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ABSTRACT

This report presents the results of 11 rotary shear tests conducted on replicas
of three hollow cylinders of natural fractures with JRC values of 7.7, 9.4 and
12.0. The JRC values were determined from the results of laser profilometer
measurements. The replicas were created from gypsum cement. By varying the water-
to-gypsum cement ratio from 30 to 45%, fracture replicas with different values
of compressive strength (JCS) were created. The rotary shear experiments were
performed under constant normal (nominal) stresses ranging between 0.2 and 1.6
MPa. In this report, the shear test results are compared with predictions using
Barton’s empirical peak shear strength equation. Observations during the
experiments indicate that only certain parts of the fracture profiles influence
fracture shear strength and dilatancy. Under relatively low applied normal
stresses, the JCS does not seem to have a significant effect on shear behavior.
As an alternative, a new procedure for predicting'the shear behavior of fractures
was developed. The approach is based on basic fracture properties such as
fracture surface profile data and the compressive strength, modulus of
elasticity, and Poisson’s ratio of the fracture walls. Comparison between
predictions and actual shear test results shows that the alternative procedure

is a reliable method.
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1.INTRODUCTION

In 1976 Barton proposed a failure criterion to estimate the peak
shear strength of rock joints in terms of the applied normal
stress, the strength of the joint surface material, and the joint

surface roughness. The criterion is expressed as follows

1, = 0, tan[ b+ JRC loglo( J(-’CSH, (1)
n

where 7, is the peak shear strength, o, is the applied normal
stress, ¢ is the basic friction angle, JRC is the joint roughness

coefficient, and JCS is the joint wall compressive strength.

The above formulation was studied extensively by Barton and Choubey
(1977) . Ten different scales of surface roughness were introduced
with JRC ranging between 0 and 20. The International Society for
Rock Mechanics (ISRM, 1981) suggested that these ten scales of
roughness be used as a standard to determine the JRC of natural

fracture surfaces.

Two remarks can be made regarding JRC. First, the ten roughness
scales were established based on the results of more than 100
direct shear experiments conducted on rock joints. In their paper,
Barton and Choubey concluded that the actual value of JRC for a
given joint could range between 0.5 and 2 times the values
estimated using the scales of roughness. Second, different
techniques recommended by Barton and co-workers to determine JRC
have been found to give different values of JRC for a same joint.
This was illustrated in an earlier report by Wibowo et al. (1994)
in the analysis of direct shear tests conducted on replicas of

fractures of welded tuff.

Because of its simplicity and despite its limitations, Barton’s

joint shear strength model has gained considerable acceptance in

the rock mechanics and practicing engineering communities. The




design and construction of the proposed repository at Yucca
Mountain depend, in part, on the accurate description and
subsequent modeling of the shear strength of rock joints. Barton’s
empirical model for rock joint strength has been considered for use
in this process. Due to the widespread acceptance of Barton’s model
and potential applications to the Yucca Mountain Project, Sandia
National Laboratories (SNL) proposed that the relationship among
JRC, JCS, and the geometrical and physical characteristics, which

the terms imply, be given careful scrutiny.

This report presents the results of 11 rotary shear tests conducted
on replicas of three hollow cylinders containing natural fractures
with JRC wvalues of 7.7, 9.4 and 12.0. The JRC values were
determined from the results of laser profilometer measurements. The
replicas were made from gypsum. By varying the water-to-gypsum
cement ratio from 30 to 45%, fracture replicas with different
values of JCS could be created. The rotary shear experiments were
performed under constant normal (nominal) stresses ranging between
0.2 and 1.6 MPa. In this report, the shear test results are
compared with predictions using Barton’s empirical peak shear
strength equation [equation (1)]. Observations during the
experiments indicate that only certain parts of the fracture
profiles influence fracture shear strength and dilatancy. Under
relatively low applied normal stresses, the compressive strength

(JCS) does not seem to have a significant effect.

As an alternative, a new procedure for predicting the shear
behavior of the fractures was developed. The analysis of twoc rough
surfaces in contact was replaced by the analysis of the composite
topography of the two surfaces against a flat and stiff surface
(Brown and Scholz, 1986). The asperities were assumed to have the
form of wedges that fail in a brittle manner (Byerlee, 1967). The
elastic displacement of the two surfaces was assessed by using
Hertzian contact theory. Two possible types of failures were
considered, i.e., sliding friction and shear, which are both
accounted for in Patton’s bilinear shear strength failure envelope

(Patton, 1966). As shear displacement progresses, the typé of
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failure can be determined, and the values of shear stress and
dilatancy can be predicted. The input data for this prediction
procedure include all basic material properties, i.e., fracture
surface roughness profile data, and the compressive strength,
modulus of elasticity, and Poisson’s ratio of the fracture walls.
Comparisons between the predictions and the actual rotary shear
test results indicate that the proposed alternative approach is a
reliable method for predicting the shear behavior of the tested

hollow cylinder fractures.

2. EXPERIMENTAL WORK
2.1 Experimental Matrix

Rotary shear tests were conducted on replicas of hollow cylinders
of natural fractures as shown schematically in Figure 1. The hollow
cylinders had inner and outer diameters of 51 mm and 76 mm,
respectively. Five natural fractures were selected with surfaces
having JRC values ranging between 0 and 20. The JRCs were
determined using a laser profilometer. The fracture replicas were
created from gypsum cement (Ultracal 30, produced by United States
Gypsum, Chicago, Illinocis). Due to time limitation, however, only
replicas of three fractures were fabricated with JRC values of 9.4,
7.7, and 12.0. Throughout this report, these fractures are referred
to as fractures #1, 2, and 4, respectively. For each fracture,
several replicas were made with water-to-gypsum cement ratios (by
weight) of 30, 35, 38, or 45% in order to model fractures with

different wall strengths and hardnesses.

