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BETA TESTING THE INTEL PARAGON MP

Thomas H. Dunigan

Abstract

This report summarizes the third phase of a Cooperative Research and
Development Agreement between Oak Ridge National Laboratory and In-
tel in evaluating a 28-node Intel Paragon MP system. An MP node consists
of three 50-MHz i860XP’s sharing a common bus to memory and to the
mesh communications interface. The performance of the shared-memory
MP node is measured and compared with other shared-memory multipro-
cessors. Bus contention is measured between processors and with message
passing. Recent improvements in message passing and 1/O are also re-

ported.




1. Introduction

The Department of Energy selected Oak Ridge National Laboratory (ORNL) as
one of its high performance computing centers as part of the government’s High
Performance Computing and Communications (HPCC) initiative. The initia-
tive provided ORNL with funds to procure a massively parallel computer and to
support various Grand Challenge applications. ORNL selected Intel to provide
the massively parallel computer for the HPCC project. Intel has developed a
family of distributed-memory multiprocessors, starting with the iPSC/1 hyper-
cube in 1986. The Intel multiprocessors are members of a growing market of
parallel processing systems that are being used by researchers and commercial
organizations to tackle increasingly complex computational tasks. A Coopera-
tive Research and Development Agreement (CRADA) between ORNL and Intel
specified the staging of increasingly more powerful versions of its new Paragon
multiprocessor. As part of the agreement, ORNL would receive pre-production
models of the Paragon and assist in beta testing and product development. This
report summarizes the results of the third and final phase of the CRADA, the
test and evaluation of the Paragon MP.

In 1994, the first Paragon MP was delivered to ORNL. The Paragon MP
extended the computational power of the Paragon by providing three i860XP
processors with a shared memory on each node of the communication mesh. Ap-
pendix A provides a time-line of the events during the test and evaluation of the
Paragon MP system. This report details the performance of the shared-memory
node board and evaluates the performance of several parallel applications on the
Paragon MP. Computational, shared-memory, and communication performance
were measured with synthetic bendhmarks, application kernels, and a few parallel
applications. The Paragon’s shared-memory performance is compared with the
performance of other shared-memory parallel processors.

In the following section, the Paragon MP architecture is summarized. Section
3 describes the performance of the shared-memory MP node and compares its
performance to other shared-memory architectures. In section 4, recent improve-
ments in message passing and 1/O are reported.

2. Paragon MP Architecture

The Intel Paragon system is a mesh-connected parallel processor. In the first
member of the Paragon family, the GP system, each node on the mesh consists
of two 50 MHz i860XP processors, memory, and communication hardware. One

processor is used for computation, and the second processor is for communication.
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A Paragon MP node consists of three 50 MHz i860XP processors, memory, and
communication hardware (Figure 2.1). The nodes are interconnected by a 2-D
mesh with 175 MB/second communication channels and a per-hop latency of only
40 ns. The nodes are logically subdivided into service nodes, compute nodes, and
I/0O nodes (Figure 2.1). The service nodes appear as a single host and support
time-sharing through the OSF operating system. The compute nodes run OSF
or SUNMOS. The I/O nodes are connected to local networks and arrays of disks
(RAID) and provide a UNIX file system, swap/paging space, and a Parallel File
System (PFS).

Comm. channel (25 us, 175MBs)

/o Compute

-

Application CPUs 64 MB memory

50 MHz i860xp 400 MB/s bus
79 Moo Mesh interface
Comm. CPU

Node board
Figure 2.1: MP node board.

Each i860XP has its own 16 KB data and instruction cache, and each node
has at least 64 MB of memory. The bus interconnecting the processors, mesh-
interface, and memory operates at 400 MB/second. The 50 MHz i860XP is a
super-scalar architecture capable of a peak 75 Mflops (double precision). Typical
FORTRAN performance is only 11 Mflops ([2]). Early designs of the MP proposed
five CPUs with L2 cache, but cost-performance analyses dictated the three-CPU
configuration and no secondary cache. Intel’s analyses showed the bus bandwidth
to the local memory would not support five CPUs efficiently. Also the three-
CPU configuration provided more board real-estate for memory than the five-
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CPU design and the five-CPU design would have required using only every other
backplane slot.

Message-passing libraries (NX, PVM, MPI, SUNMOS) are provided for inter-
node communication. A node is the smallest addressable unit in the message-
passing architecture. (Conceptually, each processor might be addressable in the
message-passing software, but Intel’s early design analyses favored node address-
ing.) Typically, one processor on each node is designated as the communication
processor, leaving two processors for computational work. The compilers can pro-
vide automatic parallelization of the processors on a node, or a threaded library
and compiler directives are provided for explicit parallelization.

