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ABSTRACT 

Engineers from a government-owned engineering and manufacturing facility  were 

contracted by government-owned research laboratory to design and build an S-band 

telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology 

packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module.  The 

integrated circuit technology chosen for the Phase-Locked Loop Frequency 

Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that 

utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor 

corporation. This thesis work details the design of the Voltage Controlled Oscillator 

(VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated 

VCO core circuit and a  high-isolation buffer amplifier. 

 

The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-

3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to 

frequency pulling due to RF load mismatch.  Actual measurements of the amplifier 

gain and isolation showed the gain was approximately 5 dB lower than the simulated 

gain when all bond-wire and test substrate parasitics were taken into account. The 

isolation measurements were shown to be 28 dB at the high end of the frequency 

band but the measurement was more than likely compromised due to the 

aforementioned bond-wire and test substrate parasitics. 
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The S-band oscillator discussed in this work was designed to operate over a 

frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with 

a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range 

was measured to be from 2215 MHz to 2330 MHz with a minimum output power of 

 -7 dBm over the measured frequency range.  A phase-noise of -90 dBc was measured 

at a 100 kHz offset from the carrier.  

 

 

 

4 
 



TABLE OF CONTENTS 

 
List of Figures …………………………………………………...................…………8 

List of Tables ……………………………………………….................…………….12 

Acknowledgements ……………………………………….................……………...13 

Chapter 1. Introduction …………………………………….................…………….14 

 1.1.  Research Motivation and Background  .....………….................………14 

 1.2.  Thesis Description….……………………………….................…….....14 

 1.3.  Thesis Organization……………………………….................…………15 

1.4.  Peregrine Semiconductor GC Process …………….................…..…….15 

Chapter 2. High-Isolation Buffer Amplifier....………………….....................……...17 

 2.1.  Specifications……………………………………….................………..17 

 2.2.  Design…………………………………………….................………….18 

  2.2.1 Amplifier Simulations................................................................24 

 2.3.  Test and Measurement results ................................................................29 

 Chapter 3. S-band Voltage Controlled Oscillator…………......................................37 

 3.1.  VCO Specifications ...............................................................................37 

 3.2.  Tuned LC Oscillator Overview..............................................................38 

  3.2.1  Phase Noise Overview.............................................................40 

 3.3.  VCO Design ..........................................................................................45 

  3.3.1  Oscillator Core Frequency ......................................................47 

  3.3.2  Resonant Tank Q ....................................................................50 

5 
 



  3.3.3.  Negative Resistance Requirements ..................................51 

  3.3.4.  Current Mirror Bias Circuit ..............................................53 

  3.3.5.  Complete VCO Circuit .....................................................54 

   3.3.5.1.  Source-Follower Amplifier ...............................56 

   3.3.5.2.  Pi-Attenuator .....................................................59 

 3.4.  Full VCO Simulation Results ..........................................................61 

  3.4.1.  Output Frequency .............................................................61 

  3.4.2.  Output Power ....................................................................62 

  3.4.3.  Phase-Noise ......................................................................63 

  3.4.4.  Spectral Purity ..................................................................64 

  3.4.5. Oscillator Start-up Transient ...........................................65 

  3.4.6.   Amplitude and Phase Balance ........................................67 

  3.4.7.  RF load-pulling ................................................................68 

  3.4.8   DC Power consumption ...................................................70 

 3.5.  VCO Testing and Measurement Results .........................................70 

  3.5.1.  Measured Output Frequency and Power ..........................71 

  3.5.2.  Measured Phase-Noise .....................................................75 

  3.5.3.  Measured Spectral Purity..................................................76 

  3.5.4.  Measured Phase and Amplitude Balance .........................76 

  3.5.5.  Measured RF Load-Pulling...............................................79 

  3.5.6.  Measured DC Power Consumption ..................................80 

Chapter 4. S-band Voltage Controlled Oscillator; second design iteration.........81 

6 
 



 4.1.  High-Isolation Buffer Amplifier Redesign Summary.............................81 

  4.1.1.  Differential Amplifier Simulations .........................................83 

  4.1.2.  Completed High-Isolation Buffer Amplifier ..........................87 

 4.2.  Oscillator Core Redesign Summary ......................................................89 

  4.2.1.  Second Iteration VCO Simulations ........................................93 

Chapter 5. Conclusions and Future Work................................................................101 

 5.1.  Conclusions...........................................................................................101 

 5.2.  Future Work..........................................................................................103   

References ................................................................................................................104 

Appendices................................................................................................................106 

 

 

 

 

 

 

 

7 
 



LIST OF FIGURES 

Figure 1.1:  Telemetry LO phase-locked loop synthesizer block diagram................15 

Figure 1.2:  Peregrine semiconductor's UltraCMOS process stack-up......................16 

Figure 2.1:  I-V curves and load line for a 45 x 9 um N-channel device...................19 

Figure 2.2:  Single-stage amplifier circuit .................................................................21 

Figure 2.3:  Single-stage amplifier voltage gain .......................................................21 

Figure 2.4:  Single-stage amplifier S-parameters .....................................................22 

Figure 2.5:  Complete, 3-stage, buffer amplifier schematic .....................................23 

Figure 2.6:  Complete, 3-stage, buffer amplifier layout ...........................................24 

Figure 2.7:  Complete buffer amplifier test bench ...................................................25 

Figure 2.8:  Complete buffer amplifier gain and isolation .......................................26 

Figure 2.9:  Complete buffer amplifier 1-dB compression point .............................27 

Figure 2.10: Amplifier stability parameters with an input and output  

          impedance of 50 ohms ........................................................................28 

Figure 2.11: Amplifier stability parameters with a large impedance mismatch.......29 

Figure 2.12:  Buffer amplifier test circuit ................................................................30 

Figure 2.13:  Buffer amplifier test bench including all off-chip parasitics ..............31 

Figure 2.14:  Buffer amplifier measured transducer gain vs simulated  

           transducer gain ...................................................................................32 

Figure 2.15:  Buffer amplifier measured isolation vs simulated isolation ...............33 

Figure 2.16:  Buffer amplifier's measured 1-dB compression point ........................36 

 

8 
 



Figure 3.1:  2-port, linear, Barkhausen oscillator model [8]....................................39 

Figure 3.2:  Simple LC-VCO model with passive component losses .....................40 

Figure 3.3:  Frequency spectrum of an ideal and real oscillator [8].........................41 

Figure 3.4:  Relationship of time domain jitter and frequency domain phase-noise  

        [8]..........................................................................................................42 

Figure 3.5:  Typical single-sideband phase-noise with ࣓૚/ࢌ૜ corner frequency  

        highlighted ...........................................................................................43 

Figure 3.6:  Differentially cross-coupled oscillator core for the telemetry-band  

        VCO ....................................................................................................46 

Figure 3.7:  VCO half-circuit equivalent ...............................................................47 

Figure 3.8:  VCO frequency tuning range simulation results ................................49 

Figure 3.9:  Loaded tank Q simulation results .......................................................50 

Figure 3.10:  IV Curves for a 7 x 8 um p-channel MOSFET ................................52 

Figure 3.11: Current mirror circuit using PMOS devices .....................................54 

Figure 3.12:  Complete Telemetry PLL VCO Schematic .....................................55 

Figure 3.13:  Complete Telemetry PLL VCO Layout ..........................................56 

Figure 3.14:  Source-follower amplifier circuit ....................................................57 

Figure 3.15:  Source-follower amplifier's input impedance simulation ...............58 

Figure 3.16:  Source-follower amplifier's output impedance simulation .............58 

Figure 3.17:  Source-follower amplifier's insertion loss simulation ....................59 

Figure 3.18:  S-parameter simulation results for the resistive pi-attenuator.........60 

Figure 3.19:  VCO output power harmonic balance simulation results ...............62 

9 
 



Figure 3.20:  VCO phase-noise harmonic balance simulation results ................64 

Figure 3.21:  VCO output power spectrum simulation results ...........................65 

Figure 3.22:  VCO start-up transient simulation results .....................................66 

Figure 3.23:  VCO single-ended waveform simulation results ..........................68 

Figure 3.24: VCO load-pulling vs phase simulation results ...............................69 

Figure 3.25: VCO test circuit .............................................................................71 

Figure 3.26:  Simulated and measured VCO frequency vs tuning voltage ........72 

Figure 3.27:  Simulated and measured VCO output power vs tuning voltage ...73 

Figure 3.28:  Measured phase-noise of the VCO at a 100 kHz offset ...............75 

Figure 3.29:  Measured VCO voltage waveform with horizontal cursors  

           on port 1 output ...........................................................................77 

Figure 3.30:  Measured VCO voltage waveform with horizontal cursors  

           on port 1 output ...........................................................................77 

Figure 3.31:  VCO voltage waveform with vertical cursors measuring phase 

           imbalance ....................................................................................78 

Figure 3.32:  Smith chart showing RF load values where frequency pulling  

           was measured .............................................................................79 

Figure 4.1:  Differential, cascode amplifier schematic ....................................82 

Figure 4.2:  Differential amplifier linear test bench simulation results ...........84 

Figure 4.3:  Differential amplifier stability simulation results ........................85 

Figure 4.4:  Differential amplifier 1-dB compression point simulation  

        results............................................................................................86 

10 
 



Figure 4.5:  Second iteration  high-isolation buffer amplifier block diagram........87 

Figure 4.6:  Complete buffer amplifier linear test bench simulation results..........88 

Figure 4.7:  Layout of 2nd iteration high-isolation buffer amplifier .....................89 

Figure 4.8: 260 X 2 µm X 0.25 µm device's capacitance vs source-drain  

                   voltage with the gate tied to ground...................................................91 

Figure 4.9:  50 X 2 µm X 0.25 µm device's capacitance vs source-drain  

         voltage with the gate tied to 0.98 V...................................................91 

Figure 4.10:  Second iteration of the oscillator core schematic.............................92 

Figure 4.11:  Layout of second iteration VCO core..............................................93 

Figure 4.12:  Second iteration VCO frequency vs tuning voltage when course  

           tuning bit, B0 equals 0 and 1...........................................................94 

Figure 4.13:  Second iteration VCO output power vs tuning voltage when  

          course tuning bit, B0 equals 0 and 1.................................................95 

Figure 4.14:  Second iteration VCO output frequency vs load phase for  

           a 3:1 VSWR mismatch.....................................................................96 

Figure 4.15:  Second iteration VCO phase noise harmonic balance simulation 

           results................................................................................................97 

Figure 4.16:  Second iteration VCO voltage waveform simulation results............98 

Figure 4.17:  Second iteration VCO start-up transient simulation results..............99 

Figure 4.18:  Second iteration VCO output power spectrum simulation results....100 

 

 

11 
 



LIST OF TABLES 

Table 1:  VCO harmonic measurements ...............................................................76   

Table 2:  RF load frequency pulling measurements ..............................................80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 
 



ACKNOWLEDGEMENTS 

I would like to thank my advisor, Dr Chris Allen, for providing my design team with 

guidance and support in the early stages of the Phase-Locked Loop design process.  

