CEBAF-TH-95-11

Quark-Hadron Duality and v*p — A Form Factors
V.M. Belyaev*

Continuous Electron Beam Accelerator Facility

Newport News, VA 23606, USA

A.V. Radyushkin
Physics Department, Old Dominion University,
Norfolk, VA 23529, USA
and

Continuous Electron Beam Accelerator Facility,

Newport News, VA 23606, USA

Abstract

We use local quark-hadron duality to estimate the purely nonperturbative soft contribu-
tion to the v*p — A form factors. Our results are in agreement with existing experimental
data. We predict that the ratio G5(Q?)/G%3,(Q?) is small for all accessible Q?, in contrast
to the pQCD expectations that G3(Q?) — —G3,(Q?).
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1 Introduction

Basically, there are two competing explanations of the experimentally observed power-law be-
haviour of elastic hadronic form factors: hard scattering [1] and the Feynman mechanism [2]. At
sufficiently large momentum transfer, the Feynman mechanism contribution is dominated by con-
figurations in which one of the quarks carries almost all the momentum of the hadron. In QCD,
this results in an extra 1/Q? suppression compared to the hard scattering term generated by the
valence configurations with small transverse sizes and finite light-cone fractions of the total hadron
momentum carried by each valence quark. The hard term, which eventually dominates, can be
written in a factorized form [3],[4],5], as a product of the perturbatively calculable hard scattering
amplitude and two distribution amplitudes accumulating the necessary nonperturbative informa-
tion. However, this mechanism involves exchange of virtual gluons, each exchange bringing in a
suppression factor (a,/7) ~ 0.1. Hence, to describe existing data by the hard contribution alone,
one should intentionally increase the magnitude of the hard scattering term by using distribution
amplitudes with a peculiar “humped” profile [6]. In this case, passive quarks carry a small fraction
of the hadron momentum and, as pointed out in ref.[7], the “hard” scattering subprocess, even
at rather large momentum transfers Q2 ~ 10 GeV'?2, is dominated, in fact, by very small gluon
virtualities. This means that the hard scattering scenario heavily relies on the assumption that
the asymptotic pQCD expressions are accurate even for momenta smaller than 300 MeV, t.e., in
the region strongly affected by finite-size effects, nonperturbative QCD vacuum fluctuations etc.
Including these effects shifts the hard contributions significantly below the data level even if one
uses the humpy distribution amplitudes and other ad hoc modifications intended to increase the

hard term (see, e.g., [8]).

Furthermore, as argued in ref.[13], the derivation of the humpy distribution amplitudes in [6]
implies a rather singular picture (infinite correlation length) of the QCD vacuum fluctuations.
Under realistic assumptions, it is impossible to get distribution amplitudes strongly differing from
the smooth “asymptotic” forms. The latter are known to produce hard contributions which are
too small to describe the data on elastic form factors. Thus, there is an increasing evidence in
favour of the alternative scenario, viz., that for experimentally accessible momentum transfers the
form factors are still dominated by the purely soft contribution corresponding to the Feynman

mechanism.

In the language of the light-cone formalism [5], the soft term is given by the overlap of the soft
parts of the hadronic wave functions, ¢.e., is an essentially nonperturbative object. Among the
existing approaches to the nonperturbative effects in QCD, that which is closest to pQCD is the
QCD sum rule method [9]. QCD sum rules were originally used to calculate the soft contribution
for the pion form factor in the region of moderately large [10],[11] and then small momentum
transfers [12]. It should be emphasized that, in the whole region 0 < Q?<3 GeV?, the results
are very close to the experimental data: the Feynman mechanism alone is sufficient to explain
the observed behaviour of the pion form factor. For higher Q?, the direct QCD sum rule method

fails due to increasing contributions from higher condensates. However, a model summation



of the higher terms into nonlocal condensates [13] indicates that the soft term dominates up to
Q? ~ 10 GeV'? [14]. This conclusion is also supported by a recent calculation within the framework

of the light-cone sum rules [15].