Each gypsum fracture replica was identified using a four digit
number: the first digit refers to the fracture number, the second
and third digits refer to the water-to-gypsum cement ratio, and the
fourth digit refers to the replica number. As an example, a sample
with identification #1302 indicates that the sample represents
fracture #1, with a 30% water-to-gypsum cement ratio, and 1s the

second replica. A total of 11 rotary shear tests was conducted.
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Figure 1. Rotary direct shear on hollow cylinder fracture replica.

For the fracture replicas with a JRC of 9.4 and a water-to-gypsum
cement ratio of 30%, rotary shear tests were conducted under
constant normal stresses of 0.2, 0.4, 0.8, and 1.6 MPa (samples
#1301, 1302, 1303, and 1304). For the fracture replicas with JRC
values of 7.7 and 12.0, and a water-to-gypsum cement ratio of 30%,
rotary shear tests were performed under a constant normal stress of
0.4 MPa (samples #2301 and 4301). For fracture replicas with a JRC
value of 9.4 and water-to-gypsum cement ratios of 35, 38, and 45%,
rotary shear tests were conducted under a constant normal stress of
0.4 MPa (samples #1351, 1381, and 1451). In order to check the
consistency of the experimental procedure, two additional fracture
replicas with a JRC of 9.4 and a water-to-gypsum cement ratio of
30% were sheared under constant‘normal stresses of 0.4 and 0.8 MPa
(samples #1305 and 1306) . The overall experimental matrix is shown

in Table 1.




Table 1.
Experimental matrix.

Sample Fracture JRC Water vs. Normal

# # Gypsum Ratio Stress

' (%) (MPa)
1301 1 9.4 30 0.4
1302 1 9.4 30 0.8
1303 1 9.4 30 0.2
1304 1 9.4 30 1.6
1305 1 9.4 . 30 0.4
1306 1 9.4 30 0.8
1351 1 9.4 35 0.4
1381 1 9.4 38 0.4
1451 1 9.4 45 0.4
2301 2 7.7 30 0.4
4301 4 12.0 30 0.4

Prior to each rotary shear test, one cycle of normal loading and
unloading was performed. Also, the fracture surface hardness and
strength were assessed by indentation and Schmidt Rebound Hammer

tests.
2.2 Experimental Procedure
2.2.1 Laser Profilometer Scanning

The topography of the top and bottom surfaces of each natural
fracture was mapped wusing a non-contact laser profilometer
available in the SNL Geomechanics Division. This equipment
consists of a precision three-axis positioning system that moves a
laser distance measurement probe over a surface, then records the
variation in the surface height. The sensor used in this instrument
igs a non-contact laser head manufactured by Cyber-Optics, Inc. in
Minneapolis. A laser beam from a low-power He-Ne laser source is
directed normally onto the plane of the fracture surface. The
interception of the normally incident laser beam at the measured

fracture surface is focused onto a photo diode array via a 35 mm
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SLR camera. The optical axis of the lens is inclined by a small
angle to the laser beam from the He-Ne laser source. The elevation
of the measured point is given by simple geometric relations
through the position of the image on the photo diode array. A more
detailed discussion of this laser profile scanner can be found in
Huang et al. (1988). Each measurement consisted of three annular
(circular) profiles with radii of 29.25, 31.75, and 34.25 mm and
each profile consisted of 7,860 points with an interval of about

0.0254 mm.
2.2.2 Unconfined Compresgssion Tests

Unconfined compression tests were performed on gypsum cement
cylinders according to ASTM D 2938-86 specifications, with a
variety of water-to-gypsum cement ratios of 25, 30, 35, 38, and
45%, using a 980 kN MTS frame system available in the SNL
Geomechanics Division. The gypsum cylinders were 5.1 cm in diameter
and 10.2 cm in length. The bottom and top surfaces of the gypsum
cylinders were polished and parallel. Vertical displacements were
measured using Linear Variable Differential Transformers (LVDTs)
which are attached to the samples. The normal load was measured

using a load transducer.
2.2.3 Joint Wall Compressive Strength

Before conducting the rotary shear tests, the hardness of the
surfaces of each fracture replica was determined using indentation

and Schmidt Rebound Hammer tests.
Indentation Tests

Two indentation tests were performed by penetrating a sharp carbide
cone (indenter) into the smooth surface of each gypsum fracture
replica. The angle of the cone tip was 34.6°. The tests were
carried out using a 98 kN MTS frame. The rate of penetration of the
indenter was determined by the rate of loading of 0.1 kN/min. The

amount of penetration was measured using two LVDTs.

6




Schmidt Rebound Hammer Tests

Three Schmidt Rebound Hammer tests were performed on the smooth
surface of each gypsum fracture replica. The rebound numbers,
ranging between 10 and 60, were recorded for each test. The final

value of the rebound number was the average of the three readings.
2.2.4 Normal Compression Tests

Before conducting the rotary shear tests, each fracture replica was
subject to one cycle of normal loading and unloading to a maximum
load of 4.5 kN. The rate of loading (and unloading) was set at 1
kN/min. The tests were carried out using a 900 kN MTS system. The
vertical displacements were measured using two LVDTs attached to

the sample replica holders.
2.2.5 Rotary Shear Tests

The rotary shear apparatus consists of a load frame containing a
hydraulic rotary actuator in series with a hydraulic 1linear
actuator. The maximum torque capability is 7.0 kN-m, and the
maximum axial force is 900 kN. These actuators are independently
servo-controlled by 410 function generators and 442 controllers
from MTS Systems, Inc. After being subjected to one cycle of normal
loading and unloading, each fracture replica was compressed to its
preassigned normal stress for the rotary shear tests. The amplitude
of the rotation was 30° and the rotation rate was 0.5 °/min (one
cycle per hour). The top part of each fracture replica was fixed,
while the bottom part rotated. In each shear cycle, the bottom part
of the fracture vreplica was first rotated 30° in the
counterclockwise direction. Then, rotation was reversed 60° in the
clockwise direction. Finally, rotation in the counterclockwise
direction was applied to bring back the fracture replica to its
original position. The vertical displacements were measured with
two LVDTs. A more detailed discussion of the rotary shear procedure

can be found in Olsson (1987). The results were recorded using a




personal computer with a data acquisition system developed by
Holcomb and Jones (1983).