He also provided me with much needed guidance during the final stages of writing 

my thesis and for this I am sincerely grateful. I would also like to thank Dr. Jim Stiles 

and Dr. Shannon Blunt for serving on my thesis committee. I have relied on 

knowledge gained from the RF and Microwave engineering courses taught by both of 

them in-order to work on this project and I would like to thank them for this.  I am 

also deeply indebted to the engineers who worked on the project's design team, 

namely the project leader, Frank Smith.  He gave me the opportunity to expand my 

intellectual horizons by working on this project and he willingly shared his 

knowledge of RF design on a daily basis; I will forever be grateful for this. Finally, I 

would like to thank my wife, Jennifer, for all of her encouragement and support 

throughout my writing of this thesis.  Without her willingness to  sacrifice her time 

and energy, I would never have been able to complete this thesis. 

 

  

13 
 



 

1.  INTRODUCTION 
 

1.1. Research Motivation and Background 
 
Starting in 2007, engineers from a government-owned manufacturing and engineering 

facility were contracted by a government-owned research and development lab to 

provide a high-efficiency telemetry transmitter using Radio Frequency Integrated 

Circuit (RFIC) technology that utilized a Low Temperature Co-fired Ceramic (LTCC) 

package.  The transmitter operates in the S-band frequency range (2200MHz  to 2300 

MHz).  The purpose of this particular project is to research and design the associated 

RF circuits for a highly integrated phase-locked loop frequency synthesizer.    

1.2. Thesis Description  
 
This thesis covers the research, design, testing and redesign of a high-isolation, buffer 

amplifier and a voltage-controlled oscillator.  The oscillator is intended to operate at 

S-band frequency range (2200 MHz to 2300 MHz).  The remainder of the phase-

locked loop circuitry for the frequency synthesizer was designed by other engineers at 

Honeywell FM&T and will only be mentioned in-passing.  This thesis focuses 

exclusively on the design, testing and redesign of the VCO and buffer amplifier 

circuitry for the synthesizers.  Figure 1.1 shows the block diagram of the phase-

locked loop synthesizer with a red box around each circuit researched and designed in 

this project. 
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Figure 1.1:  Telemetry LO phase-locked loop synthesizer block diagram 

 

1.3. Thesis Organization 
 
The remainder of this thesis consists of a brief description of the Peregrine 

Semiconductor GC process as well as the design and testing of the high-isolation 

buffer amplifier and voltage-controlled oscillator.  Following these chapters, a chapter 

on redesigning the VCO components and a conclusion chapter summarizes the results 

and highlights of the research performed . 

1.4. Peregrine GC Process Description  
 
The foundry process that was chosen for this project was Peregrine Semiconductor’s 

GC process.  This process is a 3-metal layer, 1 poly layer, 0.25 µm channel length, 

Complementary Metal Oxide Semiconductor (CMOS) process that utilizes a highly 
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resistive sapphire substrate in-lieu of the more common bulk silicon substrate.  The 

top metal layer is thick metal layer that is used for creating high-Q passive 

components such as inductors and metal-insulator-metal (MIM) capacitors.   The 

sapphire substrate’s high resistivity has several distinct advantages when compared to 

a bulk silicon substrate.  These advantages include high isolation between digital and 

analog RF circuits and low-leakage current for transistors.  The substrates high 

resistivity also reduces parallel substrate capacitance which has the effect of 

increasing the Q of integrated inductors.  All of these process features make the 

Peregrine GC process very attractive for mixed signal applications and thus is the 

reason this process was used for the phase-locked loop synthesizer.  Figure 1.2 shows 

a publically available Peregrine process stack-up [1]. 

 

 

Figure 1.2:  Peregrine Semiconductor’s UltraCMOS Process Stack-up [1] 
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2.  High-Isolation Buffer Amplifier  
 

This chapter describes the design, layout and measurement of the high-isolation 

buffer amplifier.  The amplifier was intended to be used by both the S-band telemetry 

oscillator and another  PLL oscillator and was required to have a very high isolation 

(> 60 dB), operate over a wide frequency band (2.2 GHz to 3.5 GHz) and have 

enough gain to provide an output power of 0 dBm.  The chapter begins with a brief 

list of specifications and gives a brief overview of the amplifier topology and design 

procedure.  Finally, the measurements and results are presented and any differences in 

the measured versus simulated is discussed. 

2.1. Buffer Amplifier Specifications 
 

Frequency Range:   2200 MHz to 3495 MHz 

RF Output Power:   0 dBm 

Power Gain:    * 

Isolation:    >60 dB 

Supply Voltage:   2.5 V 

Current Consumption:   < 40 mA 

1- dB gain compression point: > 1 dBm (referenced to the output power) 

Output impedance   50 Ohms 

*The gain value was not explicitly specified, the only requirement was for the gain to be high enough to amplify the oscillator 

output to 0 dBm. 
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2.2. Amplifier Design 
 
The amplifier topology that was chosen was a multi-stage, common source topology 

with a simple resistor network to provide bias voltage for each stage.  A multi-stage 

amplifier was chosen mainly due to the high isolation requirement.  A common drain 

configuration (source-follower) for each amplifier stage was initially considered but 

early simulation showed that the common source amplifier has superior isolation.  

The common source amplifier has the added advantage of having higher than unity 

gain (unlike the source-follower amplifier)[2] which allows for attenuation to be 

added between the oscillator core and the amplifier for addition isolation.   

 

The FET size for each amplifier stage was chosen to be relatively large (45 µm x 9 

gate fingers) to handle the output power requirement of 0 dBm. The transconductance 

of the 45 µm x 9 FET fingers can be calculated from  ܩ௠ ൌ ௡൫ܸீܭ2 ௌொ െ ்ܸ ே൯ [1]  

where VGSQ is the FET gate to source quiescent voltage and VTN  is the FET threshold 

voltage (0.45 V in the Peregrine GC process2).  The conduction parameter, Kn ,  is 

derived from the formula, ܭ௡ ൌ ௐఓ೙ఢ೚ೣ
ଶ௅௧೚ೣ 

   [2] where W and L are the FET gate width 

and length (respectively), µn is the electron mobility in silicon and εox and tox are the 

permeability and thickness of the oxide layer.  For this particular process with a given 

FET gate width of 45 um x 9 fingers and a gate length of 0.25 um, the conduction 

parameter was calculated to be 363 mA/V2 .  Using a 100 Ohm resistor in series with 

the MOSFET drain, the load line of the FET can be plotted and a quiescent drain 

voltage and current can be established for a given gate bias voltage. 
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Fig 2.1: I-V curves and load line for a 45 x 9 um n-channel MOSFET with a 100 Ohm drain 

resistor 
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An examination of the 45 x 9 um MOSFET I-V curves reveal that for a quiescent 

gate-to-source voltage, VGSQ , of 0.683 volts, the quiescent drain current, IDQ, is 9.165 

mA.  A recalculation of the conduction parameter using the equation ܭ௡ ൌ

 ூವೂ

൫௏ಸೄೂି௏೅ಿ൯మ [2] shows that the conduction parameter is actually 168.8 mA/V2. The 

discrepancy between the simulated value and initial calculated value was likely due to 

an assumption made about electron mobility (a parameter not given the Peregrine 

design manual).  The small signal voltage gain of the common source amplifier can 

be estimated from ܣ௩ ൌ െܩ௠ሺݎ௢//ܴ஽ሻ  [2] where ro is the MOSFET output 



resistance and RD is the series drain resistor. Using the new conduction parameter of 

168.8 mA/V2, the transconductance is calculated to be 78.8 mS.  The output 

resistance of the MOSFET can be determined by examining the I-V curve since ro is 

inversely proportional to the slope of the curve [2] which is 1.853 V/6.12 mA or 

302.7 Ohms. This gives an initial calculation of the amplifier voltage gain to be equal 

to -0.078* (303.07 // 100) or -5.865 (the negative sign in-front of the gain value 

denotes a 180 degree shift in signal phase).  However, this fairly simplistic gain 

calculation neglects several important intrinsic parasitic capacitances, such as the 

gate-to-source capacitance (CGS), the gate-to-drain capacitance (CGD)  and the drain-

to-source capacitance (CDS).  None of the previously mentioned parasitic capacitances 

can be conveniently calculated by hand but are included in the macro SPICE model 

where the small signal voltage gain can be simulated and compared with the earlier 

calculation.  

 

 The initial amplifier test circuit is configured like the circuit shown in figure 2.2, 

without the input and output coupling capacitors and with the input and output port 

impedances set to 1 MOhm.  The results of the simulation (shown in figure 2.3) show 

that voltage gain of the amplifier is 3.9761 (at low frequencies) and 3.8878 at 3.5 

GHz when the intrinsic parasitic capacitances are added.  This amount of gain is 

adequate (as the buffer amplifier gain is not specified and only needs to be accurately 

predicted).  Also, with the RD set to 100 Ohms, the quiescent drain voltage is 1.509 V 

which allows a peak signal of 0.991 Vs (0.701 VRMS)  be output without clipping 
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which would give an output power of 9.8 mW (9.9 dBm) into a 50 Ohm load.  This is 

well below the required output power of 0 dBm. 

 

Fig 2.2:  Single-stage amplifier circuit 
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Two 5.6 pF coupling capacitors were then added to the circuit and the amplifier S-

parameters were simulated with the input and output port terminations set to 50 

Ohms.  The transducer power gain, GT,  is the ratio of power delivered to the load to 

the power available from the source [4]-[5].  For the special case that the source 

impedance and load impedance match, then ்ܩ ൌ  |ܵଶଵ|ଶ [4] or if expressed as a 

logarithm,  20݃݋ܮ|ܵଶଵ| .  The reverse transducer power gain (or isolation) is equal to 

| ଵܵଶ|ଶ assuming matching source and load impedances and can also be expressed by a 

logarithm as 20݃݋ܮ| ଵܵଶ| [5].  Both of these amplifier parameters, along with the 

magnitude of the output reflection coefficient, were simulated and are shown in figure 

2.4. 
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This simulation shows that while the gain is adequate and varies less than 2 dB across 

the required bandwidth, the isolation is only -23.62 dB at the upper end of the band. 