3. Performance

In this section, we look at the performance of the shared-memory node. We mea-
sure CPU memory bandwidth and the effects of bus contention when multiple
CPUs and message passing compete for the limited bus bandwidth. We com-
pare the shared-memory performance and multi-threading primitives to other
shared-memory multiprocessors, finally comparing performance of some parallel
benchmark kernels.

An MP node has three CPUs, memory, and mesh-controller sharing a 400
MB/second bus (Figure 2.1). A 50 MHz i860XP is specified as being able to
generate 400 MB/second of memory traffic. Clearly, the MP node architecture is
likely to be bus limited. Large caches on each processor could mitigate the limited
bandwidth, but the data cache is not large (16KB). With 90% to 95% cache hit
rates and typical cache write-back rates, one can expect that only 15% to 25% of
a CPU’s memory requests actually generate a memory operation. In principle,
-the 400 MB/second bus could support four or five i860XPs. Programs can be
contrived to demonstrate either extreme: where all data requests are satisfied
from cache, and linear speed-up is possible; or where little or no cache hits occur,
and the node runs at the speed of one (or less) processor.

To measure actual memory bandwidth performance, we used a small unrolled
assembler loop that did quad load’s (pfidg) from memory. The memory loca-
tions were “pre-touched” to eliminate any virtual memory effects. A single CPU

sustained a memory access rate of 251 MB/second, considerably less than the
400 MB/second specification. If we ran our test concurrently on two CPUs, the
aggregate rate was still only 237 MB/second. If all three CPUs on the node
concurrently accessed memory, the aggregate rate was 246 MB/second (Table
3.1). Table 3.1 also shows the data rates for a C double-precision inner-product
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on one, two, and three CPUs. The vector lengths are too long to be contained
in the 16 KB cache, and speedups are sublinear due to bus contention. (The C
inner-product for cacheable vectors gave linear speedups with a data rate of 88

MB/second per CPU.)

MP memory bandwidth (MBs)
CPUs || 1| 2] 3] Sum
pfida-1 || 251 951
pfldg-2 || 118 | 119 237
pAdq3 || 80| 82|84 946
ddot-1 || 39 39
ddot-2 25| 25 30
ddot-3 21 2121 63

Table 3.1: Memory bandwidth consumption.

We compared the MP shared-memory node board with other shared-memory
multiprocessors. We compared thread and fork creation, lock and unlock, barri-
ers, and concurrent update of shared variable (no locks). The i860XP has no hard-
ware “atomic” operations, so locks are implemented by software. Table 3.2 com-
pares single processor performance of the 50 MHz i860XP with single processors
on the KSR, BBN, and Sequent. The KSR is ring-based shared-memory multi-
processor using a 20 MHz custom processor. The Sequent Symmetry is bus-based
shared-memory multiprocessor using 16 MHz 386 processors. The BBN TC2000
is a cascaded-switch based shared-memory multiprocessor using 20 MHz M83000
processors (see Appendix B). The performance of the i860XP and the Paragon

Time on one CPU (us)
i MP| KSR| BBN | Sequent

fork /wait 50,000 | 108,000 | 44,000 | 14,000
thread/join || 1,191 130 79 26
lock/unlock 13 3 8 10
barrier 13 39 11 10
hotspot 0.12 0.41 1.3 1.4

Table 3.2: Single processor performance of shared memory.

thread library is comparable to the other multiprocessors. The thread/join times
are slower, but the Intel programming model is such that threads are usually only
created once at the start of the application.
Table 3.3 compares the performance of three processors for an MP node
board with three processors for the KSR, BBN, and Sequent. The MP node
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compares reasonably to the three-processor performance of the other multipro-
cessors. There appear to be no architecture or implementation penalties in the
MP thread primitives for one, two, or three processors.

Time on three CPUs (us)
” MP | KSR | BBN I Sequent

lock/unlock || 104 17 20 38
barrier 110 | 119 38 24
hotspot 0.81 | 2.5 5.3 6.4

Table 3.3: Three processor performance.

Table 3.4 compares the MP node performance over a set of application kernels
in C and FORTRAN. The same copy of the code was run on each multiprocessor,
and the codes have not been tuned. The numeric integration kernels effectively
operate from cache, so near linear speed-up is achieved. The Cholesky code is a
little more memory intensive, and the slower MP performance results from lock
and bus contention. The HiTC kernel is based on a double-precision complex
ZAXPY. Using Intel’s ZAXPY from the kmath library, the serial code runs at
36 Mflops. The vectors in the ZAXPY exceed the i860XP cache size, and bus
contention prevents the parallel HiTC kernel from achieving any speedup on an
MP node. Another version of the HiTC kernel, modeling only one atom per cell,
has small enough vectors that near linear speedups can be attained.

