringing it
on-shell. This process dominates near the pion-pole at
t = m2

π, where t is the Mandelstam variable. The phys-
ical region for t in pion electroproduction is negative, so
measurements should be performed at the smallest at-
tainable values of −t. To minimize background contribu-
tions, it is also necessary to separate out the longitudinal
cross section σL, via a Rosenbluth L/T(/LT/TT) sepa-
ration [19].

The minimum physical value of −t, −tmin, is non-zero
and increases with increasing Q2 and decreasing value of
the invariant mass, W , of the produced pion-nucleon sys-
tem. Carlson and Milana [20] have estimated an approxi-
mate upper limit for the value of −tmin of the data appro-
priate for the extraction of the pion form factor by study-
ing the competing non-pole QCD processes, which may
complicate the extraction of Fπ at higher Q2. They found
that the background ratio MpQCD/Mpole rises dramati-
cally once −tmin > 0.20 GeV2. Their concern stemmed
from the large value of −t in some of the Cornell results,
which have −tmin > 0.4 GeV2 [12]. Therefore, reliable
Fπ measurements should be performed at smaller −t and
thus higher W (for a fixed Q2). The results presented in
this paper respect this −tmin < 0.20 GeV2 upper limit.
It is yet to be determined if reliable Fπ measurements
can be made in the future at larger −t.

The value of Fπ(Q2) can then be determined from the
data by trying to extrapolate the measured longitudi-
nal cross sections at small values of −t to the pole at
t = m2

π = 0.02 GeV2, or by comparing the measured lon-
gitudinal cross section at small values of −t to the best
available model for the 1H(e, e′π+)n reaction, adjusting
the value of Fπ in the latter. The presence of the nucleon
and its structure complicates the theoretical model used,
and so an unavoidable implication of this method is that
the extracted pion form factor values are model depen-
dent. The differential cross sections σL versus t over some
range of Q2 and W are the actual observables measured
by the experiment. It is important to note that in all
cases the use of a model to extract Fπ is justified only if
the model correctly predicts the t-dependence and mag-
nitude of the σL data as well as the dependence on the
invariant mass W of the photon-nucleon system.

A. Chew-Low Extrapolation Method

Frazer [21] originally proposed that Fπ be extracted
from σL via a kinematic extrapolation to the pion-pole,
and that this be done in an analytical manner using the so
called Chew-Low extrapolation [22]. The used Born for-
mula is not gauge invariant [23], but in principle should
give Fπ , nonetheless, when extrapolating to the pole.

The last serious attempt to extract the space-like pion
form factor from electroproduction data via the Chew-
Low method was by Devenish and Lyth [24] in 1972.
Most of the data used were unseparated cross sections.
The extrapolation failed to produce a reliable result, be-
cause different polynomial fits that were equally likely
in the physical region gave divergent values of the form
factor when extrapolated to the pion-pole at t = m2

π.
Since then, the quality of the π+ electroproduction data-
set has improved immensely, and separated longitudinal
cross sections can now be used, avoiding the complica-
tions stemming from the other parts of the cross section.
Therefore, it has been suggested to us that it may be ap-
propriate to revisit the Chew-Low extrapolation method.

However, before trying this method on the new data, it
should be tested to see how reliably one can extrapolate
to the pole. We start with high precision σL ‘pseudo-
data’ generated as a function of −t with the VGL Regge
model. This model gives a fair to good description of
a wide body of pion photo- and electroproduction data
(see section II C). The kinematic conditions for the test
are Q2 = 1.594 GeV2 and W = 2.213 GeV, similar to
our Fpi-2 data. The input value of the pion form factor
in the model was Fπ = 0.244. The model σL cross sec-
tions were then used in a Chew-Low type extrapolation,
with the challenge being to see if the Chew-Low extrap-
olation is able to reproduce (within fitting uncertainties)
the input Fπ-value.

The basis of the Chew-Low method is the Born-term
model (BTM) formula for the pion-pole contribution to
σL. We use the BTM of Actor, Korner and Bender [25],
where pion-pole contribution to σL is given by

N
dσL

dt
= 4~c (egπNN)2

−t

(t − m2
π)2

Q2F 2
π (Q2), (3)

where e2/(4π~c) = 1/137 and N , which depends on the
flux factor used in the definition of dσL

dt , is given in our
case by

N = 32π(W 2−m2
p)
√

(W 2 − m2
p)

2 + Q4 + 2Q2(W 2 + m2
p)

(4)
[26, 27]. A monopole parameterization of the gπNN form
factor is typically used to determine its value at t-values
away from the pion-pole

gπNN(t) = gπNN(m2
π)
(Λ2

π − m2
π

Λ2
π − t

)

, (5)

where gπNN(m2
π) is the experimental value of 13.4 [28].

This is also the value used in the VGL calculations. We
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FIG. 1: (Color online) Linear (dotted), quadratic (dashed)
and cubic (solid line) extrapolations of F 2 to the pole as com-
puted from Eqn. 6. The boxes are a VGL Regge model calcu-
lation for σL at fixed W = 2.213 GeV and Q2 = 1.594 GeV2,
calculated with Fπ=0.244. The lower limit of the box range
is the kinematic endpoint of these Q2, W values, while the
upper limit is given by the t-range of our experiment. The
input Fπ value in the model is indicated by the bullet placed
at the pion-pole.

use the Λπ = 0.80 GeV result from the QCD Sum Rules
calculation by T. Meissner [29], but because of the ex-
trapolation to the pole the final result does not depend
significantly upon the value chosen.

For the Chew-Low extrapolation, one plots the value
of

F 2 =
N

4~c (egπNN )2
(t − m2

π)2

−Q2m2
π

dσL

dt
(6)

versus −t, which for a pure pole cross section gives
a straight line passing through the origin, with value
Fπ(Q2) at the pole (t = m2

π). Other contributions to the
cross section, which have to be present, because the pole
contribution alone is not gauge invariant, will change this
behavior, but since they do not contain the 1

(t−m2
π)2 fac-

tor, they will not influence the value of F 2 at the pole.
However, it is not a priori given that the behavior as
function of −t is linear, quadratic, or of higher order,
thus introducing a ‘model’ (extrapolation) uncertainty.

Values of F 2 for the generated pseudodata, together
with linear, quadratic and cubic extrapolations to the
pole are shown in Fig. 1. Also shown is the input form
factor value in the VGL model, plotted at the pion-pole.
Quadratic and higher-order extrapolations are almost in-
distinguishable and give a very good description of the
(pseudo)data, but miss the input value of Fπ . This was
true for all cases that were investigated, from Q2 = 0.60
to 2.45 GeV2, the deviation from the input Fπ-value be-
ing 6-15%, depending on the case and the order of the
extrapolation polynomial. Overall, there was no consis-
tent trend for the order of polynomial which was best
able to reproduce the input form factor value.