An important observation made in ref.[11] is that the results of the elaborate QCD sum rule
analysis are rather accurately reproduced by a simple local quark-hadron duality prescription. The
latter states that one can get an estimate for a hadronic form factor by considering transitions
between the free-quark states produced by a local current having the proper quantum numbers,
with subsequent averaging of the invariant mass of the quark states over the appropriate duality
interval so. The duality interval has a specific value for each hadron, e.g., s3 ~ 0.7 GeV? for the

pion and sY ~ 2.3 GeV? for the nucleon.

The local duality ansatz, equivalent to fixing the form of a soft wave function, was used to
estimate the soft contribution in the case of the proton magnetic form factor [16]. The results
agree with available data [17], [18] over a wide region, 3 GeV><Q? <20 GeV?. Furthermore,
the calculation of ref.[16] correctly reproduces (without any adjustable parameter), the observed
magnitude of the helicity-nonconservation effects F2(Q?)/FF(Q?) ~ p?/Q* with u? ~ 1 GeV? [18].
It is difficult to understand the origin of such a large scale within the hard scattering scenario,
since possible sources of helicity nonconservation in pQCD include only small scales like quark
masses, intrinsic transverse momenta etc., and one would rather expect that u? ~ 0.1 GeV?. Thus,
the study of spin-related properties provides a promising way for an unambiguous discrimination

between soft and hard scenarios.

Of a particular interest there is the v*p — A transition. A special attention to this process
was raised by the results [19] of the analysis of inclusive SLAC data which indicated that the
relevant form factor drops faster than predicted by the quark counting rules. The relevant hard
scattering contribution was originally considered in ref.[20], where it was observed that the hard
scattering amplitude in this case has an extra suppression due to cancellation between symmetric
and antisymmetric parts of the nucleon distribution amplitude, and it was conjectured that the
faster fall-off found in [19] can be explained by the dominance of some non-asymptotic contribution.
Later, it was claimed [21] that, by appropriately choosing the distribution amplitudes, one can get
a leading-twist hard term comparable in magnitude with the data. Furthermore, the results of a
recent reanalysis [22] of the inclusive SLAC data are rather consistent with the 1/Q* behaviour,
and this revived the hope that the v*p — A form factor can be still described by pQCD.

However, the important result of the pQCD calculation [20] is that the lowest-twist hard contri-
bution has the property G3*"¢(Q?) ~ —G;}*"(Q?). Experimentally, the ratio G5(Q?)/G;;(Q?)
is rather small [23, 24|, which indicates that the leading-twist pQCD term is irrelevant in the
region Q?< 3 GeV?. In the present paper, we use the local quark-hadron duality to estimate the
soft contribution for the G3(Q?) and G3,(Q?) form factors of the y"p — A transition to study
whether the soft contribution is large enough to describe the data and whether the relative small-

ness of the electric form factor persists in the region of moderately large momentum transfers

3<Q <15 GeV2,



2 Three-point function and form factors
The starting object for a QCD sum rule analysis of the v*p — A transition is the 3-point correlator:
T2 ) = [(OIT {nu(2)Ju(y)i(0)} )™~V dad'y (1)
of the electromagnetic current
J, = e av,u + eqdry,d (2)
and two Ioffe currents [25]
n =% (uaC'ypub> Yoysds =™ (2 (uaC'deb> ut + (u"C'yMub> dc> . (3)

We use the following parameterization for the projections of  and 7, onto the nucleon and

A-isobar states, respectively:

OIN) = v, Olda) = A @

Here, v is the Dirac spinor of the nucleon while v, is the spin-3/2 Rarita-Schwinger wave function
for the A-isobar, i.e., (p —§g—m)v =0, (p — M)y, =0, p,¥, =0, v,¥, = 0; with m being the
nucleon mass and M that of A. We use the notation a = a,7v4-
On the hadronic level, the v*p — A transition makes the following contribution to the corre-
lator (1):
TYrA = Inla Xa(p) p—qg+tm

= = Tau(p, 9)7s T

(2 p? — M )

T
where T (p, )75 is the v*p — A vertex function
Loy (P @) = G1(4*) (4ot — goud) + G2(0°) (90 P — gou(qP))
+G3(0?) (qats — gara®) (6)
(P =p—q/2) and X,.(p) the projector onto the isobar state

1 1 2

Xua(P) = <gua - 5'7;/70& + m(pu'ya - pa7u) - Wpupa> (ﬁ + M) (7)

The form factors G, Gy, G5 are related to a more convenient set G, G, G5 by

Gy(Q) = W (((3M +m)(M +m) + Q2)%Q2)
HM? = mh)G2(Q7) ~ 2Q°G4(Q1) ®)
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G2@) = 531 ) ((M2 —m? - Q)T

H(M? = m?)Ga(Q%) - 2Q*G5(Q?)) (9)

2m

Go(Q?) = 3(M 1+ m) <2MG1(Q2) + %(3M2 +m® + Q%)G1(Q?)