In-order to meet the specified -60 dB of isolation, a total of 3 amplifiers, in this 

configuration, were needed.  It is noteworthy to point out that the output reflection 

coefficient is better than -11 dB across the required bandwidth and, although no 

matching requirement was placed on the amplifier, a broadband output match is 

desirable. Figure 2.5 below, shows the completed 3 stage amplifier schematic 

complete with decoupling capacitors on the supply lines. 
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Figure 2.5: Complete, 3- stage, buffer amplifier schematic. 
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Figure 2.6: Complete, 3-stage, buffer amplifier layout 

 

2.2.1.    Amplifier Simulations 
 
To ensure that the completed buffer amplifier meets all specifications, simulations of 

the transducer gain and isolation, DC current consumption and 1 dB compression 

point were performed across the required frequency band.   The buffer amplifier's 

stability was simulated up to 20 GHz to ensure the amplifier will not oscillate at any 

frequency where the gain is greater than unity.  All of the circuit simulations (along 

with schematic capture and layout) were performed using the CAD software Analog 

Office version 7.53 by Applied Wave Research[6].   
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The transducer gain and isolation, as mentioned in section 2.2, can be represented  as 

as 20݃݋ܮ|ܵଶଵ| and 20݃݋ܮ| ଵܵଶ| (respectively) when the input and output impedances 

match.  The S-parameter simulation shows that the complete 3-stage amplifier has a 

transducer gain ranging from 19.4 to 14.7 dB and a reverse isolation ranging from      

-80.7 to -73.4  dB over the entire specified frequency band.  The simulation also 

showed that the amplifier's quiescent current consumption was 32.7 mA at 2.5 volts.  

A test bench of the amplifier and the S-parameter simulations are shown below in 

figure 2.7 and figure 2.8. 
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Figure 2.7: Complete buffer amplifier test bench 
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Figure 2.8: Complete buffer amplifier gain and isolation 

0.1 1.1 2.1 3.1 4
Frequency (GHz)

Complete buffer amplifier gain and isolation

-200

-150

-100

-50

0

50
Tr

an
sd

uc
er

 G
ai

n 
/ I

so
la

tio
n 

(d
B)

2.202 GHz
-79 dB

3.5 GHz
-71.67 dB

3.499 GHz
12.23 dB

2.197 GHz
16.85 dB

DB(|S(2,1)|)
Buffer_linear_TB.AP

DB(|S(1,2)|)
Buffer_linear_TB.AP

 
 
The 1-dB gain compression point is defined as the power gain where the non-

linearities of the transistor reduce the power gain by 1 dB over the small-signal linear 

power gain [4] or ܩଵௗ஻ሺ݀ܤሻ ൌ ሻܤ௢ሺ݀ܩ  െ  1  where Go (dB) is the small-signal 

p w de  e er gain can be defined as o er gain in cibels. Sinc  the pow

ሻܤ௉ሺ݀ܩ  ൌ ௢ܲ௨௧ሺ݀݉ܤሻ െ ௜ܲ௡ሺ݀݉ܤሻ  then the output power at the 1 dB compression 

point, P1 dB,  can be written as ܩଵ ௗ஻ሺ݀ܤሻ ൌ ଵܲ ௗ஻ሺ݀݉ܤሻ െ ௜ܲ௡ሺ݀݉ܤሻ.  Substituting 

ሻܤ௢ሺ݀ܩ െ 1 for G1 dB, yields the equation ܩ௢ሺ݀ܤሻ െ 1 ൌ  ଵܲ ௗ஻ሺ݀݉ܤሻ െ ௜ܲ௡ሺ݀݉ܤሻ 

or said in another way, the 1-dB compression point is the point where the output 

power minus the input power (in dBm) is equivalent to the small-signal power gain 
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minus 1 dB [5]. Figure 2.9 shows a plot of the output power versus the input power of 

the amplifier at 3 evenly spaced frequencies across the required amplifier bandwidth 

(2.2, 2.85 and 3.5 GHz).  The plot shows that at the three simulated frequencies, the 1 

dB-compression point is greater than the 1 dBm requirement.   
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Figure 2.9: Complete buffer amplifier 1 dB compression point 

 

Finally, the stability of the amplifier was simulated to ensure the amplifier was 

unconditionally stable from 10 MHz to 20 GHz.  The amplifier was simulated using 

both an ideal 50 Ohm input and output impedance and a high VSWR input and output 

impedance with a reflection coefficient magnitude equal to 0.99 and a reflection 
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coefficient angle at 0, 90, 180 and 270 degrees.  The stability parameters K and B1 are 

defined by the following equations; ܭ ൌ ଵି|ௌభభ|మି|ௌమమ|మା|∆|మ

ଶ|ௌభమௌమభ|   and ܤଵ ൌ 1 ൅ | ଵܵଵ|ଶ െ

|ܵଶଶ|ଶ െ |∆|ଶ where ∆ൌ ଵܵଵܵଶଶ െ ଵܵଶܵଶଵ.  For an amplifier to be considered 

unconditionally stable, both K >1 and B1>0 simultaneously [5].   Figure 2.10 and 2.11 

show the results of the stability simulations and it is apparent that the amplifier meets 

the both of the stability parameter requirements (although the B1 stability parameter 

becomes very close to 0 below 1 GHz). 

0.1 1.1 2.1 3.1 4
Frequency (GHz)

Complete buffer amplifier stability

0

200

400

600

800

1000

St
ab

ilit
y 

Fa
ct

or
, K

0

0.4

0.8

1.2

1.6

2

S
ta

bi
lit

y 
P

ar
am

et
er

, B
1

4 GHz
184.1

K() (L)
Buffer_stability_TB.AP

B1() (R)
Buffer_stability_TB.AP

 

Figure 2.10: Amplifier stability parameters with an input and output impedance of 50 Ohms 
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Figure 2.11: Amplifier stability parameters with a large impedance mismatch  
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2.3. Test  and Measurement Results 
 

The  buffer amplifier was tested using a test circuit built on a 15 mil thick Roger's 

corporation TMM10i substrate on 32 mil thick brass backing.  The traces were also 

plated with 150 microns of gold to facilitate wire bonding with 1 mil thick gold wire.   
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Figure 2.12: Buffer amplifier test circuit  

 

Although it would be ideal to test the buffer amplifier in a stand-alone configuration, 

die space limitations would not permit it.  Provisions were made on one of the 

complete oscillators to allow for a buffer amplifier to be powered on by itself along 

with bond-wire pads to allow access to the RF input and RF output of the buffer 

amplifier.  A re-simulation of the  transducer gain, isolation, 1 dB-compression point 

and stability was performed to include all of the micro-strip traces, bond-wires, off-

chip decoupling capacitors and on-chip extraneous oscillator circuitry.  All of these 

parasitic elements reduced the gain and dramatically reduced the  isolation of the 

amplifier relative to the earlier "ideal" simulation but had no effect on the 1 dB 
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compression point or stability. In the re-simulation, the transducer gain dropped from 

16.9 to 14 dB at 2.2 GHz and from 12.2 to 12 dB at 3.5 GHz while the isolation 

decreased from -80.69 to-29 dB at 2.2 GHz and 3.5 GHz. This dramatic decrease in 

the circuit's isolation will make any isolation measurement questionable at best and 

other indirect measurement techniques may have to be incorporated at a later period 

in time. The figure below shows the amplifier re-simulation test bench that includes 

all of the parasitics. 
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Figure 2.13: Buffer amplifier test bench including all parasitics 

 

The amplifier's transducer gain and isolation where measured by an Agilent N5242 A 

Performance Network Analyzer (PNA-X).  The transducer gain and isolation was 
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measured on two identical test circuits from 500 MHz to 4 GHz.  Figures 2.14 and 

2.15 show the buffer amplifier's transducer gain and isolation (respectively) as 

measured on the test circuits versus the re-simulation results. 
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Figure 2.14: Buffer amplifier measured transducer gain vs simulated transducer gain 
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Figure 2.15: Buffer amplifier measured isolation vs simulated isolation 

 

As shown in the figure 2.14, the transducer gain dropped from 14.0 dB in the 

simulation to 7.88 dB at 2.2 GHz and from 12.01 dB to 3.6 dB at 3.5 GHz.  This 

discrepancy between the simulated vs measured data can be due to a few factors 

namely improperly modeled on-chip interconnect and gate poly parasitics (which will 

be discussed in more detail in chapter 4). Another major culprit of the gain 

discrepancy is more than likely caused by capacitance multiplication due to the 

Miller-effect. 
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The Miller-effect is described as a capacitance multiplication effect and comes from 

connecting a capacitance across 2 nodes that have an inverting voltage gain between 

them [7]. In the case of the common source amplifier, the capacitance that is 

multiplied is the gate-to-drain capacitance and the Miller-capacitance is given by the 

equation ܥெ ൌ ஽ሺ1ீܥ ൅  ௠ܴ௅ሻ [5].  For a calculated voltage gain of 5.865, the Millerܩ

capacitance would be 6.865 times the modeled gate-to-drain capacitance and could 

cause the amplifier to have a lower than simulated gain roll-off.  An examination of 

figure 2.14 shows this to be the case with a transducer gain difference of 3.92 dB at 

2.2 GHz and a larger gain difference of 5.81 dB at 3.5 GHz.  The Miller-effect can be 

eliminated by adding an additional FET in-series with the drain of the amplifying 

FET in an amplifier configuration known as a cascode amplifier [7] .  The additional 

FET eliminates the Miller-effect by isolating the gate-to-drain capacitance of the 

amplifying FET from the output node of the amplifier.  

 

The final potential cause of the amplifier gain discrepancy is large resistor tolerance 

variation in the FET bias circuitry.  The Peregrine GC design manual states that there 

is a potential resistor skew variability that may cause the resistors to vary as much as 

േ15% [3].  As shown in section 2.2, the current amplifier bias circuitry is a simple 

voltage divider that sets the gate-to-source bias voltage at 0.63 VDC.   With the bias 

resistors varied from one extreme to the other, the FET gate-to-source bias voltage 

could vary from 0.84 VDC on the high end to 0.54 VDC on the low end.  This could 

cause the gain of the amplifier stage to vary wildly from wafer run to wafer run and is 
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clearly an unacceptable bias network for this particular IC process.  This issue is 

illustrated by the fact that the amplifier's quiescent current consumption was 

simulated to be 36.45 mA (this includes some addition circuitry on the chip that could 

not be completely isolated from the amplifier's supply line) while the measured DC 

current consumption was 31.25 mA.  The only reasonable explanation of this 

difference between simulated and measured DC current consumption is a difference 

in the bias circuitry.   

 

The isolation, as shown in figure 2.15, was measured to be -36.98 dB at 2.2 GHz and 

-27.94 dB at 3.5 GHz.  When compared to the simulation results (with all the off-chip 

parasitics), the measured isolation is 7.92 dB better at 2.2 GHz and 8.22 dB better at 

3.5 GHz.  This discrepancy in simulated vs measured isolation is more than likely due 

to a combination of improperly modeled off-chip circuit elements (such as modeled 

bond-wires as ideal inductors) and all of the factors that caused the transducer gain to 

measure low. As previously mentioned both the measured and re-simulated isolation 

were very far from the originally simulated isolation and, due to the off-chip parasitic 

components, will have to be measured indirectly by some other means (such as a 

measurement of the oscillator's frequency pulling). 

