The s'ubmmed manuscript has been authored
E tractor of the U.S. Government

Exd:r co:onlract No. W-31-109-ENG-38. 1.S-210
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes,

Global Coupling and Decoupling of the APS Storage Ring
Yong-chul Chae, Jianyang Liu, Lee C. Teng
APS, Argonne National Laboratory

1 Introduction

This paper describes a study of controlling the coupling between the horizontal and the ver-
tical betatron oscillations in the APS storage ring. First, we investigate the strengthening of
coupling using two families of skew quadrupoles. Using smooth approximation, we obtained
the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal
emittances or, for a single particle, the ratio of the maximum values of the Courant- Snyder
invariants. Since we knew that the coupling is mostly enhanced by the 21%° harmonic con-
tent of skew quadrupole distribution, we carried out the harmonic analysis in order to find
the optimum arrangement of the skew quadrupoles. The numerical results from tracking a
single particle are presented for the various configurations of skew quadrupoles. Second, we
describe the global decoupling procedure to minimize the unwanted coupling effects. These
are mainly due to the random roll errors of normal quadrupoles. It is shown that even with
the rather large rms roll error of 2 mrad we can reduce the coupling from 70 percent to 10
percent with a skew quadrupole strength which is one order of magnitude lower than the
typical normal quadrupole strength.

2 Global Coupling ‘
1
2.1 Treatment of Weak Coupling Using Smooth Approximation

The Hamiltonian including the skew quadrupoles is
1 1
H = 3(p; +7}) + 5K(s)(a* - 9°) + M(s)ay, (1)

.where K(s) = .lp %%V- and M(s) = (3}7’7% The equation of motion with § = % as the
independent variable is

z +k(f)z = —m(8)y
y' - k(0)y = -m(f)=, (2)

where k(6) = R2K(s), m(8) = R2M(s) and prime denotes fy. To analyze the above linear
coupled equation, we may use the “smooth” approximation ([1], [2]). Let

z(8) = X(6) + (X, 9)
y(0) =Y (9) + »(Y, ), 3)°
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where the “smooth” variable X (0) is a slowly varying function of 4, and (X, 6) is rippling
with the period of 27 and its average is zero. Then the equation of motion for the smooth
variables can be written

X" +12X = —-m(0)Y
Y+ %Y = -m(0)X, (4)

where vz y are the tunes but in the context of smooth approximation, it is the mean restoring
force defined as

<k>+<(/(k—<k>)d0)2>_

for uncoupled linear betatron oscillation.

Assuming weak coupling, the solution of Eq. (4) may be obtained by substituting the
homogeneous solution of X (or Y) into the right-hand side of Eq. (4). To simplify the
calculation, we assume the initial conditions at 8 = 0 to be

X=1, X'=0, Y=0and Y =0.
Then, substitutir;g X = cosvz0 into the equation for Y we get
Y" 4+ v2Y = —m(6)cosvsH.
Expanding m(#) in the Fourier series

k=+co
-m(8) = Z (arcoskl + brsink§),
k=—c0

we obtain the solution for Y

k=too L (axcos(vg — k)6 — brsin(v; — k)6)

Y=Y Y o . (5)

k=—c0

If the tunes are near the coupling resonance, vz — vy = k,

2 4 52
Gk + bk
Yamp = , 6
Amp V:g _ (Vz _ k)2 ( )
and the coupling ratio becomes
Y2
k=Y = _Amp (a + b3). (7

€z X2

For the APS storage ring, the tunes are vz = 35.22 and vy = 14.30. Hence, the
214t harmonic of skew quadrupole distribution around the ring causes the coupling -most
efficiently. In the next sectioms, the arrangement of skew quadrupoles to excite the 21
harmonic is discussed and some numerical and analytical results are presented.



2.2 Arrangement of Skew Quadrupoles

Consider N skew quadrupoles with the same strength evenly distributed around the ring
with penod as shown in Fig. 1-a. Then

n=-4-c0 n=+o0
f1(6) = _Z 6(6 - —n) = E + E Z cos(nN§).