3. EXPERIMENTAL RESULTS
3.1 Profilometer Measurement Results
3.1.1 Profile Data

Three annular (circular)roughness profiles were recorded on the top
and bottom surfaces of each natural fracture. Figure 2 shows an
example for the bottom part of fracture #1. In this figure, the
annular axis is related to the angle of rotation (in degrees), and
the radial axis is related to the asperity height (in mm). In order
to present the three profiles in one figure more clearly, the
inner, middle and outer profiles are depicted with offsets of 15.0,
17.5 and 20.0 mm, respectively. Figure 2 indicates that the three
profiles are essentially similar. Other fracture profiles can be

found in Appendix A.
3.1.2 JRC Calculations

Because the JRC values could not be determined by tilt tests, they
were determined, instead, using the methods proposed by Tse and
Cruden (1979) and modified by Yu and Vayssade (1991). These authors
digitized Barton and Choubey’s standard profiles into several
hundred points and proposed an empirical regression equation
between the JRC and the Root Mean Square (RMS) of the first
derivative of the profile, Z,. Yu and Vayssade (1991) recommended

the following relation,

JRC = 60.32 % Z, - 4.51, (2)

for profiles with sampling intervals of 0.25 mm. In order to use

equation (2), all measured profiles were resampled to obtain
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similar profiles with 0.25 mm sampling intervals. The value of Z,

is defined as follows,

M(D,)

Z2 =J—_j:—22 (y1'+1 _yl‘)zl (3)

where M is the number of sampling intervals, D, is the interval
gize, and y; is the asperity height along the profile. The value of
JRC is then corrected for scale effect as suggested by Barton and

Bandis (1990), using the following empirical equation,

=

JRC, = JRC,

!

}—o.ozaRcb

0

where JRC, is the JRC value before correction corresponding to a
joint sample length L, of 100 mm and JRC, is the value of JRC after
correction for the actual length L, of the joint profiles. Table 2
gives a summary of the values of JRC for fractures 1 through 5. In
this table, JRC, is the average of the three JRC values calculated
for the top part of each fracture, and JRC, is the average of the
three JRC wvalues calculated for the bottom part of each fracture.

Also, JRC,,. is equal to 0.5 (JRC, + JRGCy).
3.2 Unconfined Compression Test Results

The uniaxial compressive strength of five different mixtures of
water and gypsum cement was determined. For each test, Young’'s
modulus and Poisson’s ratio were calculated from the average slope
of the stress-strain curves between 10 and 50% of the peak stress.

The results of the unconfined compression tests are reported in

Table 3.
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Table 2

Joint roughness coefficient calculation.

Fracture JRC, JRC, JRC, e
# (top) (bottom)
1 9.7 9.1 9.4
2 8.2 7.2 7.7
3 13.0 13.0 13.0
4 11.6 12.3 12.0
5 7.3 7.1 7.2

Table 3.

Unconfined compression test results.

Water/Gypsum Maximum Young’s Poisson’s

Ratio Stress Modulus Ratio
(%) (MPa) 10° (MPa)
25 47.2 16.6 0.27
30 63.4 16.3 0.27
35 49.2 16.0 0.25
38 29.7 15.3 0.24
45 23.2 12.4 0.24

3.3 Joint Wall Compressive Strength (JCS) Test Results
3.3.1 Schmidt Rebound Hammer Test Results
A correlation between the Schmidt Rebound Hammer number and the

unconfined compressive strength of the surface of the material was

given by Miller (1965, after Barton and Choubey, 1977),

log,,(6,.) = 0.00088yR + 1.01, (5)
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where o, is the unconfined compressive strength (MPa), vy is the dry
density of rock (kN/m’), and R is the rebound number. In Table 4,
the values of JCS = o0, determined using equation (5) are compared
with the values of the unconfined compressive strength reported in
Table 3.

Table 4 shows that JCS for the samples with water-to-gypsum cement
ratio of 30% is about 42% of the unconfined compressive strength.
For the samples with water-to-gypsum cement ratios of 35, 38, and
45%, the values of JCS are respectively 51, 75, and 80% of the
unconfined compressive strength. It can be concluded that the
empirical equation (5) developed for rocks is not suitable to

predict the unconfined compressive strength of gypsum-cement.

Table 4

Joint wall compressive strength using Schmidt Rebound Hammer.

Sample Dry Rebound Joint Wall Uniaxial
# Density, v | Number, R | Compressive Compressive

(kN/m?) (average) Strength, Strength
JCS (MPa) (MPa)
1301 18.0 25 25.5 63.4
1302 18.0 24 24 .6 63.4
1303 18.0 26 26.4 63.4
1304 18.0 26 26.4 63.4
1305 18.0 24 24.6 63.4
1306 18.0 27 27.4 63.4
1351 17.1 26 25.2 49.2
1381 16.7 23 22.3 29.7
1451 15.4 19 18.5 23.2
2301 18.0 29 29.5 63.4
4301 18.0 28 28.4 63.4

3.3.2 Indentation Test Results

The indentation tests were performed in order to evaluate the

hardness of the fracture replica surfaces. Hankins (1925, after
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Tabor, 1951) considered that there is an intrinsic yield pressure
(or hardness), H, which 1s independent of the shape of the
indentor. Figure 3 shows a cone of hard material indenting a
softer surface. According to Hankins, the value of the hardness, H

4

can be expressed as follows,

_ 4w 1
omd2\1 o+ ptana)' (6)

where W is the applied normal load in kilograms (about 45.4 kg),
d is the diameter of the impression in mm (d = 2ptana), p is the
depth of penetration in mm, p is the coefficient of friction
between the two materials (assumed here to be tan 20°), and 2« is

the angle of the cone tip.

|
e

,};

Figure 3. Schematic diagram of a conical indenter.