 

The 1 dB compression point was also measured for 2.2, 2.85 and 3.5 GHz and is 

plotted below in figure 2.16.  The measured 1 dB compression points for 2.2 and 2.85 

GHz were 1.05 and 1.35 dBm (respectively) which were comparable to the simulated 
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1 dB  compression point of 2.0 and 1.78 dBm.  However the measured 1 dB 

compression point for the 3.5 GHz was -1.9 dBm which is nearly 3.5 dB lower than 

the simulated value of 1.59 dBm which is probably due to the Miller-effect that was 

detailed earlier. 
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3.    S-Band Voltage Controlled Oscillator  
 
 
The following chapter describes design, simulation and test and measurement results 

of the complete voltage controlled oscillator.  The PLL frequency synthesizer is 

intended to operate as a  local oscillator in the S-band, telemetry transmitter. The 

chapter begins with a list of design specifications followed by an in-depth overview 

of LC oscillator design and phase noise then the oscillator topology and design 

procedure.  Finally, the measurements and test results are presented and any 

discrepancies or problems are discussed. 

3.1. VCO Specifications 
 
Frequency Range:         2200 MHz to 2300 MHz 

RF Output Power:        0 dBm minimum 

Phase Noise @ 100 kHz offset:     -80 dBc/Hz  

Harmonics Signals @ 1 KHz RBW:   <-45 dBc 

RF Load Pulling:    < 10 kHz with a 3:1 load VSWR @ all 

      phases 

RF Output Type:    Differential output  

Control Voltage:               0.25 V < Vcnt < 2.25 V 

Control Voltage Tuning Slope:  50  MHz/V < K < 150 MHz/V  

Supply Voltage:     2.5 V 

Current Consumption:    <100 mA (with buffer amplifiers) 
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3.2. Tuned LC Tank Oscillator Overview 

A tuned LC tank oscillator is a circuit that creates a time varying, periodic signal 

when supplied with DC powe nd n e  by the equation:   r a  ca  be describ d

௢ܸ௨௧ሺݐሻ ൌ ௢ܸsin ሺ߱௖ݐ + φ)  

where Vo is the amplitude, ωc is the angular carrier frequency and φ is the phase [8].  

For the circuit to be useful in a voltage-controlled application, the output frequency 

must be a function of an input n g vo t hat: tu in l age such t  

߱௖ሺ ௧ܸ௨௡௘ሻ ൌ ߨ2 ௖݂ሺ ௧ܸ௨௡௘ሻ  

The oscillator circuit itself can be described as a linear feedback network model, 

illustrated by figure 3.1, with the network tr function of: ansfer 

௢ܸ௨௧

௜ܸ௡
ൌ

ሺ݆߱ሻܩ
1 െ  ሺ݆߱ሻܩሺ݆߱ሻܪ

which will become unstable and oscillate when |ܪሺ݆߱ሻ||ܩሺ݆߱ሻ| ൒ 1.   The oscillation 

amplitude would continue to grow if |ܪሺ݆߱ሻ||ܩሺ݆߱ሻ| were to stay greater than one 

but due to saturation effects and non-linearties of an actual oscillator circuit's negative 

feedback amplifier, a steady state amplitude is reached when  |ܪሺ݆߱ሻ||ܩሺ݆߱ሻ| ൌ 1.  

This is known as the Barkhausen criterion [8].  Assuming that the phase shift through 

the amplifier block, G(jω), is equal to zero, then the frequency of oscillation is set by 

the feedback block H(jω) and can readily implemented as an LC tank resonator that 

oscillates at a frequency equal to 
ଵ

ଶగ√௅஼
.   
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Figure 3.1 : 2-port , linear, Barkhausen oscillator model [8]. 

 

A tunable LC oscillator generally consists of an inductor and capacitor in a parallel 

configuration  to create a resonant tank circuit and an active device of some kind to 

compensate for the losses associated with the finite Q's of these passive devices.  This 

active device is typically known as a negative resistance generator because it creates 

the "negative resistance" ( i.e. amplification) required to overcome the tank losses 

associated with passive devices.  

 

 Generally, a voltage tuned variable capacitor (or varactor) is an readily realizabl 

integrated circuit element thus is used as the tuning element in the oscillator circuit.  

The varactor's capacitance is proportional to the tuning voltage, Vtune , making the 

oscillators resonant frequency proportional to the tuning voltage fulfilling the  

requirement that ߱௖ሺ ௧ܸ௨௡௘ሻ ൌ ߨ2 ௖݂ሺ ௧ܸ௨௡௘ሻ.  It is important to note that while the tank 

inductance, L, is defined by an on-chip inductor and/or bond-wire  inductance, the 

tank capacitance consists of the sum of the varactor capacitance and any parasitic 
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inductor coil capacitances as well as the active device capacitance and any output 

circuit load capacitance and must be carefully analyzed and accounted for to 

accurately predict the resonator's oscillation frequency [ 8].         

 

Figure 3.2: Simple LC-VCO model with passive component losses 

3.2.1. Phase Noise Overview 

One of the most important performance specifications that affects every oscillator 

design is that of up-close spectral purity, more commonly referred to as phase noise.  

As previously mentioned, an ideal oscillator creates a time-varying periodic signal 

defined by the equation:  

௢ܸ௨௧ሺݐሻ ൌ ௢ܸsin ሺ2ߨ ௖݂ݐ ൅ ߮ሻ           

40 

ca  de ined by the equa ion: 

௢ܸ௨௧ሺݐሻ ൌ ௢ܸሺݐሻ݊݅ݏ൫2ߨ ௖݂ݐ ൅ ߮ሺݐሻ൯    

An examination of the frequency domain spectrum of the above signal reveals a 

Dirac-impulse at ±fc .  An oscillator consisting of real components and active circuit 

elements is more realisti lly f t

 



 This new equation shows that the signal amplitude and phase are functions of time 

and any fluctuations in these parameters will result in sidebands close to fc.  The 

fluctuations in the frequency domain, translate into jitter in the time-domain which is 

defined as the random perturbation of a periodic signal's zero crossing [8].  Figures 

3.3 and  3.4  show an ideal oscillator spectrum versus a realistic oscillator spectrum 

and the relationship between phase noise and time-domain signal jitter are directly 

taken from [8].  Minimization of phase-noise is one of the most important design 

goals of all frequency synthesizers. This is because phase noise can cause unwanted 

signal interference in adjacent frequency channels when the synthesizer is used in a 

transmitter application or can cause an adjacent channel frequencies to interfere with 

a desired frequency if used in a receiver application.  

 

 

 

 

Figure 3.3:  Frequency spectrum of an ideal and real oscillator [8] 
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Figure 3.4: Relationship of time domain jitter and frequency domain phase-noise [8] 
 
 

 

Phase noise of a resonant LC oscillator can be characterized by the empirically 

derived formula: 

£ሺ∆ωሻ  ൌ  10 log 
2F݇T
Pୱ୧୥

൤1 ൅ ሺ
ωୡ

2QL∆ωሻଶ൨ ቆ1 ൅
∆ωଵ/୤య

|∆ω| ቇ 

where ∆ω is the angular frequency offset; ∆ωc is the oscillator's carrier frequency;  QL 

is the loaded tank quality factor; Psig is the average signal power; F is the active 

device's noise excess factor;  k is Boltzman's constant; T is the device temperature in 

kelvins; and  ߱ଵ/௙య is active device's flicker-noise corner frequency between the 1/f3 

region and 1/f2 regions (see figure 3.5 for a detailed illustration).  This is known as 

Leeson's empirical phase-noise model [9]. 
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I 

Figure 3.5: Typical single-sideband phase-noise with ࣓૚/ࢌ૜ corner frequency highlighted 

The flicker-noise corner frequency can generally be ignored when analyzing 

oscillators that will be used in a phase-locked loop frequency synthesizer as this 

portion of the phase noise is a function of the PLL's loop response and reference 

frequency phase-noise[10].  By ignoring this portion of the phase noise and letting the 

loaded tank circuit quality, ܳ௧௔௡௞ ൌ  ߱ ௖ܮ/ܴௌ  and the average signal power, 

௦ܲ௜௚ ൌ  ௦ܸ௜௚
ଶ /ሺ2ܳ௧௔௡௞

ଶ ܴ௦ሻ, a simplified version of the Leeson's phase-noise model can 

be written as: 

£ሺ∆ωሻ ൌ 10 log ቈ
݇TFRS

Vୱ୧୥
ଶ

ωୡ
ଶ

∆ωଶ቉        ሺ3.1ሻ 

The above expression also assumes that the oscillator carrier frequency, ωc >>∆ω.  

An examination of the simplified phase-noise expression shows that a practical 

approach to reducing phase-noise in any LC oscillator can be done by increasing the 
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oscillators voltage swing, Vsig ,which is defined as the difference between the 

minimum and maximum voltage level in the tank circuit and  increasing the loaded 

tank quality factor by decreasing the tank's series resistance, Rs. The tank circuit's 

series resistance is usually dominated by the inductor resistance in an on-chip 

integrated inductor.   

 

Another very important factor to consider when trying to design an oscillator with the 

lowest possible phase-noise is the active device's 1/f noise, or flicker noise.  Flicker 

noise can very prominent in MOSFET devices relative to bulk devices such as 

heterojunction bipolar transistors due to the fact that MOSFET's are surface type 

devices where charge is trapped and released in surface defects and impurities [7]. To 

obtain good 1/f noise performance from a MOSFET, the largest practical device for a 

required transconductance must be used.  This is because the larger MOSFET's gate 

capacitance smoothes out fluctuations in the channel charge as it moves back and 

forth between the drain and source [7].  The 1/f drain noise current is defined by: 

ଓ௡
ଶഥ ൌ  

ܭ
݂ ·

݃௠
ଶ

௢௫ܥܮܹ
ଶ · ∆݂  

where W and L are the MOSFET's gate width and length, Cox is the MOSFET gate-

oxide capacitance,  gm is the MOSFET transconductance , ∆f is the noise-bandwidth 

and K is a device specific constant which is typically 50 times larger in NMOS 

devices than PMOS devices [7].  Given this fact and the fact that PMOS devices 

generally have roughly half the transconductance for a given size, the 1/f drain noise 

will be much less for a PMOS device than an NMOS device (for a given 
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transconductance).  This makes using a PMOS transistor a superior choice when 

choosing a device for a negative resistance generator.  