Fourier harmonic numbers are K = n/N where n is an integer. In order to control the
harmonic number & such that £ = nN + mM, we may apply on top of f1(6) the periodic
staircase functions whose period equals . Such functions are shown in Fig. 1-b and

f2(0) = mesin(mM ),
where b, = ,—n‘% and m = odd integer. Thus,

f(6) = f1(9)f2(9)
z szn(mM 0) ZZ sin(nN + mM)0 — sin(nN — mM )9

m

(8)

Hence we show that we can generate an arbitrary harmonic by changing the period of the
staircase functions.

In the APS storage ring, the spaces available for the skew quadrupoles are between
Q3 and S2 in the upstream half of a sector (half sector A), which we will call the A:QS
family, and between Q4 and S3 in the downstream half of a sector (half sector B), which
we will call the B:QS family. This arrangement is shown in Fig. 2 which illustrates the
nomenclature rules [3]. The number of skew quadrupoles considered is ten for each family.
We may install the focusing A:QS in every fourth cell, say cell numbers 1, 5, 9, 13 and 17,
and the defocusing A:QS in cells 21, 25, 29, 33 and 37. This family alone can adequately
generate the desired 21 harmonic. Using Eq. (8), with N = 10 and M = 1 for the A:QS
family, we find the coefficient of the 21% harmonic to be by; = c = %‘% which is greater than
unity. When the additional B:QS family is added to the ring, the 215 harmonic coefficient
has the interference term because A:QS and B:QS are not in phase. For the arrangement
shown in Fig. 1-c which we will call the “normal” arrangement, we may write

— m(0) = c(a cos216 + b sin2186), (9)

where @ = —sin21A68y, b = 1 + cos21Ab,, and Ab, is the shift of the origin of the B:QS
family with respect to the origin of the A:QS family which is the middle of the A:QS skew

quadrupole in cell number 1. In the APS storage ring Af, is . We note that, if A:QS and
B:QS are exactly in phase, a =0 and b =

In the next section, we present numerical results of the coupling coefficient obtained
by tracking a single particle. We first use the “normal” arrangement as the basis and then
we attempt to find the optimum arrangement for obtaining full coupling, x = 1.




2.3 Numerical Results

For the single particle motion the Courant-Snyder invariant is

22 4 (zz + Bra’)?
€x = .
Bz
The coupling ratio in this report is defined as
K= (fy)ma:: )
(Gz)ma:z:

This definition is consistent with the ratio of emittances of a group of particles (a beam),
because the emittance is the phase space area enclosed by the envelope of the beam. How-
ever, since the linear optical parameters, Bz,y and azy, are ill-defined in the coupled lattice,
our definition of the emittance is not the true projection of the four-dimensional phase space
volume onto the x or y plane as defined in Ref. [4]. But for our application it is an adequate
approximation to the real projected emittance.

In order to estimate the coupling ratio with the intentional insertion of skew quadrupoles
in the otherwise uncoupled APS storage ring lattice, we used the programs MAD [5] and
RACETRACK [6]. The phase space structures obtained from the two programs are in
good agreement. The results shown in this report are those from the program MAD. The
coupling ratios for the various configurations are summarized in Table 1. The first column
shows which family of skew quadrupole is excited to couple the beam. Each family consists
of ten skew quadrupoles. For full coupling, x = 1, we found that A:QS is 20 percent more
efficient than B:QS. This is because §; = 7.52 m and By = 13.63 m at A:QS, B; = 3.54 m
and By = 20.50 m at B:QS, and the coupling is proportional to ,/BzBy. Using both families,
we could obtain full coupling with the integrated skew quadrupole strength of B’l =0.25 T
which is larger than the 0.2 T of the design normal operating strength.