HM? —m? — Q1)G5(QY)) (10)

(see, e.g., [26]). One should not confuse the magnetic form factor G%;(Q?) given by eq.(8) with the
effective form factor mentioned in refs.[20],[27]. In particular, the form factor Gr(Q?) defined by
eq.(6.2) of ref.[27] can be written in terms of G;(Q?) and G (Q?) (defined by eqs.(8),(9) above)
as
2 2
2 2 Q Q 2
14+ — 11

Ga? + 3165 = gtz 1+ (oo ) 16 (1)
where v = (M? —m? + Q?)/2m is the energy of the virtual photon in the proton rest frame. Note
that, for large Q?, our G3,(Q?) and Gr(Q?) of eq.(6.2) of ref.[27] have the same power behaviour.

3 Local quark-hadron duality

Multiplying all the factors in eq.(5) explicitly, one ends up with a rather long sum of different
structures afw accompanied by the relevant invariant amplitudes T;, each of which is a combination
of the three independent transition form factors listed above. To incorporate the local quark-

hadron duality, we write down the dispersion relation for each of the invariant amplitudes:

Sz,Q )
( P2)

where p? = (p — q)?, p5 = p®. The perturbative contributions to the amplitudes T;(p?, p3, Q?)

1 y .
Ti(p7, p3, Q%) = —/ d31/ d32 P 31’ + “subtractions” , (12)

T2

can also be written in the form of eq.(12). Evidently, the physical perturbative spectral densities
pi(s1, 82, @?) differ from their perturbative analogues, the difference being most pronounced in the
resonance region, i.e., for small s; and s, values. In particular, p;(s1,s2,Q?) contains the double

d-function term corresponding to the v*p — A transition:
Pi(317327 QZ) ~ lNlAFi(317327 Q2)5(31 - m2)5(32 - MZ) ’ (13)

while the perturbative spectral densities pfert(sl,s2, (Q?) are smooth functions of s; and s;. The
local quark-hadron duality assumes, however, that the two spectral densities are in fact dual to

each other:

So
/d31/ P (81,82, Q%) dsy = /d31 pi(s1,82,Q%) dss , (14)
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t.e., they give the same result when integrated over the appropriate duality intervals sg, So. The
latter characterize the effective thresholds for higher states with the nucleon or, respectively, A-
isobar quantum numbers. As noted in ref.[16], the local duality prescription can be treated as a

model for the soft wave functions:

3 2

(e}, (he)) ~ 6 (Z HL o ) - wa(fe}, (k) ~ 0 (Z L so) ,

=1 2 =1 2

t.e., so and Sy also set the scale for the width of the transverse momentum distribution. Using
this model, we can obtain a good estimate for the overlap of the soft wave functions only in the
intermediate QQ?-region where the soft contribution is sensitive mainly to the k, -widths of the quark
distributions rather than to their detailed forms. From experience with the proton form factor
calculations, we expect that local duality will work in the region between 3 GeV? and 20 GeV2.
The low-Q? region Q?<1 GeV2, in which there appear large nonperturbative contributions due to
the long-distance propagation in the Q?-channel, can be analyzed within a full-framed QCD sum
rule approach supplemented by the formalism of induced condensates [28] or bilocal operators
[29].

Applying the local quark-hadron duality to the two-point correlators of 5- or, respectively,
nu-currents, we obtain simple relations between the duality intervals sg, So and the residues Iy,

{a of the loffe currents:

3 g3
B=2 . =20 1

After the duality intervals are fixed (e.g., from the QCD sum rule analysis of the relevant two-point

function [30]), the local duality estimates for the form factors do not have any free parameters.