 

3.3. VCO Design 

As previously mentioned, the oscillator circuit consists of an LC resonant tank and an 

active device negative resistance generator in a differential configuration.  The tank 

circuit consists of a pair of on-chip inductors, a pair of NMOS varactors and a MIM  

capacitor. The negative resistance generator is a current mirror circuit is placed from 

the power supply line (VDD)  to the PMOS device's source to help sustain oscillation 

and the resonator tank is connected to ground.  This topology was chosen to make the 

oscillator circuit less vulnerable to power supply pushing but at a cost of added 

substrate ground noise [8]. In an attempt to lower the flicker noise up-conversion 

associated with the current mirror transistors, an LC filter was placed between the 

current mirror circuitry and the negative resistance generator FET's [11].  An off-chip 

resistor was used as a current source reference for the current mirror to provide an 

adjustable bias current for the oscillator core.  An adjustable bias current allows for  

phase-noise and output power optimization. 
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Figure 3.6: Differentially cross-coupled oscillator core for the telemetry-band VCO 
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3.3.1.  Oscillator Core Frequency  

Since the VCO core is a differential  topology, an equivalent half-circuit analysis is 

required.  The equivalent half-circuit consists of one of the PMOS active devices 

along with one of the grounded on-chip inductors, one of the NMOS varactors and 

half the value of the parallel MIM capacitor (see figure 3.7). The frequency of 

oscillation is determined by the equation:  

௢௦௖ܨ ൌ
1

ܥܮ√ߨ2
          ሺ3.2ሻ 

where L is the inductance of the on-chip tank inductor and C is the  MIM capacitor, 

varactor capacitance and any drain-to-gate capacitance associated with the PMOS 

device.   
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Figure 3.7: VCO half-circuit equivalent 
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The on-chip inductor was the first element to be selected and a pre-determined 3.2 nH 

Med-Q inductor was chosen from the Peregrine design kit.  This particular inductor 

was selected due to the fact that it's peak Q was measured to be over 20 at 2.2 and 2.3 

GHz by Peregrine Semiconductor [3]. Since the inductor will be in-series with a 

bond-wire to ground, the total inductance of the tank circuit will be the sum of these 

two elements.  Using the approximation that a 1-mil long bond-wire has 1 nH of 

inductance, a 1.1 nH inductor element was added in-series with the Peregrine 3.2 nH 

inductor resulting in a total tank inductance of 4.3 nH. Rearranging equation 3.2 into: 

ܥ ൌ  
1

ߨሺ2ܮ ௢݂௦௖ሻଶ 

the required high and low required capacitance can be calculated.  For 2.2 GHz and 

2.3 GHz, the calculated capacitance is shown to be: 

 

ଶ.ଶ ீு௭ܥ ൌ ଵ
ସ.ଷ ௘ିଽ·ሺଶ·గ·ଶ.ଶ ௘ ଽሻమ  ൌ  1.217 pF  

 

ଶ.ଷ ீு௭ܥ ൌ ଵ
ସ.ଷ ௘ିଽ·ሺଶ·గ·ଶ.ଷ ௘ ଽሻమ  ൌ  1.114 pF  

 

Calculating the difference between the upper and lower required capacitance, ∆C, 

shows that the MOS varactor element needs to have a range of 0.103 pF between 0.25 

and 2.25 V to meet the minimum tuning range and control tuning voltage slope 

requirement.  It was decided that a varactor with a tuning range closer to 0.15 pF 

would be used along with a MIM capacitor and off-chip capacitor to center the tuning 
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range at approximately 1.25 V.  The off-chip capacitor allows for different values of 

capacitor to be added to the tank circuit to try and compensate for variations in length 

of the bond-wire that is in series with the on-chip inductor.  

 

Through an iterative simulation approach, it was found that a 0.125 pF MIM 

capacitor, 0.1 pF off-chip capacitor and an intrinsic NMOS varactor with a gate width 

of 2 µm, gate length of 0.25 µm and 260 gate fingers would yield a capacitance and 

∆C that will completely cover the required tuning range of 2.2 GHz to 2.3 GHz.  The 

intrinsic channel NMOS device was found to make a inversion-mode varactor with a 

tuning curve that was more linear than the regular channel NMOS device.  Figure 3.8 

shows the VCO tuning range simulation results. 
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Figure 3.8:  VCO frequency tuning range simulation results 
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3.3.2.  Resonant Tank Q 

The oscillator's resonant tank Q is  very important to accurately predict as it is an 

important factor in estimating the phase-noise of an oscillator as well as determining 

the required negative resistance to ensure oscillator startup and sustained oscillation. 

Figure 3.9 shows that the simulated loaded tank Q of the resonator to be 11.67 at 2.2 

GHz and 11.43 at 2.3 GHz.  The tank is loaded with a 1500 Ohm resistive port, which 

corresponds to the input impedance of the source follower amplifier that the oscillator 

is feeding (see section 3.3.5.1 for more details).   
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Figure 3.9: Loaded tank Q simulation results 
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3.3.3.  Negative Resistance Requirements 

As previously mentioned, the negative resistance generator circuit is an active device 

than compensates for the losses associated with the resonant tank.  At resonance, the 

tank circuit's total parallel tank resistance can be written as ܴ௉ ൌ  ܳ௧௔௡௞
ଶ  ܴ௦  [7] where 

Rs is the series resistance of the tank inductance and Qtank is the loaded tank quality 

factor. This assumes that the resonant tank capacitor series resistance is much lower 

than the tank inductor series resistance, which is usually valid for integrated circuit 

components.  The series resistance of the inductor is determined by the inductor's Q 

from the equation, ܳ௅ ൌ ௥௘௔௖௧௔௡௖௘
ௌ௘௥௜௘௦ ௥௘௦௜௦௧௔௡௖௘

  where the reactance is 2πf *L. Rearranging 

the equation, the series resistance can be determined by dividing the inductor's 

reactance by the inductor's Q (which was determined to be approximately 20 from [3] 

) to yield: 

ܴ௦ ൌ  
2 · ߨ · ݖܪ 2.25݁9 · 3.2݁ െ ܪ 9

20 ൌ 2.26 Ω 

Using the results of the tank simulation in 3.3.2 and the above calculated series 

resistance of the inductor, t  t a  be calculated as: he ot l parallel resistance can now

ܴ௣ ൌ 11.67ଶ · 2.26 ൌ 307.8 Ω 

By examining the small-signal AC equivalent circuit of the oscillator, it can be shown 

that to overcome the losses associated with the tank circuit at resonance, the 

transconductance of the negative resistance circuit needs to be equal to or greater than 

the reciprocal of the parallel tank resistance or;  ݃௠ ൒ ଵ
ோ೛

.  Put another way, the small 

signal loop-gain, Al, has been found to be [12]: 
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௟ܣ ൌ ሺܩ௠ · ܴ௣ሻଶ        ሺ3.3ሻ 

for a differential oscillator circuit and reduces to one when the parallel tank resistance 

and negative resistance generator's transconductance equal each other, fulfilling the 

requirement for oscillation.  In general, the loop gain is set to be at least three 

resulting in all of the poles being in the right hand plane thus ensuring oscillator start- 

up [12]. A PMOS device with a total channel width of 56 µm (7 µm width by 8 total 

fingers) and gate length of 0.25 µm was chosen for the active device.  Examining the 

PMOS IV Curves, in figure 3.10, the transconductance can be determined by looking 

at the change in drain current divided by the change in gate voltage for a given drain 

voltage or: 

௠ܩ ൌ
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The small-signal loop g i  equation 3.3 as: a n can now be calculated from

௟ܣ ൌ ሺ7.22 ݁ െ 3 ܵ · 307.8 Ωሻଶ ൌ 4.93  

which is large enough to ensure oscillator start-up. 

3.3.4. Current Mirror Bias Circuit 

A current mirror circuit used to provide a constant bias current through the oscillator 

core and was designed to provide a constant 10 mA current (5 mA for each FET). 

This was found (through simulation) to provide an adequate enough current through 

the oscillator core to sustain oscillation and ensure a large voltage swing in-order to 

minimize the oscillator's phase noise (per equation 3.1). The current mirror is 

comprised of two PMOS devices in a configuration in which the gates of the devices 

are biased at the same voltage potential and the drain-to-source current of the output 

transistor and are determined by the ga  to length aspect ratios [2] or;  te width

௢௨௧௣௨௧ܫ ൌ
൫ܹ

ൗܮ ൯
ଶ

൫ܹ
ൗܮ ൯

ଵ

·  ௥௘௙௘௥௘௡௖௘ܫ

It was found that with a 0.5 mA current source (in the form of a 1 kOhm off-chip 

resistor), an aspect ratio of 22.5 was needed to ensure an output current of 10 mA into 

the oscillator core.  A PMOS device with a 10 µm gate width and 1 µm gate length 

was used as the reference current transistor (M1) and a PMOS device with a 225 µm 

gate width (15 µm x 15 fingers) and 1 µm gate length was used as the output current 

transistor (M2).  Figure 3.10 shows a schematic of a current mirror circuit using 

PMOS transistors. 
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Figure 3.11: Current mirror circuit using PMOS devices. 

 

3.3.5. Complete VCO Circuit 

The complete voltage controlled oscillator circuit initially consisted of the oscillator 

core and high-isolation buffer amplifier circuit.  During the initial synthesis and 

simulation portion of the design phase, it was decided that a source-follower amplifier 

and pi-attenuator circuit needed to be added.  The source follower amplifier was used 

to provide the oscillator core with a high input impedance so as the oscillator core's 

resonant tank circuit isn't "loaded-down" with a low impedance which can degredate 

it's Q.  The pi-attenuator circuit was used to lower the source-follower amplifier's 

output power to a proper level for the high-isolation buffer amplifiers so that they 

don't reach their 1 dB compression point.  Figure 3.11 shows a schematic of the 

complete amplifier circuit as well as inductors that represent parasitic bond-wire 

inductances along and all of the off-chip components such as the 0.1 pF chip 
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capacitors, 1 kOhm current source resistor and two mini-circuit's LFCN 2250+ low-

pass filters that are used to lower the 2nd, 3rd and 4th harmonic components of VCO.   

 

Figure 3.12:  Complete Telemetry PLL VCO Schematic 
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Figure 3.13: Complete Telemetry PLL VCO Layout 

 

3.3.5.1.  Source-Follower Amplifier 
 
A source-follower amplifier (or common-drain amplifier) is an amplifier 

configuration that has a high input impedance (relative to a common-source or 

common-gate amplifier) and, at best, unity gain [2]. The common-source amplifier, 

shown in figure 3.11,  was designed with a resistive voltage divider to bias the gate of 

the amplifier's NMOS transistor to 1.8 V.  With the 9 kOhm and 25.7 kOhm biasing 

resistors, the input impedance of the amplifier is simulated to be approximately 1500 

Ohms at 2.25 GHz (see figure 3.12) A 500 Ohm resistor was used as a source resistor 
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and gives the source-follower an output impedance of approximately 60 Ohms at 2.25 

GHz (see figure 3.13). Three pF coupling capacitors were used on the input and 

output of the amplifier to block any DC voltages from incorrectly biasing or 

influencing the circuit in anyway.  The insertion loss of the circuit was simulated to 

be 4.45 dB at 2.25 GHz, which was deemed to be acceptable due to the fact that an 

attenuator circuit was needed  between the oscillator core and output buffer amplifier 

anyway and, in effect, the source-follower circuit just adds to the attenuation and is 

accounted for during the full-circuit VCO simulations. DC simulations also show the 

amplifier to consume only 2.4 mA of current with a 2.5-V power source. 
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Figure 3.15:  Source-follower amplifier's input impedance simulation 
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Figure 3.16:  Source-follower amplifier's output impedance simulation 
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Figure 3.17: Source-follower amplifer's insertion loss simulation 

3.3.5.2.  Pi-Attenuator 
 
A resistive pi-attenuator circuit was used as a means to adjust the complete oscillator 

circuit's output power to the proper levels and provide additional isolation to the 

oscillator tank circuit.  The pi-attenuator 's resistor values are calculated using the 

following equations [13]: 

ܴଵ ൌ
ሺܭ െ 1ሻ כ ܼଵඥܼଶ

ሺܭ ൅ 1ሻඥܼଶ െ 2ඥܭ כ ܼଵ
 

 

ܴଶ ൌ
ሺܭ െ 1ሻ כ ܼଶඥܼଵ

ሺܭ ൅ 1ሻඥܼଵ െ 2ඥܭ כ ܼଶ
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Where Z1 is the characteristic input impedance to the attenuator; Z2 is the 

characteristic output impedance of the attenuator; K is the linear attenuation factor; R1 

is the input shunt resistor; R2 is the output shunt resistor and R3 is the in-series 

resistor. From earlier simulation results of the input and output impedances of both 

the source follower amplifier and high-isolation buffer amplifier, Z1 is known to be 

60.2 Ohms, Z2 is known to be 86.2 Ohms.  Therefore, a 16 dB attenuator will require 

R1 to be 76.9 Ohms, R2 to be 130.14 Ohms and R3 to be 221.7 Ohms.  Figure 3.15 

shows the  S-parameter simulation results of the pi-attenuator. 