This study indicates that even if σL is very well known
over a range of physically-accessible t, the Chew Low ex-
trapolation yields inconsistent results. The extrapolated
result depends greatly upon the choice of quadratic cubic,
or higher-order function, which all give a very good de-
scription of the data in the physical region. This indicates
that the t-dependence of data in the physical region is in-
sufficient to uniquely constrain the extrapolation through
the unphysical region to the pole, even if the data have
small relative uncertainties. Furthermore, even though
modern data such as the JLab σL data are much more
precise than those previously available, they still com-
prise 4-6 t-bins only, each with statistical and systematic
uncertainties of 5-10%. Therefore, any polynomial ex-
trapolation of such data to the pole will be more unreli-
able than the pseudodata test case shown here. There-
fore, the Chew-Low extrapolation technique cannot be
used to reliably determine the pion form factor from a
realistic σL data set.

B. Early Extractions of Fπ

Brown et al. [30] at CEA were the first to embrace the
use of theoretical input to determine Fπ from their data.
They used the model of Berends [31], which includes the
dominant isovector Born term, with corrections for t val-
ues away from the pole by means of fixed-t dispersion
relations. This model was also used by Bebek et al. for
the analysis of the first two sets of Cornell data [10, 11].
The model gave a fair description of the data, but system-
atically underpredicted the LT term of the cross section
and the t-dependence of the data.

Until then, data were obtained at one (larger) value
of the photon polarization parameter ǫ only. In the
third Cornell experiment [12], data were taken at low
values of ǫ, so that in combination with the earlier data
an L/T separation could be performed at Q2-values of
1.19, 2.00 and 3.32 GeV2. The value of σT was found
to be substantially larger than predicted by Berends, es-
pecially at larger Q2. The values obtained for σL had
such large error bars that they were not used to deter-
mine Fπ. Instead, use was made of the observation that
within the experimental error bars the Q2-dependence
of the forward transverse cross section was satisfactorily
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reproduced by the Q2-dependence of the total virtual-
photoproduction cross section. Therefore, σT(Q2) was
parameterized with the overall scale as a free parameter,
and the parameterized values then used to subtract σT

from the measured unseparated cross sections to obtain
σL. These σL data at the lowest value of −t were used
to determine Fπ , assuming that σL is given there by the
t-channel one pion-exchange Born term. This was done
for all data obtained at CEA and Cornell. The uncer-
tainties in Fπ thus obtained and presented in Ref. [12]
are statistical ones only, and do not include the contribu-
tion from the uncertainty in the value of σT used in the
subtraction. Especially at the larger values of Q2, these
are considered to be substantial, as can be seen from Fig.
4 of Ref. [12].

The DESY experiments produced high-quality sepa-
rated cross sections at Q2 = 0.35 GeV2, W = 2.10 GeV
[13] and Q2 = 0.70 GeV2, W = 2.19 GeV [14]. Both of
these experiments used the generalized Born Term Model
of Gutbrod and Kramer [32] to determine Fπ . This
BTM incorporates t, s, and u-channel diagrams for the
γv + p → π+ +n reaction, giving a fair description of the
magnitude of the measured unseparated cross sections,
but failing to describe σTT and σLT. However, Gutbrod
and Kramer found that when treating the magnitude of
the nucleon form factor Gp

E(Q2) as a free parameter, a
much better description of the then available data was

obtained. In addition, they included a factor et/M2

in
order to improve the description of the t dependence of
the data. The justification given is that the nucleon is
far off its mass-shell, whereas the pion is near to its pole.
This generalized BTM gave a good overall description
of the DESY data. However, at Q2 = 0.70 GeV2, nu-
cleon form factors about 50% above their on-mass-shell
values were needed. The size of the modification needed
at Q2 = 0.35 GeV2 is not given.

C. Newer Models

More recently, two new models for the 1H(e, e′π+)n
reaction have become available.

In Refs. [23, 33], Vanderhaeghen, Guidal and Laget
(VGL) have presented a Regge model for pion production
in which the pole-like propagators of Born term models
are replaced with Regge propagators, i.e., the interaction
is effectively described by the exchange of a family of par-
ticles with the same quantum numbers instead of a single
particle. If the same vertices and coupling constants are
used, the Regge model and the BTM calculations agree
at the pole of the exchanged particle, but away from
the pole the Regge model provides a superior description
of the available data. For forward pion production, the
dominant exchanges are the π and ρ trajectories. These
determine the t-dependence of the cross section without
the use of a gπNN(t) factor. At low values of −t, as cov-
ered by this work, σL is completely determined by the
π trajectory, while σT is also sensitive to the ρ exchange

contribution. Since the t-channel π diagram is by itself
not gauge invariant, the s-channel (for π+ production) or
u-channel (for π− production) nucleon exchange diagram
was also Reggeized, to ensure gauge invariance of their
sum.

The VGL model was first applied to pion photopro-
duction [33] and later extended to electroproduction [23],
with monopole forms for the ππγ and ρπγ form factors:

Fπ,ρ(Q
2) = [1 + Q2/Λ2

π,ρ]
−1. (7)

Apart from the ππγ and ρπγ form factors, the model is
parameter free, as the coupling constants at the vertices
(such as gρπγ) are well determined by precise studies and
analyses in the resonance region. The model gives a good
description of the W - and t-dependences of then avail-
able π+ and π− photoproduction data, including the spin
asymmetries, and of the earlier electroproduction data.

The VGL predictions have been compared to our mea-
sured cross sections and the ones taken at DESY [13, 14]
in Ref. [18]. For the discussion in this paper, the data
for σL and σT are reproduced in Fig. 2, together with
the results of the model calculations. The VGL cross
sections were evaluated at the same W and Q

2
values

as the data, resulting in the discontinuities shown. The
values of Λ2

π shown are determined by the fitting of the
VGL model to the measured σL-values at the five values
of t at each Q2, resulting in values between 0.37 and 0.51
GeV2. The value of Λ2

ρ is more poorly known. Calcu-

lations with both Λ2
ρ=0.600 and 1.500 GeV2 are shown,

where the upper value is taken from the application of
the VGL model to kaon electroproduction [34].