Table 5 gives the value of H for all the fracture replicas. The
value of surface hardness decreases as the water-to-gypsum cement
ratio increases. For water-to-gypsum cement ratios ranging between
30 and 45%, the hardness varies between 922.8 and 389.3 MPa.
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Table &

Indentation test results.

Sample Water/Gypsum Average Hardness, Unconfined
# Ratio Indentation H Compresgssive
(%) p (mm) (MPa) Strength

(MPa)
1301 30 1.24 829.6 63.4
1302 30 1.44 603.1 63.4
1303 30 1.31 736.5 63.4
1304 30 1.46 592.3 63.4
1305 30 1.44 620.8 63.4
1306 30 1.32 724 .7 63.4
1351 . 35 1.43 617.8 49 .2
1381 38 1.51 554.1 29.7
1451 45 1.80 389.3 23.2
2301 30 1.41 635.5 63.4
4301 30 1.17 922.8 63.4

3.4 Normal Compression Test Results

As an example, Figure 4 shows the response of sample #1302 to one
cycle of loading and unloading. Other normal load versus normal
displacement response curves can be found in Appendix B. Table 6
gives the values of the maximum normal displacement when the normal
load is equal to 4.5 kN for all the tested fracture replicas. As
expected, the weaker the material, the 1larger the maximum
displacement. The variations in Table 6 indicate the possibility
that during preparation, the bottom and top surfaces of some of the

fracture specimens may not have been exactly mated.

3.5 Rotary Shear Test Results

The relationship between the tangential shear stress and the
applied torque in each fracture plane is considered after full

establishment of slip, that 1is, when the torque is nominally

independent of the rotation (Olsson, 1987). The torque-shear stress
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Figure 4. Normal compression test result for sample #1302.

Table 6.

Maximum displacements during normal compression tests.

Sample Maximum
# Displacement
at 4.5 kN
Normal Load
(mm)
1301 0.06
1302 0.06
1303 0.08
1304 0.08
Y 1305 0.11
1306 0.08
1351 0.05
1381 0.10
1451 0.09
2301 0.07
4301 0.13
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relation has the same form as that of a fully-yielded plastic tube.

The tangential shear stress, 7, is calculated from

3T
2% (Ro - Rl)

where T,, is the applied torque during full sliding and R, and R; are
the outer and inner radii of the gypsum hollow cylinder,

respectively.

Typical shear stress versus slip (mean shear displacement) and
dilatancy versus slip (mean shear displacement) response curves for
sample #1301 are shown in Figures 5a and 5b, regpectively. This
sample has a water-to-gypsum cement ratio equal to 30% and was
tested under a constant normal load of 1 kN (or normal stress =
0.4 MPa). Figure 5a indicates that fbr forward (counterclockwise)
shear motion, a peak shear stress of 0.61 MPa occurs after a slip
of 0.79 mm (or a rotation of 1.4°). On the other hand, for reverse
(clockwise) shear motion, a peak shear stress of 0.48 MPa occurs
after a slip of -1.57 mm (or a rotation of 2.8°). The other rotary
shear test results can be found in Appendix C. A summary of the
peak shear strengths and peak slips for all fracture replicas can
be found in Table 7.

Comparison of the results of the rotary shear tests on samples
#1301 and #1305 (tests on two similar samples under similar
conditions) indicates that the wvalues of peak shear strength are
similar, but that the peak slips are slightly different. This could
be due to a small offset between the top and bottom surfaces of the
joint specimens which may have taken place during specimen
preparation. Comparison of the test results for samples #1302 and
1306 indicates that both peak shear strength and peak slip values

are guite similar.
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Figure 5. (a) Shear stress vs. slip, and (b) Dilatancy vs. slip
response curves for sample #1301 tested under a constant normal
stress of 0.4 MPa.
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Table 7
Values of peak shear strength and peak slip.

Forward Motion Reverse Motion
Sample o,
# (MPa) Tp Up Tp Up

(MPa) (mm) (MPa) (mm)
1301 0.4 0.61 0.79 0.48 1.57
1302 0.8 1.14 0.38 0.90 1.47
1303 0.2 0.38 0.74 0.29 0.51
1304 1.6 2.28 1.85 1.59 0.70
1305 0.4 0.59 0.38 0.47 0.54
1306 0.8 1.10 0.46 0.94 1.79
1351 0.4 0.62 0.57 0.50 0.52
1381 0.4 0.59 0.87 0.54 1.42
1451 0.4 0.61 1.44 0.50 2.10
2301 0.4 0.42 0.73 0.36 0.67
4301 0.4 0.68 0.55 0.58 0.52

Figures 6a and 6b show, respectively, the shear stress versus slip
and dilatancy versus slip response curves for forward motion for
four replicas of fracture #1 (samples #1301, 1302, 1303 and 1304)
tested under constant normal (nominal) stress ranging between 0.2
and 1.6 MPa. All four samples have the same 30% water-to-gypsum
cement ratio. As expected, the shear strength increases and the

dilatancy decreases as the normal stress increases.