 
Figure 3.18:  S-parameter simulation results for the resistive pi-attenuator 
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3.4. Full VCO Simulation Results 

The entire VCO circuit (shown in figure 3.11) was simulated to ensure it met all of 

the specifications outlined in section 3.1 to include VCO output frequency, output 

power,  phase-noise, power consumption and spectral content. Amplitude and phase 

balance as well as oscillator start-up was simulated as well.  Initially a load-pull 

simulation was not done (it was incorrectly assumed that the amount of isolation 

between the VCO core and output buffer was adequate to meet specifications) but 

was done after a load-pull test was performed to check for correlation between the 

simulation and test results.  

3.4.1.  Output Frequency  
 

The VCO frequency was simulated using both Harmonic Balance and HSPICE 

transient simulation techniques.  Although slight differences in frequency were 

shown, the complete VCO circuit covered the entire required frequency range in the 

linear portion of the tuning curve with a tuning slope of approximately 142 MHz/V.  

The output frequency was covered with a 0.1 pF off-chip capacitor being used in the 

resonant tank circuit.  Figure 3.8 shows a plot of the output frequency versus tuning 

voltage for the complete VCO circuit.    
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3.4.2.  Output Power  

A harmonic balance simulation was performed to ensure that the VCO circuit meet 

the minimum output power requirements while, at the same time, ensuring that the 

buffer amplifier isn't being driven into compression.  Figure 3.16 is a plot of the 

output power versus tuning voltage and shows that between 0.8 V and 1.5 V (which 

correspond to 2200 MHz and 2300 MHz respectively), the output power of the VCO 

is between +1 dBm and 0 dBm.  This meets the minimum required power output of 0 

dBm.  This simulation also shows that the output buffer amplifier has not reached its 

1 dB compression point of +2 dBm. 
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Figure 3.19: VCO output power harmonic balance simulation results. 
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3.4.3.    Phase Noise  

As previously mentioned, the phase-noise of an oscillator can be estimated using the 

simplified Leeson's phase-noise equation 3.1.  This equation is, at best, a linear 

approximation of the phase-noise and is generally used as a guideline to show circuit 

designers that to achieve an oscillator with good phase-noise performance, the tank 

circuit voltage oscillation should be maximized while the series resistance of the tank 

inductor should be minimized.  It also shows that a device with good 1/f2 noise 

corners plays a substantial role in the phase noise performance as well.  There are 

other approaches in calculating the phase-noise such as using the Craninckx linear 

phase noise formula (which is nearly identical to the Leeson's model) or using Rael's 

non-linear mixer formula (again, very similar to the Leeson's model) [8].  All of these 

formula's require an accurate 1/f2 noise corner parameter and are usually not given for 

all device types (which was the case for the Peregrine design manual).  Thus, a non-

linear, harmonic balance simulation was used in determining if the oscillator meets 

phase noise requirements.  Figure 3.17 shows that oscillator has a maximum phase-

noise of -87.16 dBc/Hz at a 100 kHz offset thus meeting the requirement of -80 

dBc/Hz specified in section 3.1.   

63 
 



 

1e-006 1e-005 .0001 .001
Offset Frequency (GHz)

VCO Phase noise

-120

-100

-80

-60

-40

-20
P

ha
se

 N
oi

se
 (d

B
c/

H
z)

p26p25p24p23p22p21p20p19p18p17p16p15p14p13p12p11p10p9p8p7p6p5p4p3p2p10.00010178 GHz
-91.59 dB

0.00010162 GHz
-87.16 dB

DB(PH_NOISE_F(PORT_2,1,1))[*,*]
Narrowband VCO HB TB.AP_HB

p1: FREQ = 1 GHz
Vtune = 0

p2: FREQ = 1 GHz
Vtune = 0.1

p3: FREQ = 1 GHz
Vtune = 0.2

p4: FREQ = 1 GHz
Vtune = 0.3

p5: FREQ = 1 GHz
Vtune = 0.4

p6: FREQ = 1 GHz
Vtune = 0.5

p7: FREQ = 1 GHz
Vtune = 0.6

p8: FREQ = 1 GHz
Vtune = 0.7

p9: FREQ = 1 GHz
Vtune = 0.8

p10: FREQ = 1 GHz
Vtune = 0.9

p11: FREQ = 1 GHz
Vtune = 1

p12: FREQ = 1 GHz
Vtune = 1.1

p13: FREQ = 1 GHz
Vtune = 1.2

p14: FREQ = 1 GHz
Vtune = 1.3

p15: FREQ = 1 GHz
Vtune = 1.4

p16: FREQ = 1 GHz
Vtune = 1.5

p17: FREQ = 1 GHz
Vtune = 1.6

p18: FREQ = 1 GHz
Vtune = 1.7

p19: FREQ = 1 GHz
Vtune = 1.8

p20: FREQ = 1 GHz
Vtune = 1.9

p21: FREQ = 1 GHz
Vtune = 2

p22: FREQ = 1 GHz
Vtune = 2.1

p23: FREQ = 1 GHz
Vtune = 2.2

p24: FREQ = 1 GHz
Vtune = 2.3

p25: FREQ = 1 GHz
Vtune = 2.4

p26: FREQ = 1 GHz
Vtune = 2.5

Figure 3.20:  VCO phase-noise harmonic balance simulation results. 

 

3.4.4.  Spectral Purity 

The spectral purity of the VCO was checked to ensure that the harmonics generated 

by the oscillator meet the minimum -45 dBc requirement.  Generally LC oscillators 

have high (>-20 dBc) harmonic content due to relatively low tank Q's (when 

compared to oscillator's that have crystal or dielectric resonators with Q's in the 

thousands or tens of thousands).  Since neither the high-isolation buffer amplifier or 

the source follower amplifier had any kind of input or output matching circuitry that 
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would provide harmonic rejection, a Minicircuits LFCN-2250+ low pass filter  

was used to lower the harmonics below the -45 dBc requirement (see appendix A for 

the LFCN-2250+ data sheet).  Figure 3.18 shows that the oscillator meets all 

requirements for spectral purity. 
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Figure 3.21: VCO output power spectrum simulation results. 

 

3.4.5.   Oscillator Start-up Transient 

Oscillator start-up is an important condition to simulate to ensure the oscillator core 

has enough loop gain to overcome the resonator parallel resistance and begin 

oscillating.  In the simulation, a small current spike (0.1 mA for 10 picoseconds) is 
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injected into the feedback loop in-order to simulate noise.  This noise should "kick-

start" the oscillator core into oscillating.  The calculated loop gain was approximately 

5 (from section 3.3.3) which should be enough to ensure start-up.  Figure 3.21 shows 

that the oscillator starts up and attains steady state oscillation in approximately 25 

nanoseconds. 

 
Figure 3.22: VCO start-up transient simulation results 
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3.4.6.  Amplitude and Phase Balance 

Another important parameter in differential oscillator design is amplitude and phase 

balance. Since the oscillator core is differential by design, the oscillating voltage 

amplitude on each output arm of the core should be exactly 180 degrees out-of-phase.  

Slight asymmetries in each single-ended tank circuit's inductive or capacitive 

properties can cause a small difference in relative oscillation frequency between both 

sides of the oscillator core.  This difference in frequency translates into phase 

imbalance where the oscillator's output isn't exactly 180 out-of-phase.  Amplitude 

imbalance will occur when there is a difference in loop gain between the two sides of 

the differential oscillator core which could be caused by a mismatch in PMOS device 

transconductance.   Great care should be when matching the negative resistance 

generators FET sizes to minimize this amplitude imbalance.  Figure 3.32 shows the 

single-ended output (referenced to ground) of both ports.  The figure shows the 

relative phases of each output to be exactly 180 degrees out of phase and the 

amplitudes to be within 0.5 mV. 
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Figure 3.23:  VCO single-ended waveform simulations 
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3.4.7.  RF Load-Pulling 

 
As previously mentioned, an RF load-pull simulation was not performed because it 

was incorrectly assumed that the high-isolation buffer amplifier, with 60 dB of 

simulated reverse isolation and the 16 dB pi-attenuator along with the reverse- 

isolation provided by the source follower amplifier would be adequate enough to 

prevent a 3:1 load mismatch from pulling the oscillator core by more than a few kHz.  
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Subsequent testing proved this to not be the case and a load pull simulation was 

performed after the testing to try and establish a correlation between testing and 

simulation.  Figure 3.19 shows that a harmonic balance load pull simulation in which 

a 3:1 VSWR load was placed on one end of the oscillator's output (while the other 

end was driving a 50 Ohm load).  The phase of the load was then moved from 0 

degrees, to 90 degrees, 180 degrees and 270 degrees. The output frequency of the 

VCO was simulated to change by more than 560 kHz from 90 degrees to 180 degrees 

which does not meet the RF load pulling requirement of less than 10 kHz of pulling at 

all phases.   