The model gives an overall good description of our σL

data and those of [13, 14], but the description of the
t-dependence of the data is worse at Q2=0.60 and 0.70
GeV2. The poorer description of the σL data by the VGL
model at lower Q2 and W may be due to contributions
from resonances, which are not included explicitly in the
Regge model. This is supported by the fact that the dis-
crepancy in the t-dependence of the σL data is strongest
at the lowest Q2 value, at higher Q2 the resonance form
factor supposedly reducing such contributions. The val-
ues of σT are severely underestimated, especially at larger
Q2, even when taking a hard ρπγ form factor. Since
the data at the real-photon point are well described, this
suggests that another mechanism, whose contribution in-
creases with Q2, is at play [35]. Recently the VGL model
was extended [36] by including a hard scattering between
the virtual photon and a quark, the latter hadronizing in
combination with the spectator diquark into a pion plus
residual nucleon. With plausible assumptions, a good
description of σT was obtained, with no influence on σL.
Those results support the idea that the discrepancy in
the magnitude of σT, which increases with Q2, and the
discrepancy in the slope of σL with −t, which decreases
with Q2, are not directly related. Strategies for deal-
ing with the latter discrepancy when extracting the pion
form factor are discussed in Sec. III.
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FIG. 2: (Color online) Separated π+ electroproduction cross sections σL [solid] and σT [open] from JLab and DESY in
comparison to the predictions of the VGL Regge model [23]. The error bars of the JLab data represent the combination of
statistical and t uncorrelated systematic uncertainties. In addition, there is an overall systematic uncertainty of about 6%,
mainly from the t correlated, ǫ uncorrelated systematic uncertainty. The VGL Regge model calculations for Q2=0.60-1.60
GeV2, W=1.95 GeV use Λ2

π=0.394, 0.372, 0.411, 0.455, GeV2, and those for Q2=0.35-2.45 GeV2, W ∼ 2.1 GeV use Λ2
π=0.601,

0.519, 0.513, 0.491 GeV2. The solid(dashed) curves indicate the Λ2
ρ=1.500(0.600) GeV2 value used.
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We also considered a modification to the VGL Regge
model published by J.M. Laget in 2004 [37]. Laget in-
troduces a t-dependent factor into the pion form factor
which is related to the pion saturating Regge trajectory,
approaching -1 as t → −∞. The effect of this modifi-
cation is to boost σT by 40% for the largest −t spanned
by our data (Q2=2.703 GeV2, −t=0.365 GeV2), and con-
verging with the unmodified calculation at small −t. The
effect on σL is under 1% for the largest −t covered by our
data, and is negligible at −tmin.

Another recent development is the effective La-
grangian model of Faessler, Gutsche, Lyubovitskij and
Obukhovsky (FGLO, Ref. [38, 39]). This is a modified
Born Term Model, in which an effective Lagrangian is
used to describe nucleon, pion, ρ and photon degrees of
freedom. The (combined) effect of s- and u-channel con-
tributions, which interferes with the pion t-pole, is mod-
eled using a constituent quark model. The authors show
that the ρ t-pole contribution is very important in the
description of the magnitude of σT. When comparing
vector and tensor representations of the ρ contribution,
the latter was found to give better results. Unlike the
VGL model, the σL cross section depends here also on
the ρ exchange, because of the interference of the π and
tensor ρ exchange contributions. The model contains a
few free parameters, such as the renormalization con-
stant of the Kroll-Ruderman contact term used to model
the s(u)-channel, and t-dependent strong meson-nucleon
vertices, which are parameterized in monopole form, as
are the electromagnetic form factors. The correspond-
ing parameters were adjusted so as to give overall good
agreement with our σL and σT data.

As in case of the VGL model, a detailed comparison of
the FGLO model results to the measured data is given in
Ref. [18], while the results for σL and σT are also shown
in Fig. 3. The values of Λ2

π used were determined by the
fitting of the model to the σL t-bins at each Q2, while
keeping the other parameters fixed at the values assigned
by the authors. In some cases, this results in different Λ2

π

values than shown in Ref. [39]. However, it should be
kept in mind that the FGLO model σL cross sections also
depend on other parameters, which have been adjusted
by the authors of the model to give good agreement to
our σL and σT data. To the best of our knowledge, the
Q2=0.7 GeV2 data of Ref. [14] were not taken into ac-
count when these parameters were determined.

Generally, the agreement of the FGLO model with the
σL data is rather good except for the Q2=0.60 [Fpi-1] and
0.70 GeV2 [14] measurements. There is a serious discrep-
ancy in the Q2- and W -dependence of the σT data. For
Q2 around 0.7 GeV2, the model agrees fairly well with the
data at W = 1.95 GeV, but it over-predicts the Q2=0.70
GeV2, W = 2.19 GeV data by a large factor. On the
other hand, for Q2=1.60 GeV2, the W = 1.95 GeV data
are under-predicted by about a factor of two, while those
at W = 2.22 GeV are reproduced, and the W = 2.22
GeV data for Q2=2.45 GeV2 are under-predicted again
by 20-60%. This indicates some problem in the descrip-

Q2 W Λ2
π Fπ

(GeV2) (GeV) (GeV2)

0.60 1.95 0.458 ± 0.031+0.255
−0.068 0.433 ± 0.017+0.137

−0.036

0.75 1.95 0.388 ± 0.038+0.135
−0.053 0.341 ± 0.022+0.078

−0.031

1.00 1.95 0.454 ± 0.034+0.075
−0.040 0.312 ± 0.016+0.035

−0.019

1.60 1.95 0.485 ± 0.038+0.035
−0.027 0.233 ± 0.014+0.013

−0.010

0.35 2.10 0.601 ± 0.060 0.632 ± 0.023

0.70 2.19 0.627 ± 0.058+0.096
−0.085 0.473 ± 0.023+0.038

−0.034

1.60 2.22 0.513 ± 0.033+0.052
−0.022 0.243 ± 0.012+0.019

−0.008

2.45 2.22 0.491 ± 0.035+0.045
−0.024 0.167 ± 0.010+0.013

−0.007

TABLE I: Λ2
π and Fπ values from this work, and the reana-

lyzed data from Refs. [13, 14] using the same method. The
first error includes all experimental and analysis uncertainties,
and the second error is the ‘model uncertainty’ as described
in the text. The total uncertainty is found by taking their
sum, in quadrature. Please note that in some cases the Λ2

π

value listed is different than the value used in Fig. 2.

tion of the Q2, W -dependences of the ρ exchange used
to describe σT. Because of the ρ − π interference, the
problems with the description of σT also affect the σL

calculation. This makes it hard to estimate how reliable
the values of Fπ would be if extracted from the data using
this model.

III. Fπ RESULTS

As already discussed, the separated cross sections ver-
sus t over some range of Q2 and W are the actual observ-
ables measured by the experiment, and the extraction of
the pion form factor from these data is inherently model
dependent. Ideally, one would like to have a variety of
reliable electroproduction models to choose from, so that
the model dependence of the extracted Fπ values can be
better understood. Since the VGL Regge model is able,
without fitted parameters, to provide a good description
of both π+ and π− photoproduction data, and of σL elec-
troproduction data over a range in W , t, and Q2, it is our
opinion that at the moment only this model has shown
itself to be sufficiently reliable to enable its use to extract
pion form factor values from the σL data. Therefore, we
will use this model to determine our Fπ values. Clearly,
the Fπ values determined are strictly within the context
of the VGL Regge model, and other values may result if
other, better models become available in the future.

