' | | QONF—WO%W—J

Utilizing ORACLE tools within Unix

Ray Ferguson
Science Applications International Corporation

wpS.2
abstract # 136

Introduction

Large databases, by their very nature, often serve as repositories of data which may be needed by
other systems. The transmission of this data to other systems has in the past involved several layers
of human intervention. The Integrated Cargo Data Base (ICDB) developed by Martin Marietta
Energy Systems for the Military Traffic Management Command as part of the Worldwide Port
System provides data integration and worldwide tracking of cargo that passes through common-user
ocean cargo ports. One of the key functions of ICDB is data distribution of a variety of data files to
a number of other systems. Development of automated data distribution procedures had to deal with

the following constraints:

1. variable generation time for data files,

2. use of only current data for data files,

3. use of a minimum number of select statements,

4. creation of unique data files for multiple recipients,
5. automatic transmission of data files to recipients, and

6. avoidance of extensive and long-term data storage.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,
manufapturer, or otherwise does not necessarily constitute or imply its endorsement, recom- |
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof. DISTRIBUTION OF THIS DOCUMENT IS UNUI

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Variable Generation Time N
Procedures for the extraction, generation, and transmission of data files to recipients had to be

designed to be executed at variable intervals. The normal interval for execution is daily, but a means
was necessary to allow execution at other periodic intervals. The Unix CRON utility is used to
execute Unix script files at specified times. Changes to the CRON entry can be accomplished by use
of an ORACLE SQL*Forms screen. This screen reads and displays records from a table, crontbl,
with fields corresponding to the CRON entry. Users may change the frequency of execution of data
distribution procedures by changing screen values. Committing these changes updates the crontbl
table and executes the 'host' command. The host command executes a Unix script file which selects
the updated records from the crontbl table into a flat file. The Unix crontab command is then
executed using the flat file as new values for the CRON entry. Use of a SQL*Forms screen to alter
values in the CRON entry allows the user to change the frequency of execution of data distribution

procedures and to execute data distribution procedures at period of low system use.

Use Of Only Current Data
The ICDB journal table is updated each hour with transactions which have occurred against tables

in the ICDB. Data to be included in data files for data distribution comes from the journal table as
well as other ICDB tables. As journal records are received by ICDB, a record is inserted into a
pointer table, pointing to a unique record in the journal table. Both the journal record and the pointer
record contain a date field indicating the date the journal record was received by ICDB. This date
is an ORACLE sysdate value used in determination of length of time data is to be kept in the journal
and pointer tables. Since transaction data referenced by a journal record may be included in a variety
of data files for a variety of recipients, other flag fields are included in the pointer table to indicate

whether the transaction data has been included in particular data files. The flag fields are necessary

since some systems may wish to receive data at intervals other than daily. The flag fields identify
journal records which have been included in particular data files and prevent these data items from

being duplicated during future generation of data files for the same receiving system.

Minimum Number of Select Statements
Each instance of execution of data distribution procedures is via a Unix script file whose execution

is controlled by the Unix CRON utility. Data files to be generated contain data from several ICDB
tables. Since there are several types of data files to be created with each type containing its own
unique data set, a generic table, datatbl, is used to contain all data elements needed for all the files
to be generated. One function of the Unix script file is the execution of an ORACLE stored
procedure to select data into the datatbl. Using one stored procedure to select all the data needed
for all data files reduces the number of select statements with joins against multiple tables to a
minimum. Syntax within the Unix file needed to execute the stored procedure for data selection is
as follows:
sqlplus -s username/password << end > /dev/null

truncate table datatbl
/

exec select_procedure ($Sparameter] $parameter2 ...)

/end
This code will initiate a SQL*Plus session for the user and execute SQL*Plus statements until the
word 'end' is encountered. In this example, the datatbl is truncated, disposing of any records used
in generation of previous data files, and new data is selected by execution of the stored procedure.

The stored procedure uses the pointer tables described previously to determine which journal records

may be used in current data files. Using these pointer records, data is selected from ICDB tables into

the datatbl table. Execution of the stored procedure from within the Unix script file allows population
of the datatbl table with a wide range of values by using ORACLE'S PL/SQL procedural language

for data selection and manipulation.

Unique Data Files for Multiple Recipients
Each recipient receives a unique data file consisting of one or more sets of data selected on the basis

of predefined selection criteria. Table recip_address contains fields for the recipient name, the type
of data file to be received, and the electronic address to which the data file is to be transmitted. The
following syntax within the Unix script file will select records from the recip_address table into a

previously defined flat file, $recip_address, where the type of data file to be received is DAILY".

1 while read line

2 do

3 count=1

4 for word in $line

5 do

6 case $count in
7 1)

8 recipient=$word,
9 count=2;

10 I

11 2)

12 file_type=$word;
13 count=3;

14 5

15 3)

16 address=$word;
17 count=4;

18 5

19 esac

20 done

21 $datafile=$datafile.$recipient

22 gen_data_file $recipient $datafile

23 rcp $datafile $address > /dev/null 2>&1

24 find /home/storage -name "* $recipient” -ctime +7 exec m {}/;
25 done

Lines 1-20 select a row from the $recip_address file. Line 21 assigns the recipient's name as the
extension to a previously defined temporary file, $datafile, created at the beginning of the script file.
The Unix script file, gen_data_file, described in the following code section, executes code to select
the appropriate data for the particular recipient. Line 23 uses the Unix 'rcp' utility to electronically
transmit the data file to the recipient's address as determined by the $address variable. Line 24, the
Unix find command, is discussed in the Data Storage section of this paper. Syntax for the
gen_data_files script file is shown below.
if [$1 ="JCCO" ; then
select_data_typel.rpt $2
select_data_typeS.rpt $2
elsif [$1 = "ILC"], then

select_data_type2.rpt $2
select_data_type3.rpt $2

fi
The gen_data_files script file executes a series of if/elsif statements, and based on the recipient value
passed as parameter one, executes a unique Unix script file to select data for the recipient. Syntax

for a sample .rpt file is shown below.

sqlplus -s username/password << end >> §1

set ... (SQL*Plus set commands to set SQL*Plus environment)
select ... (Select appropriate data)

/

update ... (Update appropriate pointer table flags)
/ .
end

Each .rpt file will execute a select statement or statements to select the appropriate data from the

datatbl for the recipient. This data will be appended to the data file of the recipient as specified by

parameter one. After data has been selected, the update command updates flags in the pointer tables
for those records which have been used in the type of data file generated, preventing inclusion of this

data in future data files of the same type for the same recipient.

Data Storage
Numerous data files are generated each time the data distribution procedures are executed. Over a

period of time, data storage will become a problem without a means of limiting the period of time
data files are kept. The Unix find command shown in previous code will find and remove those data
files whose generation date is seven or more days prior to the current date.

Summary

This paper has presented some examples of how ORACLE tools may be used in conjunction with
Unix script files to automate data distribution procedures. The use of the Unix CRON utility allows
the execution of Unix script files at user-selected intervals. The ability to execute SQL*Plus
commands and stored procedures utilizing PL/SQL procedural language from within a Unix script
file provides the ability to automatically update tables, execute complex select statements and perform
data manipulations necessary for automation of the data distribution process. Use of the Unix 'rcp’
utility provides for the automatic transmission of data to other systems and the Unix 'find' and 'rm'

commands prevent excessive data storage. The ability to utilize ORACLE tools within a Unix script

file provides the user with many avenues toward process automation.