Figures 7a and 7b show, respectively, the shear stress versus slip
and dilatancy versus slip response curves for forward motion for
four replicas of fracture #1 with different water-to-gypsum cement
ratios of 30% (sample #1301), 35% (sample #1351), 38% (sample
#1381) and 45% (sample #1451). All samples were tested under a
constant normal (nominal) stress of 0.4 MPa. It appears that
although the four samples have strengths that are different and
vary between 23.2 and 63.4 MPa, their shear behavior is essentially
the same. A slight decrease in dilatancy with an increase in the

water-to-gypsum cement ratio can be observed in Figure 7b.
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Figure 6. (a) Shear stress vs. slip, and (b) Dilatancy vs. slip
response curves for four replicas of fracture #1 with same 30%
water-to-gypsum cement ratio- and tested under different levels of
applied normal stress. Forward shear motion. Samples #1301, 1302,

1303, and 1304.
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Figure 7. (a) Shear stress vs. slip, and (b) Dilatancy vs. slip
response curves for four replicas of fracture #1 with different
water-to-gypsum cement ratios of 30% (sample #1301), 35% (sample
#1351), 38% (sample #1381) and 45% (sample #1451). All samples were
tested under a constant normal stress of 0.4 MPa. Forward shear
motion.
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Figures 8a and 8b show, respectively, the shear stress versus slip
and dilatancy versus slip response curves for forward motion for
three fractures having the same 30% water-to-gypsum cement ratio
and with initial JRC values of 7.7 (sample #2301), 9.4 (sample
#1301) and 12.0 (sample #4301). All fractures were sheared under
the same constant normal (nominal) stress of 0.4 MPa. It can be
geen that the peak shear strength increases with JRC as expected.
On the other hand, the effect of JRC on the dilatancy is not as
clear since the dilatancy curve for JRC = 12 is located in between
those for JRC = 7.7 and 9.4. This anomaly could be attributed to
the fact that during rotary shearing only certain parts of the
fracture may have been in contact. The scale effect of JRC plays a
particular role here. Therefore, the local JRC around the contact
surface affects the dilatancy rather than the global JRC which is

calculated over the entire profile.

A summary of the different shear stress versus slip and dilatancy
versus slip response curves for reverse shear motion can be found

in Appendix D.
4., PREDICTION OF SHEAR BEHAVIOR USING BARTON‘'S EMPIRICAL EQUATION

The values of the peak shear stress, 7 were predicted using

o’
Barton’s empirical equation [equation (1)}, and the results were
compared to the actual rotary shear test results. The value of the
basic friction angle in equation (1) was taken as 30° based on the
results of direct shear tests conducted on smooth surfaces of
gypsum cement & reported in Wibowo et al. (1994). Table 8 gives a
comparison between the peak shear stresses predicted using Barton’s
empirical equation and the actual test results for four replicas of
fracture #1 tested under different levels of constant normal
stress. The replicas have the same 30% water-to-gypsum cement
ratio, and the same JCS and JRC values. It appears that for all
fractures, Barton’s empirical equation underestimates the peak

shear strength for forward shear (Figure 9) and gives a very good

estimate for reverse shear.
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Figure 8. (a) Shear stress vs. slip and (b) dilatancy vs. slip

response curves for forward motion for three fractures having the
same 30% water-to-gypsum cement ratio and with initial JRC values
of 7.7 (sample #2301), 9.4 (sample #1301) and 12.0 (sample #4301).
All fractures were sheared under the same constant normal stress of
0.4 MPa.
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Table 8

Comparison between peak shear stresses predicted using Barton’s
empirical equation and the actual test results for four replicas of
fracture #1 tested under different levels of constant normal
stress. The replicas have the same 30% water-to-gypsum cement
ratio.

Sample O, JRC JcCs JRClog,, Tp Tp Ty
# (MPa) (MPa) {gcs/a,} (Predict) (Forward) (Reverse)
(Deg) (MPa) {MPa) (MPa)
1303 0.2 63.4 23.5 0.27 0.38 0.29
1301 0.4 63.4 20.7 0.49 0.61 0.48
1302 0.8 4 63.4 17.9 0.89 1.14 0.90
1304 1.6 63.4 15.0 1.60 2.28 1.59
3.00
—~
®
(A
§ .
S’
7
200
Ll 7
o
[
w 4
1
<C
W 100 _|
I
wn
x -
5 —M— PREDICTION
—&— ACTUAL TEST
o (FORWARD)
0.00
T | L4 l T l L
0.00 0.50 1.00 1.50 2.00

NORMAL STRESS (MPa)

Figure 9. Predicted and observed peak shear stresses for four
replicas of fracture #1 tested under different levels of constant
normal stress. The replicas have the same 30% water-to-gypsum
cement ratio.




Table 9

Comparison between peak shear stresses predicted using Barton’s
empirical equation and the actual test results for four replicas of
fracture #1 tested under the same constant normal stress of 0.4
MPa. The replicas have different water-to-gypsum cement ratios.

Sample O, JRC JCsS JRClog,, Tp To To
# (MPa) (MPa) {gCcs/o,} (Predict) (Forward) (Reverse)
(Deg) (MPa) (MPa) (MPa)
1451 0.4 9.4 23.2 i6.6 0.42 0.61 0.50
1381 0.4 9.4 29.7 17.6 0.44 0.59% 0.54
1351 0.4 9.4 49.2 19.6 0.47 0.62 0.50
1301 0.4 9.4 63.4 20.7 0.49 0.61 0.48
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Figure 10. Predicted and observed peak shear stresses for four
replicas of fracture #1 tested under the same level of constant
normal stress. The replicas have different water-to-gypsum cement
ratios.
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Table 9 gives a comparison between the peak shear stresses
predicted using Barton’'s empirical equation and the actual test
results for four replicas of fracture #1 tested under the same
constant normal (nominal) stress of 0.4 MPa and with same initial
JRC value of 9.4. The fracture replicas have different water-to-
gypsum cement ratios and therefore different values of JCS ranging
between 23.2 and 63.4 MPa. It appears that for both forward (Figure
10) and reverse shear, the peak shear strength predictions are

always less than the actual values.