A. W ≈ 2.2 GeV Data

As shown in Fig. 2, the VGL model does a good job
of describing the t-dependence of the σL cross sections
at W ≈ 2.2 GeV, Q2 =0.35, 1.60 and 2.45 GeV2. In
these cases, the extraction of the pion form factor from
the data is straightforward: the value of Λ2

π in the model
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FIG. 3: (Color online) Separated π+ electroproduction cross sections σL [solid], and σT [open] from this work and DESY [14]
in comparison to the FGLO effective Lagrangian model [39]. The data error bars and systematic uncertainties are as in Fig.
2. The solid (dashed) curves denote model calculations for σL (σT) with Λ2

π=0.405, 0.414, 0.503, 0.654, 0.386, 0.608 and 0.636

GeV2 (from upper left to lower right). The calculations were performed at the same W and Q
2

as the data, with straight lines
connecting the calculated values.
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is varied until the agreement of the model with the data

is optimized. The mean Q
2

and W values of the data
for each t-bin are used when evaluating the model. Fπ

is then calculated from Eqn. 7, using the best-fit Λ2
π and

the nominal Q2 values. These are listed in the last two
lines of Table I.

The experimental statistical and systematic uncertain-
ties were propagated to the Fπ uncertainties as follows.
The statistical and t, ǫ-uncorrelated systematic uncer-
tainties1 were applied to the σL data prior to the fitting of
the VGL model to the σL data. This yields the best-fit Λ2

π

value and its associated fitting uncertainty. The effects
of the t-correlated, ǫ-uncorrelated, and the t, ǫ-correlated
systematic uncertainties on the fit were determined by in-
vestigating the variation in Λ2

π values allowed by fitting
to the lowest −t bin only. Of these, the ǫ-uncorrelated, t-
correlated systematic uncertainty is amplified by 1/∆ǫ in
the L-T separation, while the t, ǫ-correlated uncertainty
is not. The resulting uncertainties are added in quadra-
ture to the fitting error, yielding the first Λ2

π uncertainty
listed in Table I. This value is also propagated to Fπ ac-
cording to the monopole parameterization, yielding the
first Fπ uncertainty listed.

In order to check if the extracted value of Fπ depends
on the t-range used, the VGL model (i.e., the value of
Λ2

π) was fitted separately to each σL point from Fpi-2
and DESY [13, 14], and the corresponding values of Fπ

determined. In order to remove the natural variation of
Fπ with the Q

2
of each bin, the nominal Q2 values were

used in the monopole equation. A plot of the obtained Fπ

versus t is shown in Fig. 4. Also indicated as the shaded
band is the Fπ value with the uncertainty that is obtained
if one fits to all of the t-bins simultaneously. Except
perhaps at Q2=0.70 GeV2, the data show no residual
t-dependence beyond the statistical fluctuation.

B. W = 1.95 GeV Data

As already shown in Sec. II C, the VGL model does not
fully describe the t-dependence of our σL data at W =
1.95 GeV. The difficulty, as far as the Fπ extraction is
concerned, is that there is no theoretical guidance for the
assumed interfering background not included in the VGL
model, even if one assumes that it is due to resonances.
Virtually nothing is known about the L/T character of
resonances at W = 1.95 GeV, let alone how they may
influence σL through their interference with the π-pole
amplitude. Given this lack of theoretical guidance, we are
forced to make some assumptions in extracting Fπ from
these data. Our guiding principle is to minimize these
assumptions to the greatest extent possible. The form
factor extraction method that we have adopted for these
data relies on the single assumption that the contribution

1 These uncertainties are described in detail in Ref. [18]

FIG. 4: (Color online) Fπ consistency check for the DESY and
Fpi-2 data at W ≈ 2.2 GeV. The solid squares indicate the
Fπ values that would be obtained if the VGL model was fit
to each σL point separately. The shaded band is the Fπ value
that is obtained if the model is fit to all of the t-bins. The
error bars and band reflect the statistical and t-uncorrelated
systematic uncertainties only.

of the background is smallest at the kinematic endpoint
tmin.

Our best estimate of Fπ for the W = 1.95 GeV data is
determined in the following manner. Using the value of
Λ2

π as a free parameter, the VGL model was fitted to each

t-bin separately, yielding Λ2
π(Q2, W , t) values as shown in

Fig. 5. The values of Λ2
π tend to decrease as −t increases,

presumably because of an interfering background not in-
cluded in the VGL model. Since the pole cross section
containing Fπ increases strongly with decreasing −t, we
assume that the effect of this background will be small-
est at the lowest value of |t| allowed by the experimental
kinematics, |tmin|. Thus, an extrapolation of Λ2

π to this
physical limit is used to obtain our best estimate of Fπ.
The value of Λ2

π at tmin is obtained by a linear fit to the
data in Fig. 5. The resulting Λ2

π and Fπ values for the
Fpi-1 data are listed in Table I. The first uncertainty
listed includes both the experimental and the linear fit
extrapolation uncertainties.

Since Fig. 4 suggests also a dependence (at larger −t)



10

FIG. 5: (Color online) Values of Λ2
π determined from the fit of

the VGL model to each t-bin, and linear fit to same. The error
bars reflect the statistical and t-uncorrelated systematic un-
certainties. The additional overall systematic uncertainties,
which were applied after the fit, are not shown.

between the VGL calculation and the Q2=0.70 GeV2

data of Ref. [14], this Fπ extraction method was also
applied to those data. The result obtained when extrap-
olating to tmin is listed in Table I. The value of Fπ(Λ2

π)
is 11(20)% larger than if the VGL model was simply fit
to all data points. Applying the same procedure to our
W = 2.22 GeV data, it was found that the resulting
values of Fπ(Λ2

π) would be 1(2)% larger, which is statis-
tically insignificant, confirming that the t-dependence of
those data is well described by the VGL model.

C. Model Uncertainty Estimate

The fact that we used an additional assumption for
the cases where the VGL model does not completely de-

scribe the t-dependence of the σL data causes an addi-
tional uncertainty in the extracted Fπ value, which we
term ‘model uncertainty’. This model uncertainty, which
is within the context of the VGL model, should be dis-
tinguished from the general model uncertainty discussed
in section II, which would result when using different
models. In order to make a quantitative estimate of this
additional uncertainty, the spread in extracted values of
Λ2

π (and thus Fπ) was investigated by assuming specific
forms of the interfering background missing in the VGL
model.

An effective upper limit for Fπ is obtained by assuming
that the background yields a constant, negative, contri-
bution to σL. For each value of Q2, this background and
the value of Λ2

π were fit together to the data, assuming
that the background is constant with t. The fitted con-
tribution of the background was found to drop strongly
with increasing Q2. A second possibility is to assume,
besides the VGL amplitude, a t-independent interfering
background amplitude, fitting for every Q2 the magni-
tude and phase of the latter, together with the value of
Λ2

π. Although the fitting uncertainties are very large,
the results suggest an interfering amplitude whose mag-
nitude decreases monotonically with increasing Q2. In
this case, the interference between the background am-
plitude and the VGL amplitude, which depends on their
relative phase, does not necessarily result in a net nega-
tive cross section contribution to σL.