 
Figure 3.24:  VCO load pulling vs phase simulation results. 
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3.4.8.    DC Power Consumption  

 The full VCO circuit was simulated to dissipate approximately 83 mA of DC current 

with a 2.5 V power supply.  This was less that the 100 mA maximum DC power 

consumption required in section 3.1   

 

3.5. VCO Testing and Measurement Results 

The  VCO was tested by having a test circuit built on a 15 mil thick Roger's 

corporation TMM10i substrate.  The test circuit was setup such that the VCO could 

be tested in an open loop configuration where the tuning voltage could be 

independently tuned and the output power for each port could be measured in a 

single-ended configuration.  Figure 3.22 shows the test circuit with the off-chip 

tuning capacitors and 1 kOhm current-source resistor. 
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Figure 3.25:  VCO test circuit  

 

 

3.5.1.  Measured Output Frequency and Power 
 
The VCO output frequency was measured using an Agilent E4407 B series spectrum 

analyzer.  The tuning voltage, Vtune, was stepped from 0 V to 2.5 V at 0.1 V 

increments and the frequency and power were measured at each interval.  Figure 3.25 

shows the simulated and measured output frequency versus tuning voltage with and 

without the 0.1 pF off-chip tuning capacitor being bonded onto the oscillator tank.    
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Figure 3.26:  Simulated and measured VCO frequency vs tuning voltage  

 

The above figure shows a discrepancy in the tuning range and tuning slope of the 

VCO when comparing the measured and simulated results.  In simulation, it was 

found that, with an off-chip tuning capacitor with a value of 0.1 pF, the entire tuning 

range of 2.2 to 2.3 GHz could be covered from 0.8 V to 1.5 V giving a tuning slope of 

142.8 MHz/V. When measured, the tuning range of the VCO, from 0 V to 2.25 V, 

was 2.215 GHz to 2.352 GHz without the off-chip tuning capacitor and 2.16 GHz to 

2.25 GHz with the 0.1 pF capacitor in-place.  This gives a tuning slope of 54.8 

MHz/V and 36 MHz/V respectively.  It is believed that the discrepancy between the  

simulated and measured results are due to a parasitic capacitances in the layout of the 
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tank circuit, along with potential modeling errors of the intrinsic NMOS inversion 

mode varactors.   

 

To mitigate this problem for next design iteration, a parasitic extractor will be used to 

ensure all of the oscillator tank's parasitics are accounted for in the simulation.  Also, 

an on-chip, FET switchable, capacitor will be employed to add a course frequency 

tuning step to the tank circuit.  This will, in-effect, act like the off-chip capacitor that 

is in the current VCO design only the capacitor can be switched in and out by the 

internal PLL logic. 

  

Figure 3.26 (below) shows the simulated and measured power versus tuning voltage 

for both output ports of the VCO. 
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Figure 3.27: Simulated and measured VCO output power vs tuning voltage 
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The plots in the above figure shows an approximately 2.5 dB drop in output power 

when comparing the port 1 power and simulated power. The plot also shows a drop of 

approximately of 7 dB when comparing the port 2 power and simulated power as 

well.  The low output power of both ports can be explained by the fact that there is 

lower than expected gain from the high-isolation buffer amplifier (see section 2.3).  

The difference in output power between the two ports, more than likely, can be 

attributed to the pi-attenuator circuit as the resistor values can be skewed ±15% which 

can cause a wide variance in attenuation thus causing a fairly wide variance in output 

powers.   

 

In the next design iteration, the pi-attenuators will be removed and multiple lossy 

source follower amplifiers will be added to the VCO output chain to provide the 

required attenuation and isolation that the pi-attenuator provided.  In-addition  to 

these changes, the high-isolation buffer amplifier will be redesigned to be a fully 

differential, cascode-amplifier.  This new amplifier configuration will help to ensure 

the output power is symmetrical and accurately portrayed in simulation. 
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3.5.2.  Measured  Phase Noise  
 
 
The phase noise of the VCO was measured using an Aeroflex PN9000 Automatic 

Phase-Noise Analyzer.  Although the measurement of the phase noise was taken 

while the VCO was in phase lock, the offset frequency of interest, 100 kHz, was well 

outside the loop bandwidth of the PLL.  This region of the total phase-noise 

measurement is dominated by the phase noise contributions of the VCO [10].  Figure 

3.27 shows that the measured phase-noise of the PLL was approximately -90 dBc/Hz 

at a 100 kHz offset meeting the requirement of -80 dBc/Hz . 

 

 

Figure 3.28:  Measured phase-noise of the VCO at 100 kHz offset 
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3.5.3.  Measured Spectral Purity 

The harmonics of the VCO were measured at output port 1 while the output port 2 

was terminated with a 50 ohm load.  The VCO was tested at the low end of it's 

operational frequency range, at 2.215 GHz and then at the high end of frequency 

range, 2.35 GHz.  The harmonics were measured out to the 4th harmonic and are 

shown below in table 1.  The harmonic measurements meets spectral purity 

requirements put forth in section 3.1. 

Table 1:  VCO harmonic measurements 

 

VCO Fundamental 
Frequency (GHz) 

2nd Harmonic level 
(dBc ) 

3rd Harmonic level 
(dBc) 

4th Harmonic level 
(dBc) 

2.215 -50.1 -49.2 -45.1 

2.35 -47.2 -51.5 -51.2 

3.5.4.  Measured Phase and Amplitude Balance 
 

The phase and amplitude balance where checked by measuring each of the VCO 

output ports as single-ended signals and compared against each other.  Figures 3.28 

and 3.29 show a distinctive amplitude imbalance between the signals at port 1 and 

port 2. This imbalance was expected because the output power discrepancy measured 

in section 3.5.  Figures 3.28 and 3.29 show the VCO output waveforms with 

horizontal cursors on port 1 and port 2 respectively.  Port 1 shows a peak-to-peak 

amplitude of 296 mV while port 2 shows a peak-to-peak amplitude of 160 mV 
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Figure 3.29:  Measured VCO voltage waveform with horizontal cursors on port 1 output 

 

 

Figure 3.30: Measured VCO voltage waveform with horizontal cursors on port 2 output 
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The phase imbalance was measured by placing a vertical cursor on the positive peak 

of the port 2 waveform and the negative peak of the port 1 waveform.  Figure 3.30 

shows that the difference between the two peaks is 18 picoseconds which corresponds 

to a 4.17% phase-imbalance at waveform frequency of 2.315 GHz.  This is more than 

likely due to slight geometry imbalances in the VCO tank circuit.  This will be 

resolved in the next design iteration by ensuring that both sides of the tank circuit 

have a higher degree of symmetry than the current VCO tank circuit layout. 

 

 

 

Figure 3.31: VCO voltage waveform with vertical cursors measuring phase imbalance. 
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3.5.5.  Measured RF Load- Pulling 
 
The RF load pulling was measured using a Maury Microwave load-pull test system.  

This test system allows the output load reflection coefficient to set as high as 0.95 at 

virtually any phase on the smith chart.  The VCO was tested at 5 points on the Smith 

chart that correspond to the matched case (50 Ohms) and 4 points with a reflection 

coefficient of 0.5 at 0, 90, 180 and 270 degrees.  Figure 3.31 shows the points on the 

smith chart that were tested and table 1 shows the frequency pulling test results. 

 

 

Figure 3.32: Smith chart showing RF load values where frequency pulling was measured 
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Table 2:  RF load pulling measurements 

VCO Frequency 
(GHz) 

delta Frequency 
(Hz) 

Load Reflection Coefficient (mag < angle in 
degrees) 

2.257855 - 0.0626 < 147.17 
2.257145 710000 0.541 < 177.41 
2.257773 82000 0.546 < 92.31 
2.257588 267000 0.545 < -0.06 
2.257458 397000 0.542 < -89.5 

 

 

The results from the load-pull test clearly show that the buffer does not provide the 

adequate isolation for a 3:1 all-phase mismatch.  This was also shown in a load-pull 

simulation performed after the VCO was designed and sent to the foundry and will 

clearly need to be done at an earlier point in the design stage for the next design 

iteration. 

 

3.5.6.  Measured DC Power Consumption 

The VCO consumed 85.2 mA of DC current with a 2.5-V power supply.  This is 

within 3 mA of the simulated DC current draw and below the 100 mA  
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4.  S-band Voltage Controlled Oscillator, Second 
 Design Iteration 

 
The second design iteration of the voltage controlled oscillator design incorporated all 

aspects of the lessons learned from the testing and measurement of the high-isolation 

buffer amplifier and complete S-band, voltage controlled oscillator.  This chapter 

briefly describes the redesign of the high-isolation buffer amplifier and voltage 

controlled oscillator core.    

 

4.1. High-Isolation Buffer Amplifier Redesign 
 Summary 

 
The high-isolation buffer amplifier's initial design, although met all of the put forth 

design criteria in simulation, failed to meet the requirements when actual 

measurement data was taken.  This included isolation and gain predictability along 

with output 1 dB compression point at the upper end of the frequency band.  The 

faults with the amplifier were mainly contributed to Miller-effect capacitive 

multiplication along with a potentially unreliable resistive biasing configuration.  To 

overcome these issues, a fully-differential, cascode amplifier configuration was 

chosen to replace the previous buffer amplifier design.  As previously mentioned, the 

addition of a cascoding FET in series with the drain of the amplifying FET eliminates 

the miller-effect by isolating the output node of the amplifier from the input node of 

the amplifier.  By using a differential amplifier configuration, greater amplitude and 
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power balance between the differential output ports can be assured.  Figure 4.1 below 

shows the amplifier schematic with all circuit elements circled or labeled. 

 

 

Figure 4.1:  Differential, cascode amplifier schematic 

 

In figure 4.1, FET's M1 and M2 are the common source amplification transistors for 

both sides of the differential amplifier while M3 and M4 are the cascoding FET's 

which are biased to always be in the saturation region.  FET M5 is used as a constant 

current source for both sides of the amplifier and is itself biased by resistor R1 and 

the FET active loads M6 and M7.  This biasing arrangement should provide a more 

consistent output power as both sides of the differential amplifier are biased by the 

same current source.  
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Inductors L3 and L4 are used as MOS source degeneration inductors which offsets 

the phase of the current flow through the source and the applied gate voltage.  This 

has the effect of creating a resistive input impedance without the additive noise of a 

real resistor that is usually required for an optimum noise and power match [7].  

Inductors L1 and L2 complete the input match for the differential amplifier by 

resonating out any gate-to-source capacitance.  This arrangement provides a fairly 

narrowband match but we are interested in only providing a match from 2.2 GHz to 

2.3 GHz.  Inductors L5 and L6 along with capacitors C1 and C2 provide a tuned 

output match into the 50 Ohm system.  The gates bias of M1 and M2 are provided by 

the same bias voltage that biases the gate of M5 through the high-value resistors R2 

and R3.  AC coupling for both the input and output ports of the amplifier are provided 

by capacitors C3, C4, C5 and C6.  Bias decoupling is provided by capacitor C7.  

Finally, the resistors, circled in red, provide stabilization to the amplifier to ensure it 

is unconditionally stable.   

4.1.1.  Differential Amplifier Simulations 
 

Simulations were run on the differential amplifier to determine the gain, isolation, 

input and output match, noise-figure and 1-dB compression point. Figure 4.2 shows 

the simulation results of the gain (S21), isolation (S12), input and output match (S11 

and S22) and the amplifier noise-figure.  This figure shows a narrowband gain at 2.25 

GHz of 14.6 dB, an output match of -19.1 dB and noise figure of less than 2 dB . 