Finally, Table 10 gives a comparison between the peak shear
stresses predicted using Barton’s empirical equation and the actual
test results for three fracture replicas tested under a constant
normal (nominal) stress of 0.4 MPa. The replicas have the same 30%
water-to-gypsum cement ratio and therefore the same JCS, but have
different JRC values. For forward shear, the peak shear strength
predictions are lower than or equal to the actual test results
(Figure 11). For reverse shear, the predictions are closer to the

actual test results.

5. PREDICTION OF SHEAR BEHAVIOR USING FRACTURE SURFACE TOPOGRAPHY
DATA

5.1 Background

A new approach is proposed below as an alternative to predict the
rotary shear behavior of the tested fracture replicas. The approach
is based on basic fracture properties such as fracture surface
profile data and the compressive strength, modulus of elasticity,
and Poisson’s ratio of the fracture walls. The predictions of shear
stress and dilatancy are made by following the actual physical

process of shear between two rough surfaces in contact.
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Table 10

Comparison between peak shear stresses predicted using Barton’s
empirical equation and the actual test results for three fracture
replicas tested under the same constant normal stress of 0.4 MPa.
The replicas have same 30% water-to-gypsum cement ratio but have
different JRC values.

Sample O, JRC Jcs JRClog,, T, Tp Ty
# (MPa) (MPa) {gcs/o,} (Predict) (Forward) {Reverse)
(Deg) (MPa) (MPa) (MPa)
2301 0.4 7.7 63.4 16.9 0.43 0.42 ) 0.36
1301 0.4 9.4 63.4 20.7 0.49 0.61 0.48
4301 0.4 12.0 63.4 26.4 0.60 0.68 0.58
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Figure 11. Predicted and observed peak shear stresses for three
fracture replicas tested under the same level of constant normal
stress. The replicas have different JRC values.
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5.1.1 Theory of Friction

The classical adhesion theory of friction developed by Bowden and
Tabor (1930) for metals, which is to a large extent based on
concept of plasticity, does not apply to many geologic materials.
Byerlee (1967) developed an alternative approach based on brittle
fracture behavior. He considered a wedge-shaped brittle asperity
such as that shown in Figure 12, which is subject to a normal
force, N and a horizontal force, F. These forces create radial
stresses in the asperity that can be calculated from the theory of
elasticity (Timoshenko and Goodier, 1951). The radial stress, 0.,

at (r,0) is expressed as follows,

o, = — ; + ;
rr r\ o-0.5sinza o+0.581in2a

1 -Fsinf Ncosf ) (8)

where 2a is the asperity angle and L the asperity width. For the
loading shown in Figure 12, tension develops on the right-hand side

of the asperity with maximum tension along the edge § = «.

Figure 12. Single wedge under a vertical load N and a horizontal
load F.
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Substituting this into equation (8) and solving for r gives

r = 1 -Fsinua + Ncoso ). (9)

o, L\ a-0.55in2a o+0.5s5in2a

Failure of the asperity is assumed to be brittle and to take place
when the radial stress along the edge 6 = o is equal to the tensile

strength, T, of the asperity material, that is

o . =T, (10)

For most hard rocks, Hoek (1968, after Hoek and Bray, 1981) has
suggested that the tensile strength is approximately equal to 10%
of the unconfined compressive strength. The coefficient of friction

U can be calculated as follows

T F
= - = = 11
B o, N (11)
Substituting equations (10) and (11) into equation (9), the wvalue
of r for which o0,, = T, is equal to
T, = N “psine + cosa (12)
TL\ a-0.5sinza a+0.5sin2a
The area of asperity damage, a, is then equal to
a=2r4L sina (13) A

and the percentage of damaged area to the total joint cross-

sectional area (A) is
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(14)

SN

5.1.2 Asperity Slope and Type of Failure

Newland and Allely (1957) indicated that irregularities along the
failure surface of a sand specimen has an important influence on
its shear strength. When two particles of sand are in contact with
an angle of contact,i, as shear takes place the grains will rise
on top of one another along that contact (dilatancy). The angle, i,

contributes to the shear strength of the sand.

Patton (1966) extended this formulation to evaluate the shear
behavior of artificial rock joint surfaces with different angles of
saw tooth asperities. After performing about 300 direct shear
experiments, Patton found that the equation describing the shear
strength failure envelope can be expressed as a bilinear equation.
Under relatively low normal loads, sliding friction failure occurs,
and the initial part of the failure envelope 1s expressed as

follows

S = N tan($+1) (15)

where S is the sliding friction load, N is the applied normal load,
¢ is the base friction angle, and i is the angle of the surfaces

in contact.
Under relatively high normal loads, shear failure takes place
across the asperities, and the asperity angle, i, does not

influence the shear strength anymore. The value of the local shear

load can be expressed as follows,

S =1,4,, (16)
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where 7, is the local shear strength of the intact material, and A,
is the area over which shearing occurs. In this report, the shear
strength, 7., of the intact material is assumed to follow the

failure criterion for intact rock proposed by Fairhurst (1964), .

- - O
rr = qu%(l+ngg), (17)
u

where ¢, is the unconfined compressive strength of the intact
material, n is the ratio between the rock compressive and tensile
strengths (assumed equal to 10, as suggested by Hoek [1968, after
Hoek and Bray (1981)] for most of hard rocks), and o, is the local

normal stress.

At any contact position during shear, the type of failure can be
evaluated. Whether or not shear failure occurs can be determined by
comparing the horizontal sliding friction force calculated using
equation (15) to the intact shear resistance calculated using
equation (16).

5.1.3 Bearing Area Curve and Composite Topography

One way to describe joint surface roughness is by using a bearing
area curve. The bearing curve was first introduced by Abbot and
Firestone (1933). Consider a rough surface, as shown in Figure 13a,
whose asperities are in contact with a horizontal flat surface.
Suppose that the asperity tips have worn to a depth, x1, leaving
two flat surfaces of width al and cl. These surfaces form two
contact areas against the horizontal plate. The bearing curve at

depth x1 is equal to al + cl. The bearing curve can be constructed

for other depths as shown in Figure 13b.
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Figure 13. Abbot’s bearing area curve concept.