The estimated model uncertainty is determined from
the spread of the Λ2

π values and their uncertainties at each
Q2, obtained with these two choices of background. To
keep the number of degrees of freedom the same in both
cases, the background was fixed to the value giving the
best χ2, and Λ2

π and its uncertainty were then determined
in a one-parameter fit of the VGL model plus background
to the data. Since the statistical uncertainties of the data
are already taken into account in the first given uncer-
tainty in Table I, the contribution of the statistical uncer-
tainties of the data were quadratically removed from the
Λ2

π uncertainties given by the fit. The model uncertain-
ties at each Q2 are then taken as the range plus corrected
fitting uncertainty given by these two methods, relative
to the value of Λ2

π determined from the extrapolation to
tmin. This procedure was applied to all data except those
of Ref. [13], yielding the model uncertainties listed as the
second (asymmetric) uncertainty in Table I. No model
uncertainty was calculated for the Q2=0.35 GeV2 data
from DESY because the t-range spanned by those data
(only 0.03 GeV2) was too small for this procedure to be
reliably applied.

For the W = 1.95 GeV data, the model uncertainty in
the extracted Fπ value drops from about 20% at Q2=0.60
GeV2 to about 5% at 1.60 GeV2. To be consistent, the
same procedure was applied to the W = 2.22 GeV data,
which yielded model uncertainties of about 5% at both
Q2=1.60 and 2.45 GeV2. These rapidly dropping uncer-
tainties with increasing Q2 reflect the smaller discrepancy
of the VGL calculation with the t-dependence of the data
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FIG. 6: (Color online) Q2Fπ data from this work, compared
to previously published data. The solid Brauel et al. [14]
point has been reanalyzed as discussed in the text. The outer
error bars for the JLab data and the reanalyzed Brauel et
al. data include all experimental and model uncertainties,
added in quadrature, while the inner error bars reflect the
experimental uncertainties only. Also shown is the monopole
fit by Amendolia et al. [9] as well as a 85% monopole+15%
dipole fit to our data.

at larger values of Q2 and W . These findings are at least
compatible with the idea that resonance contributions,
which presumably have a form factor that drops rapidly
with Q2, are responsible. They also suggest that our
Fπ extraction methods are robust, when the background
contribution is small, as appears to be the case at the
higher value of W .

D. Discussion and Comparison with Empirical Fits

The form factors extracted from the Fpi-1 and Fpi-
2 data with the use of the VGL model are shown in
Fig. 6, along with the reanalyzed Q2=0.70 GeV2 data
of Ref. [14], the elastic scattering measurements of Ref.
[9], and the Q2=0.35 GeV2 data of Ref. [13]. The Cor-
nell data of Refs. [10, 11, 12] are not included because,
as discussed in section II B, they have large unknown sys-
tematic uncertainties. The excellent agreement between
the Q2=1.6 GeV2 form factor values obtained from our
W = 1.95, 2.22 GeV data, despite their significantly dif-
ferent tmin and W values, indicates that the model uncer-
tainties from the use of the VGL model seem to be under
control, at least in this Q2-range. Also shown is a more
recently obtained value at Q2=2.15 GeV2 [40], which was
also extracted with the use of the VGL model.

The solid line shown in Fig. 6 is the monopole fit
obtained by Amendolia et al. [9] from their elastic scat-

tering data. This curve is given by

Fmono =
1

1 +
r2

monoQ2

6~2c2

, (8)

where r2
mono = 0.431 fm2 is their best-fit squared pion

charge radius. Fig. 6 indicates a systematic departure
of the data from the monopole curve above Q2 ≈ 1.5
GeV2. This departure may have implications for theoret-
ical approaches that assume the validity of the monopole
parameterization over a wide range of Q2.

To illustrate the departure from the monopole curve,
as well as to provide an empirical fit that describes the
data over the measured Q2 range, we also show in Fig 6
a fit which includes a small dipole component,

Ffit = 85%Fmono + 15%Fdip, (9)

where

Fdip =
1

(

1 +
r2

dip
Q2

12~2c2

)2
(10)

, and r2
dip = 0.411 fm2. This dipole parameterization

has nearly the same χ2 for the elastic scattering data as
the monopole curve shown [9], but it drops much more
rapidly with Q2. The combined monopole plus dipole fit
is consistent with our intermediate Q2 data, while main-
taining the quality of fit to the elastic scattering data.
Since a monopole parameterization does not converge to
the pQCD asymptotic limit (Eqn. 2), it is expected to fail
at some point. Similarly, we should expect this empiri-
cal monopole+dipole parameterization to show its limi-
tations when additional high Q2 data become available
[41].

IV. COMPARISON WITH MODEL

CALCULATIONS

The pion form factor can be calculated relatively easily
in a large number of theoretical approaches which help
advance of our knowledge of hadronic structure. In this
sense, Fπ plays a role similar to that of the positron-
ium atom in QED. Here, we compare our extracted Fπ

values to a variety of calculations, selected to provide a
representative sample of the approaches used.

A. Perturbative QCD

The most firmly grounded approach for the calcula-
tion of Fπ is that of pQCD. The large Q2 behavior of
the pion form factor has already been given in Eqn. 1.
By making use of model-independent dimensional ar-
guments, the infinitely-large Q2 behavior of the pion’s
quark wave function (distribution amplitude, or DA) is
identified as

φπ(x, Q2 → ∞) → 6fπx(1 − x) (11)
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whose normalization is fixed from the π+ → µ+νµ decay
constant. Eqn. 2 follows from this expression.

Neither of these equations is expected to describe the
pion form factor in the kinematic regime of our data, and
so much effort has been expended to extend the calcula-
tion of Fπ to experimentally accessible Q2. In this case,
the pion DA, φπ(x, Q2), must be determined at finite
Q2. Additional effects, such as quark transverse momen-
tum and Sudakov suppression (essentially a suppression
of large quark-quark separation configurations in elas-
tic scattering processes) must be taken into account. A
number of authors [42, 43, 44, 45, 46] have performed
leading-twist next-to-leading order (NLO) analyses of Fπ

at finite Q2. The hard contributions to Fπ expand as a
leading order part of order αs and an NLO part of order
α2

s.