In order to achieve full coupling at the skew quadrupole strength 0.2 T, we optimized
the skew quadrupole arrangement. One optimization procedure is to rotate the B:QS family
by n%"— in clockwise direction while A:QS is fixed at the original place. With » = 1, B:QS
in cell 3 goes to cell 7 and B:QS in cell 7 to cell 11 and so on. This operation is shown in
Fig. 1-d. By using this shifting operation, we control the a and b coefficients in Eq. (9)
which can be written

a=a(A:QS)+a(B:QS5), b=5b(A:QS5)+b(B:QS5)
a(A:QS)=0, b=b(A:Q5)=1
a(B:QS) = —sin21A0,, b(B:QS) = cos21Ab,,

where Afp, = Ay + 22n and Ay = Z. The coefficients a(B : QS) and 5(B : @S) for
different » values are plotted in the polar coordinate system as in Fig. 3 (top). We notice
that two skew families are almost in phase when » = 7 and the amplitude of the 21%
harmonic resulting from Fig. 3 (bottom), is

lea1] = 4/ad; + b3, = 2
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Skew quadrupoles | B'l (1) | €zmaz/€0 | €ymaz/€x0 | K = €ymaz/€rmaz

0.30 2.3936 2.6330 1.1000

0.25 1.8577 1.3069 0.9741

0.20 1.4901 1.1874 0.7921

Qs3+ Qs 0.15 1.2604 0.7031 0.5579
0.10 1.1027 0.3195 0.2897

0.05 1.0260 0.0860 0.0838

0.00 1.0000 0.0000 0.0000

0.30 1.5513 1.5555 1.0028

0.25 1.3667 1.3057 0.9553

0.20 1.9237 1.0343 0.8452

Qs3 0.15 1.1280 0.7280 0.6454
0.10 1.0555 0.3078 0.3769

0.05 1.0133 0.1163 0.1153

0.00 1.0000 0.0000 0.0000

0.30 1.2501 1.0835 0.8667

0.%5 1.1715 0.8571 0.7317

0.20 1.1099 0.6319 0.5693

Qa4 0.15 1.0636 0.4148 0.3900
0.10 1.0284 0.2116 0.2101

0.05 1.0070 0.0585 0.0581

0.00 1.0000 0.0000 0.0000

Table 1: Effects of skew quadrupole arrangment on the linear coupling ratio

which is the desired result.

The tune separation and the coupling ratio for various arrangements of the B:QS family
of the skew quadrupoles with the integrated strength B’l = 0.2 T are listed in Table 2. The
tune separation data, an indication of coupling, clearly shows that the » = 7 arrangement
is the most efficient way of coupling the lattice. However, the coupling ratio doesn’t show
a clear advantage of the n = 7 over the n = 8 arrangement. This is because once the beam
is close to full coupling, the coupling ratio is saturated in the sense that it does not gain
much advantage from the optimized arrangement to a less optimized one. This saturation-
behaviour is shown in Fig. 4 (top). Also, our definition of emittance is not rigorous. Finally,
the coupling ratios around the ring are plotted in Fig. 4 (bottom) for a useful comparison.

3 Global Decoupling _
3.1 Treatment of Weak Coupling Using Matrix Formalism

The Courant-Snyder parameterization for one-dimensional linear motion in a periodic sys-
tem is generalized to two-dimensional coupled linear motion by Edwards and Teng [7]. This
work is further developed and put into a more convenient form for compensating coupling
by Peggs [8]. A detailed description of the above matrix formalism can be found in Tal-
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Arrangement No. | vz —vy| | £ = €ymaz/€zmas
0 (normal) 0.104 0.797
1 0.080 0.403
2 0.087 0.542
3 0.115 0.798
4 0.145 0.891
5 0.171 0.888
6 0.185 0.936
7 0.186 0.952
8 0.172 0.963
9 0.145 0.936

Table 2: Optimization of skew quadrupole arrangment

man’s paper [9]. Applications of this theory in a real storage ring known to us are found
in the work of Billing at CESR [10]. Measurement and correction of the local coupling
in the storage ring at CESR are described by Bagley and Rubin [11,12]. In addition, the
global decoupling at the design stage of a ring which is relevant to this work is described
by Schachinger at SSC [13].