While studying the effect of "matedness" on the behavior of rock
joints, Brown and Scholz (1986) introduced the concept of composite
topography for unmated joints. Basically, the composite topography
of two rough surfaces in contact is the inverted aperture between
the two surfaces. This concept is extended below for determining
the micro-damage of joint surface contact which influences the
value of dilatancy. The analysis of two rough surfaces in contact
is replaced by the analysis of the composite topography of the two
surfaces against a flat and stiff surface.

5.1.4 Elastic Displacement of Contact Asperities

The elastic displacement that occurs when two asperities in contact
are subject to a normal load can be determined using Hertzian
contact theory (Lubkin, 1962). Assuming that the two contacting
asperities are modelled as two cylinders with radii R, and R,, as
shown in Figure 14, the asperity contact area, 2b, can be expressed

as follows
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Figure 14. Hertzian contact of two cylinders.

_ 16NROI (18)
nE,

where N is the normal load per unit length of cylinder, 1/R, is
equal to 1/R, + 1/R,, 1/E, is equal to (1-v?*) /E, + (1-v?*) /E,, E, is

the Young’s Modulus of the 1% cylinder, and E, is the Young’'s
Modulus of the 2*¢ cylinder.

The displacements of the centers of the two cylinders in the

loading direction are equal to

5 - N(1-v?) 13[45’1_;), (19)
* TE, b 2
and
_ N(1-v?) iR, 1 (20)
2 TE, ln( b 2)
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respectively. The total elastic displacement is then equal to

5 =5, +6, (21)

5.2 Procedure for Predicting Shear Behavior

The concepts summarized in section 5.1 can be combined to predict
the shear and dilatancy behavior of two rough surfaces in contact.

This is applied here to the rotary shear tests.
5.2.1 Checking the Mode of Failure

During rotary shear, the top and bottom surfaces of each fracture
are held firmly by the machine and stay horizontal. Thus, for a
given amount of rotation, the top and bottom surfaces have only one
point of contact. The slope angle, i, of that contact can be
determined once the surface topographies are known. The Ilocal
horizontal sliding friction force can be calculated using equation
(15) . The local shear area, A,,, can also be determined and the
local intact shear resistance can be calculated using equation
(16) . The type of failure can then be evaluated whether it is
sliding friction or intact shear failure by comparing the
horizontal sliding friction force with the local intact shear

registance.

5.2.2 Sliding Friction Failure

Shear Prediction

If sliding friction failure occurs, the value of the local
horizontal sliding force becomes the local shear load. Since only
one surface contact occurs at a given time, the value of the global

shear load is equal to the value of the local shear load. The value

of the global shear stress for a particular shear displacement or
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slip is equal to the global shear load divided by the total joint

fracture area.
Dilatancy Prediction

For a particular amount of rotational shear, the composite
topography of the top and bottom fracture surfaces can be
determined and the bearing area curve constructed following the
procedure mentioned in Section 5.1.3. Assuming that each surface
asperity can be modelled as a wedge, the damage area can be
calculated using equations (12) and (13). By combining the damage
area and the bearing area curve, the thickness of damage can be
determined. Using the Hertzian contact theory, the elastic
displacement of the asperity can be determined using equations (18)
through (21). The amount of dilatancy because of geometry only can
be determined by recording the vertical movement of reference
points on the top and bottom parts of the fractures. The final
value of dilatancy 1is equal to the dilatancy due to geometry

subtracted by the damage and elastic displacement.
5.2.3 Shear Failure

If shear failure occurs across an asperity, the value of the local
shear load is now equal to the local intact shear resistance. The

value of the local dilatancy is practically zero.
5.2.4 Final Prediction Results

Global shear stress and dilatancy résponses at a particular slip
can be predicted. The process of calculation is continued for
another step of slip. Since three annular profiles are measured for
each fracture, shear and dilatancy predictions can be done for each
annular profile. The final_result is the average of the three

calculations.
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5.2.5 Flowchart for Predicting Shear Behavior

Figure 15 shows a flowchart of the procedure for predicting shear
behavior. The input data are top and bottom profiles in mated
position, material propertiés (i.e., modulus of elasticity,
Poisson’s ratio, and unconfined compressive strength), steps of
shear displacement or slip, and a number of steps to reach maximum
slip. The processes of looping follow the procedure mentioned in
Sections 5.2.1 through 5.2.4. The final results are shear stress

versus slip and dilatancy versus slip curves.
5.2.6 Example

The process of shearing of fracture #1 is simulated in Figures 16
to 18. Figure 16a shows that the bottom and top surfaces of
fracture #1 are initially in a mated position. Figure 16b gives the
corresponding bearing curve. In this figure, the bearing curve is
expressed as the proportional bearing curve, tp, which is the ratio
(or percentage) between its length, np, and the total profile
length, 1 (Kragelsky, 1982). After 1 and 10 mm of slip, Figures 17a
and b, and Figures 18a and b show respectively the contact of the
two surfaces of fracture #1 and the corresponding bearing area
curves. Figures 16 through 18 show that during rotary shear,
surface contact occurs only on a fraction of the overall fracture
surface profile. Only certain parts of the fracture around the
contact area control the shear stress and dilatancy behavior. A
complete set of shear processes for fracture profiles #1, 2, and 4

can be found in Appendix E.
5.3 Comparison between Predicted and Actual Shear Behavior

Predictions were made for four replicas of fracture #1, with same
water-to-gypsum cement ratio of 30%, and tested under constant
normal stresses of 0.2, 0.4, 0.8, and 1.6 MPa, respectively.
Comparison between predictions and actual test results can be found

in Figures 19a and 19b. Predicted and measured shear stress versus




START
Input data

Profile top and bottom surfaces in mated position,
Material properties,

Step of shear displacement (slip), s, and

Number of Steps, Nstep.