Bakulev, Passek-Kumericki, Schroers and Stefanis [47]
have investigated the dependence of the form of the DA
on the form factors, using data from a variety of exper-
iments. These were the πγγ transition form factor data
from CLEO [48] and CELLO [49], as well as our Fπ data.
Their results are insensitive to the shape of the DA near
x = 1/2, while its behavior at x = 0, 1 is decisive. The
resulting hard contribution to the pion form factor is only
slightly larger than that calculated with the asymptotic
DA in all considered schemes. The result of their study,
shown as Fhard

π in Fig. 7, is far below our data. The drop

FIG. 7: (Color online) The Fπ data of Fig. 6 are com-
pared with a hard LO+NLO contribution by Bakulev, Passek-
Kumericki, Schroers and Stefanis [47] based on an analysis of
the pion-photon transition form factor data from CLEO [48]
and CELLO [49]. A soft component, estimated from a local
quark-hadron duality model, is added to bring the calculation
into agreement with the experimental data. The band around
the sum reflects nonperturbative uncertainties from nonlocal
QCD sum rules and renormalization scheme and scale ambi-
guities at the NLO level.

at low Q2 is due to their choice of infrared renormaliza-
tion, which is not necessarily shared by other calcula-
tions. To bring the calculation into agreement with the
experimental data, a soft component must also be added.
The treatment of the soft contribution to the pion DA is
model-dependent. The authors estimate this soft contri-
bution using a local quark-hadron duality model. This
soft estimate, along with the sum of the hard and soft
contributions, are also shown in Fig. 7.

The interplay at intermediate Q2 between the hard and
soft components can be non-trivial, as demonstrated by
Braun, Khodjamirian, and Maul [5], using a light-cone
sum rule approach. Their results support a pion DA
that is close to the asymptotic expression, but they find
that strong cancellations between soft terms and hard
terms of higher twist lead to the paradoxical conclusion
that the nonperturbative effects in the pion form factor
can be small, and the soft contributions large, simultane-
ously. Because of complications such as these, different
theoretical viewpoints on whether the higher-twist mech-
anisms dominate Fπ until very large momentum transfer,
or not, remain.

B. Lattice QCD

Unlike QCD-based models, in which confinement must
be explicitly added, Lattice QCD allows calculation from
first principles. However, while lattice QCD is based on
the QCD Lagrangian, it involves a number of approxima-
tions. Errors are introduced because space and time are
crudely discretized on the lattice. This error is controlled
by the use of improved lattice QCD actions. To allow a
more rapidly converging action, and hence reduce CPU
usage, the pion mass used is significantly larger than the
physical pion mass. Chiral extrapolation errors are in-
troduced when the lattice results, determined with large
pion mass, are extrapolated to physical values. Finally,
quenching errors are introduced when disconnected quark
loops are neglected.

The first lattice simulations of Fπ were done in the
1980’s [50, 51, 52]. These pioneering works were pri-
marily a proof of principle of the lattice technique, and
were restricted to Q2< 1 GeV2. These results are con-
sistent with the low Q2 experimental data, within the
large statistical uncertainties of these pioneering calcu-
lations. Spurred by advances in CPU power and lattice
techniques, as well as the availability of new experimental
data, a number of groups [53, 54, 55, 56, 57, 58, 59, 60,
61] have returned to the calculation of Fπ on the lattice.
Of these, we compare our data to the recent unquenched
simulations of Brommel, et al. [60]. They performed
simulations for a wide range of pion masses and lattice
spacings, so that both the chiral and continuum limits
could be studied. However, the lowest pion mass used
in the simulations was 400 MeV, so the chiral extrapola-
tion is significant. The authors fitted the Q2-dependence
of each lattice configuration with a monopole form for
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FIG. 8: (Color online) The Fπ data of Fig. 6 are compared
with the lattice QCD result of Ref. [60] and the dispersion
relation result of Ref. [64]. The lattice QCD band denotes
the statistical and chiral extrapolation uncertainties in the fit
monopole mass to the simulated data. The dispersion relation
uncertainty band reflects different assumptions on the distri-
butions of zeroes in the complex s-plane, with the ‘no zeroes’
curve lying close to the ‘minimum Fπ’ limit.

the pion form factor and determined the corresponding
monopole mass. They then extrapolated these masses to
the one corresponding to the physical pion mass to obtain
a chiral monopole mass value of 0.727± 0.016 GeV. The
(monopole) form factor calculated with that mass (in-
cluding its uncertainty) is indicated by the shaded band
in Fig. 8, cut off at the highest Q2 point of the lat-
tice simulation. This result begins to trend away from
the Q2 > 1.5 GeV2 experimental data. It remains to be
seen how these results would be affected by our Sec. III D
comments on the applicability of the monopole parame-
terization in this Q2 range.

C. Dispersion Relation with QCD Constraint

Dispersion relations are based on constraints posed by
causality and analyticity, and relate the timelike and
spacelike domains of the pion form factor on the com-
plex plane. In principle the technique is exact, but our
incomplete knowledge of the scattering amplitudes over
the whole complex plane, and in particular the incom-
plete understanding of the contribution of all of the poles
in the timelike region, creates uncertainties. Authors
address these uncertainties by imposing additional con-
straints, such as the role of higher timelike resonances like
the ρ′′′, or chiral perturbation constraints near the space-
like threshold, or that Fπ must approach its expected
asymptotic value at very large Q2 [62, 63, 64, 65, 66].

We compare the Fπ data to the dispersion relation anal-
ysis of B.V. Geshkenbein [64] in Fig. 8. The displayed
uncertainty band is obtained by assuming different dis-
tributions of zeroes in the complex s-plane. This results
in a band that grows with Q2, with the ‘no zeroes’ curve
lying nearly at the lower end of the band. Our highest
Q2 data lie above the ‘no zeroes’ curve, but below the
‘improved maximum Fπ’ limit.

D. QCD Sum Rules

The QCD sum rule approach is designed to interpolate
between the perturbative and non-perturbative sectors
using dispersion relation methods in combination with
the operator-product expansion. While the practical im-
plementation of this approach cannot claim to be rig-
orously derived from QCD, its intuitive value is that it
provides a bridge between the low- and high-energy prop-
erties of QCD [67]. A number of authors have applied
this technique with good success to the pion form factor
[5, 6, 68, 69, 70]. In the calculation of Radyushkin [69],
QCD sum rules were used to give a local quark-hadron
duality estimate of the soft wave function

F soft
π (Q2) = 1 −

1 + 6s0/Q2

(1 + 4s0/Q2)3/2
, (12)

where the duality interval, s0, which within the QCD
sum rule approach is determined by the magnitude of the
quark and gluon condensates, was taken as 4π2fπ2 ≈ 0.7
GeV2. This soft calculation, shown in Fig. 9, under-
estimates the data by about 25%. For the hard contribu-
tion, a simple model based on the interpolation between
the behavior near Q2 = 0 (related by the Ward iden-
tity to the O(αs) term of the 2-point correlator) and the
asymptotic behavior was used

Fhard
π (Q2) =

αs

π

1

(1 + Q2/2s0)
. (13)

The sum, F soft
π + Fhard

π , is in excellent agreement with
the data.