4 Invariant amplitudes

Now, choosing a particular Lorentz structure aﬁw, one can get the local duality estimate for the
relevant combination of the form factors. One should remember, however, that not all the invariant
amplitudes are equally reliable. To compare the contributions related to different structures, one
should specify a reference frame. In our case, the most relevant is the infinite momentum frame
where p* = pfl‘ — oo while ¢* = ¢/ is fixed. So, a priori, the structures with the maximal number
of the “large” factors p* are more reliable than those in which p* is substituted by the “small”
parameter ¢* or by g,,. However, dealing with the 7,-current in the A-channel, one should realize

that 7, has also a nonzero projection onto the spin-1/2 isospin-3/2 states |[A*(p)):

(0lnu|A™(p)) = A" (mryu — 4pu)v™(p) (16)

where A\* is a constant, m* is the mass of the spin-1/2 state |A*(p)) and v*(p) the relevant Dirac
spinor satisfying (p — m*)v*(p) = 0.
From eq.(16), it follows that any amplitude containing the p#-factor, is “contaminated” by the

transitions into the spin-1/2 states. These states lie higher than the A-isobar and, in principle, one



can treat them as a part of the continuum. Then, however, there will be strong reasons to expect
that the duality interval Sy for the “contaminated” invariant amplitudes deviates from that for
the amplitudes containing only the spin-3/2 contributions in the 7,-channel. Another possibility
is to project out the amplitudes which have contributions due to the transitions into spin-1/2
isospin-3/2 states. To achieve this, it is convenient to use the basis in which «, is always placed at
the leftmost position. Then, according to egs.(5-7), the invariant amplitudes corresponding to the
structures with g, and g,, are free from the contributions due to the spin-1/2 isospin-3/2 states.

In this basis, keeping only the terms with ¢, and g,, in eq.(5), we get

v'p—A — Inla
Tl D) = i 3 0 — )
(ol 0?6300 + G(@7)

+‘12_“ (m[10s 8] + M, (p — §)]) G1(Q°)

Rl d163(@7) — alhd) (G5(Q7) — 5G2(@) + ) - (1)

Hence, from the invariant amplitudes related to the structures proportional to g,, we can get
the local duality estimates for the form factors Gi,Gs,Gs. Similarly, extracting the structure
9uv [P, 4], we get an expression for (G, + G%). Counting the powers of g, we expect that results
for G5 are less reliable than those for Gy and G3; + G, while results for G5 are less reliable than
those for Gs.

The number of independent amplitudes can be diminished by taking some explicit projection of
the original amplitude T},,(p, ¢). In particular, if one multiplies T}, by p,, the invariant amplitude
corresponding to the structure g,[g, p] is proportional to the quadrupole form factor G§(Q?):

TP 2 (p,q) =

lNlA {3M—|—m

R IR R AT T ORI S

Another possibility is to take the trace of TJ:Z’_*A. The result is proportional to the magnetic
form factor G3,(Q?):

lNlA M +m
(2m)*(pt — m?)(p; — M?) 2m

T (T,.) = (4128 4ups) G3a(@?) - (19)

However, one should remember that the trace of T, is not free from contributions due to spin-1/2

isospin-3/2 states.

5 Estimates for the v'p — A form factors

Though the invariant amplitude related to the trace of T}, is contaminated by the transitions into

spin-1/2 isospin-3/2 states, it makes sense to consider this amplitude because it has the simplest
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perturbative spectral density:

Q2

R 01,5, Q%) = gl (14 92+ @)V (25 431t 52+ Q7), (20)

where

K= \/(31 + 83+ Q%)% — 4515, . (21)

Imposing the local duality prescription, we get

2m S0 So ppert'(sl So QZ)
* 2 — d M ’ 9 d
GM(Q ) lNlA(M + m) /0 51 0 2 52
6m
= WF(307507Q2) ; (22)

where F(s9,S50,@?) is a universal function
355
9nIa(Q% + 50+ So)® (1 — 30 + (1 — 0)v/I—40)

F(307SO7Q2) = (23)

and 0 = $050/(Q% + so + So)®. As we will see, the results for other invariant amplitudes can be
conveniently expressed through F(s¢, S0, Q).