Following Peggs, we may write the normalized transfer matrix for the ring as

T=(A: l”\;) (10)

This normalized transfer matrix is the similarity transformation of the Edwards and Teng
matrix, T/. The relation between the two is

T =GT'G™1, (11)

where G is the 4x4 Floquet transformation matrix defined as

Gz 0
¢ e
ﬂ;1/2 0
Gz = - 12
azfz 12 ,3:}:/ ? ( )
1/2 0
G;' = z_ _ .
< —azfz 1z Bz 1/2 )

Since the two matrices are related by the similarity transformation, the eigenvalues and the
trace of the matrix are invariant. We futher define a “fundamental” coupling matrix

H=m+n™,




where the adjoint operation is the symplectic conjugate operation defined as
nt = —S§3S,

from which it follows that »+ = n~! if n is unimodular. Here S is the unit symplectic
matrix.

The roll angle of the eigenmodes is given by

tan(2¢) = %1—2‘-(—]1-2———-— “def(fg. (13)

An important relation for the eigenfrequency is given by
(cos2mvy — cos2mug)? = -i—Tr(M — N)2 + det(H). (14)

Note that the results in Eqgs. (13) and (14) are exact without any approximation. Assuming
weak coupling, Peggs shows that the matrices M and N are not perturbed in the first order
of the coupler strength. Hence, to the first order approximation,

TrM = 2cos2wvz, and TTN = 2cos2tvy.

Thus, on the coupling resonance v; = vy, Eq. (14) becomes

2rsinm(vz + vy)

v =l — o]

The procedure to minimize §v is often called “global decoupling”. However, this terminology
is misleading. “Global” here does not mean “at all locations of the lattice.” The coupling
effects on the beam motion which are characterized by the off-diagonal submatrices, m and
n, of the transfer matrix, T, are local and the complete decoupling of the lattice is only
possible by removing all the magnets which cause coupling effects.

According to M. Billing, H can be written
H = Hysinm(vg + vy) + H_sinm(vz — vy). (16)

Hy are defined as

_ cosw(sm) stnw(sm)
Hy= ;q’n ( —sinwi(Sm) cosw(sm) |’
where g, = @ is the dimensionless skew quadrupole strength of focal length f and
wi(sm) = (£by(sm) — $z(sm)) + w(Lvy — vz),

where ¢z y(sm) is the betatron phase at the skew quadrupole measured from the reference
point. These expressions are convenient because all the quantities used in the formula are
those of the uncoupled lattice. Defining p = Y gmcoswy and r = 3 gmsinw,., Hy can be

7




compactly expressed as

— p T
we(27)
Near the coupling resonance, the contribution of the H_ term becomes negligibly small.

Thus,
vpETt (17)

bv = 27

3.2 Decoupling Procedure and Its Application

A routine procedure to decouple the lattice by the operator may be described as follows:

1. Initially, the ring operates at the normal tunes which are v; = 35.22 and vy = 14.30
for the APS storage ring.

2. Adjust the trim quadrupoles to bring the two tunes together as close as possible.

3. Adjust the two families of skew quadrupoles (A:QS and B:QS in the APS storage
ring) to minimize the tune separation, év.

4. Finally, return the tunes to the normal values by adjusting the trim quadrupoles.

The same procedure is simulated using the program MAD interactively. In the simulation,
Q1s (see Figure 2 for the location) are chosen as the trim quadrupoles.

Rewriting p and 7,

P = Z qmCoSW Z dmCoSWy + Po
AQS B:QS

r = Z gmSinwi Z gmSinwy + 1o (18)
AQS B:OS

where p, and 7, are from the random roll errors of normal quadrupoles in the ring, we can
see that it is convenient to use A:QS to control r, and B:QS to control p, or vice versa.
With the midpoint of the straight section of cell 0 as the reference point, we found that
A:QS mainly control . With the ten skew quadrupoles of the A:QS family, we get

P(A:QS5)=02|gm|, 7(A:QS) =6.0|gm]-

For optimal control of p using the B:QS family, we consult Fig. 3 (top) in order to find the
most efficient arrangement. There we find that the phase of » = 4 or n = 9 arrangement is
almost orthogonal to that of A:QS. The relevance of using Fig. 3 (top) may be traced to
the definition of wy,

Wi = dy(sm) — Pz(sm) = (vy — vz)0m = 216,.