More recently, Braguta, Lucha and Melikhov [6] have
replaced the simple ansatz leading to Eqn. 12 with an ex-
pression including explicit corrections up to O(αs). Since
the higher-order corrections needed to apply these re-
sults with authority to the intermediate Q2 region are
beyond the capacity of their two-loop calculation, there
is a model dependence in their numerical result, which is
reflected in the two different curves for s0 = 0.65 GeV2

and s0 =
4π2f2

π

1+αs(Q2)/π shown in Fig. 9.

E. Bethe-Salpeter Equation

The Bethe-Salpeter equation (BSE) is the conventional
formalism for the treatment of relativistic bound states.
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In this formalism, a meson is described by a covariant
wavefunction, which depends on the four momenta of its
constituent quarks. Although formally correct, compli-
cations arise as the interplay between different configu-
rations, such as q-q̄ and q-q̄-g, are implicitly buried in
the potential and scattering amplitudes used in analyz-
ing hadronic processes, and as a result, these potentials
and scattering amplitudes are nearly intractable. The
light-front Bethe-Salpeter model is a means to handle
this problem by breaking the BSE into separate hard
and soft components. A variety of models incorporating
a confining potential which dominates at low Q2, and a
QCD-based interaction which dominates at high Q2, are
given in Refs. [71, 72, 73, 74, 75].

Another approach is to use the Dyson-Schwinger equa-
tion (DSE) to obtain dressed quark propagators which
may be used in the solution of the BSE. The Dyson-
Schwinger approach to nonperturbative QCD has many
advantages. It is consistent with quark and gluon confine-
ment, it automatically generates dynamical chiral sym-
metry breaking, and the solution is Poincare invariant.
In the work of Maris, Tandy, and Roberts, the meson
Bethe-Salpeter amplitudes and quark-photon vertex are
obtained as solutions of the homogeneous and inhomo-
geneous BSE, and the dressed quark propagators are ob-
tained from the quark DSE. The model parameters are
fixed by requiring fπ and mπ to be in good agreement

FIG. 9: (Color online) The Fπ data of Fig. 6 are compared
with the QCD Sum Rules calculations of Refs. [6, 69] and the
Bethe-Salpeter equation model utilizing dressed quark prop-
agators via the Dyson-Schwinger equation of Ref. [78] [long
dashed]. For the calculation of Ref. [69], three curves are
shown: [dotted] F hard

π , [short-dashed] F soft
π , and [solid] the

sum F soft
π + F hard

π . For the calculation of Ref. [6], two dot-

dashed curves are shown: [lower] s0 =
4π2f2

π

1+αs(Q2)/π
, [upper]

s0 = 0.65 GeV2.

with the data [76] and then rπ and Fπ are predicted with
no further adjustment of parameters [77, 78]. Their cal-
culation is shown in Fig. 9. It is in excellent agreement
with our data up to Q2=1.60 GeV2. To extend the va-
lidity of the model to higher Q2, a more complete de-
scription that takes meson loop corrections into account
self-consistently is required [78].

F. Local Quark-Hadron Duality

Quark-hadron duality relations link the hadronic struc-
ture information contained in exclusive form factors and
inclusive structure functions by making strong assump-
tions of locality [79]. While local quark-hadron duality
is an expected consequence of QCD at asymptotically
large momenta, it is not at all clear how well it could
work at finite Q2 [80]. And if it does, it may be due
to accidental cancellations of higher twist effects. Never-
theless, it is worthwhile to compare predictions based on
quark-hadron duality with the measured data, especially
since duality is expected to work better at higher Q2, in
contrast to many other approaches.

The approximate relationship between the pion elastic
form factor and the pion structure function Fπ

2 = νWπ
2

was found by Moffat and Snell [81],

[Fπ(Q2)]2 ≈

∫ ωmax

1

Fπ
2 (ω)dω, (14)

where ω = 1/x, and the upper limit of integration is
chosen to select the elastic contribution to the inclusive
structure function. In applying this formula use is made
of the Drell-Yan-West [82, 83] relation, which is based
on a field-theoretic parton model that predates QCD. It
predicts that if the asymptotic behavior of a form factor
is (1/Q2)n, the corresponding structure function should
behave as (1 − x)2n−1 as x → 1. This leads to the pre-
diction Fπ

2 (x → 1) ∼ (1 − x).
The existence of Drell-Yan Fπ

2 data allows a quantita-
tive test of Eqn. 14 using only phenomenological input.
Calculations [84, 85] based on the leading-order analysis
of Fπ

2 data by Ref. [86], and the next-to-leading order
analysis of Ref. [87], are shown in Fig. 10. In both
cases, the magnitude of the Fπ prediction is dependent
on the value chosen for the inelastic cutoff ωmax (and
corresponding Wmax) in Eqn. 14. Local duality is ex-
pected not to work at lower Q2. This is reflected in the
poor description of the Q2 < 1 GeV2 form factor data.
However, above Q2 > 2 GeV2, the next-to-leading order
analysis is consistent with our data.

G. Constituent-Quark Model

There are many Fπ calculations using a variety of
constituent-quark models [88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98]. The differences in approach typically involve
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FIG. 10: (Color online) The Fπ data of Fig. 6 are com-
pared with the local quark-hadron duality analysis of W. Mel-
nitchouk [84, 85], and the constituent quark model calcula-
tions of Refs. [92, 93]. For the duality calculation, two curves
are shown: [short-dashed] leading-order analysis of Ref. [84],
[long-dashed] next-to-leading order analysis of Ref. [85]. For
the quark model calculations by Cardarelli et al. [92], two
curves are shown: [upper dot-dashed] point-like quarks, [lower
dot-dashed] quarks with a monopole form factor.

differences in the treatment of the quark wave functions,
or the inclusion of relativistic effects. Fig. 10 shows the
result of calculations by Cardarelli et al. [92] and by
Hwang [93]. Both are relativistic quark models on the
light front. Ref. [92] uses the effective qq̄ Hamlitonian
of [99], which contains a one-gluon-exchange term and a
linear confining term, and which describes a large set of
meson spectroscopic data. Use of this interaction results
in large high-momentum components, and Fπ is strongly
overpredicted (upper dot-dashed curve in Fig. 10). This
can be cured in a way that is consistent with the no-
tion of a constituent quark, by assuming a form factor
for the latter. Taking a monopole form for the latter
and adjusting the mass parameter so that the measured
pion charge radius is reproduced, results in the lower dot-
dashed curve shown.

The model of Ref. [93] allows a consistent and fully
relativistic treatment of quark spins and center-of-mass
motion to be carried out. A power-law wave function is
used, whose parameters are determined from experimen-
tal data on the charged pion decay constant, the neutral
pion two-photon decay width, and the charged pion elec-
tromagnetic radius. The charge and transition form fac-
tors of the charged pion and the branching ratios of all
observed decay modes of the neutral pion are then pre-
dicted. The calculation is in very good agreement with
our Fπ data.