The function F(sg,So,@?) depends on the duality intervals sy and So. We fix the nucleon
duality interval sy at the standard value s; = 2.3 GeV? extracted from the analysis of the two-
point function and used earlier in the nucleon form factor calculations. The results of the existing
two-point function analysis for the A-isobar [30] are compatible with the A duality interval Sy in
the range 3.2 to 4.0 GeV2. To fine-tune the S, value, we consider two independent sum rules for
the 1 form factor

mGl(Q ) (3 + Q %QZ) (307 SO) Q2)

_2Q2 (dQ2) /SO F(307327Q2) dsZ (24)

and

MGy (Q?) = 2@ (i) [ F(s0,52,@%) ds, (25)

2 dQ)?
extracted from the invariant amplitudes corresponding to the structures ¢,[v.,p] and g,.[v., (p—§)],
respectively (recall that p — ¢ is the proton’s momentum and p is that of A). Taking the ratio of
these two relations, one can investigate their mutual consistency and test the overall reliability of
the quark-hadron duality estimates.
Indeed, on the “hadronic” side, we have the ratio M/m of the isobar and nucleon masses,

while on the “quark” side we have the ratio of two explicit and non-trivially related functions.
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Figure 1: Isobar to proton mass ratio from the sum rules

(24),(25).

The consistency requires, first, that the ratio of these functions must be close to a constant and,
second, that this constant must be close to the experimental value for the ratio of the isobar and
nucleon masses: (M/m)®*® ~ 1.32. On Fig.1, we plot the @*-dependence for the ratio of the
right hand sides of eqs.(24) and (25) for the standard value so = 2.3 GeV? of the nucleon duality
interval and three different values of So. One can see that one should not rely on local duality
estimates below Q% ~ 3 GeV?2. However, above Q? ~ 3 GeV?, the ratio is pretty constant for all
three values of Sy, and rather close to 1.3. The best agreement is reached for Sy = 3.5 GeV'?%, and
we will use this value as the basic isobar duality interval in further calculations. In particular, the
Ia parameter will be fixed by I3 = (3.5 GeV?)? (cf. eq.(15)).

From eqs.(8) and (9), it follows that G; is proportional to the difference of the magnetic G3,

and electric G transition form factors:

2m

GONQ) = GalQ@") = G2(Q") = 337051 7 my

(M +m)* + Q%) G1(Q?) . (26)

According to eq.(17), the sum GM(Q?) = G3,(Q?) + G5(Q?) of these form factors can be
obtained from the invariant amplitude corresponding to the structure g,.[p, §]. Applying the local
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— G:M from egs.(24,25) and G,
""" G, v from egs.(23,25) and G,
- Gy fromeq.(21), $;=3.5 GeV’
- G v fromeq.(21), S5=3.7 Gev?
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Figure 2: Form factor G;,(Q?).

duality prescription, we obtain

&m
G(+)(Q2) M +m

12 \d@?

Now, having expressions both for G(t)(Q?) and G(7)(Q?), we can calculate G};(Q?) and
G%5(Q?). The results for the combinations @*G3,(Q?) and G(Q?)/G3,(Q?) are shown on Figs.2
and 3, respectively. It should be noted that, though F(so, S, @?) has the 1/Q° asymptotics for
large Q? (see eq.(23), the local duality results are fairly consistent with the 1/Q* behaviour in the
wide range 5 GeV2<Q?<20 GeV'2.

An important observation is that G(Q?) is predicted to be much smaller than G;,(Q?) (see
Fig.3). It should be noted that if the 4*p — A transition form factors are calculated in a purely

F(30750,Q2)—Q ( : ) /080 F(31750,Q2)d31] . (27)

pQCD approach (in which only the O((a,/7)?) double-gluon-exchange diagrams are taken into
account), the sum of electric and magnetic form factors G3,(Q?) + G5(Q?) is suppressed for
asymptotically large @2 by a power of 1/Q? [20]. This is because the matrix element