/ Shear Displacement=1*s >
N

Check the mode of failure

Position of profiles change.

Find the point of contact.

Calculate the slope of contact.
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Figure 15. Flowchart for predicting shear behavior.
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Figure 19. Predicted and observed (a) Shear stress vs. slip, and
(b) Dilatancy vs. slip response curves for four replicas of
fracture #1 with same 30% water-to-gypsum cement ratio. All
replicas were tested under different levels of applied normal
stress. Forward shear motion.
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slip response curves agree well. Predicted and measured dilatancy
versus slip curves look similar but the predicted dilatancy is
always larger than the measured dilatancy.

A second set of predictions was made for four replicas of fracture
#1 with water-to-gypsum cement ratios of 30, 35, 38, and 45%
respectively and tested under the same constant normal stress of
0.4 MPa. Predicted and observed shear versus slip and dilatancy
versus slip response curves are shown in Figures 20a and 20b,
respectively. Both predictions and observations indicate that the
water-to-gypsum cement ratio and therefore the strength of the
fracture walls does not have much of an effect on the shear
behavior. Both predictions and observations also show that
dilatancy decreases glightly as the water-to-gypsum cement ratio
increases and therefore the strength decreases. As in Figure 19D,
dilatancy predictions are higher than the observed dilatancy for
values of the water-to-gypsum cement ratio of 30 and 35%. For
water-to-gypsum cement ratios of 38 and 45%, both predicted and

observed dilatancy curves agree gquite well.

The third set of predictions was carried out for fractures #1, 2,
and 4 with JRC values of 9.4, 7.7, and 12, respectively. Predicted
and observed shear versus slip and dilatancy versus slip response
curves are shown in Figures 2la and 21b, respectively. Compared to
the actual test results, the shear strength predictions are
reasonable for the fractures with JRC values of 12 and 9.4. For the
fracture with a JRC of 7.7, the predictions are much less than the
actual values. The predictions tend to overestimate slightly the
fracture dilatancy behavior. This behavior is probably due to the
fact that the deformation applied in this procedure is assumed as

elagtic deformation (no plastic deformation).
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of 0.4 MPa. Forward shear motion.
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same constant normal stress of 0.4 MPa. Forward shear motion.
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6. CONCLUDING REMARKS

Several concluding remarks can be made from the work reported in

this report:

1. When using equation (2), the JRC values are determined using all
the fracture profile data. On the other hand, experimental
observations seem to indicate that only certain portions of the
profiles around the points of contact directly influence the

fracture shear behavior.

2. For the three fractures, Barton’s empirical egquation
underestimates the peak shear strength for forward shear, however
it gives a good estimate for reverse shear. The JRC standard
profile gives an estimated coefficient of roughness without

congidering the direction of shear, which behaves differently.

3. The joint wall compressive strength (JCS) does not seem to have
a significant role in the rotary shear behavior under relatively

low applied normal stresses.

4. An alternative procedure was developed for predicting the rotary
shear behavior of fractures based on fracture surface profile data
and the compressive strength, modulus of elasticity, and Poisson’s
ratio of the fracture walls. In this procedure, fracture surface
asperities are assumed to fail in a brittle manner. Reasonably good

predictions of shear and dilatancy behavior were obtained.
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APPENDIX C

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1301 tested
a constant normal stress of 0.4 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1302 tested
a constant normal stress of 0.8 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1303 tested
a constant normal stress of 0.2 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1304 tested
a constant normal stress of 1.6 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1305 tested
a constant normal stress of 0.4 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1306 tested
a constant normal stress of 0.8 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1351 tested
a constant normal stress of 0.4 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1381 tested
a constant normal stress of 0.4 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #1451 tested
a constant normal stress of 0.4 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #2301 tested
a constant normal stress of 0.4 MPa.

(a) Shear stress vs. slip, and (b) Dilatancy
slip response curves for sample #4301 tested
a constant normal stress of 0.4 MPa.
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APPENDIX D

1. (a) Shear stress vs. slip, and (b) Dilatancy vs.
* slip response curves for four replicas of fracture
#1 with 30% water-to-gypsum cement ratio and tested
under different levels of applied normal stress.
Forward shear motion. Sample #1301, 1302, 1303,
and 1304. . D-1

2. (a) Shear stress vs. slip, and (b) Dilatancy vs.
slip response curves for four replicas of fracture
#1 with 30% water-to-gypsum cement ratio and tested
under different levels of applied normal stress.
Reverse shear motion. Sample #1301, 1302, 1303,
and 1304. D-2

3. (a) Shear stress vs. slip, and (b) Dilatancy vs.
slip response curves for four replicas of fracture
#1 with different water-to-gypsum cement ratios of
30, 35, 38, and 45%. All sample tested under a
constant normal stress of 0.4 MPa. Forward shear
motion. Sample #1301, 1302, 1303, and 1304. D-3

4. (a) Shear stress veg. slip, and (b) Dilatancy vs.
slip response curves for four replicas of fracture
#1 with different water-to-gypsum cement ratios of
30, 35, 38, and 45%. All sample tested under a
constant normal stress of 0.4 MPa. Reverse shear
motion. Sample #1301, 1302, 1303, and 1304. D-4

5. (a) Shear stress vs. slip, and (b) Dilatancy vs.
slip response curves for forward shear motion for
three fractures having the same 30% water-to-gypsum
cement ratio and with initial JRC wvalues of 7.7, 9.4,
and 12.0. All fracture were tested under the same
constant normal stress of 0.4 MPa. D-5

6. {(a) Shear stress vs. slip, and (b) Dilatancy vs.
slip response curves for reverse shear motion for
three fractures having the same 30% water-to-gypsum
cement ratio and with initial JRC values of 7.7, 9.4,
and 12.0. All fracture were tested under the same
constant normal stress of 0.4 MPa. D-6
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