Speedup on three CPUs
| MP | KSR I Sequent
Integration (C) 29| 29 3.0
Jacobi iteration (C) 27 238 3.0
Cholesky (1K x 1k) (C) || 2.1 | 3.0 2.9
Integration (F) 29| 29 3.0
HiTC kernel (F) 1.0 29 2.9

Table 3.4: Speedup on three CPUs for various application kernels.

To this point, we have considered only a single node board. In parallel ap-
plications, each Paragon node will communicate with other nodes in the mesh in
solving a parallel application. The expected configuration is to use one CPU on
each node board as a communication processor. To see the effect of communica-
tion and computation competing for the bus, we added a communication thread
to our pfldg test. In the absence of computational activity, the communication
thread ran at 119 MB/second, using an echo test to an adjacent node. In the ab-
sence of communication, the pfldg ran at 252 MB/second. With one pfldg thread
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and one communication thread running concurrently for identical durations, the
aggregate data rate was 177 MB/second. The communication thread garnered 31
MB/second, and the pfldg thread achieved about 146 MB/second. So the limited
bus speed can slow both computation and communication.

Table 3.5 summarizes speedups of the FORTRAN NAS parallel benchmarks
on a Pargon MP (using two compute processors and one communication proces-
sor) as reported by Intel in the Spring of 1995 (OSF R1.3). Speedups are relative
to a Paragon GP (one compute processor and one communication processor).
The class B versions represent larger problems (larger arrays or more iterations).
The NAS results are consistent with the early results of ORNL “grand challenge”
applications on the Paragon MP. The material science parallel application real-
ized a speed-up of 1.7 on the MP versus the GP. However, the shallow-water
kernel showed little speedup on the MP, but that kernel is characterized by low
data re-use.

| Program || Speedup |
EP class A || 1.74-1.91
EP class B || 1.94-2.00
FT class A | 1.20-1.42
FT class B || 1.24-1.42
MG class A || 1.21-1.37
MG class B || 1.32-1.39

Table 3.5: Intel reported speedups of Pargon MP verus GP for FORTRAN NAS
Parallel Benchmarks.

4. Message passing

Our beta testing concentrated primarily on the shared-memory features of the
MP, but we also re-evaluated message-passing performance and I/0. Most of our
production research is conducted using Intel’s OSF on the compute nodes, but we
also continue to evaluate SUNMOS. Our communication tests uncovered several
performance anomalies. Data rates were poor if message sizes were not a multiple
of 32 bytes, and data rates of one-to-n communication degraded as n increased.
Intel corrected the anomalies in subsequent software releases. Message-passing
performance (latency and bandwidth) improved with each release of software.
For nearest neighbor communication, we are currently measuring latencies of 25
to 30 pus for zero-length messages, and data rates of nearly 171 MB/second for
one MB messages. These numbers were measured under OSF 1.0.4 R1_3 and
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SUNMOS 1.6.2 and are much faster than those we reported just last year ([4]).
Per-hop delay is nearly negligible. The additional delay for going corner to corner
on the 1024-node MP Paragon (16 x 64) is less than 3 us.

The compute nodes can be configured in a “turbo” mode, where all three
processors are used as computation processors. Communication tasks are handled
with context switches. Our early tests showed that communication performance
was several orders of magnitude slower in turbo mode. However, recent software
releases have greatly improved turbo mode communication. Latency slows to
75 ws, and bandwidth is reduced to 109 MB/second. Figure 4.1 compares the
message-passing performance (transfer time) for OSF, SUNMOS, and OSF in
turbo mode. Transfer times are half the round-trip time for 1,000 repetitions of
an echo test to a neighboring node.

10000 -

P OSF
S Sunmos
T Turbo OSF

1000 -

Transfer time (us)

100 1

! } ! } ! :
10 100 1000 10000 100000 1e+06
Message size (bytes)

Figure 4.1: Message transfer time for the Paragon MP.

Our CRADA analysis also re-evaluated I/O performance. The Paragon OSF
provides both a standard UNIX file system and a larger, high performance parallel
file system (PFS). PFS is typically configured across a set of I/O nodes and disks.
The PFS is striped across one or more I/O nodes and their disk RAID arrays and
appears to the UNIX system as a separate mountable file system (e.g., /pfs). The
striping factor is 64 KB. PFS performance improves with additional I/O nodes
and larger block sizes and is limited on each node by the throughput of the OSF
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NORMA IPC communication. IPC is used by OSF to communicate between the
compute nodes and 1/0 nodes. The IPC communication is in turn transported
by the Paragon message passing hardware and software. Using 2 MB records to
64 I/0 nodes, a single MP node achieves an 18 MB/second read rate and a 36
MB/second write rate (Figure 4.2). Figure 4.2 also shows that the NORMA IPC
data rate between adjacent MP nodes peaks at about 45 MB/second, and the
read and write I/O data rates follow the same basic curve as the IPC performance.
The IPC performance probably limits I/O performance, since the IPC data rate
is well below the 171 MB/second data rate available from the underlying mesh.