(3/2[T(1, =1/2) ~ (G + GE) (28)

violates the helicity conservation requirement for the hard subprocess amplitude. In other words,
the pQCD prediction is that (G, + G%) should behave asymptotically like 1/Q°, while each of G,
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O Experimental data
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Figure 3: Ratio of form factors G5(Q?) and G (Q?) as cal-
culated from eqgs. (24)-(27). Experimental data were taken
from ref.[23] and the point at 3.2 GeV? from ref.[24].

and G% behaves like 1/Q*. As a result, asymptotically G5 ~ —G%;. However, we consider here
only the soft contribution generated by the Feynman mechanism for which the helicity conservation
arguments are not applicable. Thus, for the soft term, there are no a prior: grounds to expect
that Gz ~ —Gy;.

The smallness of G5(Q?)/G3;(Q?) dictated by local duality, strongly contrasts with the pQCD-
based expectation that G5(Q?) ~ —G3(Q?), and this allows for an experimental discrimination
between the two competing mechanisms. One should realize, however, that G(Q?) is obtained in
our calculation as a small difference between two large combinations G(*)(Q?) and G{=)(Q?), both
dominated by G%,(Q?). Hence, even a relatively small uncertainty in either of these combinations
(which is always there, since the local duality gives only approximate estimates) can produce a
rather large relative uncertainty in the values of G%. In this situation, we restrict ourselves to a
conservative statement that the electric form factor G5 (Q?) is small compared to Gj;(@?) in the
whole experimentally accessible region without insisting on a specific curve for G (Q?).

Experimental points for G, shown in Fig.2 were taken from the results for the Gr(Q?) form
factor obtained from analysis of inclusive data [19], [22]. Since our results give a very small value
for the ratio (G%/G3r)?, the Gy term in eq.(11) can be neglected. One can see that, in the
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Figure 4: Ratio G%(Q?)/G3(Q?) as calculated from eqs.
(24)-(27) and (30).

Q?>3 GeV? region, the local duality predictions G;,(Q?) are close to the results of the recent
analysis [22].

The magnetic form factor G;;(Q?) can also be obtained from eq.(22). If one takes the basic
duality interval So = 3.5 GeV?2, the resulting values of G%;(Q?) (Fig.2) are somewhat smaller than
those obtained by combining the results for G(*)(Q?) and G(-)(Q?). As emphasized earlier, the
spin-1/2 states also contribute to the trace of 7,,, and the duality interval in this case can be
different from the basic value. In fact, taking So = 3.7 GeV? in eq.(22), we get a curve for G;,(Q?
(Fig.2) essentially coinciding with those obtained from the sum of G(+)(Q?) and G(7)(Q?).

The quadrupole (Coulomb) form factor G5 (Q?) can be calculated from the expression (18) for
the contracted amplitude p, T}, :

8m d So
GE'(QZ) = l / F(307327Q2) d32

3(M + m) - dQ? Jo

Q2 e 2
4 (dQ2) / F('Sl)SO)Q )dsl

% (d%)?) ( dQZ)/ dsl/ F(s1, 52, Q? d32] . (29)
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Again, G%5(Q?) is essentially smaller than G5;(Q?) (see Fig.4). Furthermore, eq.(29) predicts
that, for large 2, the quadrupole form factor G5 (Q?) has an extra 1/@Q? suppression compared
to G3,(Q?). In fact, if the duality intervals are equal, so = Sp, the suppression is even stronger,

namely, by two powers of 1/Q?.

6 Conclusions

We applied the local quark-hadron duality prescription to estimate the soft contribution to the
v*p — A transition form factors. We observed a reasonable agreement between the results ob-
tained from different invariant amplitudes. We found that the transition is dominated by the
magnetic form factor G;(Q?) while electric G(Q?) and quadrupole G§(Q?) form factors are
small compared to G3,(Q?) for all experimentally accessible momentum transfers. Numerically,
our estimates for Gr(Q?) are close to those obtained from a recent analysis of inclusive data [22].
Hence, there is no need for a sizable hard-scattering contribution to describe the data. Further-
more, if future exclusive measurements at CEBAF would show that the ratio G5 (Q?)/G3,/(Q?) is
small above Q% ~ 3 GeV?, this would give an unambiguous experimental proof of the dominance

of the soft contribution.
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