In the simulation, we used the » = 0 arrangement of B:QS. The coupling ratio due to
the random roll errors of normal quadrupoles is shown in Fig. 5 for three different error

8
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Error level | 6v (before) | dv (after) | A:QS (B1) | B:QS (B])
0.5 mrad 0.0186 0.00133 0.019 T 0.055 T
1.0 mrad 0.0353 0.00465 0.031 T 0.100 T
2.0 mrad 0.0714 0.0282 0.019 T 0.140 T

Table 3: Effect of Decoupling Procedure on the Tunes

levels (0.5 mrad, lmrad, and 2 mrad). The minimum tune separations before and after
decoupling are summarized in Table 3 with the same seed number for the assignment of
random errors. We note that v before decoupling is linearly proportional to the magnitude
of rms errors as expected.

Finally, the effects of decoupling on the phase motion at the normal tunes, shown
in Fig. 6 for the error level of 2 mrad, indicate that our decoupling procedure effectively
reduced the vertical emittance. The turn by turn single particle emittances are also plotted
(see Fig. 7).

4 Conclusion

In this report we investigated the introduction of coupling to put a beam in the fully
coupled state and the decoupling procedure to cancel the coupling effects due to the random
roll errors of normal quadrupoles. The harmonic analysis of skew quadrupole distribution
provides the common ground for finding the optimum arrangement of skew quadrupoles. We
achieved full coupling at the integrated skew quadrupole strength of 0.2 T and we reduced
the coupling by the decoupling procedure down to 10 percent even with the rather large
rms roll error of 2 mrad.
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Fig. 1. (a) Periodic delta function, (b) Staircase function, (¢) Skew quadrupole arrangement
solid block-A:QS, blank block-B:QS, (d) Shift of A:QS, n=1, (e) Shift of B:QS, n=7
(the optimized arrangement achiving full coupling).




Storage Ring Sector and
Magnet Nomenclature

|4 A >{< B >=
HI H2 H3 Ha Ha " i
A L C B V4 .. Y‘}_,| _______________\/_3_ _-______y_2__\_/]
i BMn
ou1 Bamcgsé]sé szl:] sa QU4 Dssmus D45 céZ sag s2 :gus 1“2“
Girder 1 Girder 2 Girder 3 (?wder 4 Girder 5
. : S(n)A:Q4 k S(n)B:QS S(n)B:Q3
2%23&8’; w 2%2%22?5“’3 S(A:HV)4  S(n)B:S3 S@)B:S1
S(n)A:P1 S(n)A:P3 S(n)A:Q5 S(n)B:P4 S(n)B:P2 .
SMAHV)2  SMAM S(n)A:S4 S()B:M S(B:Q2
S(n)A:Qz' S(n)A:P4 S(n)B:P5 S(n)B:P3 S(n)B:(H.v)2
S(n)A:Pz S(n)A:S3 S(n)B:Q5 S(n)B:S2 S(n)B:P1
S(n)A.S1 S(B:H,v)a  SMB(HV)3  S(n)B:Qt
S(n)A:Q3 S(n)B:Q4 SBHY)1

S(n)A:QS

S = Storage Ring

n = Sector Number

A,B = Upstream, Downstream Half of Sector
: = Delimiter - Do not use period (.)
Q1-Q5 = Quadrupoles

QS = Skew Quadrupole

S1-S4 = Sextupoles

H1-H4 = Horizontal Steering Correctors
V1-V4 = Vertical Steering Correctors

M = Dipoles

P = Position Monitors

ID = Insertion Device Source

BM = Bending Magnet Source

Fig. 2. Nomenclature for the APS storage ring. (From G. Decker, Ref. [3])
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Fig. 3. (Top) a and b coefficients from the B:QS skew quadrupole family,
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Fig. 5. Coupling ratio due to the random roll errors of normal quadrupoles.
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Fig. 7. The effects of decoupling on the emittance.
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