Li and Riska [100] asked if the empirical Fπ data ex-

clude the presence of a significant sea-quark configuration
in the charged pion. They performed a constituent quark
model calculation which was extended to include explicit
sea-quark components in the pion wave function. They
found that these sea-quark contributions grew with in-
creasing Q2, because they allowed the momentum trans-
fer to be shared by a greater number of constituents, and
so were less-suppressed at high Q2 than configurations
which involved only a q̄q pair. Although their analysis
was model-dependent, they found that our data allowed
an approximate 20±20% sea-quark component, with the
data point at Q2=2.45 GeV2 providing the greatest con-
straint.

H. Holographic QCD

A recent theoretical development is the AdS/CFT cor-
respondence [101] between weakly-coupled string states
defined on a 5-dimensional anti-de Sitter space-time
(AdS5) and a strongly-coupled conformal field theory
(CFT) in physical space-time. The goal of holographic
QCD models is to find a weakly-coupled theory for which
the dual strongly-coupled theory is as close to QCD as
possible, and so allow analytic solutions of hadronic prop-
erties in the non-perturbative regime to be performed.
In these models, confinement is simulated by imposing
boundary conditions on the extra fifth dimension z [102].
In the “hard-wall” variant, confinement is modeled by
a hard cutoff at a finite value z = z0 = 1/ΛQCD. This
has the advantage of simplicity but produces the unphys-
ical Regge trajectory M2

n ∼ n2. The “soft-wall” variant
replaces the hard-wall boundary with an oscillator-type
potential, and produces the more phenomenologically re-
alistic Regge behavior M2

n ∼ n.
Several authors have applied holographic models to

the pion form factor [103, 104, 105, 107]. Complica-
tions arise when one introduces spontaneous and explicit
chiral symmetry breaking effects into the soft-wall holo-
graphic QCD model. Refs. [104, 105] take different ap-
proaches to this problem. Grigoryan and Radyushkin
[105] consider only the hard-wall variant, and then es-
timate a soft-wall correction from their previous vector
meson study [106]. They conclude that a full analytic
calculation would likely follow the Fπ data only in the
Q2 < 1 GeV2 region, while overshooting it above Q2 ∼ 2
GeV2. The calculations by Kwee and Lebed [104, 107]
are numerical. Both the hard-wall and the soft-wall cal-
culations predict charge radii that are too small, espe-
cially for the soft-wall case (see Fig. 11). By allowing
the parameters of the soft-wall model (originally fixed
by mρ, mπ, and fπ) to vary, they find it is possible to
describe Fπ at either high Q2 or low Q2, but not both.
Issues in ongoing discussions [105, 107] on the AdS/CFT
approach include the applicability of this model to the
larger Q2 region where partonic degrees of freedom be-
come appreciable, and the treatment of chiral symmetry
breaking.
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FIG. 11: (Color online) The Fπ data of Fig. 6 compared with
the holographic QCD model calculations by H.J. Kwee and
R.F. Lebed [104]. The curves are: [solid] “hard-wall” and
[dot-dash] “soft-wall”, both with parameters fit to mπ, mρ

and fπ, and [dash] “soft-wall” with σ = 262 MeV to improve
the fit to Fπ at higher Q2 but destroying the agreement with
the other observables.

V. SUMMARY AND OUTLOOK

Values for the charged pion form factor, Fπ(Q2), have
been extracted for Q2=0.60-2.45 GeV2 from the longi-
tudinal cross sections σL(t) for the 1H(e, e′π+)n reaction
recently measured at JLab. Fπ values were also extracted
from older experimental data acquired at DESY. The
Cornell data are not included in this analysis because
these σL were not obtained in a true L/T-separation, but
instead by subtracting a certain assumption for σT. In
addition, the higher Q2 data have excessively large values
of −tmin.

The form factor extraction requires the use of a model
incorporating both the π+ production mechanism as well
as the effect of the nucleon. Several approaches to extract
Fπ from the data, including the Chew-Low extrapola-
tion method, various types of Born Term Models, and
newer models utilizing Regge trajectories and effective
Lagrangians, were reviewed. By using specially gener-
ated test data, it was found that extrapolating to the
pole at t = m2

π, as is done in the Chew-Low method,
cannot be used in practice, because there is no way to
determine the order of the polynomial to use for the ex-
trapolation, and because even small uncertainties in the
measured cross sections lead to a large uncertainty in Fπ.

From the models available for determining Fπ from
the measured values of σL, the VGL Regge model [23]
was chosen, since it contains no ad hoc parameters, and
its validity has been well established over a wide kine-
matic range in t and W for both electroproduction and

photoproduction data. The VGL model gives a rather
good description of both the t and the W dependence
of the JLab data at values of Q2> 1 GeV2, but espe-
cially at Q2 = 0.60 GeV2 the fall-off of the data with
−t is steeper than that of the model. In the cases where
the VGL model described well the t-dependence of the σL

data, the value of Fπ was determined by fitting the model
to the data. Otherwise, the value of Fπ was determined
by extrapolating the fit of the model to t = tmin. An ad-
ditional ‘model uncertainty’ has been estimated by using
two different assumptions for an interfering background
that could be responsible for this discrepancy between
the data and VGL model. The fact that the discrepancy,
and hence the model uncertainty, is very small at higher
values of Q2 and W suggests that effects from nucleon
resonances play a role in the data at lower Q2 and W .

It is stressed that the cross sections are the actual
observables measured by the experiment, and that the
extracted values of Fπ are inherently dependent on the
model used to extract them. The development of addi-
tional models for the 1H(e, e′π+)n reaction would allow
further exploration of the model dependence of the ex-
traction of Fπ from the same cross section data. On the
experimental front, proposed measurements [41] after the
completion of the JLab upgrade are expected to better
establish the validity of any used model by investigating,
for example, the W -dependence of the results.

The results for Fπ, extracted from our data and from
the DESY data with the use of the VGL model, are pre-
sented together with their experimental and model un-
certainties. Above Q2 ≈ 1.5 GeV2, these data are sys-
tematically below the monopole parameterization based
on the empirical pion charge radius. The data are
also compared to a selection of calculations, including
those based on pQCD, Lattice QCD, Dispersion Rela-
tions, QCD Sum Rules, Bethe-Salpeter Equation, Local
Quark-Hadron Duality, Constituent-Quark Model, and
Holographic QCD. There has been tremendous progress
in the theory of hadronic structure physics in the past
decade, as evident by the many new approaches under
development. However at present, the intermediate Q2

regime remains a significant challenge. Several different
approaches concur that up to at least Q2=2.5 GeV2, the
Fπ data are far above the estimated ‘hard’ (perturbative)
contribution, and that ‘soft’ (non-perturbative) contri-
butions likely dominate in this region. Data expected to
be taken [41] after the completion of the JLab upgrade,
up to at least Q2 = 6.0 GeV2, are expected to indicate
whether the higher-twist mechanisms dominate Fπ until
very large momentum transfer, or not.
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