However, it shows an isolation of less than -40 dB which will require the use of 
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additional isolation circuit elements in the high-isolation buffer amplifier.  Figure 4.3 

shows that the amplifier is unconditionally stable up to at least 4 GHz with minimum 

stability factor K of 1.492 and stability parameter B1 of 0.036.  Recall that for a 

amplifier to be unconditionally stabile, K must be greater than 1 and B1 must be 

greater than 0 simultaneously.  Figure 4.4 shows that the 1-dB compression point to 

be approximately +1.2 dBm across the band.  
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Figure 4.2:  Differential amplifier linear test bench simulation results 
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Figure 4.3:  Differential amplifier stability simulation results 
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Figure 4.4:  Differential amplifier 1-dB compression point simulation results 

 

It was determined that to provide the additional isolation required by the buffer 

amplifier, a pair of source follower buffer amplifiers would be added to each 

differential path of the amplifier.  The source follower circuit configurations are very 

similar to the circuit design in section 3.3.5.1 and a thorough examination will not be 

included here.   
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4.1.2.  Completed High-Isolation Buffer   
  Amplifier 

 
Figure 4.5 shows a block diagram representation of the redesigned high-isolation 

buffer amplifier that includes the differential amplifier and 2 buffer amplifiers on 

each differential path.  The addition of the source-follower amplifiers dropped the 

gain of the complete amplifier to 2.33 dB at 2.25 GHz and raised the noise-figure to 

5.33 dB but the isolation increased from -37.6 dB to -92.3 dB. These trade-offs in 

performance were deemed acceptable and the simulation results are shown in figure 

4.5.  The layout of the new buffer amplifier front-end is shown in figure 4.7. 
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Figure 4.5:  Second iteration  high-isolation buffer amplifier block diagram 
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Figure 4.7:  Layout of second iteration high-isolation buffer amplifier  

 

4.2. Oscillator Core Redesign Summary  

The VCO oscillator core had relatively few issues to resolve with the 2nd design 

iteration.  The main issue that needed to be solved was that of accurate frequency 

prediction and tuning range.  To solve the issue of frequency tuning range, an on-chip 

MIM capacitor along with a high-threshold FET was used to provide a course 
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frequency tuning step that is switchable by the PLL logic.  This gives the VCO two 

distinctive frequency bands in which it operates that overlap thus giving the VCO an 

effective larger bandwidth in which to operate.   

 

The other major change to the oscillator core topology comes in form of how the 

MOS varactors are biased.  In the rev 1 VCO core design, the gates of the MOS 

varactors were biased to ground (thru the inductors) and the source and drain of the 

intrinsic NMOS device was tied to the control voltage.  A simulation of the total 

varactor capacitance shows that a majority of the capacitance change occurs when the 

source-drain is negative with respect to the gate of the varactor.  Since the PLL 

cannot provide a negative control voltage to the VCO, a large varactor was used to 

get the necessary 0.15 pF ∆C between 0.25 V and 2.25 V.  To take advantage of the 

varactor's full capacitance change capability, the gate of the varactor was biased to 

0.98 V using a high-impedance voltage divider and a 2 pF capacitor to provide AC 

coupling to the tank node of the oscillator.  This allowed the MOS varactor to be 

scaled down from having 260 fingers to 50 fingers for a required ∆C of 0.15 pF.  This 

also gave the VCO core a more linear frequency tuning curve than the previous 

topology.  Figures 4.8 and 4.9 shows the varactor capacitance versus the source to 

drain voltage for the 260 x 2 µm x 0.25 µm device with the gate tied to ground and 

the 50 x 2 µm x 0.25 µm device with the gate tied to a 0.98 V bias voltage 

(respectively).  
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Figure 4.8:  260 X 2 µm X 0.25 µm device's capacitance vs source-drain voltage with the gate tied 

to ground. 
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Figure 4.9:  50 X 2 µm X 0.25 µm device's capacitance vs source-drain voltage with the gate tied 

to 0.98 V. 

 

91 
 



In figure 4.10,  the schematic of the rev2 VCO core is shown with all of the added 

components labeled.  M1 and M2 are the high-threshold FET's that switch in C3 and 

C4 to give the oscillator the 2nd tuning band and extend the VCO's frequency range.  

The parasitic resistors P_R1 and P_R2 are not actually part of the circuit but are 1 

MOhm parasitic resistors that were added to the schematic to help with convergence 

issues during the harmonic balance simulation.  Capacitors C1 and C2 provide AC 

coupling to the varactors so that the bias voltage from the voltage divider from R1 

and R2 doesn't affect the tank voltage node.  They also help in reducing the finite 

varactor loss by a factor of (Ccoupling+Cvaractor)2/Ccoupling
2  and decrease phase noise 

[15].  Additional source-follower amplifiers were also added to the core to provide 

more isolation to the entire VCO circuit  

 

Figure 4.10:  Second iteration of the oscillator core schematic. 
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Figure 4.11:  Layout of 2nd iteration VCO core 

 

4.2.1. Second Iteration VCO Simulations 

All of the simulations that were ran on the second design iteration of the complete 

VCO were done with all of the VCO core's interconnects extracted by a 1st order 

RLC extractor.  The extractor takes into account all of the interconnects series 

resistance, net loop inductance and shunt capacitance and places these parasitic 

elements in the simulation.  This was critical for the oscillator core as any 

unaccounted for parasitic elements in this portion of the tank circuit can cause the 
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oscillation frequency to be out of the intended frequency range.  The unaccounted 

parasitics are more than likely the cause of the first VCO design to be off in 

frequency.  The simulations were performed with the course tuning capacitor 

switched in and out by the switch bit B0. Figure  4.11 and 4.12 show the frequency 

tuning range and power versus tuning voltage.  These simulations show that VCO 

meets the frequency range and output power requirements set forth by section 3.1.   

 

 

 

Figure 4.12:  First iteration VCO frequency vs tuning voltage when course tuning bit, B0 equals 

0 and 1. 
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Figure 4.13:  Second iteration VCO output power vs tuning voltage when course tuning bit, B0 

equals 0 and 1. 

 

A major issue with the first VCO design was its inability to handle phase variation in 

a 3:1 VSWR load mismatch.  This was clearly evident in a lab measurement as well 

as a post measurement simulation.  Prior to the design being released to the foundry, a 

load-pull simulation was performed to ensure that the VCO will meet the frequency 

pulling requirement of less than 10 kHz into a 3:1 mismatch at all phases.  Figure 

4:13 shows a frequency pulling simulation of less than 1 Hz for a 3:1 VSWR all-

phase load. 
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Figure 4.14:  Second iteration VCO output frequency vs load phase for a 3:1 VSWR mismatch. 

 

In  addition to the VCO tuning range, output power and RF load pulling, the VCO 

phase-noise, amplitude and phase-balance, start-up transient, output spectrum and 

current consumption were re-simulated.  Figure 4.13 shows that the phase-noise 

improved by approximately 5 dB at a 100 kHz offset when compared with the 1st 

design iteration.  The amplitude and phase balance were checked in figure 4.14 and 

showed no amplitude mismatch and perfect phase-balance.  Figure 4.15 shows that 

the 2nd VCO design iteration will start up  and reach steady state oscillation in 

approximately 15 nanoseconds.  Since the 2nd iteration VCO uses one differential 
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buffer amplifier in-lieu of 2 separate single-ended amplifiers a large drop in current 

consumption was to be expected.  Simulation shows that the current used by the 

entire VCO dropped from 83 mA to approximately 34 mA, a savings of 49 mA.  

Finally, figure 4.16 shows that  VCO exceeds the spectral purity requirement by 

having the closest harmonic at -52 dBc down from the fundamental frequency. 
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Figure 4.15:  Second iteration VCO phase noise harmonic balance simulation results. 
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Figure 4.16:  Second iteration VCO voltage waveform simulation results 
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Figure 4.18:  Second iteration VCO output power spectrum simulation results 
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5. Conclusions and Future Work 

5.1. Conclusions 
 
 
In-conclusion this thesis presented the design and testing of a high-isolation buffer 

amplifier and S-band voltage controlled oscillator both implemented in the Peregrine 

0.25 µm GC SOS process.  A redesign of the high-isolation buffer amplifier and 

voltage controlled oscillator was also presented.   

 

The high-isolation buffer amplifier was designed to have a gain of 16 dB and 

isolation of greater than 60 dB for a frequency range of 2200 MHz to 3495 MHz.  

The intended purpose of the buffer amplifier was to provide isolation to the oscillator 

core to prevent frequency pulling into a 3:1 VSWR load mismatch.   Actual 

measurements show that the gain was more than 5 dB off of the simulated gain at the 

upper end of the frequency band.  This discrepancy was attributed to miller-

capacitance effects and possible resistor skew variations in the amplifiers bias 

network.  Direct measurements of the amplifier's isolation were shown to be 

unreliable due to board parasitics but a frequency pulling measurement on the VCO 

proved  that the isolation was not adequate. 

 

The S-band VCO was designed to operate from 2.20 GHz to 2.30 GHz with a 

minimum output power of 0 to +1 dBm.  Measurements found that VCO meet 

requirements for the phase noise, spectral purity and power consumption but failed to 
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meet the requirements for frequency range, output power and RF load-pulling. The 

issues with the output power and load pulling can be directly contributed to low gain 

and isolation found earlier with the buffer amplifier.  The frequency range issue was 

also attributed to unaccounted for parasitics in the oscillator core's tank circuit. 

 

A second design iteration of the high-isolation buffer amplifier and VCO was 

performed to correct all of the aforementioned problems.  The buffer amplifier was 

changed from a multi-stage, single-ended, common source amplifier to a completely 

differential, cascode amplifier.  The cascode amplifier configuration eliminates the 

miller-effect capacitance and provides superior isolation when compared to a standard 

common source amplifier.  Changing the amplifier topology from using 2 single-

ended amplifiers to a differential amplifier, which will correct the output power level 

discrepancy between the differential ports.  The VCO core was also changed by 

adding switched capacitors to extend the frequency tuning range with a PLL control 

bit.  Smaller varactors were also used in the second iteration because more of the 

capacitance change in the varactor was able to be utilized  with an addition of a bias 

network.  Finally, a more accurate frequency simulation was performed on the 

oscillator because all of the interconnect parasitics where taken into account with a 

1st order RLC parasitic extractor.  All of these design changes made to the buffer 

amplifier and VCO core should make the S-band VCO meet all put-forth design 

requirements. 
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5.2. Future Work 

 

One of the major issues with VCO design that was not addressed  in this thesis is the 

issue of power-supply pushing.  This was mainly due to the fact that future PLL 

design iterations will include a regulator circuit that will provide a clean, regulated 

2.5 V.  The second VCO design iteration exceeds the current phase-noise requirement 

of -80 dBc/Hz at a 100 kHz offset but a lower phase noise is always desirable and 

future VCO design iterations may be able to reach -100 dBc/Hz at a 100 kHz offset. 
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