NORMA IPC rate

PFS write rate

Data rate (MBs)

PFS read rate

I—>

1e+06 20406 30406 4e+06
Message size (bytes)

Figure 4.2: Paragon MP NORMA IPC rate and PFS read/write data rates.

Figure 4.3 shows aggregate read data rate using 16, 32, and 64 I/O nodes,
with from 1 to 128 compute nodes doing concurrent I/O. Aggregate read data
rates of 95 MB/second are achieved with 64 1/0 nodes and 128 compute nodes,
an improvement over earlier results ([4]). The PFS tests use 64 KB blocks, and
each compute processor reads a 32 MB section of a file. Our PFS tests use the

M_RECORD mode of gopen(), and open and close times are included in the
timings.
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Figure 4.3: Aggregate read data rate for varying compute and I/0O nodes.

5. Summary

The final phase of the ORNL/Intel CRADA provided value to both parties, Intel
getting feedback from early users and performance analyses, and ORNL getting
an opportunity to do leading-edge computer science and computational science.
The shared-memory performance of the Paragon MP is competitive with other
shared-memory multiprocessors. The limited bus bandwidth of each MP node re-
quires that the application programmer exploit data locality to garner noticeable
speedups. The automatic parallelization compilers help in utilizing the multiple
processor nodes, but in complex programs, the application programmer usually
needs to assist in the parallelization process. Message-passing performance and
I/O continue to improve. The 96-node MP Paragon CRADA machine continues
to be a valuable computational resource for ORNL, even after delivery of the
production 1024-node MP Paragon in January, 1995.
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Appendix

A. Timeline
May, 1993. Inititial “planned” delivery of beta MP system to ORNL.
July, 1993. Intel changes from MP5 to MP3.
October, 1993. Fat-node programming model selected.
April, 1994. Training on MP at Beaverton.
May, 1994. 10-node MP delivered to ORNL.
June, 1994. MP training at ORNL and parallel FORTRAN delivered.
July, 1994. MP expanded to 28 nodes and additional training.

October, 1994. Applications testing on 1024-node MP system (XPS150) at
Beaverton.

January, 1995. MP expanded to 96 nodes and XPS150 delivered.

B. Comparative Architectures.

A node on the Paragon MP supports a shared-memory architecture with three
i860XP processors sharing a 400 MB/second bus and memory. The report com-
pares shared memory performance of an MP node with several shared-memory
multiprocessors. A summary of the shared-memory multiprocessors compared

with the MP node follows.

BBN TC2000

The BBN TC2000 at Argonne National Laboratory (ANL) is a 45 processor
shared-memory parallel processor. Each processor is a Motorola 88000 running
at 20MHz with 16 MB of memory fronted by a 16KB data cache and a 16KB in-
struction cache. All of the memories are interconnected by a 2-stage 8-way switch.

The system can be expanded up to 512 processors. The Uniform programming
environment (under nX 2.0.6) provides the program with both local and explic-
itly allocated shared memory. The shared memory may be allocated in another
processor’s memory, and thus a non-uniform memory access (NUMA) model is
supported. In the absence of contention, a remote reference typically takes less
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than two microseconds, and a single channel of the switch has a bandwidth of
40 MBs [6]. The architecture could be used with other memory management
policies [5]. Compiles on the BBN were done with -O -lus. LINPACK 100 x 100
double-precision on a single processor was 1.0 Mflops using -OLM -autoinline.
Dhrystone (v1.0) was 19.4 Mips.

Kendall Square

The Kendall Square uses custom-designed 20 MHz processors that share memory
on a one gigabyte per second ring. Each processor has a 256KB cache, and the
global memory is managed as a cache. A single processor generates a maximum
of 40 MBs against the ring. LINPACK 100 x 100 double-precision on a single
processor was 15 Mflops [3].

Sequent Symmetry

The 26 processor Sequent Symmetry located at ANL is based on 80386/387 pro-
cessors (16 MHz) with a Weitek 3167 floating point co-processor. Each processor
has a 64KB cache, and 32 MB of memory is shared by all processors on a 54 MBs
bus. The maximum configuration is 30 processors. The processors run Dynix
3.1.2, and compiles were done using -O. LINPACK 100 x 100 double-precision on
a single processor was 0.37 Mflops [1]. Dhrystone (v1.0) was 3.6 Mips. Processor
4.8 MBs versus a 26 MBs bus.
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